
Symmetries and conservation laws in Hořava gravity
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Hořava gravity has been proposed as a renormalizable quantum gravity without the ghost problem
through anisotropic scaling dimensions which break Lorentz symmetry in UV. In the Hamiltonian
formalism, due to the Lorentz-violating terms, the constraint structure looks quite different from that of
general relativity (GR) but we have recently found that “there exists the case where we can recover the same
number of degrees of freedom as in GR”, in a rather general setup. In this paper, we study its Lagrangian
perspectives and examine the full diffeomorphism (Diff) symmetry and its associated conservation laws in
Hořava gravity. Surprisingly, we find that the full Diff symmetry in the action can also be recovered when a
certain condition, called “supercondition,” which superselects the Lorentz-symmetric sector in Hořava
gravity, is satisfied. This indicates that the broken Lorentz symmetry, known as “foliation-preserving” Diff,
is just an apparent symmetry of the Hořava gravity action and rather its “full action symmetry can be as
large as the Diff in GR.” The supercondition exactly corresponds to the tertiary constraint in Hamiltonian
formalism which is the second-class constraint and provides a nontrivial realization of the Lorentz symmetry
otherwise being absent apparently. From the recovered Lorentz symmetry in the action, we obtain the
conservation laws with the Noether currents as in covariant theories. The general formula for the conserved
Noether charges reproduces the mass of four-dimensional static black holes with an arbitrary cosmological
constant in Hořava gravity, and is independent of ambiguities associated with the choice of asymptotic
boundaries. We also discuss several challenging problems, including its implications to Hamiltonian
formalism, black hole thermodynamics, radiations from colliding black holes.
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I. INTRODUCTION

The renormalizable gravity without the ghost problem
has been studied by considering a gravity action à la
Hořava, Lifshitz, and DeWitt (HLD) [1–3] in (Dþ 1)
dimensions (up to some boundary terms),

S¼
Z
M

dtdDx
ffiffiffi
g

p
N

�
2

κ2
ðKijKij − λK2Þ−V½gij;Ri

jkl;∇i�
�
ð1Þ

with the higher-spatial-derivative potential V, satisfying
½V� ≤ Dþ z for the (power-counting) renormalizability,1
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1There seems to exist a widespread belief that the original
Hořava action (1) is not renormalizable due to absence of ai ¼
N−1∇iN-dependent terms, like aiai term, which can be produced
by scalar-matter-induced loop corrections [4] (see also [5,6] for
different results, i.e., “vanishing” coefficient [5] and “different”

(nonzero) coefficient value [6]). However, the relevant coefficients
should be matter dependent generally and so the effective action
results may or may not affect the genuine gravity sector, depending
on the physics in the matter sector. For example, one might
consider a cancellation of all matter contributions from funda-
mental scalars, fermions, and gauge bosons for the aiai term which
can be quite possible by introducing, for example, “supersym-
metry” (we thank Frank Saueressig for a discussion on this point).
So, it is still an open problem whether the aiai term can be nonzero
when all matter contributions are considered. Moreover, in the
“linear-perturbation” analysis of the purely gravity sector, there
has been also claimed that the original Hořava action (1) is
inconsistent due to the singularity (strong-coupling problem) of the
λ → 1 limit [7]. However, the singularity problem does not occur
in the “fully nonlinear” (constraint) analysis (for example, see the
discussion No. 3 in [8]), analogous to the Vainshtein mechanism in
massive gravity [9]. Furthermore, the inconsistency (in the flat
Minkowski background) disappears in a more realistic “time-
dependent” background with a inflaton scalar field, even at the
linear perturbation level (for example, see the discussion No. 2
in [10]). On the other hand, phenomenologically, it is questionable
whether the gravity theory with the aiai term can be a sensible
theory both astro-physically and cosmologically due to its im-
portant deformations of the Newtonian gravity or GR at large
distances (see [11] for a confirmation of GR on large scales) or
effects on our currently accelerating universe which is based on the
standard cosmology with a cosmological constant [12].
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while keeping only the second-time-derivatives with the
terms of KijKij; K2 in the kinetic part, through the aniso-
tropic scaling dimensions, ½x� ¼ −1; ½t� ¼ −z for the
dynamical critical exponent z > 1. Here,

Kij ≡ 1

2N
ðġij −∇iNj −∇jNiÞ ð2Þ

is the extrinsic curvature [the overdot ð̇ Þ denotes the time
derivative ∂t ≡ ∂0 ¼ ðÞ;0] and Ri

jkl;∇i are the Riemann
tensor, the spatial covariant derivative for D-dimensional
spatial metric gij on the hypersurface with the ADM
decomposition

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ: ð3Þ

The peculiar property of the HLD action (1) is that the
Lorentz, i.e., diffeomorphism (Diff) symmetry in general
relativity (GR) is broken into the “foliation-preserving”
diffeomorphism (DiffF ) from either the DeWitt’s λ para-
meter in IR (λ ≠ 1) [2], or the higher-derivative terms in UV
(z ≥ D) for power-counting renormalizability [1,3,13].
However, it has been unclear how to canonically describe
the sudden change (reduction) of symmetry beyond the GR
limit, λ → 1;−V → Λþ ð2=κ2ÞR, by tracing the missing
(Lorentz) symmetry all the way down to UV.
On the other hand, we have recently found that the

constraint structure in the Hamiltonian formalism looks
quite different due to Lorentz-violating terms but “there
exits the case where we can recover the same number of
degrees of freedom as in GR [8], at the fully nonlinear
level.” This appears to mismatch with the apparently
broken symmetry in the action and so it suggests some
unbroken/enhanced symmetry in the Lagrangian formalism
in order to be consistent with the Hamiltonian formalism.
In this paper, in order to clarify this problem, we examine

the full action symmetry and its associated conservation
laws in Hořava gravity. Surprisingly, we find that the full
Diff symmetry can be recovered in the Hořava gravity
action when the “supercondition” of I0 ≡∇iΩi ¼ 0 is
satisfied, which exactly corresponds to the tertiary con-
straint in Hamiltonian formalism which is the second-class
constraint. This provides a nontrivial realization of the Diff
symmetry otherwise being absent apparently. From the
recovered Lorentz symmetry in the action on the super-
selected sector, which is still (considered as) an off-shell
condition, we obtain the conservation laws with the
Noether currents as in covariant theories. The general
formula for the conserved Noether charge reproduces the
mass of four-dimensional static black hole with an arbi-
trary cosmological constant in Hořava gravity, and is
independent of ambiguities associated with the choice of
asymptotic boundaries.
The organization of the paper is as follows. In Sec. II, we

consider the Diff symmetries of the Hořava gravity in

comparison with GR and introduce the supercondition to
consider a superselected sector which recovers the Lorentz
symmetry in “off-shell”. For the superselected sector, we
obtain the covariant form of Noether currents. In Sec. III,
we consider four-dimensional static black solutions and
confirm our general mass formula. In Sec. IV, we discuss
several challenging problems, including its implications
to Hamiltonian formalism, black hole thermodynamics,
radiations from colliding black holes. In Appendix A, we
describe the computational details and Appendix B, we
summarize the complete set of constraints in Hamiltonian
formalism.

