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The quantum spin effects inside matter can be modeled via the Weyssenhoff fluid, which permits us to
unearth a formal analogy between general relativity and Einstein-Cartan theory at the first post-Newtonian
order. In this framework, we provide some analytical formulas pertaining to the dynamics of binary systems
having the spins aligned perpendicular to the orbital plane. We derive the expressions of the relative orbit
and the coordinate time, which in turn allow us to determine the gravitational waveform, and the energy-
and angular-momentum fluxes. The potentialities of our results are presented in two astrophysical
applications, where we compute (i) the quantum spin contributions to the energy flux and gravitational
waveform during the inspiral phase and (ii) the macroscopic angular momentum of one of the bodies
starting from the time-averaged energy flux and the knowledge of a few timing parameters.
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I. INTRODUCTION

When Einstein laid down the basis for general relativity
(GR) in 1916, quantum mechanics had not yet been
formalized. This means that quantum concepts like the
spin have no geometrical counterpart in GR, which thus
configures as a purely classical theory. The revolutionary
ideas underlying this framework soon became a source of
inspiration for several authors. In particular, in 1920 Cartan
developed an extension of GR, now referred to as Einstein-
Cartan (EC) theory [1], where the most general metric-
compatible affine connection was taken into account. This
geometric formulation was then revisited by Kibble and
Sciama in the 1960s, who devised it within the gauge
theory of the Poincaré group [2,3]. It was then realized that
the torsion tensor Sλμν, i.e., the antisymmetric part of the
affine connection, is associated with the intrinsic quantum
spin of matter [4–6].
One of the chief differences between the EC model and

GR resides in their geometrical foundations, as the former
is framed in the Riemann-Cartan environment, whereas the
latter is in the Riemannian arena [4]. This explains why the
EC pattern naturally fits the gauge paradigm, whereas if
this is applied to Einstein gravity, we end up with the
teleparallel equivalent of GR (TEGR), i.e., the gauge theory
of the translation group [7,8]. Furthermore, EC field

equations can be derived from a Palatini action over a
Riemann-Cartan geometry, where the torsion is indepen-
dent of the metric. In this way, the principle of least action
yields (κ ≔ 8πG=c4) [4,9]

Gαβ ¼ κTαβ; ð1aÞ

Sμνλ þ δλμSνρρ − δλνSμρρ ¼ κτμν
λ; ð1bÞ

where Gαβ is the EC tensor. From the above equations it is
clear that both mass and spin represent the source of
gravitation since Tαβ and τμν

λ denote the canonical stress-
energy- and spin-angular-momentum tensors, respectively.
They are linkedvia the relationTαβ ¼ Tαβ þ ð∇γ þ 2SγμμÞ×
ðταβγ − τβγα þ τγαβÞ, Tαβ being the metric stress-energy
tensor. A peculiar aspect of EC theory is that Eq. (1b) is
an algebraic equation. As a consequence, torsion does not
propagate, and hence it is confined only to the region
occupied by matter. If one exploits Eq. (1b), then EC field
equations can be recast in the GR-like form [4]

Ĝαβ ¼ κΘαβ: ð2Þ

Here, Ĝαβ is the (symmetric) Einstein tensor, which differs
fromGαβ due to the torsion contributions. Moreover, Θαβ ≔
Tαβ þ κSαβ denotes the combined energy-momentum ten-
sor, where Sαβ is what we dub the torsional energy-
momentum tensor, due to its (quadratic) dependence on
τμν

λ. It is worth noticing that Eq. (2) does not imply that EC
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theory is a trivial generalization of GR. In fact, the formu-
lation (2) is useful from a practical point of view, but it does
not entail thatwehave abandoned theRiemann-Cartan arena.
In other words, GR pertaining to bodies endowed with
angular momentum and EC theory are not equivalent.
Indeed, in GR macroscopic rotations engender the modifi-
cation of the stress-energy tensor and not of the geometry,
while in theECmodel both are affected by the presence of the
quantum spin.
In EC theory, matter-field dynamics can be derived from

the generalized conservation laws [4,9,10]

ð∇ν þ 2SνααÞTμ
ν ¼ 2T λ

νSμνλ − τνρ
σRμσ

νρ; ð3aÞ

2ð∇λ þ 2SλααÞτμνλ ¼ Tμν − T νμ; ð3bÞ

where both the covariant derivative and the Riemann tensor
include torsion contributions. The above relations are a
consequence of Eq. (1). In particular, Eq. (3a) follows from
the contracted Bianchi identity framed in Riemann-Cartan
geometry, while Eq. (3b) originates from the antisymmetric
part of Gαβ [9].
The first physical features of the equations of motion can

be figured out by considering a test particle. In the EC
framework, test-body trajectories are neither geodesics nor
autoparallel curves already at the pole-particle approxima-
tion, which yields, in fact, a set of Mathisson-Papapetrou-
Dixon-like equations for the translational dynamics. These
explicitly exhibit the contributions of the torsion tensor and
contain a coupling term between the quantum spin of the
object and the curvature of the spacetime [9,11]. On the
other hand, the standard Mathisson-Papapetrou-Dixon
equations of GR refer to the macroscopic angular momen-
tum of the body and are worked out in the pole-dipole
approximation [12].
A more advanced scenario is represented by the dynam-

ics of a self-gravitating system, which is fundamental in
gravitational-wave (GW) theory. In our research program,
we have studied the GW generation problem with the
Blanchet-Damour formalism in EC theory by first consid-
ering a source shaped by the Weyssenhoff fluid [13,14].
This is characterized by the tensors [14,15]

Tαβ ¼ pαuβ þ ðuαuβ=c2 þ gαβÞP; ð4aÞ

ταβ
γ ¼ sαβuγ; ð4bÞ

where pα, uα, P, and sαβ are the four-momentum, four-
velocity, pressure, and spin density tensor of the fluid,
respectively. The conservation laws (3) yield a generalized
Euler equation and precessional motion showing signifi-
cant deviations from the GR expectations. We have studied
both the translational and the rotational fluid evolution via
the post-Newtonian (PN) approximation scheme and by
adopting the Frenkel condition sαβuβ ¼ 0 [14]. Then, we

studied compact binaries, which represent the main can-
didates for GWs in astrophysics. These can be formally
described by applying the point-particle limit to the
continuous fluid distribution. In this way, we have derived
the equations of motion and the radiative multipole
moments of a spinning PN two-body system [14,16,17].
Our investigation regarding binary systems has revealed

some remarkable novel results holding at the first post-
Newtonian (1PN) level, which we summarize as follows:
(1) Both the translational and the rotational equations of

motion formally resemble those of GR up to a
normalization factor in the spin vector [16,17].

