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If two particles move toward a black hole and collide in the vicinity of the horizon, under certain
conditions, their energyEc:m: in the center of mass frame can grow unbounded. This is the Bañados-Silk-West
(BSW) effect. Usually, this effect is considered for extremal horizons and geodesic (or electrogedesic)
trajectories. We study this effect in a more general context, when both geometric and dynamic factors are
taken into account. We consider generic axially symmetric rotating black holes. The near-horizon behavior of
metric coefficients is determined by three numbers p, q, k that appear in the Taylor expansions for different
types of a horizon. This includes nonextremal, extremal, and ultraextremal horizons. We also give general
classification of possible trajectories that include so-called usual, subcritical, critical, and ultracritical ones
depending on the near-horizon behavior of the radial component of the four-velocity. We assume that particles
move not freely but under the action of some unspecified force. We find when the finiteness of a force and the
BSW effect are compatible with each other. The BSW effect implies that one of two particles has fine-tuned
parameters. We show that such a particle always requires an infinite proper time for reaching the horizon.
Otherwise, either a force becomes infinite, or a horizon fails to be regular. This realizes the so-called principle
of kinematic censorship that forbids literally infinite Ec:m: in any act of collision. The obtained general results
are illustrated for the Kerr-Newman-(anti-)de Sitter metric used as an example. The description of diversity of
trajectories suggested in our work can be of use also in other contexts, beyond the BSW effect. In particular,
we find the relation between a force and the type of a trajectory.
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I. INTRODUCTION

The Bañados-Silk-West effect (BSW, after the names of
its authors) [1] is one of the most interesting theoretical
results in black hole physics during the last decade. It also
revived interest to previous versions of high energy
collisions near black holes [2–4]. Let two particles collide
in the vicinity of a rotating black hole. Then, under certain
conditions, an indefinitely growth of the energy in the
center of mass frame Ec:m: becomes possible. This effect
was found for (i) extremal horizons and (ii) free particles.
Some objections against the BSW effect [5,6] were con-
nected with failure of the factors (i), (ii), or both. However,
it was shown later, that under some change of conditions,
the BSW effect survives even for nonextremal black
holes [7]. Moreover, it was shown earlier that the BSW
effect arises due to the presence of the horizon as such, no
matter how its explicit metric looks like [8]. In the present

work, we make the next step and consider generic horizons
including nonextremal, extremal, and utraextremal ones
(more explicit definitions will be done in the text below).
For spherically symmetric space-times, there exists their
direct classification that enables us to distinguish between
true regular horizons, lightlike singularities and so-called
naked and truly naked horizons (see [9] and references
therein). For generic axially symmetric rotating black
holes, classification is much more complicated. The con-
ditions that single out standard regular horizons (which we
restrict ourselves by) were described in [10].
Also, the presence of a force can be, in principle,

compatible with the BSW effect. For a particular case of
extremal horizons, this was shown in [11]. Strong argu-
ments in favor of this effect for nonextremal horizons were
suggested in [12]. Moreover, sometimes it leads to another
version of this effect that is absent without a force [13].
Instead of solving the equations of motion (that, as a rule,

is practically impossible), we choose the near-horizon
behavior of trajectories and find for each type of a horizon,
when (i) the acceleration due to a force remains finite near
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the horizon, and, at the same time (ii) the BSW effect is
allowed. For particles moving in the equatorial plane
toward a black hole and experiencing finite forces, we
build a general theory of the BSW effect. In doing so, we
take into account factors connected with geometry (type of
a horizon), kinematics (classification of trajectories), and
dynamics (allowed behavior of a force).
One important aspect deserves separate attention.