II. Diff SYMMETRIES AND CONSERVATION
LAWS

To this end, we start by considering the potential
V½gij; Ri

jkl�, which is an arbitrary function of metric gij
and curvature invariants only, eg.,

−V ¼ Λþ ξRþ αRn þ βðRijRijÞs þ γðRi
jklRi

jklÞr þ � � � ;
ð4Þ

but without (covariant) derivatives, for simplicity. In order
that the construction of a renormalizable action (1) is not
spoiled by the mixing of space and time (derivatives) in the
general coordinate transformations, which could produce
ghosts of higher-time derivatives from the higher-spatial-
derivative terms in the potential, we need to further
constrain the allowed coordinate transformations into the
foliation-preserving diffeomorphism ðDiffF Þ [3],

δξt ¼ −ξ̃0ðtÞ; δξxi ¼ −ξiðt;xÞ; ð5Þ

δξN ¼ ðNξ̃0Þ;0 þ ξk∇kN; ð6Þ

δξNi ¼ ξ̃0;0Ni þ ξj;0gij þ∇iξ
jNj þNi;0ξ̃

0 þ∇jNiξ
j; ð7Þ

δξgij ¼ ∇iξ
kgkj þ∇jξ

kgki þ gij;0ξ̃
0: ð8Þ

Then, from some straightforward computations [3], one
can show that the standard action (1) is invariant under
DiffF (6)—(8)

δξ̃S ¼
Z

dtdDxf∂t½ξ̃0ðtÞL� þ ∂i½ξiðx; tÞL�g; ð9Þ

which reflects the scalar density nature of the Lagrangian
density L, defined by S≡ R

dtdDxL. Here, each term in the
potential as well as in the kinetic part of (1) is “separately”
invariant for an arbitrary λ2 and all the other parameters in
the potential V so that the higher-time-derivative terms, as

2For the case λ ¼ 1=D, a separate consideration is needed [3].
We will briefly discuss about this in Sec. IV, the discussion No. 4.
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well as the mixing terms between the time and spatial-
derivative terms, from the (Lorentz) transformation of the
potential with higher-spatial derivative terms would
not occur.
If we consider Einstein-Hilbert (EH) action in GR with

λ ¼ 1 and −V ¼ Λþ ð2=κ2ÞR, then there is an “acciden-
tal” symmetry enhancement which mixes each term in the
action [14] so that we can recover the full Diff [2]
[ξμ ≡ ðξ0; ξiÞ],

δξSEH ¼
Z

dtdDx∂μ½ξμðt;xÞLEH� ð10Þ

with

δξt ¼ −ξ0ðt;xÞ; δξxi ¼ −ξiðt;xÞ; ð11Þ

δξN ¼ ðNξ0Þ;0 − N∇iξ
0gijNj þ ξk∇kN; ð12Þ

δξNi ¼ ξ0;0Ni þ ξj;0gij þ∇iξ
0ðgklNkNl − N2Þ þ∇iξ

jNj

þ Ni;0ξ
0 þ∇jNiξ

j; ð13Þ

δξgij ¼ ∇iξ
0Nj þ∇jξ

0Ni þ∇iξ
kgkj þ∇jξ

kgki þ gij;0ξ0:

ð14Þ

This shows a sudden reduction of the Diff symmetry
beyond the GR limit in Hořava gravity but it is not quite
satisfactory due to lack of canonical understanding of
missing (Lorentz) symmetry. On the other hand, in the
Hamiltonian formalism, the symmetries of an action are
revealed in the existence of constraints between the field
variables and their conjugate momenta, which being the
canonical generators of the symmetry transformations. In
the EH case, there are 2ðDþ 1Þ first-class constraints
which generate the full Diff transformations (12)–(14) so
that we have ðDþ 1ÞðD − 2Þ=2 physical graviton (trans-
verse traceless) modes. Whereas, in HLD case with the
action (1), the constraint structure is quite different, having
the second-class constraints also due to Lorentz-violating
terms, but we have recently found [8] that

“there exits the case (called Case A) where the
same number of degrees of freedom can be
recovered as in GR, at the “fully nonlinear”
level”.

This may suggest that, even though its “apparent”
symmetry is just the Lorentz-violating DiffF , the “full”
symmetry of HLD action in the Lagrangian formalism can
be as large as Diff in GR, in order to be consistent with the
Hamiltonian analysis.
In order to examine this, which may fill the gap in those

two sharply different symmetries in (5)–(8) and (11)–(14),
we study the full Diff with an arbitrary ξμðx; tÞ to see if the
Hořava gravity action (1) can be invariant in a nontrivial

way, just beyond the apparent symmetry ofDiffF . To this
end in a canonical way, we start by considering the
variation of the action (1) with the potential V½gij; Ri

jkl�,
under the arbitrary variations of the ADM variables,

δS ¼
Z

dtdDx½−HδN −HiδNi þ Eijδgij

þ ∂μΘμðδNi; δgijÞ�; ð15Þ

where we have the bulk terms with

H≡ −
δS
δN

¼ ffiffiffi
g

p ��
2

κ2

�
ðKijKij − λK2Þ þ V

�
; ð16Þ

Hi ≡ −
δS
δNi

¼ −2
ffiffiffi
g

p �
2

κ2

�
∇jðKij − λgijKÞ; ð17Þ

Eij ≡ δS
δgij

¼ Eij
ð0Þ −

ffiffiffi
g

p �
NPiklmRj

klm þ 1

2
NgijV½gij; Ri

jkl�

− 2∇k∇lðNPikljÞ
�
; ð18Þ

and the boundary terms ΘμðδNi; δgijÞ with

Θ0 ≡ ffiffiffi
g

p �
2

κ2

�
ðKij − λgijKÞδgij; ð19Þ

Θi ≡ ffiffiffi
g

p �
2

κ2

�
ð2NlGijkmKkmδgjl − NiGljmnKmnδgjl

− 2GkjilKkjδNlÞ þ 2
ffiffiffi
g

p
PjkilN∇kδglj

− 2
ffiffiffi
g

p
δglj∇kðPjiklNÞ; ð20Þ

where Gijkm ≡ δijkm − λgijgkm is the DeWitt metric [2].
Here, the tensor

Pi
jkl ≡

�
∂L

∂Ri
jkl

�
gmn

¼ −
�

∂V
∂Ri

jkl

�
gmn

; ð21Þ

by treating gij and Ri
jkl are independent fields [15], has the

same symmetries in the indices as those of Riemann tensor
Ri

jkl (see Appendix A for the explicit forms forEij andΘi).
Plugging Diff transformations (12)–(14) into the arbi-

trary variation (15) and doing some straightforward com-
putations, we obtain the action transformation [16],

δξS ¼
Z

dtdDx½−HδξN −HiδξNi þEijδξgij

þ ∂μΘμðδξNi; δξgijÞ�; ð22Þ

¼
Z

dtdDx½ξ0I0 þ ξiI i þ ∂μΨμðδξNi; δξgijÞ�; ð23Þ
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where
I0 ≡ NḢ −∇mðNNmHÞ þ NiḢi þ∇m½HmðgjlNjNl − N2Þ� þ ġijEij − 2∇mðNiEmiÞ; ð24Þ

I i ≡ ðgijHjÞ;0 þ∇mðHmNiÞ −H∇iN −Hj∇iNj − 2gij∇mEjm; ð25Þ

Ψ0 ≡ −ξ0ðNHþ NiHiÞ − ξjgijHi þ Θ0; ð26Þ

Ψi ≡ ξ0½NNiH −HiðgljNlNj − N2Þ þ 2NjEij� þ ξjð−NjHi þ 2gjlEilÞ þ Θi
: ð27Þ

Here, it is important to note that the formal expressions
of (24)–(27) are generally valid for arbitrary potential
V½gij; Ri

jkl� though the explicit expressions of H;Hi;
Eij;Θμ;Ψμ may depend on the potential form.
Now, by expressing the time-derivatives in terms of

extrinsic curvature Kij in (2) and using the definitions
(16)–(18), but without using the dynamical equations of
motion Eij ¼ 0, nor the constraints H ≈ 0;Hi ≈ 0, we
obtain

I0¼∇i

�
2N2

�
∇jπ

ijþ
�
κ2

2

��
2λ

λD−1
ðπ∇lPkl

k
i−Pkl

k
i∇lπÞ

þ2Pjkl
i∇kπjl−2πjl∇kPjkl

i

���
≡∇iΩi; ð28Þ

I i ¼ 0; ð29Þ

Ψ0 ¼ ξ0Lþ ∂iU0i; ð30Þ

Ψi ¼ ξiLþ Σi þ ∂0U i0 þ ∂jU ij; ð31Þ

where Σi and Uμν ¼ −Uμν, which is called the “super-
potential” [17,18], are given by