(2) The effacing principle is valid. This conclusion has
been achieved after a careful investigation of the
inner-structure-dependent integrals occurring in the
dynamical equations, which have been verified to
give no contribution [16,17]. Moreover, the zero-
range spin interaction, which represents a distinct
feature of the EC model, is absent.

(3) There exists a formal agreement between the radi-
ative multipole moments of GR and EC theory. This
will be proved explicitly in this paper.

Therefore, despite the profound differences between the
GR and EC frameworks, we have discovered, at 1PN order,
some a priori unpredictable formal similarities between the
GR treatment of bodies endowed with a macroscopic
angular momentum and the EC characterization of spinning
objects modeled through the Weyssenhoff fluid. However,
it should be stressed that had we chosen an alternative fluid
description, we might have attained distinct results. A
scheme of our findings is given in Fig. 1.
Building upon the cited achievements, a wide variety of

astrophysical applications involving both the dynamics and
the ensuing radiative phenomena of either spinning com-
pact binaries or weakly self-gravitating spinning binaries
framed either in GR or the EC model is expected. The
advantageous osmosis between these two theories also
offers a great opportunity to transfer a series of method-
ologies and results from one setting to the other. In this
same vein, we aim to provide a set of analytical formulas
regarding the orbital motion and the underlying coordinate
time of binary systems whose spins are supposed to be
aligned perpendicular to the orbital plane. These findings
are extremely convenient for speeding up the calculations
and avoiding numerical prescriptions and hence can be
employed in a timely manner to evaluate the two-body
gravitational waveforms and fluxes.
The paper is organized as follows. After considering the

dynamics and the radiative multipole moments of binary
systems in Sec. II, we derive the analytical formulas
describing their relative orbit and coordinate time in
Sec. III; in Sec. IV, we provide two applications, which
involve the quantum spin and the macroscopic angular
momentum of the bodies; finally, in Sec. V, we draw the
conclusions and outline future perspectives.
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A. Notations and conventions

Greek indices take values 0, 1, 2, 3, while lowercase Latin
ones take 1, 2, 3. The spacetime coordinates are xμ ¼ ðct; xÞ.
Four-vectors arewritten asaμ ¼ ða0; aÞ, anda · b ≔ δlkalbk,
jaj≡ a ≔ ða · aÞ1=2, and ða × bÞi ≔ εilkalbk, where εkli is
the total antisymmetric Levi-Civita symbol. The symmetric-
trace-free (STF) projection of a tensorAij…k is indicatedwith
Ahij…ki. Superscripts (l) denote l successive time derivatives,
andL ¼ i1i2…il denotes amulti-index consisting of l spatial
indices.

II. BINARY-SYSTEM EQUATIONS OF MOTION
AND MULTIPOLE MOMENTS

In this section, we set out the dynamics and the radiative
multipole moments of binary systems, which can be
obtained by applying the point-particle limit to a continuous
fluid model [18]. This procedure relies on the assumption
that the fluid can be decomposed in a collection of N ¼ 2
mutually well-separated components, each of them repre-
senting a body (of course, this approach can be easily
generalized to any N ≥ 2). This methodology entails the
introduction of some center-of-mass variables which permit
one to substitute the fine-grained description of the system
based on a number of fluid variables (such as the density and
the pressure)with a coarse-grained picture.We have pursued
this scheme inRefs. [14,16,17], wherewe have exploited the
semiclassical Weyssenhoff model of a neutral spinning
perfect fluid in EC theory and the PN formalism.

The section is organized as follows. We start with the
1PN equations of motion for binary systems and the
resulting first integrals (see Secs. II A and II B). Sub-
sequently, after having displayed the general formulas of
the waveform and the fluxes (cf. Sec. II C), we derive the
underlying radiative multipole moments and show their
formal analogy with their GR counterpart in Sec. II D.
Henceforth, the bodies are labeled by capital letters

A;B ¼ 1, 2.

A. Equations of motion

We consider a binary system composed of two spinning,
weakly self-gravitating, slowly moving, and widely sepa-
rated companions with masses m1 ≥ m2, total mass
M ¼ m1 þm2, reduced mass μ ¼ m1m2

M , and symmetric
mass ratio ν ¼ μ

M. Given a harmonic coordinate system

xμ, let rA be the position vector, vA ¼ drA
dt the velocity, and sA

the spin of the objects. The latter is defined by

εjkisiAðtÞ ≔
Z
A
d3xsjk; ð5Þ

where sμν is the spin density tensor [cf. Eq. (4b)]. The above
equation reflects the well-known fact that in the EC model
the quantum spin sA is related to a geometrical feature of the
spacetime, i.e., the torsion tensor. Furthermore, it makes
clear the difference between sA and the macroscopic
angular-momentum vector ŝA adopted in GR. In particular,

FIG. 1. Scheme showing differences and formal analogies between the GR description of bodies endowed with macroscopic angular
momentum and the EC treatment of objects having a quantum spin. These two frameworks are not equivalent because GR is a metric
theory of gravity, whereas the EC model follows a Palatini formulation. However, if we consider the Weyssenhoff fluid and the Frenkel
condition to model the quantum spin effects in the EC framework, we discover, after having applied the point-particle limit (referred to
as the PP limit), that the two theories share some common facets at the 1PN level.
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the former cannot be written in terms of kinematical
quantities, unlike the latter, which is defined through an
integral involving the density of the fluid and the cross
product between the position and the velocity vectors of a
fluid element relative to the center of mass (see Ref. [18] for
more details).
The motion of the binary system can be conveniently

described by choosing an orthogonal reference frame
centered in the barycenter, which, without loss of general-
ity, is supposed to be static. In this frame, after having
defined the relative vectors R ≔ r1 − r2 and V ≔ d

dtR, we
find that the 1PN translational dynamics is ruled by the
relative acceleration

A ≔
d
dt
V ¼ AGR þ AEC þ Oðc−4Þ; ð6Þ

where [16]

AGR ¼ −
GM
R2

N þ GM
c2R2

��
2ð2þ νÞGM

R
þ 3ν

2
ðN · VÞ2

− ð1þ 3νÞV2

�
N þ 2ð2 − νÞðN · VÞV

�
; ð7aÞ

AEC ¼ −4G
c2R3

�
V ×

�
2sþ 3

2
σ

�
− 3NðN × VÞ · ðsþ σÞ

− 3N ×

�
sþ σ

2

�
ðN · VÞ

�
−

12G
c2R4μ

fs1ðN · s2Þ

þ s2ðN · s1Þ þ N½s1 · s2 − 5ðN · s1ÞðN · s2Þ�g; ð7bÞ

with N ¼ R=R and

s ≔ s1 þ s2; σ ≔
m2

m1

s1 þ
m1

m2

s2: ð8Þ

The 1PN motion is determined by Eqs. (6) and (7) jointly
with the conservation law dsA=dt ¼ Oðc−2Þ (see Ref. [16]
for further details).