Although Ec:m: can be made as large as one likes, if the
BSW effect is present, its value must remain finite in each
act of collision, so an infinite energy is forbidden. This
statement is formulated as a separate principle of kin-
ematic censorship [14]. As far as the BSW effect with
free moving particles is concerned, it implies that if one of
two colliding particles has fine-tuned parameters, then the
proper time required to reach the extremal horizon is
infinite [6]. Thus, collision occurs closely to the horizon
but not exactly on it so that Ec:m: remains finite, although
arbitrarily large. We show how this principle manifests
itself for more general types of horizons and the presence
of a nonzero force.
The paper is organized as follows. In Sec. II, we write the

general form of the metric under discussion and equations
of particle motion under the action of a nonzero force. In
Sec. III, we suggest classification of trajectories depending
on the near-horizon behavior of the radial component of the
four-velocity. In this way, we introduce notions of usual,
subcritical, critical, and ultracritical particles. In Sec. IV, we
establish main features of different types of trajectories in
the vicinity of the black hole horizon. In Sec. V, we give the
basic formulas for the gamma factor of relative motion of
two particles relevant in the context of the BSW effect. We
enumerate different possible combinations of types of both
particles that produce the BSW effect. In Sec. VI, we list
general expressions for the components of acceleration
for equatorial particle motion. In Sec. VII, we establish the
relations between the type of trajectory, acceleration, and
characteristics of near-horizon metric. We derive the con-
ditions when the corresponding force is finite for fine-tuned
particles. In Sec. X, we derive, for completeness, similar
conditions for usual particles, although this is irrelevant for
the conditions of the BSW effect. In Sec. VIII, we collect
our results about conditions when a force remains finite
near the horizon for fine-tuned particles and different
kinds of horizons. In Sec. IX, we prove the validity of
the principle of kinematic censorship for the system under
discussion. Then, in Sec. XI, we check the validity of our
results using the Kerr-Newman-(anti-)de Sitter metric as
an exactly solvable example. In Sec. XIII, we give the
summary of the results obtained in this work.

II. METRIC AND EQUATIONS OF MOTION

We investigate the motion of particles in the background
of a rotating black hole described in generalized Boyer-
Lindquist coordinates by the metric

ds2 ¼ −N2dt2 þ gφφðdt − ωdφÞ2 þ dr2

A
þ gθθdθ2: ð1Þ

All metric coefficients do not depend on t and φ.
Positions of horizons are defined by the conditions
AðrhÞ ¼ NðrhÞ ¼ 0, where rh is the horizon radius.
The BSW phenomenon supposes that the energy Ec:m: in

center of mass frame of two colliding particles infinitely
grows as the point of collision approaches the black hole
horizon. For the extremal horizon, the parameters of one of
particles (so-called critical) should be fine-tuned, the other
particle being not fine-tuned (usual) [1,8]. Meanwhile, for
more general types of the horizon, the situation can be more
involved, as we will see it below. Choosing a general type
of a trajectory, we relate it to the properties of the horizon
and will see how the near-horizon behavior of acceleration
looks like.
Let ξμ and ημ be the Killing vectors responsible for time

translation and rotation around the axis, respectively. Then,
one can introduce the energy E ¼ −muμξμ ¼ −mut and
angular momentum L ¼ muμημ ¼ muφ, where uμ is the
four-velocity, m being a particle’s mass. It follows that
along the particle trajectory, the derivative with respect to
the proper time τ gives us

dε
dτ

¼ −aμξμ; ð2Þ

dL
dτ

¼ aμημ; ð3Þ

where the four-acceleration

aμ ¼ uμ;νuν; ð4Þ

and the semicolon denotes covariant derivative, ε ¼ E
m,

L ¼ L
m. For a free particle, aμ ¼ 0, and the energy and

angular momentum are conserved.
Hereafter, we assume that the metric possesses a sym-

metry with respect to the equatorial plane θ ¼ π
2
and restrict

ourselves by particle motion in this plane. Then, using the
definitions of ε and L and the normalization condition
gμνuμuν ¼ −1, one can find that

ut ¼ X
N2

; ð5Þ

uφ ¼ L
gφφ

þ ωX
N2

; ð6Þ

ur ¼ σ

ffiffiffiffi
A

p

N
P; ð7Þ

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
; ð8Þ
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X ¼ ε − ωL; ð9Þ

where σ ¼ �1 depending on the direction of motion. As in
our work, we restrict ourselves by motion within the
equatorial plane, the component uθ ¼ 0.
If aμ ≠ 0, ε and L are not conserved, but Eqs. (5)–(7)