Σi ¼ 2N2

��
κ2

2

��
2λ

λD − 1
ðPli

lk∇kðξ0πÞ − ξ0π∇kPli
lkÞ þ 2ξ0πjl∇kPjkl

i − 2Pjkl
i∇kðξ0πjlÞ

�
þ πij∇jξ

0 − ξ0∇jπ
ij

�
; ð32Þ

U0i ¼ −U i0 ¼ 2
ffiffiffi
g

p ðξ0Nj þ ξjÞ
�
2

κ2

�
ðKij − λgijKÞ; ð33Þ

U ij ¼ −Uji ð34Þ

[see Appendix A for the computational details of (28)–(31)
and the explicit forms for U ij of (34)]. Here, we note that
I i ¼ 0 identically, which is the analog of the spatial

component of the (contracted) Bianchi identity b∇μGμi ¼ 0

in GR, for the Einstein tensor Gμν ¼ R̂μν − ð1=2ÞĝμνR̂ with
the (Dþ 1)-dimensional Ricci tensor R̂μν, Ricci scalar R̂ [19]

and covariant derivative b∇μ: In the Hamiltonian formalism, it
is due to the first-class nature of the momentum constraint
Hi ≈ 0, the generator of the spatial Diff, even in HLD
gravity [8]. In I0, we have replaced the extrinsic curvature
with the canonical momenta πij ¼ ð2=κ2Þ ffiffiffi

g
p ðKij − λKgijÞ

in order to compare it with the Hamiltonian analysis.
In GR case, we have Σi ¼ 0 and I0 ¼ 0, which

corresponds to the time-component of Bianchi identity,b∇μGμ0 ¼ 0 and hence obtain the usual Lorentz invariance
of (10) from (23). For the DiffF in Hořava gravity case,

the parameter ξ0ðtÞ≡ ξ̃0ðtÞ for the ξ0I0 in (23) can be
factorized out from the space integration and the ξ0I0 term
turns into a (spatial) boundary term, but it is “exactly
canceled” by another boundary term ∇iΣi so that we can
obtain the invariance of (9) under DiffF .
For the full Diff with an arbitrary ξ0ðt;xÞ, on the other

hand, the I0 term, which is nonzero [see the explicit
expression in (A10)] unless we consider λ ¼ 1 and vanish-
ing of all the higher-derivatives terms (as in the GR case),
cannot be removed from the bulk terms anymore and may
result the noninvariance of the HLD action generally,
confirming the usual belief of its generic Lorentz violation.
Therefore, the only way of obtaining the fullDiff invariance
for the HLD action, if it exits, would be to consider a
“supercondition,”

I0 ≡∇iΩi ¼ 0; ð35Þ

which superselects the Lorentz-invariant sector in HLD
gravity. We note also, from (17) and (28), that the super-
condition can be written as

I0 ¼ Ω −∇iðN2HiÞ ¼ 0; ð36Þ
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where

Ω≡∇iðN2CiÞ ð37Þ

with

Ci ≡ κ2
�

2λ

λD − 1
ðπ∇lPkl

k
i − Pkl

k
i∇lπÞ þ 2Pjkl

i∇kπjl

− 2πjl∇kPjkl
i

�
: ð38Þ

Then, it is remarkable that (37) reduces to the tertiary
constraint Ω ≈ 0 in Hamiltonian formalism [8], using the
dynamical equations of motion,3 i.e., in on-shell, from
Ḣ ≈Ω=N ≈ 0, with the Hamiltonian constraint H ≈ 0

and the momentum constraint Hi ≡ −2∇jπ
ij ≈ 0 (see

Appendix B for a summary of the complete set of con-
straints). In other words, the supercondition (35) in our
Lagrangian formalism of HLD gravity is on-shell equivalent
to the tertiary constraint in the Hamiltonian formalism. On
the other hand, in GR, the tertiary constraint is trivial, up to
the Hamiltonian and momentum constraints,H ≈ 0;Hi ≈ 0,
which are the secondary constraints.4 The intimate relation to
constraints in the Hamiltonian formalism may support for
our introduction of the supercondition (35) in the Lagrangian
formalism. However, it is important to note that, in our
Lagrangian formalism, the supercondition is assumed to be
valid even off-shell,5 i.e., prior to considering the “classical
geometry dynamics” which extremizes the action. In this
way, the full Diff can be maintained all the way down to UV,
even beyond the GR limit. Here, the supercondition I0 ¼ 0
in HLD gravity corresponds to the temporal component of

Bianchi identity, b∇μGμ0 ¼ 0 in GR.

Finally, from (15), (23), and with the help of the super
condition I0 ¼ 0 and the Bianchi identity I i ¼ 0, we can
obtain the Noether currents (Σ0 ¼ 0),

J μðδξgÞ≡ ΘμðδξNi; δξgijÞ −ΨμðδξNi; δξgijÞ
¼ Θμ − ξμL − Σμ − ∂νUμν; ð39Þ

which satisfies

∂μJ
μðδξgÞ ¼ HδξN þHiδξNi −Eijδξgij: ð40Þ

Note that the Noether currents satisfies the usual conserva-
tion laws on-shell, i.e., H ¼ Hi ¼ Eij ¼ 0, for an arbitrary
Diff transformation, but off-shell for Killing vectors ξμ,
δξN ¼ δξNi ¼ δξgij ¼ 0. The second term Σμ is due to the
apparent noncovariance of the Horava action.6 Moreover,
the last part in the Noether current (39), corresponds to
the identically conserved or off-shell current J μ

off ≡ ∂νUμν

[17,18,21]. Then, the conserved charge passing through a
hypersurface Σ is given by

QðξÞ ¼
Z
Σ
dDx

ffiffiffi
g

p
nμJμðδξgÞ ð41Þ

for the unit normal vector nμ of Σ and the covariantly
conserved charge Jμ ¼ ð ffiffiffi

g
p

NÞ−1J μ , satisfying ∇μJμ ¼ 0

[27] and the physically measurable charge can be
obtained by subtracting the background charge
Q̄ðξÞ≡ R

Σ d
Dx

ffiffiffī
g

p
n̄μJ̄μðδξḡÞ, i.e., QðξÞphys ≡QðξÞ − Q̄ðξÞ

generally, where the bars denote the background quantities.

III. AN EXAMPLE: STATIC BLACK HOLES
IN (3 + 1) DIMENSIONS

In order to check the general Noether charge for-
mula (41), let us consider the static metric ansatz

ds2 ¼ −N2ðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
k ð42Þ

by which the original Horava gravity action in (3þ 1)
dimensions [3] reduces to the case with the potential
form of (4), due to the vanishing Cotton tensor, Cij≡
ϵikl∇kðRj

l − δjlR=4Þ ¼ 0. Here, dΩ2
k denotes the line

element for two-dimensional surface with a constant scalar
curvature, Rð2Þ ¼ 2k for spherical, plane, and hyperbolic
topologies with k ¼ þ1; 0;−1, respectively.
Then, for the timelike Killing vector ξμ ¼ ð1; 0; 0; 0Þ and

the normal vector nμ ¼ ð−N; 0; 0; 0Þ, the only nonvanish-
ing contributions in the Noether charge (41) come from the
second term in the current (39) and, after the angular
integrations, is given by

3ġij ¼ fgij; HCg; π̇ij ¼ fπij; HCg with the canonical Hamil-
tonian HC ¼ R

dxDfNHþ NiHig.
4From this result, one can use (24) as an off-shell, Lagrangian

definition of the tertiary constraints via the terms of NḢ and
NiḢi, which are usually quite cumbersome in Hamiltonian
formalism. Actually, using the new definition in this paper we
have generalized the Hamiltonian analysis on tertiary constraint
for Ḣ in [8], where we have considered only an arbitrary function
of R in the potential (4) (see also Appendix B). Moreover, one can
find easily the exactly same constraint algebra for the Hamil-
tonian and momentum constraints as in the previous case [8],
fhηHi;hζHig¼hðη∇iζ−ζ∇iηÞCii;fhηHi;hζiHiig¼−hζi∇iηHi;
fhηiHii;hζjHjig¼hðηi∇iζ

j−ζi∇iη
jÞHji, for the Diff para-

meters η, ζ, and the smeared constraints, hηHi≡ R
dDxηH, etc.