B. First integrals

As shown in Ref. [17], the 1PN dynamics of the
binary system follows from an acceleration-dependent
Lagrangian, which permits us to determine the expressions
of the related conserved energy and angular momenta. The
total specific energy E can be written as

E ¼ EGR þ EEC þ Oðc−4Þ; ð9Þ

where

EGR ¼
�
V2

2
−
GM
R

�
þ 1

c2

�
GM
2R

�
GM
R

þ νðN · VÞ2

þ ðνþ 3ÞV2

�
þ 3

8
ð1 − 3νÞV4

�
; ð10aÞ

EEC ¼
2G
c2R2

�
ðN×VÞ · σþ 2

μR
½3ðN · s1ÞðN · s2Þ− s1 · s2�

�
;

ð10bÞ

while the total specific angular momentum J reads as

J ¼ LGR þ LEC þ s̄
μ
þ Oðc−4Þ; ð11Þ

with

LGR ¼ LN

�
1þ 1

c2

�
GM
R

ðνþ 3Þ þ ð1 − 3νÞ
2

V2

��
; ð12aÞ

LEC ¼ 2

c2M

�
GM
R

N × ½N × ðσ þ 2sÞ� − 1

2
V × ðV × σÞ

�
:

ð12bÞ

In the above equations, the Newtonian specific angular
momentum is

LN ¼ R × V; ð13Þ

and we have introduced the total spin vector

s̄ ≔ s̄1 þ s̄2; ð14Þ

where s̄A is the refined spin which keeps its magnitude
constant during the motion (i.e., it satisfies s̄A ·ds̄A=dt¼0).
It is defined as [17]

s̄A≔ sAþ
1

c2

�
GmB

R
sAþ

1

2
ðsA ·VAÞVA

�
þOðc−4Þ; ðA≠BÞ:

ð15Þ

As noted in Refs. [16,17], both the translational and the
rotational 1PN GR dynamics pertaining to weakly self-
gravitating binary systems having a macroscopic angular-
momentum vector ŝA are formally recovered if the sub-
stitution

sA →
1

2
ŝA; ð16Þ

is applied to the 1PN motion in EC theory. As will be clear
from our forthcoming analysis, in the case of maximally
rotating compact objects, the above relation should be
slightly modified according to
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sA →
1

2c
ŝA; ð17Þ

where, following the usual GR conventions [19], ŝA now
has the dimensions of an angular momentum multiplied by
c. Note that, in order to ease the notations, we always use
the symbol ŝA, although the physical dimensions of the
macroscopic angular momentum are different in Eqs. (16)
and (17). Indeed, this should not create any confusion, as it
will be clear from the context which relation we are
referring to.

C. Gravitational waveform and fluxes

Let us indicate with IradL and JradL the STF mass-type and
current-type radiative multipole moments of order l,
respectively. Bearing in mind that, at the 1PN level, there
is no difference between the harmonic and the radiative
coordinates [20,21], the 1PN-accurate asymptotic wave-
form H TT

ij reads as [13,14,22]

H TT
ij ðxμÞ ¼

2G
c4jxjPijklðnÞ

�
I
ð2Þ

rad
kl ðuÞ

þ 1

c

�
1

3
na I

ð3Þ
rad
klaðuÞ þ

4

3
nbϵabðk J

ð2Þ
rad
lÞaðuÞ

�

þ 1

c2

�
1

12
nanb I

ð4Þ
rad
klabðuÞ

þ 1

2
nbncϵabðk J

ð3Þ
rad
lÞacðuÞ

�
þ Oðc−3Þ

�
; ð18Þ

where u ¼ t − jxj=c, n ¼ x=jxj, and PijklðnÞ is the trans-
verse-traceless (TT) projection operator onto the plane
orthogonal to n. Moreover, the total radiated power F
(also dubbed energy flux or gravitational luminosity) and
the angular-momentum flux Gi read as [22]

F ðtÞ ¼ G
c5

�
1

5
I
ð3Þ

rad
ij I

ð3Þ
rad
ij þ 1

c2

�
1

189
I
ð4Þ

rad
ijk I

ð4Þ
rad
ijk

þ 16

45
J
ð3Þ

rad
ij J

ð3Þ
rad
ij

�
þ Oðc−4Þ

�
; ð19aÞ

GiðtÞ ¼
G
c5

εijk

�
2

5
I
ð2Þ

rad
jl I

ð3Þ
rad
kl þ 1

c2

�
1

63
I
ð3Þ

rad
jlp I

ð4Þ
rad
klp

þ 32

45
J
ð2Þ

rad
jl J

ð3Þ
rad
kl

�
þ Oðc−4Þ

�
: ð19bÞ

Note that the linear-momentum flux involves a
Newtonian formula (see Ref. [22] for more details) and
hence will not be considered in this paper.

D. Radiative multipole moments

The general form, with the required PN accuracy, of the
radiative multipole moments occurring in the formulas of
Sec. II C was first obtained in Ref. [13], where we solved
the GW generation problem in EC theory via the Blanchet-
Damour formalism.1 Then, the expressions valid in the case
of spinning binary systems have been derived in Ref. [14].
Starting from these results and adopting a mass-centered
coordinate system, we find that, after some manipulations,
the mass-type radiative moments can be written as

Iradij ¼ μRhiji

�
1þ 29

42c2
ð1 − 3νÞV2 −

ð5 − 8νÞ
7c2

GM
R

�

þ μð1 − 3νÞ
21c2

½11R2Vhiji − 12ðR · VÞRhiVji�

þ 8ν

3c2
½2ðV × σÞhiRji − ðR × σÞhiVji�

þ Oðc−3Þ; ð20Þ

Iradijk ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
Rhijki þ Oðc−2Þ; ð21Þ

Iradijkl ¼ μð1 − 3νÞRhijkli þ Oðc−2Þ; ð22Þ

while the current-type radiative moments are

Jradij ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
ϵklhiRjikVl

þ 3μ

�
shi1R

ji

m1

−
shi2R

ji

m2

�
þ Oðc−2Þ; ð23Þ

Jradijk¼μð1−3νÞRhijϵkilpRlVpþ4νRhiRjσkiþOðc−2Þ: ð24Þ

Notice that in Eq. (20) we have exploited the equations of
motion (6) jointly with the fact that the spin vector is
conserved modulo Oðc−2Þ corrections.
At this stage, some comments are in order. First,