hold true anyway.
It follows from Eqs. (5)–(7) that in coordinates

ðt;φ; r; θÞ,

uμ ¼
�
X
N2

;
L
gφ

þ ωX
N2

; σ

ffiffiffiffi
A

p

N
P; 0

�
: ð10Þ

In what follows, we will use, along with the coordinate
components of vectors, also their tetrad components. It is
convenient to introduce the tetrad attached to the so-called
zero angular momentum observers (ZAMO) according
to [15]. This tetrad reads in our coordinates

eð0Þμ ¼ Nð1; 0; 0; 0Þ; eð1Þμ ¼ ffiffiffiffiffiffiffi
gφφ

p ð−ω; 1; 0; 0Þ; ð11Þ

eð2Þμ ¼ 1ffiffiffiffi
A

p ð0; 0; 1; 0Þ; eð3Þμ ¼ ffiffiffiffiffiffi
gθθ

p ð0; 0; 0; 1Þ: ð12Þ

We will use a letter “O” (orbital) to call them OZAMO to
stress that for such an observer, r ¼ const. Trajectories
of this kind of observers are, in general, not geodesics in
contrast to free-falling observers with a zero angular
momentum (FZAMO).

III. FOUR-VELOCITIES AND CLASSIFICATION
OF TRAJECTORIES

Hereafter, we will use the following classification of
particles (trajectories) depending on the near-horizon
behavior of ur. Let N → 0, A → 0. Then, we call a particle

usual if jurj ≈
ffiffiffi
A

p
N , subcritical if jurj changes slower thanffiffiffiffi

A
p

but faster than
ffiffiffi
A

p
N , critical if jurj ≈ ffiffiffiffi

A
p

, and ultracritical

if jurj changes faster than ffiffiffiffi
A

p
.

The standard approach to investigation of particle
trajectories consists in study, how the presence of external
forces affects particle dynamics. Instead of solving this
problem, we proceed in the opposite direction: We set the
near-horizon trajectory, calculate acceleration, and eluci-
date when it is finite. Further, we select the trajectories
that give simultaneously (i) finite acceleration and (ii) diver-
gent Ec:m:.
Afterward, we are left with the angular component uφ

and the time one ut. It is seen from (6) that in the rotational
background (1), the angular component of velocity consists
of two terms. The first one is due to the angular momentum
and is related to rotation itself; the second term appears due
to frame dragging. The second term is divergent near the

horizon, so it is more natural to define the angular
component of the four-velocity in the OZAMO frame (11):

uφo ¼ eð1Þμ uμ ¼ ffiffiffiffiffiffiffi
gφφ

p ðuφ − ωutÞ ¼ Lffiffiffiffiffiffiffigφφ
p ; ð13Þ

which is free from this divergence.
The time component ut is given by Eq. (5) and can be

also rewritten in another quite convenient form in terms
of ur and uφo . It follows from the normalization condition
and (7) that

ut ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðurÞ2

A
þ ðuφoÞ2

r
: ð14Þ

According to (5), X ¼ utN2. Combining this with (14)
and taking into account that uφo ¼ Oð1Þ, we see that
XH ≠ 0 for usual particles and XH ¼ 0 for other types
(subcritical, critical, and ultracritical). Hereafter, subscript
“H” denotes the quantities calculated on the horizon.
It also follows from our classification that near the

horizon,

ut ≈
1

N2
for usual particles;

ut ≈
ur

N
ffiffiffiffi
A

p for subcritical ones;

ut ≈
1

N
for critical and ultracritical: ð15Þ

Traditionally, the classification of the trajectories is
based on the near-horizon behavior of X , while properties
of ur are derived from this as consequences. Such an
approach is convenient when dealing with usual and critical
particles. However, as we are going to analyze more subtle
details of trajectories and include into consideration sub-
critical and ultracritical ones, the reverse method (from
properties of ur to those of X ) is more convenient, as we
will see it below. In principle, both approaches are
equivalent to each other.
Using our classification and Eqs. (7) and (8), we can

derive important consequences for the relation between ur

and X near the horizon. Namely, for usual and subcritical
particles,

P ≈ X −
N2

2X

�
1þ L2

gφφ

�
H
; jurj ≈

ffiffiffiffi
A

p

N
X ; ð16Þ

and for critical ones,

X ≈X1N; P≈PNN; jurj≈P1

ffiffiffiffi
A

p
¼P1

X1

ffiffiffiffi
A

p

N
X ; ð17Þ

where X1 and P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1 − ð1þ L2

gφφ
ÞH

q
are constants.
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For ultracritical particles,