5From the form of the Bianchi identity in GR, ∇μGμ
0 ¼

∇0G0
0þ∇iGi

0 ¼ ðHGR=2
ffiffiffi
g

p Þ;0þ�� �þ∇iðHi=2N
ffiffiffi
g

p Þ¼ 0 with
G0

0 ¼ HGR=2
ffiffiffi
g

p
; Gi

0 ¼ Hi=2
ffiffiffi
g

p
N for the Hamiltonian con-

straint in GR, HGR ≈ 0, the supercondition suggests formally
the same Bianchi identity but now with G0

0 ≡H=2
ffiffiffi
g

p
in HLD

gravity also. This provides a more fundamental off-shell reason
for the appearance of the tertiary constraint via Ḣ.

6The noncovariance term appears also in Chern-Simons
theories [20].
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Qðξ0Þ ¼ Ωk

Z
r

0

drr2
�

Nffiffiffi
f

p
�
ξ0L

¼ −σξ0
�

Nffiffiffi
f

p
��

−
λ

r
ðf − kÞ2 þ 2ðω − ΛWÞrðf − kÞ − Λ2

Wr
3

�
þ σ

Z
r

0

dr∂r

�
ξ0

Nffiffiffi
f

p
�

×

�
−
λ

r
ðf − kÞ2 þ 2ðω − ΛWÞrðf − kÞ − Λ2

Wr
3

�
− σðλ − 1Þ

Z
r

0

drξ0
�

Nffiffiffi
f

p
��ðf − kÞ2

r2
þ ð∂rfÞ2

2

�
ð43Þ

in the usual parametrization,

ξ≡ κ4μ2ðΛW þ ωÞ
8ð1 − 3λÞ ; α≡ κ2μ2ð1 − 4λÞ

32ð1 − 3λÞ ; β≡ κ2μ2

8
; γ ≡ 0; Λ≡ −

2κ2μ2Λ2
W

8ð1 − 3λÞ ð44Þ

with σ ≡Ωkκ
2μ2=8ð3λ − 1Þ, the IR-modification parameter

ω, and D-dimensional cosmological constant parameter
ΛW [3,22–26]. Here, it is important that we need to (1) first,
change the Lagrangian into the total derivatives (the first
term of the second line in the above formula) plus the bulk
terms (the remaining terms in the second and third lines),
and then (2) second, compute the charge by plugging the
known solutions: If we first plug the solutions into the
Noether charge formula (43), we obtain the trivially
vanishing charge because the Lagrangian in the charge
formula is proportional to the Hamiltonian constraint
H ≈ 0, which is solved by the solutions.7

Now, by plugging the general static vacuum solution for
arbitrary cosmological constant parameter ΛW and IR
parameter ω with λ ¼ 1 [24,26], whose uniqueness is
guaranteed by the corresponding Birkhoff’s theorem [28]
(for more general cases, see the discussion No. 8 below),

N2 ¼ f ¼ kþ ðω − ΛWÞr2 þ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½ωðω − 2ΛWÞr3 þ β�

q
;

ð45Þ
where ϵ ¼ �1 and β is an integration constant,8 we can
obtain

Qðξ0Þ ¼ σβ; ð46Þ
which exactly agrees with the mass in the conventional
Hamiltonian approach [25,30,31]. Note that the massM≡
Qðξ0Þ satisfies the first law of black hole thermodynamics

δM ¼ THδS ð47Þ

with the black hole temperature TH
9 and the entropy S with

a logarithmic term, up to an arbitrary constant S0,

TH ≡ ℏκjH
2π

¼ ℏð3Λ2
Wr

4
H þ 2kðω − ΛWÞr2H − k2Þ

8πrHðkþ ðω − ΛWÞr2HÞ
; ð48Þ

S ¼ 4πσ

ℏ
ððω − ΛWÞr2H þ 2k ln rHÞ þ S0 ð49Þ

for the surface gravity κH ¼ ð1=2Þ∂rfjrH at the black hole
horizon rH.
Two remarkable properties of this result are as follows.

First, the result (43) does not depend on the boundary
(D − 1)-hypersurface only if there is a timelike Killing
vector inside the boundary. This means that the boundary
needs not to be an asymptotic infinity even in asymptoti-
cally de Sitter space as well as in flat or anti–de Sitter space
(for similar results in covariant theories, see [33,34]).
Second, related to the first property, there are no diver-
gences in anti–de Sitter space, and it is independent on
the ambiguities associated with the choice of asymptotic
boundary at r → ∞ in de Sitter space [35]. So, for the
asymptotically de Sitter black hole, the boundary can be
any region between the outer black hole horizon rþ and the
cosmological horizon rþþ, i.e. rþ < r < rþþ.

IV. CONCLUDING REMARKS

In conclusion, we have shown that the Lorentz sym-
metry, which is represented by Diff symmetry, is preserved
on the superselected sector of I0 ≡∇iΩi ¼ 0 even in HLD
gravity action where the explicit Lorentz violating terms are
introduced for (power-counting) renormalizablity. This
indicates that the full Diff symmetry of HLD action can
be as large as the Diff in GR and, from the obtained fullDiff

7This looks tricky but this kind of prescription seems to be
essential to get the right answer (see also [27] for some related
discussions). In particular, for λ ¼ 1 and ðN=

ffiffiffi
f

p Þ ¼ constant,
our charge (43) agrees with the (generalized) Misner-Sharp
mass [25].

8ϵ ¼ −1ðþ1Þ represent an asymptotically flat or anti-de Sitter
(de Sitter) with ω; μ2 > 0 (ω; μ2 < 0) [26]. Here, we consider
only the GR-branch solutions which have the GR limits in IR
regime as in [22–24]. The other choices of the ϵ represent the
non-GR branch solutions which do not have the GR limits and
these are important for studying the genuine higher-derivative
solutions [29].

9See [32], for an explicit computation of the Hawking radiation
and temperature for relativistic matters, based on the quantum
tunneling approaches.
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symmetry, we find the conservation laws with the Noether
currents as in covariant theories [18]. Several further
remarks about challenging problems are in order.
(1) The supercondition I0 ≡∇iΩi ¼ 0 is similar to the

Maxwell’s equation ∇iBi ¼ 0 for the magnetic field
Bi without (magnetic) monopoles. If we define the
(D − 2)-form “currents” for D-dimensional space
with the component Ji…n ¼ ϵi…njk∇jΩk, it satisfies
the (spatial) conservation laws ∇iJi…n ¼ 0 as in the
equations ji ¼ ϵimn

∂mBn for the magnetostatics with
the electric currents ji. Then, we can solve Ωi in
terms of the currents Ji…n, which are the additional
data for a complete specification ofΩi. For example,
if the supercondition ∇iΩi ¼ 0 and ϵi…njk∇jΩk ¼
Ji…n ¼ 0 are satisfied for the whole-space region,
i.e., without singularities, then Ωi ¼ 0 would be the
only solution and this would correspond to “Case A”
in the Hamiltonian analysis of [8] where the degrees
of freedom in HLD gravity are the same as in GR at
the fully nonlinear level. Otherwise, Ωi would be
nonvanishing generally due to either (a) nontrivial
tolopoly/cohomology, or (b) singularities, or from
(c) nonvanishing current Ji…n ≠ 0. This latter case
would correspond to “Case B” in [8] where an extra
scalar graviton mode exists in Hamiltonian analysis
of HLD gravity. It would be interesting to find the
generic (formal) solution of Ωi in curved space,
corresponding to Biot-Savert’s law in electromag-
netism in Minkowski space-time.