Eqs. (20), (23), and (24) agree formally with their corre-
sponding GR moments [21,23,24] if the quantum spin sA is
replaced by the macroscopic angular-momentum vector ŝA
following the scheme already introduced in Eqs. (16) and
(17). This is a crucial consistency check since, as pointed
out before, the same conclusion is valid in the context of the
1PN dynamics of spinning binaries. Moreover, this is a
remarkable result if we recall that Eqs. (20)–(24) have been
obtained by applying the point-particle procedure to the
radiative moments pertaining to a Weyssenhoff fluid in EC
theory, i.e., a generalization of the usual perfect fluid
adopted in GR. Furthermore, we see that in our framework,
Eqs. (20)–(24) are immediately consistent with the Frenkel

1The radiative moments IradL , JradL are related to the STF
radiative multipole moments UL, VL employed in Ref. [13] by

the relations UL ≔ I
ðlÞ

rad
L , VL ≔ J

ðlÞ
rad
L .
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spin supplementary condition. On the other hand, in the
context of GR the radiative moments follow the center-of-
mass definition stemming from the Frenkel constraint only
if a suitable transformation is invoked [see Eq. (13) in
Ref. [23] and Appendix A in Ref. [24] for further details].

III. ANALYTICAL FORMULAS

In this section, we investigate the dynamical and
radiative features of binary systems analytically. We sup-
pose that the spins of the companions and the orbital
angular momentum L ≔ LGR þ LEC are aligned, namely
[cf. Eqs. (11)–(15)],

s̄ · R ¼ 0; s̄ · V ¼ 0; s̄1 × s̄2 ¼ 0: ð25Þ

In this setting, there is no spin precession, as ds̄A=dt ¼
Oðc−4Þ [cf. Eqs. (27) and (28) in Ref. [17]], and the
dynamics takes place in a fixed plane [see Eqs. (6) and (7)].
Thus, we can set the barycentric frame ðx; y; zÞ in such a
way that the motion occurs in the plane ðx; yÞ, where we
introduce polar coordinates ðR; θÞ, θ being the angle
between R and the x axis measured counterclockwise.
This also means that we can write s̄1 ¼ ð0; 0; s̄1zÞ and
s̄2 ¼ ð0; 0; s̄2zÞ.
In our hypotheses, the orbital angular momentum L and

the total spin vector s̄ are separately conserved modulo
Oðc−4Þ corrections [see Eq. (11)]. In other words, we have
one additional first integral with respect to the most general
case. We can take advantage of this situation, as the number
of conserved quantities and degrees of freedom of the
system coincide. Therefore, the conserved s̄ resolves the
rotational motion as it gives the only nonvanishing com-
ponent of the spins, whereas the constants E and L
determine the translational motion, as they can be used
to work out the functions RðtÞ and θðtÞ. In this configu-
ration, we are able to parametrize the relative orbit á la
Damour-Deruelle (see Sec. III A). Here, the coordinate time
plays a key role, and its analytical expression is worked out
in Sec. III B. Such formulas are essential to evaluate the
energy- and angular-momentum fluxes. These are given,
for generic spin orientations, in Sec. III C, where we also
derive some new contributions, which, to the best of our
knowledge, have not been transcribed in the literature.

A. Polar equation of the relative orbit

Starting from the expressions of E and L, and employing
polar coordinates, we find that the 1PN relative dynamics
of the companions is described by�

dR
dt

�
2

¼ Aþ 2B
R

þ C
R2

þ D
R3

þ Oðc−4Þ; ð26aÞ

dθ
dt

¼ H
R2

þ I
R3

þ Oðc−4Þ; ð26bÞ

with

A ¼ A; ð27aÞ

B ¼ B; ð27bÞ

C ¼ Cþ 1

c2
4LE
M

σz; ð27cÞ

D ¼ Dþ 4G
c2

�
2
s1zs2z
μ

− Lð2σz þ szÞ
�
; ð27dÞ

H ¼ H −
1

c2
2E
M

σz; ð27eÞ

I ¼ I þ 4G
c2

sz; ð27fÞ

where sz ¼ s1z þ s2z, σz ¼ m2

m1
s1z þ m1

m2
s2z, sz ≔ s1zs2z=μ

[recall that s̄A ¼ sA þ Oðc−2Þ, cf. Eq. (15)]. The parameters
A;B;C;D;H; I can be found in the Damour and Deruelle
paper [see Eq. (2.17) in Ref. [25]] with the caveat that the
energy E and the orbital angular momentum Lmust be read
off from our Eqs. (9)–(12).
Equation (26) assumes the same functional form as in

GR [see Eqs. (2.15) and (2.16) in Ref. [25]]. We can then
employ the strategy pursued by Damour and Deruelle,
which uses conchoidal transformations in order to map
Eq. (26) to an auxiliary Newtonian-like form. It should be
clear that, in our case, these transformations formally
mirror those of GR, the only difference being the occur-
rence of (some of) the coefficients displayed in Eq. (27).
Therefore, we can parametrize the radial and the angular
1PN motion in the EC model as

nðt − t0Þ ¼ u − et sin uþ Oðc−4Þ; ð28aÞ

RðtÞ ¼ aRð1 − eR cos uÞ þ Oðc−4Þ; ð28bÞ

θðtÞ¼ θ0þ2K arctan

��
1þeθ
1−eθ

�
tan

u
2

�
þOðc−4Þ; ð28cÞ

where the 1PN quantities fn; aR; eR; et; eθ; Kg are

n ¼ ð−AÞ32
B

; ð29aÞ

aR ¼ −
B
A

−
D
2L2

; ð29bÞ

et ¼
�
1 −

A
B2

�
C þ BD

L2

��
1=2

; ð29cÞ
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eR ¼
�
1 −

AD
2BL2

�
et; ð29dÞ

eθ ¼
�
1 −

AD
BL2

−
AI
BH

�
et; ð29eÞ

K ¼ 1þ 1

c2
3G2M2

L2
: ð29fÞ

Starting from the above relations, it is easy to show that
the polar equation of the 1PN relative orbit is

RðθÞ ¼ eR
eθ

aR
1 − e2θ

1þ eθ cosðθ−θ0K Þ þ aR

�
1 −

eR
eθ

�

þ Oðc−4Þ: ð30Þ

B. Coordinate time

Having obtained the orbital radius (30), we can now
derive the analytical formula of tðθÞ, which expresses the
coordinate time as a function of the polar angle. This can be
done by generalizing the strategy developed in Ref. [26],
which relies on first determining a main discontinuous
function fðθÞ, which is then made smooth via the intro-
duction of the accumulation function FnðθÞ.
In order to build up the differential equation for tðθÞ,

we split the energy E, the orbital angular momentum L,
and the radius R as follows: E ¼ E0 þ 1

c2 E1 þ Oðc−4Þ,
L ¼ L0 þ 1

c2 L1 þ Oðc−4Þ, and R ¼ R0 þ 1
c2 R1 þ Oðc−4Þ.