X ≈
�
1þ L2

gφφ

�
H
N; P ≈ PδN1þδ; δ > 0; ð18Þ

where Pδ is some another constant,

jurj ≈ Pδ

ffiffiffiffi
A

p
Nδ: ð19Þ

Thus, we see that for all particles, except from ultracrit-

ical ones, jurj has the order
ffiffiffi
A

p
N X. For ultracritical par-

ticles, jurj ≪
ffiffiffi
A

p
N X .

IV. BEHAVIOR OF VELOCITY NEAR
THE HORIZON

As the BSW effect happens near the horizon, we will
focus on the behavior of accelerations and velocities in its
vicinity. The situation depends strongly on the type of a
horizon. The classification of the horizons is based on a
character of the behavior of geometrical entities in a free-
falling frame. Explicitly, it reveals itself in the type of the
near-horizon expansion of the metric coefficients. Let us
write them in a general form (v ¼ r − rh):

N2 ¼ κpvp þ oðvpÞ; A ¼ Aqvq þ oðvqÞ; ð20Þ

ω¼ ωH þ ω̂kvk þ � � � þ ω̂l−1vl−1 þωlðθÞvl þ oðvlÞ; ð21Þ

ga ¼ gaH þ ga1vþ oðvÞ: ð22Þ

Here, a ¼ θ;φ; the hat means that corresponding quantity
does not depend on θ. It is assumed that p, q, k are some
positive numbers. By definition, if p ¼ q ¼ 1, the horizon
is nonextremal. If p ≥ 2 and q ¼ 2, it is extremal. For
q > 2, it is called ultraextremal. For nonextremal horizons,
the surface gravity is not equal to zero; for extremal and
ultraextremal ones, it is zero. For more details, see [10].
We analyze behavior of accelerations for any type of

horizon, so q, p, and k are arbitrary. According to
the results, obtained in [10], the regularity of a horizon
requires that

k ≥
�
p − qþ 3

2

�
; l ≥ p; ð23Þ

where [x] means integer part of x. In what follows,
we tacitly assume that these and other conditions of
regularity [10] are fulfilled.
These expansions allow us to obtain behavior of X .

To this end, we consider a general behavior of the radial
velocity near the horizon in the form

ur ¼ ðurÞcvc þ oðvcÞ: ð24Þ

Near the horizon,

X ≈ X sν
s; ð25Þ

where s ¼ 0 for usual particles, and s > 0 in other cases.
It follows from (15) and (25) that for subcritical particles,

X ≈
Nffiffiffiffi
A

p jurj → s ¼ p − q
2

þ c: ð26Þ

For critical and ultracritical particles, s ¼ p=2. However,
for ultracritical particles, there exists another restriction. To
see it, let us consider the radial component of the four-
velocity. For the ultracritical particle, we require that

ðurÞ2 ¼ A
N2

�
X2 − N2

�
1þ L2

gφφ

��
∼ v2c; ð27Þ

where c > q
2
.

Such a behavior of ur can be obtained only if we impose
additional restrictions on X2. It has to be equal to the
second expression inside the radical (8) up to the correc-
tions of a higher order:

X2 ¼ N2

�
1þ L2

gφφ

�
plus v2cþp−q terms: ð28Þ

For the angular component of the four-velocity, we can
write another near-horizon expansion:

uφO ¼ ðuφOÞH þ ðuφOÞbvb þ oðvbÞ; ð29Þ

where b > 0.
Then, it follows from (13) that

L ≈ ffiffiffiffiffiffiffi
gφφ

p ðuφOÞH þ ffiffiffiffiffiffiffi
gφφ

p ðuφOÞbνb: ð30Þ

In a similar way, we can write

ut ∼ v−β; ð31Þ

where for usual particles, β ¼ p, for subcritical ones,
β ¼ pþq

2
− c, and for critical and ultracritical, b ¼ p

2
.