(2) From the invariance of the action (23), we have
obtained the tertiary constraints ∇iðN2CiÞ ¼ 0 in
Hamiltonian formalism via Ḣ and Ḣi in the super-
condition I0 ¼ 0. As have been noted above, the
action invariance does not necessarily mean the
same degrees of freedom as in GR, which is
manifestly Lorentz invariant. In Hamiltonian for-
malism, we need to find a complete set of constraints
to completely specify the degrees of freedom. This
implies that we need more consistency analysis in
Lagrangian formalism, corresponding to the preser-
vation of constraints in Hamiltonian formalism.
We suspect that the higher-order invariance of
δξδη…δζS ¼ 0 would be important in HLD gravity
and needs to be considered in order to obtain the
complete set of constraints, consistently with the
Hamiltonian formalism.

(3) Our formulation about the gravity sector is self-
contained and independent on the matter sector. If
we now consider matter action Sm as well, which
may have nonrelativistic higher-derivative terms
also in accordance with the HLD gravity, the addi-
tional contributions to the action transformation

are
R
dtdDx½ξ0 ffiffiffî

g
p b∇μTμ0 þ ξi

ffiffiffî
g

p b∇μTμi� with the en-
ergy-momentum tensors for matters Tμν ¼ − 2ffiffî

g
p δSm

δĝμν,

for the (Dþ 1)-dimensional metric ĝμν and its

associated covariant derivatives b∇μ, together with
the matter contributions to the boundary terms Θμ

andΨμ. But, from the supercondition I0 ¼ 0 and the
Bianchi identity I i ¼ 0 in the gravity sector, which
indicating their geometrical origin, the consistent
theory with the full Diff is possible only for the

covariantly-conserved matters, i.e., b∇μTμν ¼ 0,
regardless higher-derivatives in HLD gravity. In
other words, only the energy-conserving mattersb∇μTμ0 ¼ 0, as well as the momentum-conserving

matters b∇μTμi ¼ 0, can be consistent with the HLD
gravity. Actually, there seems to exist some evidence
for the covariant conservation laws of matter’s
energy momentum tensors and of the effective
energy-momentum tensors from the higher-deriva-
tive terms, separately, for spherically symmetric
case [36].10 It would be interesting to see whether
the covariant form of the conservation laws holds
generally, as another supercondition in matter
sectors.

(4) For the special value of IR Lorentz-violation param-
eter λ ¼ 1=D, the theory has anisotropic Weyl
symmetry additionally [3] but a separate consider-
ation is needed. Based on the Hamiltonian analysis
[8], which gives the same degrees of freedom as in
GR, its full symmetry would be also as large as that
of GR, though its details of the symmetry are
different. It would be interesting to clarify the full
action symmetry also and its connection to the
Case A.

(5) From the obtained Lorentz symmetry of HLD action
for the superselected sector of ∇iΩi ¼ 0, one can
consider the corresponding Ward-like identity
hδξF i − ði=ℏÞ R ξhF∂μJ μidtdDx ¼ 0 for a Diff
invariant observable F , from the Diff invariance
of the path-integral measure with the first and
second-class constraints [37]. The proof of renor-
malizability for HLD gravity from the gravitational
Ward-like identity would be a challenging problem.

(6) In our formulation, we have considered the arbitrary
potential V½gij; Ri

jkl� without derivatives ∇i. The
inclusion of derivatives in the potential, i.e.,
V½gij; Ri

jkl;∇i� would be more desirable to describe
the most general systems as in the action (1). The
computations are straightforward but, due to the

10One can formally write the Horava gravity’s equations of
motion into a covariant Einstein’s equation Gμν ¼ 8πGTμν

eff by
considering the higher-derivative contributions as the effective
energy-momentum tensor Tμν

eff. Then, from the usual (covariant)
Bianchi identity on the Einstein tensor b∇μGμν ¼ 0, one can find

the covariant conservation laws b∇μT
μν
eff ¼ 0 [36]. However, the

geometric origin of this identity/property is still unknown.
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complications, we have not yet succeeded in
obtaining the canonical form of (23). However,
we believe that the formulation itself should not
depend on the existence of derivatives in the
potential so that there should be no fundamental
problem to get the corresponding canonical forms.

(7) TheDiff invariance of HLD gravity sheds a new light
on the very meaning of black hole entropy and its
thermodynamical laws, due to the revival of Lorentz
invariant concept of the event horizon, which has
been essential to give an absolute meaning to black
hole entropy as a measure of observable ignorance
inside the event horizon as well as the role of the
universal horizons in the presence of the (Lorentz-
invariant) event horizons [38].11 In particular, for the
k ¼ 1 black holes in an asymptotically flat/AdS
space, the logarithmic correction to the usual
Bekenstein-Hawking entropy implies the “positive”
minimum of horizon radius rH for the positive
black hole entropy S, which is consistent with the
existence of a positive minimum for the mass M
where the Hawking temperature TH vanishes [26].12

Moreover, in that case, the black hole entropy S
increases (the second law of black hole thermo
dynamics) by ΔS ¼ ð8πσ=ℏÞ½ðω − ΛWÞrH þ
2k=rH�ΔrH ¼ THΔM for the increased mass
ΔM > 0. From the associated increase of area13

AH ¼ 4πr2H, one can compute the upper bound to
the energy of the gravitational radiations when one
black hole captures another. For the asymptotically
flat black holes (ΛW ¼ 0) [23] with the area
(β≡ 4ωM)

AH ¼ 8πM2½1þ ð1 − ð2ωM2Þ−1Þ1=2 − ð4ωM2Þ−1�;
ð50Þ

the increased area gives the inequality (m≡ ω1=2M)

m2
3½1þ ð1 − ð2m2

3Þ−1Þ1=2�
> m2

1½1þ ð1 − ð2m2
1Þ−1Þ1=2�

þm2
2½1þ ð1 − ð2m2

2Þ−1Þ1=2� − 1=4: ð51Þ

Then, the energy emitted in gravitational or other
form of radiations is m1 þm2 −m3 and its effi-
ciency ϵ≡ ðm1 þm2 −m3Þ=ðm1 þm2Þ is limited
by (51). The highest limit on ϵ is 1 − 3=4

ffiffiffi
2

p
≈ 0.47

which occurs whenm1 ¼ m2 ¼ 2−1=2, which are the
minimum values for positive Hawking temperature
TH > 0, and m3 ¼ 3=4. On the other hand, when
particles or fields which do not have horizons,
impinge on a single black hole, one finds

m2
2½1þ ð1 − ð2m2

2Þ−1Þ1=2�
> m2

1½1þ ð1 − ð2m2
1Þ−1Þ1=2�: ð52Þ

Note thatm2 cannot be less thanm1. This means that
one cannot extract energy from a black hole and
there is no analog of the Penrose process for Kerr or
charged black hole in GR [45,46]. This is basically
due to fact that one cannot turn off the parameter ω
arbitrarily, in contrast to the rotation parameter a in
a Kerr black hole or the charge parameter e in a
Reissner-Norström black hole even though they look
similar in the black hole area formula (50) [47].14

These results are quantitatively (the lower highest
limit ϵ ¼ 1 − 2−1=2 ≈ 0.29 for two nonrotating initial
black holes with the same masses [47]) and quali-
tatively (no energy extractions via an analog of the
Penrose process [45,46]) different from GR black
holes which could be tested experimentally in the
near future.