The expressions of E0, E1, L0, and L1 can be promptly
read off from Eqs. (10) and (12), whereas for R0 and R1 we
make use of Eq. (30). Since EC theory is the same as GR at
the 0PN level, R0 reads as [cf. Eq. (5a) in Ref. [26]]

R0 ¼
1

B1 þ B2 cosðK̃ θ̃Þ ; ð31Þ

where θ̃ ¼ θ − θ0, B1 > B2 ≥ 0, and

B1 ¼
1

h20GM
; ð32aÞ

B2 ¼ e0B1; ð32bÞ

K̃ ¼ 1 −
1

c2
3

h20
þ 2G
c2h0L2

0

�
4sz þ 3σz − 6

sz
L0

�
; ð32cÞ

h0 ¼
L0

GM
; ð32dÞ

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E0h20

q
; ð0 ≤ e0 < 1Þ; ð32eÞ

where e0 is the Newtonian eccentricity and K̃ the 1PN
expansion of 1=K [cf. Eq. (29f)]. This last factor is

responsible for the orbit precession, which is also influ-
enced by the presence of the spin. The term R1 can be
written as the sum of the GR and EC contributions, i.e.,
R1 ¼ RGR

1 þ REC
1 . We find [cf. Eq. (5b) in Ref. [26]]

RGR
1 ¼ A0 þ A1R0 þ A2R2

0 cosðK̃ θ̃Þ; ð33aÞ

REC
1 ¼ R2

0½W1 þW2 cosðK̃ θ̃Þ þW3 cosðK̃ θ̃Þ�; ð33bÞ

where

A0 ¼
Gμ
2

; ð34aÞ

A1 ¼ 2E0

�
ν

2
− 2

�
þW0; ð34bÞ

A2 ¼ −
E2
0

e0GM

�
E1

E2
0

þ 2W0

E0

þ ν − 15

2

�
; ð34cÞ

W1 ¼
4ðe20 þ 3Þsz þ ðe20 þ 8Þσz

G2M3h50
−
6ðe20 þ 2Þsz
G3h60M

4
; ð34dÞ

W2 ¼
4ð3e20 þ 1ÞðGMh0sz − szÞ

G3M4h60e0

þ ð3þ 6e20 − e40ÞGMh0σz
e0G3M4h60

; ð34eÞ

W3 ¼
e20ð2sz −Gh0MσzÞ

G3M4h60
; ð34fÞ

and W0 ¼ L1=L0 − 3=h20.
If we write the 1PN differential equation for tðθÞ in the

form [see Eq. (26b)]

dt ¼ dθ
H
R2 þ I

R3

þ Oðc−4Þ ¼ dtGR þ dtEC þ Oðc−4Þ; ð35Þ

then the substitution of the splittings shown above for E, L,
and R gives [cf. Eq. (8) in Ref. [26]]

dtGR ¼ R2
0

L0

�
1þ 1

c2

�
E0ð1 − 3νÞ þ 2R1

R0

−
4GM
R0

ðν − 2Þ − L1

L0

��
dθ; ð36aÞ

dtEC ¼ 2R0ðE0R0σz − 2GMszÞ
c2L2

0M
dθ: ð36bÞ

At this stage, we can use the explicit formulas of R0 and R1

[cf. Eqs. (31) and (33)] to obtain the complete expression of
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the differential equation for tðθÞ, which can be easily
integrated, yielding the result

fðθÞ ¼ 1

c2L2
0K̃

�
ðC1R0 þ C2ÞR0 sinðK̃ θ̃Þ

þ C0 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 − B2

B1 þ B2

s
tan

�
K̃ θ̃

2

���
; ð37Þ

where

C0 ¼
2L0

ðB2
1 − B2

2Þ5=2
�
2ðB2

1 − B2
2Þ2½A0 −Gðν − 2ÞM�

þ B1ðB2
1 − B2

2Þ
�
ð2A1 þ c2 − 3E0νþ E0Þ −

L1

L0

�

þ 3B2½B2W3 − B1ðA2 þW2Þ� þW1ð2B2
1 þ B2

2Þ
�
;

ð38aÞ

C1 ¼
L0

B2ðB2
1 − B2

2Þ
½B1B2ðA2 þW2Þ − 2B2

1W3

þ B2
2ðW3 −W1Þ�; ð38bÞ

C2¼
L0

B2ðB2
1−B2

2Þ2
�
B2
2ðB2

2−B2
1Þ
�
ð2A1þc2

−3E0νþE0Þ−
L1

L0

�
þA2B2ðB2

1þ2B2
2Þþð2B3

1W3

þB2
1B2W2−B1B2

2ð3W1þ5W3Þþ2B3
2W2Þ

�
: ð38cÞ

The function fðθÞ is discontinuous on intervals lying
outside ½0; 2π�. Therefore, in order to regularly connect
its different curve branches, we make use of the accumu-
lation function FnðθÞ [26], which reads as

FnðθÞ¼
�
0 if θ̃∈ ½0;Pθ�
2nfðPθÞ if θ̃∈ ½Pθð2nþ1Þ;Pθð2nþ2Þ�;

ð39Þ

where Pθ ¼ π=K̃ is the characteristic period and n∈N. For
a generic θ, the related value of n can be calculated
considering q ¼ ½ðθ̃ − PθÞ=Pθ�, where ½·� stands for the
integer part of a number. Thus, if q is an even number, then
n ¼ ðqþ 2Þ=2; on the other hand, if q is an odd number,
then n ¼ ðqþ 1Þ=2. Therefore, we can conclude that the
correct analytical form of tðθÞ is

tðθÞ ¼ fðθÞ þ FnðθÞ þ Oðc−4Þ: ð40Þ

In Fig. 2, we show the agreement between the numerical
solution of Eq. (35) and the analytical expression (40).
Here, we have considered two neutron stars (NSs), whose
quantum spins are modeled as follows:

sAz ¼ Nℏ
4π

3

�
6GmA

c2

�
3

; ð41Þ

where N ¼ 1044 m−3 is estimated as the inverse of the
nucleon volume [13,14].
The analytical expression of tðθÞ is extremely useful for

speeding up the computations in several astrophysical
applications such as the following (see Ref. [26] and
references therein): pulsar timing software such as
TEMPO2; coherent pulsar search algorithms; and GW
astronomy, where it can be used to match the observational
data with theoretical templates.