It is convenient to summarize the above results in a
Table I.
In this context, it is also interesting to discuss behavior of

a proper time near the horizon. Using the definition of the
radial component of four-velocity, we have

τ ¼
Z

dr
ur

∼
Z

v−cdv: ð32Þ

Thus, we see that if c ¼ 1, then τ ∼ j ln vj, and if c ≠ 1,
τ ≈ v−α, where α ¼ c − 1. If c ¼ 1, so α ¼ 0, the proper
time diverges logarithmically, τ ∼ j ln vj. This is the case
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considered in [1,6]. The case c ¼ 3=2, α ¼ 1
2
corresponds

to so-called critical particles of class II considered for the
Kerr metric in [16]. Similar solutions for the extremal Kerr-
Newman metric are discussed in [17]. For equatorial
motion, the proper time for fine-tuned particles in more
general background is considered in [18].
The proper time is finite if c < 1. As for all trajectories

that we are considering, q−p
2

≤ c (Table I), the proper time
may be finite only if q < pþ 2. Then it becomes possible
for α to be negative.
If q ≥ pþ 2, the proper time diverges for all types of

trajectories including the usual ones. It means that the
region from infinity to the horizon is geodesically com-
plete. Such objects are termed “remote horizons” in [9].

V. ENERGY OF COLLISION

As we mentioned above, we are mainly interested in the
possibility of the BSW phenomenon, which is related to
infinite growth of energy in the center of mass frame of two
colliding particles. This energy is given by

E2
c:m: ¼ −m1m2u

μ
1u2μ ¼ m1m2γ; ð33Þ

where γ is the Lorentz gamma factor of relative motion.
Substituting expressions for the four-velocity (10), we have

γ ¼ X1X 2 − P1P2

N2
−
L1L2

gφφ
: ð34Þ

Hereafter, we assume that both particles move toward the
horizon, so σ1 ¼ σ2 ¼ −1.
The second term is always regular, so we are interested in

the near-horizon behavior of the first one. To this end, let us
expand the expression for P (8):

P2 ¼ X2 −N2

�
L2

gφ
þ 1

�

¼ ðX svs þX sþs0vsþs0 þ � � �Þ2 − κpvp
�
L2
H

gφH
þ 1

�
þ � � � ;

ð35Þ

where s0 is some positive number. Now let us find how P
behaves near horizon.

For usual and subcritical particles, N ≪ X , so we can
expand the square root to obtain:

P ¼ X −
N2

2X

�
L2

gφφ
þ 1

�
þ � � � ¼ X þOðvp−sÞ: ð36Þ

In cases of critical and ultracritical particles, X and N
decrease with the same rate, so we can write

P ¼ Pp=2vp=2 þ � � � ≈ PNN;

Pp=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

p=2 − κp

�
L2
H

gφH
þ 1

�s
;

PN ¼ Pp=2ffiffiffiffiffi
κp

p ; ð37Þ

which agrees with (17) and (18). As we will further
show, for our purposes, it is sufficient to keep the first
term in this expansion.
Now let us analyze behavior of the gamma factor. Firstly,

let us suppose that each of two particles is usual or
subcritical. Using (36), we see that (34) becomes

γ ¼ X1z2 þ X2z1
2

þOð1Þ; ð38Þ

where z≡ 1þð L2gφφ
ÞH

X . Taking into account (25), we see that

γ ∼ v−js1−s2j: ð39Þ

Note that gamma factor is regular only if s1 ¼ s2; in
other cases, it diverges. This result was obtained earlier
in [11] for the particular case of extremal horizons with
p ¼ q ¼ 2 (see Sec. II E there). Meanwhile, now we see
that this result is independent on the type of the horizon.
Let now particle 1 be critical or ultracritical and particle 2

be usual. Then,

γ ≈
X2ðX ð1Þ

p=2 − Pð1Þ
p=2Þ

N ffiffiffiffiffi
κp

p ¼ X2ðX ð1Þ
p=2 − Pð1Þ

p=2Þ
κpvp=2

; ð40Þ

where X2 ¼ Oð1Þ.