(8) The ambiguities associated with the choice of
asymptotic boundary at r → ∞ is absent in the
charge formula (43) when we consider λ ¼ 1 sol-
ution (45), where the second and the third (bulk)
terms in (43) vanish. Note that this case covers a
wide range of static (vacuum) solutions with higher
curvatures, including those in GR [34]. However, for
λ ≠ 1 generally [50] which is beyond the GR limit,
we still seems to need asymptotic boundary at
r → ∞, even for the asymptotically de Sitter black
hole, in order to obtain its “finite” physical mass.
The intimate physical connection between the IR-
Lorentz violation and the need of an infinite boun-
dary (of our universe) is still unclear. However, for
the asymptotically de Sitter black hole, the choice of
the asymptotic boundary at r → ∞ might not be

11In Lorentz-violating gravities, the thermodynamical proper-
ties, like the Hawking radiation have been long-standing issues
and there have been some controversial results. In [39,40], it is
argued of the radiations at the universal horizon but none at the
Killing horizon. In [41], it is shown the opposite results in a more
direct calculation, i.e., the radiations at the Killing horizon but
none at the universal horizon, which seems to support for our new
formulation and some earlier results on Hawking radiations for
relativistic matters, like [32,42,43]. Recently, it has been clarified
that the disagreements were due to the different choices observ-
er’s frames (or vacuum) [44].

12One can choose S0 so that the two minimum horizon radii
agree. This choice achieves the third law of black hole thermo-
dynamics, i.e., S ¼ 0 at TH ¼ 0.

13This indicates the energy conditions, especially the weak
energy conditions (WEC) and the null energy conditions (NEC)
are not violated by the higher-derivative contributions to the
(effective) energy-momentum tensors. For example, for the
asymptotically flat case, i.e., ΛW ¼ 0, see [36].

14Actually, (52) is exactly the same as that of the Kerr black
hole case with the identification a ¼ 2−1, whereas (51) as that of
Reissner-Norström black hole with e ¼ 2−1 in [47] (see [48,49]
for some earlier discussions on the similarity).
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quite nonsensical because the possible communica-
tions between inside and outside of the cosmological
horizon from the Lorentz violating effect.

(9) Based on our proposal of the off-shellDiff invariance
which is not spoiled by covariant matter couplings,
the manifestly Diff invariant formulation can be
possible by the change of variables. Its explicit
formulation will be interesting because it would
be really curious how it differs from the usual
covariant higher-curvature gravities. Actually, it
reminds us about a covariant formulation of HLD
gravity using the Stueckelberg’s trick [51]. It would
be important to see whether their formulation is
equivalent to ours or not.
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APPENDIX A: COMPUTATIONAL DETAILS
OF (28)–(31), AND EXPLICIT FORM OF U ij

Here, we describe the computational details of (28)–(31),
and the explicit form of U ij.
First, in order to compute I0 in (28) from (24), without

using the dynamical equations of motion Eij ¼ 0 nor the

constraints H ≈ 0;Hi ≈ 0, we first consider the time
derivative ∂tð≡ð̇ ÞÞ of the potential V, which appears in
the term NḢ in (24),

dV
dt

¼ ∂V
∂gij

∂tgij þ
∂V

∂Ri
jkl

∂tRi
jkl

¼ ġijPilnpRj
lnp − Pi

jklṘi
jkl; ðA1Þ

where we have used [15]�
∂V
∂gij

�
Rm

nkl

¼ −Pi
lnpRjlnp: ðA2Þ

Expressing the time derivatives in terms of extrinsic
curvature via its definition (2), we have the relation

dV
dt

¼ ð2NKij þ∇iNj þ∇jNiÞPilnpRj
lnp − Pi

jklṘi
jkl

¼ ð2NKij þ∇iNj þ∇jNiÞPilnpRj
lnp

− Pi
jklð∇kHi

jl −∇lHi
jkÞ; ðA3Þ

where we have used a useful relation,

Ṙi
jkl ¼ ∇kHi

jl −∇lHi
jk ðA4Þ

with

Hl
ij ≡∇iðNKj

lÞ þ∇jðNKi
lÞ −∇lðNKijÞ

þ∇ði∇jÞNl − RlðijÞmNm: ðA5Þ

With all these identities and (16)–(18), we can compute
(24) as

I0 ¼ ∇i

�
2N2

�
∇jπ

ij þ κ2

2

�
2λ

λD − 1
ðπ∇lPkl

k
i − Pkl

k
i∇lπÞ þ 2Pjkl

i∇kπjl − 2πjl∇kPjkl
i

���
; ðA6Þ

≡∇iΩi; ðA7Þ

in terms of the canonical momenta πij ¼ ð2=κ2Þ ffiffiffi
g

p ðKij − λKgijÞ.
As an explicit example, if we consider the potential (4)

−V½gij;Ri
jkl� ¼Λþ ξRþαRnþ βðRijRijÞsþ γðRi

jklRi
jklÞr

¼Λþ ξδkpgqlRp
qklþαðδki gjlRi

jklÞnþ βðδki Ri
jklδ

q
pRp

mqngmjglnÞsþ γðRi
jklRi

jklÞr; ðA8Þ

Pi
jkl is given by

Pi
jkl ¼ ξδ½ki g

l�j þ αnRn−1δ½ki g
l�j þ βsζs−1ðδ½ki Rl�j þ gj½lRk�

iÞ þ 2γrρr−1Ri
jkl; ðA9Þ

where we denote ζ≡ RijRij; ρ≡ RijklRijkl.
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By plugging (A9) into (A6), we obtain

I0 ≡∇iΩi ¼ ∇i½Ωi
ð0Þ þ ξ̃Ωi

ð1Þ þ α̃Ωi
ð2Þ þ β̃Ωi

ð3Þ þ γ̃Ωi
ð4Þ�;

Ωi
ð0Þ ¼ 2N2∇jπ

ij;

Ωi
ð1Þ ¼ 2N2

� ðλ − 1Þ
ðλD − 1Þ∇

iπ −∇jπ
ij

�
;

Ωi
ð2Þ ¼ 2nN2

� ðλ − 1Þ
ðλD − 1Þ ðR

n−1∇iπ − π∇iRn−1Þ − ðRn−1∇jπ
ij − πij∇jRn−1Þ

�
;

Ωi
ð3Þ ¼ 2sN2

� ð2λ − 1Þ
ðλD − 1Þ ðζ

s−1Rij∇jπ − π∇jðζs−1RijÞÞ − λ

ðλD − 1Þ ðζ
s−1R∇iπ − π∇iðζs−1RÞÞ

þ ðζs−1Rjk∇iπjk − πjk∇iðζs−1RjkÞÞ − ðζs−1Rij∇kπj
k − πj

k∇kðζs−1RijÞÞ − ðζs−1Rjk∇kπ
i
j − πij∇kðζs−1RjkÞÞ

�
;

Ωi
ð4Þ ¼ 2rN2

�
4λ

λD − 1
ðπ∇kðρr−1RikÞ − ρr−1Rik∇kπÞ þ 4ρr−1Rjkl

i∇kπjl − 4πjl∇kðρr−1Rjkl
iÞ
�
; ðA10Þ

where ζ≡ RijRij; ρ≡ RijklRijkl; ðξ̃; α̃; β̃; γ̃Þ≡ ðκ2=2Þðξ; α; β; γÞ. On the other hand, if we consider I i in (25) similarly, one
can find that it vanishes identically I i ≡ 0, which proves (29), as in GR or general covariant theories.
Similarly, if we consider Ψ0 and Ψi in (26), (27), respectively, one can find that, from (19) and (20) as well as (16)–(18),