C. Energy- and angular-momentum fluxes

The analytic formulas presented in the previous sections
play a fundamental role in the evaluation of the energy- and
angular-momentum fluxes. Let us start with the luminosity
(19a), which, for generic spin directions, can be written as

F ¼ 8

15

G3μ2M2

c5R4

�
FN þ 1

c2
ðF 1PN

þ F SO þ F SS þ F SS0 Þ þ Oðc−3Þ
�
: ð42Þ

Here, the GR contributions are [27]

0 10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

(rad)

t(
s)

FIG. 2. Function tðθÞ with θ∈ ½0; 20π� for a binary NS system
having the following parameters: m1 ¼ 1.60M⊙, m2 ¼ 1.17M⊙,
θ0 ¼ 0, E0 ¼ −6.80 × 1014 m2 s−2, E1 ¼ 1.07 × 1030, L0 ¼
8.62 × 1012 m2 s−1, L1 ¼ 2.57 × 1028 s, s1z ¼ 1.21 × 1057ℏ,
s2z ¼ 4.73 × 1056ℏ. The black continuous line represents the
numerical solution, whereas the red dashed line is the analytical
expression (40).
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FN ¼ 12V2 − 11ðN · VÞ2; ð43aÞ

F 1PN ¼ GM
7R

�
ð734 − 30νÞðN · VÞ2 þ ð4 − 16νÞGM

R

�

þ V2

14

�
80GM
R

ðν − 17Þ þ
�
785

2
− 426ν

�
V2

þ ð1392ν − 1487ÞðN · VÞ2
�
þ 1

7

�
2061

4
− 465ν

�
× ðN · VÞ4; ð43bÞ

whereas for the EC corrections we find

F SO ¼ 2

MR2
LN ·

�
s

�
78ðN · VÞ2 − 8GM

R
− 80V2

�

þ ðχ 2 − χ 1Þ
ðm1 −m2Þ−1

�
51ðN · VÞ2 þ 4GM

R
− 43V2

��
;

ð44aÞ

F SS ¼
2

R2
f3ðχ 1 · χ 2Þ½47V2 − 55ðN · VÞ2�

− 3ðN · χ 1ÞðN · χ 2Þ½168V2 − 269ðN · VÞ2�
− 17ðN · VÞ½ðN · χ 2ÞðV · χ 1Þ
þðN · χ 1ÞðN · χ 2Þ� þ 71ðV · χ 1ÞðV · χ 2Þg; ð44bÞ

F SS0 ¼
1

R2

X
A

f3ðχA · χAÞ½3ðN · VÞ2 þ V2�

þ ½3ðN · VÞðχA · NÞ − ðχA · VÞ�2g; ð44cÞ

where we have defined

χA ≔
sA
mA

: ð45Þ

Some fundamental remarks on the above relations
should be given. First of all, we note that Eq. (44c) contains
a spin-spin interaction that goes like s2A, which stems from

J
ð3Þ

rad
ij J

ð3Þ
rad
ij (while similar corrections due to I

ð3Þ
rad
ij I

ð3Þ
rad
ij will

arise at higher PN orders). Such terms also occur in GR, but
they are not reported in Refs. [23,24].2 Therefore, to the
best of our knowledge, formula (44c) is displayed for the
first time in this paper. Moreover, we stress again that
Eq. (42) is formally analogous to the GR flux [23,24,29] if
we consider either the substitution (16) (in the case of
weakly self-gravitating bodies) or Eq. (17) (for compact

objects). Note that in the EC model we consider that the
quantities F SO;F SS, and F SS0 related to compact binaries
show up at 1PN level, whereas, as explained in Ref. [29], in
GR they are either of order Oðc−3Þ (F SO) or Oðc−4Þ (F SS
and F SS0 ). This is due to the factor N , for which we have
provided a first assessment in Eq. (41) [see also Eq. (47)
below]. In fact, the form of N can change depending on
the chosen matter model, and this can influence the formal
PN structure of sAz. For a more detailed discussion, see
Sec. III C 1.
The spin-spin corrections proportional to s2A also appear

in the angular-momentum flux (19b) and, to the best of our
knowledge, are not presented in the literature. We find that
they are given by

GSS0 ¼
8

5

G3μ2M2

c7R6

X
A

½2LNðχA · χAÞ − χAðχA · LNÞ�: ð46Þ

The remaining contributions to G being formally the same
as in GR (modulo the multiplicative factor in the spin) can
be read from Ref. [24]. Similarly, the gravitational wave-
form (18) agrees formally with that of GR and hence will
not be written explicitly here (see Ref. [24] for details).

1. Digression on the formal analogy between general
relativity and Einstein-Cartan theory

In this section, we clarify some fundamental aspects of
the formal analogy between EC and GR frameworks.
First of all, this parallelism is formally valid at 1PN order

if we consider well-separated fluid bodies having weak
self-gravity, as confirmed by Eq. (16), where both sA and ŝA
are Oðc0Þ quantities. In this setup, in fact, both the spin-
orbit and spin-spin contributions arise in GR at the 1PN
level in both the dynamics and the radiation field (see
Refs. [18,24] for more details).
On the other hand, when strongly self-gravitating and

maximally rotating compact objects are taken into account,
the usual procedure exploited in GR consists in using a
variable ŝA of Newtonian order having the dimensions of an
angular momentum multiplied by c [see Eq. (1.1) in
Ref. [19] and Eq. (17)]. Therefore, the leading spin-orbit
and the spin-spin GR couplings pertaining to compact
bodies are of order Oðc−3Þ and Oðc−4Þ, respectively.
However, due to the different nature of the vectors sA
and ŝA, we cannot stick to the conventions employed in GR,
where ŝA has a precise and fixed form, while sA can be
described by a plethora of models. For this reason, we have
proposed in EC theory a first estimate for the spin vector in
Eq. (41) [see also Eq. (47) below], where sA is naively of
formal 3PN order. In this way, the involved PN orders are
shifted, as in the EC framework the leading spin-orbit and
spin-spin corrections show up formally at the 4PN and 7PN
levels, respectively. Nevertheless, the formal correspon-
dence with GR is still recovered by means of Eq. (17).