TABLE I. Characteristics of the near-horizon behavior of ur, ut, X , and the proper time τ. Here, the proper time
changes as τ ∼ v−α. The value α ¼ 0 means that the proper time logarithmically diverges τ ∼ j ln vj.

Type c β s α ¼ c − 1

1 Usual q−p
2

p 0 q−p−2
2

2 Subcritical q−p
2

< c < q
2

pþq
2

− c p−q
2

þ c, 0 < s < p
2

q−p−2
2

< α < q−2
2

3 Critical q
2

p
2

p
2

q−2
2

4 Ultracritical c > q
2

p
2

p
2 α > q−2

2
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If particle 1 is critical or ultracritical, while particle 2 is
subcritical, in a similar way, we obtain (40) with s > 0
in (25), so

γ ≈
ðX2ÞsðX ð1Þ

p=2 − Pð1Þ
p=2Þ

κpvp=2−s
: ð41Þ

This expression is divergent since, according to Table I,
s < p

2
for such particles.

If both particles are critical or ultracritical, then X 1 ≈
P1 ∼ N, X2 ≈ P2 ∼ N. Thus, the gamma factor is regular.
We can generalize these results in Table II, where we also

introduced quantity d that shows the rate of divergence of
the gamma factor γ ∼ v−d. From Table II, we can deduce
that the BSW phenomenon happens if, for a given type of
horizon, it is possible to obtain two particles with different
rates of decrease of X . Firstly let us discuss this possibility
for geodesic motion.
In the case of geodesic motion, acceleration is zero; thus,

motion is defined only by two conserved quantities (energy
and angular momentum) and by metric functions. In this
case, ε and L in (9) are constants. It follows from (21) that

X ¼ XH − ωkLvk þ oðvkÞ: ð42Þ

If a particle is fine-tuned, XH ¼ 0, L ¼ ε
ωH

> 0. This gives
us that for fine-tuned particles s ¼ k. This gives realization
of the BSW phenomenon if the first particle is usual, while
the second one is fine-tuned. It is worth noting that in this
case, the relation s ¼ k ≤ p=2 has to hold. It comes from
reality of the radial component of the four-velocity.
In a general case, when forces are present, the expansion

for ε and L can, in principle, violate the equality s ¼ k.
One reservation is in order. In some cases, the BSW

process between a usual and fine-tuned particles fails
because of impossibility for a fine-tuned one to reach
the horizon. In particular, this happens for nonextremal
horizons and geodesic particles. Then, the effect can be
saved if one of particles is not fine-tuned exactly [7]. When
the force is present, this is also compatible with the BSW
effect [12]. A more general situation, with arbitrary p, q and
the presence of a finite force, requires separate treatment. In
this work, we put this issue aside and consider the “pure”

BSW effect only, when one of particles is fine-tuned
exactly.

VI. GENERAL EXPRESSIONS FOR
ACCELERATION

As we will consider particle collisions under the pres-
ence of forces, for further analysis, we need to have explicit
expressions for the components of acceleration. They are
given in the present subsection. It follows from (4) that

aμ ¼ uν∂νuμ þ Γμ
νσuνuσ; ð43Þ

where Γμ
νk are Christoffel symbols.

The tetrad components of acceleration: aðaÞo ¼ aμeðaÞμ can
be found from (11):

aðtÞo ¼ Nat; aðrÞo ¼ arffiffiffiffi
A

p ;

aðφÞo ¼ ffiffiffiffiffiffiffi
gφφ

p ðaφ − ωatÞ; aðθÞo ¼ ffiffiffiffiffiffi
gθθ

p
aθ: ð44Þ

The scalar square of acceleration

a2 ¼ aμaμ ¼ ðaðrÞo Þ2 þ ðaðθÞo Þ2 þ ðaðφÞo Þ2 − ðaðtÞo Þ2: ð45Þ

Calculating the Christoffel symbols, one can obtain
under assumption of equatorial motion:

aðrÞo ¼ 1ffiffiffiffi
A

p
�
ur∂rur −

1

2

∂rA
A

ðurÞ2

−
A
2

�
X2

∂rðN−2Þ − L2
∂rðg−1φφÞ − 2

XL
N2

∂rω

��
;

ð46Þ

aðtÞo ¼ N

�
ur∂rut þ ur

�
∂rN2

N2

X
N2

þ L
N2

∂rω

��
; ð47Þ

aðφÞo ¼ ffiffiffiffiffiffiffi
gφφ

p �
urð∂ruφ − ω∂rutÞ

− ur
�
X
N2

∂rωþ L∂rðg−1φφÞ
��

: ð48Þ

TABLE II. The possibility of BSW phenomenon for different types of particles. D means that the gamma factor
diverges, and R means that it is regular.