Ψ0 ≡ −ξ0ðNHþ NiHiÞ − ξjgijHi þ Θ0

¼ ξ0Lþ ∂i

�
2

ffiffiffi
g

p ðξ0Nj þ ξjÞ
�
2

κ2

�
GijklKkl

�
ðA11Þ

and

Ψi ≡ ξ0½NNiH −HiðgjkNjNk − N2Þ þ 2NjHij� þ ξjð−NjHi þ 2gjlEilÞ þ Θi

¼ ξiLþ Σiðξ0Þ − ∂0

�
2

ffiffiffi
g

p ðξ0Nj þ ξjÞ
�
2

κ2

�
GijklKkl

�
þ ∂j½Aijðξ0Þ þ BijðξmÞ�; ðA12Þ

where

Σiðξ0Þ ¼ 2N2

��
κ2

2

��
2λ

λD − 1
ðPli

lk∇kðξ0πÞ − ξ0π∇kPli
lkÞ þ 2ξ0πjl∇kPjkl

i − 2Pjkl
i∇kðξ0πjlÞ

�
þ πij∇jξ

0 − ξ0∇jπ
ij

�
ðA13Þ

and Aij, Bij are antisymmetric tensors as

Aijðξ0Þ≡ 2
ffiffiffi
g

p ��
2

κ2

�
2ξ0NmN½jGi�mklKkl þ Pijklð2ξ0Nl∇kN þ N∇lðξ0NkÞÞ þ 4ξ0NNl∇kP½j

kl
i�
�
;

BijðξmÞ≡ 2
ffiffiffi
g

p ��
2

κ2

�
2ξmN½jGi�mklKkl þ 4ξl∇kðNP½j

kl
i�Þ − 2NP½j

kl
i�∇kξl

�
: ðA14Þ

Then, one can write Ψμ ≡ ξμLþ Σμðξ0Þ þ ∂νUμν with Σ0 ≡ 0 and the “superpotential” Uμν, which is anti-symmetric
Uμν ¼ −Uμν [17,18] and given by

U0i ¼ −U i0 ≡ 2
ffiffiffi
g

p ðξ0Nj þ ξjÞ
�
2

κ2

�
ðGijklKklÞ; ðA15Þ
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U ij ¼ −Uji ≡Aijðξ0Þ þ BijðξmÞ; ðA16Þ

proving (30) and (31).
If we consider the potential (A8) with Pi

jkl tensor (A9), as an explicit example, one can find Eij in (18) as

Eij ≡ Eij
ð0Þ þ ξEij

ð1Þ þ αEij
ð2Þ þ βEij

ð3Þ þ γEij
ð4Þ;

Eij
ð0Þ ¼

ffiffiffi
g

p �
2

κ2

��
−Ni∇kKjk − Nj∇kKik þ Kik∇jNk þ Kjk∇iNk þ Nk∇kKij þ 2NKikKj

k − NKKij þ 1

2
gijNKklKkl

− gikgjlK̇kl

�
þ λ

ffiffiffi
g

p �
1

2
NgijK2 þ Nj∇iK þ Ni∇jK − gijNk∇kK − gijKklġkl þ gijgklK̇kl

�
;

Eij
ð1Þ ¼

ffiffiffi
g

p �
N

�
−Rij þ 1

2
Rgij þ Λ

ξ
gij

�
þ ðgilgjk − gijgklÞ∇l∇kN

�
;

Eij
ð2Þ ¼

ffiffiffi
g

p �
N

�
−nRn−1Rij þ 1

2
Rngij

�
þ nðgilgjk − gijgklÞ∇l∇kðNRn−1Þ

�
;

Eij
ð3Þ ¼

ffiffiffi
g

p �
N

�
−2sζs−1RikRj

k þ
1

2
ζsgij

�
þ sðgikgjmgln þ gjkgmignl − gklgmignj − gijgkmglnÞ∇l∇kðNζs−1RmnÞ

�
;

Eij
ð4Þ ¼

ffiffiffi
g

p �
N
�
−2rρr−1RiklmRj

klm þ 1

2
ρrgij

�
þ 4r∇k∇lðρr−1NRikljÞ

�
; ðA17Þ

and Θi in (20) as

Θi ≡ Θi
ð0Þ þ ξΘi

ð1Þ þ αΘi
ð2Þ þ βΘi

ð3Þ þ γΘi
ð4Þ;

Θi
ð0Þ ¼

ffiffiffi
g

p �
2

κ2

�
½2NlGijkmKkmδgjl − NiGljmnKmnδgjl − 2GkjilKkjδNl�;

Θi
ð1Þ ¼ 2

ffiffiffi
g

p
gj½kgl�i½N∇kδglj − ð∇kNÞδglj�;

Θi
ð2Þ ¼ 4n

ffiffiffi
g

p ½Ngi½lgk�jRn−1∇kδglj −∇kðNgi½lgk�jRn−1Þδglj�;
Θi

ð3Þ ¼ 4s
ffiffiffi
g

p ½Nζs−1g½l½iRj�
k�∇kδglj −∇kðNζs−1g½l½iRj�

k�Þδglj�;
Θi

ð4Þ ¼ 4r
ffiffiffi
g

p
ρr−1RjkilN∇kδglj − 4r

ffiffiffi
g

p
δglj∇kðρr−1NRjiklÞ: ðA18Þ

For Σi in (32), we find

Σiðξ0Þ≡ Σi
ð0Þ þ ξ̃Σi

ð1Þ þ α̃Σi
ð2Þ þ β̃Σi

ð3Þ þ γ̃Σi
ð4Þ;

Σi
ð0Þ ¼ 2N2

�
2

κ2

�
½−ξ0∇iπ

ij þ πij∇jξ0�;

Σi
ð1Þ ¼ 2N2½−λ̂∇iðξ0πÞ þ ξ0∇jπ

ij þ πij∇jξ0�;
Σi
ð2Þ ¼ 2nN2½−λ̂ðRn−1∇iðξ0πÞ − ξ0π∇iRn−1Þ�;

Σi
ð3Þ ¼ 2sN2½λ̃ðζs−1R∇iðξ0πÞ − ξ0π∇iðRζs−1ÞÞ − λ̄ðζs−1Rij∇jðξ0πÞ − ξ0π∇jðζs−1RijÞÞ þ ðξ0πjk∇iðζs−1RjkÞ

− ζs−1Rjk∇iðξ0πjkÞÞ þ ðζs−1Rj
k∇jðξ0πikÞ − ξ0πik∇jðζs−1Rj

kÞÞ þ ðζs−1Rij∇kðξ0πjkÞ − ξ0πj
k∇kðζs−1RijÞÞ�;

Σi
ð4Þ ¼ 2rN2½4λ̃ðρr−1Rij∇jðξ0πÞ − ξ0π∇jðρr−1RijÞÞ þ 4ðρr−1Ri

jkl∇lðξ0πjkÞ − ξ0πjk∇lðρr−1Ri
jklÞÞ�; ðA19Þ

where λ̂≡ ðλ − 1Þ=ðλD − 1Þ; λ̃≡ λ=ðλD − 1Þ; λ̄≡ λ̂þ λ̃ ¼ ð2λ − 1Þ=ðλD − 1Þ, and Aij, Bij as

SYMMETRIES AND CONSERVATION LAWS IN HOŘAVA … PHYS. REV. D 108, 064030 (2023)
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Aijðξ0Þ≡Aij
ð0Þ þ ξAij

ð1Þ þ αAij
ð2Þ þ βAij

ð3Þ þ γAij
ð4Þ;

Aij
ð0Þ ¼ 2

ffiffiffi
g

p �
2

κ2

�
½2ξ0NmN½jGi�mklKkl�;

Aij
ð1Þ ¼ 2

ffiffiffi
g

p ½gi½kgl�jð2ξ0Nl∇kN þ N∇lðξ0NkÞÞ�;
Aij

ð2Þ ¼ 2n
ffiffiffi
g

p ½Rn−1gi½kgl�jð2ξ0Nl∇kN þ N∇lðξ0NkÞÞ þ 4ξ0NNlgi½lgk�j∇kRn−1�;
Aij

ð3Þ ¼ 2s
ffiffiffi
g

p ½2sζs−1g½j½lRi�
k�ð2ξ0Nl∇kN þ N∇lðξ0NkÞÞ þ 8ξ0NNlg½i½l∇jkjðζs−1Rj�

k�Þ�;
Aij

ð4Þ ¼ 2r
ffiffiffi
g

p ½8ξ0NNl∇kðρr−1R½j
kl
i�Þ þ 2ρr−1Rijklð2ξ0Nl∇kN þ N∇lðξ0NkÞÞ�; ðA20Þ

and

BijðξmÞ≡ Bij
ð0Þ þ ξBij

ð1Þ þ αBij
ð2Þ þ βBij

ð3Þ þ γBij
ð4Þ;