2Kidder has informed us in a private communication that he
has calculated these terms in GR. However, the final result was
not published since he deemed that the contributions proportional
to s2A should be combined with the corrections due to the
quadrupole-moment tensor induced by the oblateness of the
bodies (see Ref. [28] for more details).
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However, some remarks are necessary to better explain
these points. First of all, the spin vector can be calculated,
in general, starting from Eq. (5), where we recall sij ¼
Oðc0Þ [13,14]. This means that the functional form of sA,
along with its ensuing PN structure, depends on the adopted
matter model. In other words, the way the integral (5) is
performed is influenced by the form of sij.
For example, the scheme we have conceived in Eq. (41)

[and Eq. (47) below] is derived by assuming that sij is
constant throughout the body. This brings into play the
volume of the compact object, which involves either the
event horizon in the black hole (BH) case or some
gravitational radii for NSs. We stress that this is a rough
calculation because in more realistic models we should
divide the volume of the body in regions of different
densities and allow for a nonconstant sij. Moreover, we
should not forget the presence of the constant N in
Eq. (41), which is a novel feature with respect to GR.
This quantity can indeed be seen as a sort of compensation
variable for counterbalancing the factor c−6 occurring in
Eq. (41). For this reason, we have regarded both spin-orbit
and spin-spin corrections as 1PN effects in the EC
framework in the case of compact binaries as well.
This last point allows us to discuss another fundamental

facet of our studies. In the context of compact objects, even
if we consider a new model for the spin vector sA having a
different PN structure with respect to ŝA, the formal analogy
between GR and EC theory still holds, as we just need to
consider Eq. (17), which shows that two frameworks are
formally equivalent up to a multiplicative factor and some
powers of c in the spin.

IV. APPLICATIONS

In this section, we apply our findings to two astrophysi-
cal situations. In Sec. IVA, we calculate the quantum spin
corrections to the energy flux and the waveform of both
binary NS and BH systems. In Sec. IV B, we propose a
method to estimate the unknown macroscopic angular
momentum of one of the bodies hosted in a binary system
which exploits the measurement of some observed quan-
tities and the analytical expression of the time-averaged
energy flux. The main motivation behind this last appli-
cation relies on showing that it is possible to share
methodologies and results between the formally equivalent
GR and EC theories. Furthermore, we will see that the role
fulfilled by the spin-spin term (44c) occurring in the energy
flux is crucial.
Like before, the spins and the angular momenta are

supposed to be aligned perpendicular to the orbital plane.

A. Quantum spin contributions to the energy flux
and the gravitational waveform

In Ref. [14], we provided a first estimate of the spin
contributions to the energy flux and the gravitational

waveform of both binary NSs and BHs. Our analysis
was not complete because the 1PN dynamics in EC theory
was not at our disposal at that time. Therefore, we decided
to set up a hybrid approach, where the bodies were
supposed to follow a GR motion parametrized by the
standard Damour-Deruelle solution. Now, thanks to the
results of this paper, we have all the ingredients for
calculating the correct order of magnitude of the spin
corrections to the gravitational signal. As already noted in
Ref. [14], the new contributions to the 1PN-accurate
formulas of F and H TT

ij will come only from the time
derivatives of the radiative mass quadrupole moment Iradij ,
as the derivatives of the other moments are unchanged.
In this treatment, we neglect any GW backreaction effect

on the source dynamics since this hypothesis is not too
restrictive as it applies to some known astrophysical GW
sources (see, e.g., Refs. [30,31]). Moreover, the quantum
spin has the following expression [cf. Eq. (41)] [13,14]

sAz ¼
�Nℏ 4π

3
ð6GmA

c2 Þ3 for NSs;

Nℏ 4π
3
ð2GmA

c2 Þ3 for BHs:
ð47Þ

In order to fulfill our goal, we define

EF ðtÞ ≔
				FECðtÞ
FGRðtÞ

				; EH ðtÞ ≔
				H EC

11 ðtÞ
H GR

11 ðtÞ
				: ð48Þ

Here, FGR ≔ FN þ c−2F 1PN and FEC ≔ c−2ðF SO þ
F SS þ F SS0 Þ [cf. Eq. (42)]; similarly, we have defined
H TT

11 ≔ H GR
11 þH EC

11 , where H GR
11 contains the GR

contribution, while H EC
11 involves only the EC terms.

In the hybrid scheme of Ref. [14], we found for
binary NSs (2.2M⊙ ≤ M ≤ 4.32M⊙), EF ∼ EH ∼ 10−23,
whereas for binary BHs (6M⊙ ≲M ≲ 1010M⊙), we
found EF ∼ EH ∼ 10−13–10−23. Now, exploiting the
appropriate dynamics (30) and the formula (40) of the
coordinate time to speed up the calculations, we obtain for
binary NSs EF ∼ EH ∼ 10−21, while for binary BHs
EF ∼ EH ∼ 10−11–10−21. Therefore, in the full description,
the spin contributions are 2 orders of magnitude larger than
those obtained with the hybrid approach. This means that
we can confirm the validity of our former results. In
particular, in agreement with the predictions of the EC
model [14], spin effects become more prominent when the
companions get closer, as the gravitational field intensity
increases. However, also with this new estimate, the EC
spin corrections featuring the inspiral stage can hardly be
observed with the actual and near-future GW devices. Even
so, it should be noticed that our framework relies on the
simple configuration (47), while more sophisticated mod-
els, like those addressing the dense matter equation of state
of NSs, might be detectable.
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B. Determining the macroscopic angular momentum
of a companion star in a binary system

In astrophysics, there exist binary systems composed of a
primary compact object (e.g., a pulsar) and a companion
star (e.g., a white dwarf), where we know the macroscopic
angular momentum ŝ1 of the former but not of the latter,
which we denote by ŝ2 (see, e.g., Refs. [32,33] for some
examples). Therefore, we propose a strategy to determine
ŝ2z which exploits our analytical developments along with
the measurement of the following observables: the masses
of the bodies, their orbital separation a, the orbital period
Pb and its modulation in time Ṗb, the Newtonian eccen-
tricity e0, and the rotation frequency f1 of the primary body.
We recall that ŝA can be calculated via the moment of
inertia IA and the angular velocity 2πfA of the body A as
ŝA ¼ IA2πfA. We will suppose that the object A is a sphere
of radius RA, so that IA ¼ 2

5
mAR2

A.
The crucial point of our method is that Ṗb=Pb satisfies

the following relation [see Eq. (4.23) in Ref. [27] for a
comparison]

Ṗb

Pb
¼ 3

2μE

�
1 −

ðν − 15Þ
6

E
c2

�
hF i þ Oðc−10Þ; ð49Þ

where hF i ¼ 1
Pb

R Pb
0 F ðtÞdt is the time average of the flux.

In the above equation, E and F can be obtained directly
from Eqs. (9) and (42), provided that we take into account
the relation (17) valid for maximally rotating compact
objects.
To show how our strategy works, we consider an explicit

example represented by the massive pulsar PSR
J0348þ 0432, which is hosted in a relativistic compact
binary, where we discover that the companion star is a
white dwarf [34]. This astrophysical system is gaining a lot
of attention since it permits one to test gravity in the strong-
field regime and allows one to evaluate the orbital decay
due to the GW emission. The timing parameters of PSR
J0348þ 0432 are estimated with 1σ uncertainty by
TEMPO2 and are listed in Table I. Plugging the input data
into Eq. (49), we obtain a quadratic equation in ŝ2z, which
admits two real solutions having opposite sign. In our
hypotheses, we choose the positive root, and hence we get
ŝ2z ¼ 2.25 × 1038 J s, which corresponds to the rotation
frequency f2 ¼ 0.13 Hz.
At this stage, some comments are in order. First of all, we

note that the quadratic character of the equation for ŝ2z is
due to the novel spin-spin correction (44c). Moreover, as
pointed out before, the GR contributions to the flux due to
the macroscopic angular momentum occur either at 1.5PN
or 2PN order when compact objects are investigated [19].
Therefore, our treatment should involve, in general, the
corrections appearing beyond the 1PN level which do not
depend on ŝA. However, these do not significantly alter our
estimate of ŝ2z; in addition, the proposed method is still

valid since the missing PN terms do not change the nature
of the algebraic equation to be solved to get ŝ2z.

V. CONCLUSIONS

Among themany proposed generalizations of GR, the EC
model deals with the microphysical quantum realm and
naturally fits the gauge paradigm. In this context, we have
worked out the point-particle limit of theWeyssenhoff fluid,
and we have discovered that, at the 1PN level, both the
dynamical equations and the radiativemultipolemoments of
weakly self-gravitating binary systems formally agree with
the corresponding formulas framed inGR, if the substitution
(16) is applied. The formal equivalence between the GR and
EC frameworks is not spoiled even if we consider compact
objects, as can be recovered via Eq. (17). These results are
not trivial if we take into account the distinct nature of GR
and EC models and the different structure of the equations
employed to derive them. Consider, for example, the case of
the dynamics. The equations of motion of the Weyssenhoff
fluid stem from the generalized conservation laws (3), which
lead to a generalized Euler equation and precession motion.
These involve novel terms depending on torsion that are not
present in GR. Even so, we have found that the effacing
principle also holds in EC theory, and the peculiar spin-spin
contact interaction of gravitational origin does not contrib-
ute, at least at 1PN order.
Driven by the formal 1PN analogy between the GR and

EC frameworks, in this paper we have derived some 1PN-
accurate analytical formulas pertaining to the dynamics and
the radiative phenomena of binary systems. In Sec. III, we
have exploited the Damour-Deruelle approach to work out
the relative motion of two companions having spins and
orbital angular momentum aligned. Then, we have pro-
posed a method to determine the function tðθÞ of the
coordinate time in terms of the polar angle θ, which relies

TABLE I. List of input parameters (taken from Ref. [34]) and
output values (last two rows) of the binary system formed by the
pulsar PSR J0348þ 0432 (labeled as body 1) and the companion
white dwarf (labeled as body 2).

Parameters Units Values

m1 M⊙ 2.01
m2 M⊙ 0.17
R1 km 17.92
R2 km 45.61
f1 Hz 25.56
ŝ1z 1040 J s 8.31
a 106 km 0.83
e0 2.01 × 10−6

Pb d 0.10
Ṗb 10−12 s s−1 −0.27

ŝ2z 1038 J s 2.25
f2 Hz 0.13
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on the introduction of a suitably defined accumulation
function. This result is crucial to speed up the evaluation of
those quantities requiring the knowledge of the dynamical
aspects of a binary system, such as the energy- and the
angular-momentum fluxes, which have been displayed in
Sec. III C. Here, we have also shown the spin-spin
couplings (44c) proportional to s2A, which, to the best of
our knowledge, are not reported in the literature.
Two applications of our analytical treatment have been

given in Sec. IV. In the first one, we have improved the
treatment of Ref. [14], and we have calculated the quantum
spin contributions to the waveform and the energy flux of a
binary BH and NS system. We have found that the obtained
EC spin effects featuring the inspiral stage are too weak to
be observed with the actual and near-future GW appara-
tuses. However, potentially detectable results can be
achieved during the merger stage, where the gravitational
interaction is more prominent. In the second framework, we
have proposed a strategy to infer the angular momentum of
a body which can be useful in several astrophysical settings
where it is not possible to measure the rotation frequency of
both objects comprising a binary system. Our scheme
requires the value of some observables, such as the orbital
period modulation, the masses of the two companions, their
separation, and the orbital eccentricity. Plugging these
parameters into Eq. (49), the unknown angular momentum
is obtained by solving an algebraic second-degree equation.
The importance of our findings consists in the fact that

they can be exploited both in the GR and EC frameworks
thanks to their formal resemblance. In general, having
analytical relations and a mathematical methodology to
obtain them can be extremely advantageous in astrophysi-
cal contexts. In this viewpoint, our formula of tðθÞ is useful
for two main reasons: (i) it can be employed for fitting the
observational data, without resorting to numerical routines,
as well as gathering accurate results in acceptable times;
and (ii) the adopted strategy can be extended to higher PN
orders once a Damour-Deruelle-like solution is found.
Our programmatic research activity has revealed some

features of EC theory which, for the time being, cannot be

detected. However, there are some points of our approach
which need to be improved. and this strongly spurs us to
continue our inquiry. Indeed, GWs continue to be one of the
most promising tools to inquire about new physics and test
possible deviations from GR in favor of modified frame-
works [35–37]. In addition, the examination of theoretical
models that are better able to describe the spin distribution
inside compact objects should be developed. Besides these
practical aspects, the related PN calculations can unearth
new and unexpected theoretical results, apart from those
highlighted in this paper.
This article can open up some interesting future per-

spectives. First of all, the 1PN relationship between the GR
and EC models and its connection to the matter field
modeling the spin effects should be further explored. In
fact, it should be understood whether the link between the
two theories still holds if a different fluid is considered.
Moreover, the results obtained in this paper can be
exploited to analyze radiation-reaction forces affecting
the evolution of binary systems framed in the EC frame-
work. Lastly, it would be interesting to extend our
approaches and methodologies to cosmology as well since
it represents a natural arena for the EC pattern as witnessed
by the recent literature (see, e.g., Refs. [38–40]). These
topics deserve a careful investigation in separate papers.
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