Bij
ð0Þ ¼ 2

ffiffiffi
g

p �
2

κ2

�
½2ξmN½jGi�mklKkl�;

Bij
ð1Þ ¼ 2

ffiffiffi
g

p ½2gl½igj�kðN∇kξl − 2ξl∇kNÞ�;
Bij
ð2Þ ¼ 2n

ffiffiffi
g

p ½2gl½igj�kRn−1N∇kξl þ 4ξl∇kðgl½jgi�kRn−1NÞ�;
Bij
ð3Þ ¼ 2s

ffiffiffi
g

p ½4ζs−1g½j½kRi�l�N∇kξl þ 8ξl∇kðζs−1g½j½kRi�l�NÞ�;
Bij
ð4Þ ¼ 2r

ffiffiffi
g

p ½4ρr−1Rk½ij�lN∇kξl þ 8ξl∇kðρr−1Rk½ji�lNÞ�: ðA21Þ

APPENDIX B: A SUMMARY OF THE
COMPLETE SET OF CONSTRAINTS OBTAINED

IN [8] ðλ ≠ 1=DÞ
Here, we summarize the complete set of constraints

for the Hamiltonian formalism, obtained in [8] ðλ ≠ 1=DÞ
(see [8] for the detailed computations and the case of
λ ¼ 1=D). In [8], we have considered the HLD action (1)
with a potential VðRÞ, which is an arbitrary function of
curvature scalar R, or more explicitly, −V ¼ Λþ ξRþ αRn,
for the computational simplicity. Then, from the primary
constraints

πN ≡ δS=δṄ ≈ 0; πi ≡ δS=δṄi ≈ 0 ðB1Þ

and their preservation Φ̇μ ¼ fΦμ; HCg ≈ 0 [Φμ ≡ ðπN; πiÞ]
with the canonical Hamiltonian (up to boundary terms)

HC ¼
Z
Σt

dDxfNHþ NiHig; ðB2Þ

one obtain the secondary constraints

H ≈ 0; Hi ≈ 0; ðB3Þ
which are the Hamiltonian and momentum constraints, for
H and Hi in (16) and (17), respectively. Here, the weak
equality ‘≈’ means that the constraint equations are used
after calculating the Poisson brackets. Up to now, the
constraint analysis looks parallel with GR but now with the

modified expression of H as (16). However, we note that
Hi has still the same expression as in GR in terms of
canonical momenta πij ¼ ð2=κ2Þ ffiffiffi

g
p ðKij − λKgijÞ, though

different from in terms of gij and ġij, or Kij. This fact
indicates the same role of Hi as in GR in Hamiltonian
formalism, due to the fundamental role of πij.
The fundamentally different constraint analysis in HLD

gravity than in GR starts from the different constraint
algebra

fHðxÞ;HðyÞg ¼ CiðxÞ∇x
i δ

Dðx − yÞ − CiðyÞ∇y
i δ

Dðx − yÞ;
ðB4Þ

fHðxÞ;HiðyÞg ¼ −HðyÞ∇y
i δ

Dðx − yÞ; ðB5Þ

fHiðxÞ;HjðyÞg¼HiðyÞ∇x
jδ

Dðx−yÞþHjðxÞ∇x
i δ

Dðx−yÞ;
ðB6Þ

where Ci is the same quantity in (38) but with β ¼ γ ¼ 0,
as in H (16). Then, the preservation of the secondary
constraints with the extended Hamiltonian HE ¼
HC þ R

Σt
dDxðuμΦμÞ, with the Lagrange multipliers uμ

due to the arbitrariness from the primary constraints,

Ḣ≡ fH; HEg

¼ 1

N
∇iðN2CiÞ þ∇iðNiHÞ ≈ 0; ðB7Þ
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Ḣi ≡ fHi; HEg
¼ H∇iN þ∇jðNjHiÞ þHj∇iNj ≈ 0 ðB8Þ

produce the tertiary constraint,

Ω≡∇iðN2CiÞ þ N∇iðNiHtÞ ≈ 0; ðB9Þ

excluding the trivial case of N ¼ 0 for all space-time.
One more step of preserving the tertiary constraint gives

Ω̇≡ fΩ; HEg

≈ fΩ; HCg þ 2CiN2∇i

�
ut
N

�
≈ 0: ðB10Þ

Now, the remaining further analysis depends on whether
Ci ≈ 0 or Ci ≉ 0.

1. Case Ci ≈ 0

In this case, the multiplier ut is not determined in (B10)
but we need one more step with a further constraint Ξ≡
fΩ; HCg (see [8] for the explicit expression and the more
details). Then, the full set of constraints is given by
χA ≡ ðπN;H;Ω;ΞÞ ≈ 0;ΓB ≡ ðπi;HiÞ ≈ 0. Here, the con-
straints χA ≈ 0 are the second-class constraints with the
constraint algebra,

fπNðxÞ;HðyÞg¼0;

fπNðxÞ;ΩðyÞg≈−2∇y
i ðNCiðyÞδDðx−yÞÞ≈0;

fπNðxÞ;Ξ̃ðyÞg¼Δðx−yÞ;
fHðxÞ;HðyÞg¼CiðxÞ∇x

i δ
Dðx−yÞ−CiðyÞ∇y

i δ
Dðx−yÞ≈0;

fHðxÞ;Ω̃ðyÞg≈fπNðxÞ;ΞiðyÞg;etc.; ðB11Þ

whose determinant detðfχA; χBgÞ is nonvanishing
generally.
On the other hand, the constraints ΓA ≡ ðπi;HiÞ ≈ 0 are

the first-class constraints with the vanishing determinant

detðfΓA;ΓBgÞ ¼ 0. Then, the number of dynamical
degrees of freedom in the “configuration” space is given by

s ¼ 1

2
ðP − 2N1 − N2Þ

¼ 1

2
ðDþ 1ÞðD − 2Þ; ðB12Þ

where P ¼ ðDþ 1ÞðDþ 2Þ is the number of canonical
variables in “phase” space ðN; πN; Ni; πi; gij; πijÞ, N1 ¼
2D is the number of the first-class constraints ðπi;HiÞ ≈ 0,
and N2 ¼ “4” is the number of the second-class constraints
ðπN;H;Ω;ΞÞ ≈ 0. It is remarkable that the 2 first-class
constraints ðπN;HÞ ≈ 0 in GR transform into the 4 second-
class constraints ðπN;H;Ω;ΞÞ ≈ 0 in the Case A of
HLD gravity, maintaining the same dynamical degrees
of freedom s.

2. Case Ci ≉ 0

In this case, the multiplier ut is now determined in (B10)
and there is no further constraint. Then, in contrast to
Case A, there are the second-class constraints χA≡
ðπN;H;ΩÞ ≈ 0, whose determinant detðfχA; χBgÞ is gen-
erally nonvanishing, whereas the first-class constraints
ΓA ≡ ðπi;HiÞ are the same as in the Case A. So, the
number of dynamical degrees of freedom is

s ¼ 1

2
½ðDþ 1ÞðDþ 2Þ − 2 × 2D − “3”�

¼ 1

2
ðDþ 1ÞðD − 2Þ þ 1

2
; ðB13Þ

with N1 ¼ 2D and N2 ¼ “3”, which shows one-extra
degree of freedom in phase space, in addition to the usual
ðDþ 1ÞðD − 2Þ graviton (transverse traceless) modes in
GR or the Case A of HLD gravity in arbitrary (Dþ 1)
dimensions. This result supports the previous case-by-case
results [28,31] but in a more generic setup.
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