First particle Second particle d γ

1 Usual Usual 0 R
2 Usual Subcritical s2 D
3 Subcritical Subcritical js1 − s2j D if s1 ≠ s2

R if s1 ¼ s2
4 Usual or subcritical Critical or ultracritical p=2 − s1 D
5 Critical or ultracritical Critical or ultracritical 0 R
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Component aθ ¼ 0 because we consider equatorial motion
with respect to which all metric functions are symmetric
that causes cancellation of all terms in aθ.

Expressions for aðtÞo , aðrÞo , and aðφÞo may be simplified by
the substitution of the expression for the four-velocity (10):

aðrÞo ¼ X

ffiffiffiffi
A

p

N2

�
∂rX þ L∂rω −

N2

X
L∂rL
gφφ

�
; ð49Þ

aðtÞo ¼ ur

N
ð∂rX þ L∂rωÞ; ð50Þ

aðφÞo ¼ urffiffiffiffiffiffiffigφφ
p ∂rL: ð51Þ

Equations (50) and (51) agree with Eqs. (116) and (117)
of [11].
Equivalently, we can write:

aðrÞo ¼X

ffiffiffiffi
A

p

N2

�
∂rðXþLωÞ−

�
ωþN2

X
L
gφφ

�
∂rL

�
; ð52Þ

aðtÞo ¼ σP

ffiffiffiffi
A

p

N2
ð∂rðX þ LωÞ − ω∂rLÞ; ð53Þ

aðφÞo ¼ σP

ffiffiffiffi
A

p
∂rL

N ffiffiffiffiffiffiffigφφ
p : ð54Þ

VII. FINE-TUNED PARTICLES

We are interested in trajectories that are (i) compatible
with finite acceleration near the horizon and (ii) lead to an
indefinitely large growth of energy Ec:m: due to particle
collision there. Property (ii) implies that the proper time
required to reach the horizon is infinite for a fine-tuned
(subcritical, critical, or ultracritical) particle so that it
approaches the horizon only asymptotically and cannot
cross it. (For the Kerr metric, this was noticed in [6]; a
general proof will be given below in Sec. IX).
Correspondingly, it is the OZAMO frame that is natural
for them (see below for more detail) since a corresponding
observer does not cross the horizon. Therefore, we can
write asymptotic expansion for acceleration near the
horizon in the form

aðtÞo ¼ ðaðtÞo Þn0vn0 þ oðvn0Þ;
aðrÞo ¼ ðaðrÞo Þn1vn1 þ oðvn1Þ;
aðφÞo ¼ ðaðφÞo Þn2vn2 þ oðvn2Þ; ð55Þ

where n0, n1, n2 should be non-negative. As we mentioned
above, we will proceed in such a way: We set a near-
horizon trajectory [equivalently, numbers c and b that

appear in (24) and (30)] and calculate accelerations, thus
finding n0, n1, and n2. Requiring n0, n1, and n2 to be
non-negative, we find physically achievable trajectories
that can produce the BSWeffect. To realize this scheme, we
have to establish several important restrictions on the
parameters of our system.
One important reservation is in order. If we take into

account (16)–(18), it follows from (52) and (53) that in the
case of subcritical and critical particles, n0 ¼ n1, while
for ultracritical ones, n0 > n1. Thus, n0 ≥ n1 and regularity

of aðrÞo implies regularity of aðtÞo , so it is sufficient to analyze

aðrÞo and aðφÞo only.
To find relation between n0, n1, n2 and c, b, we express

the four-velocity in terms of quantities X and L intro-
duced above.

A. Relationship between acceleration
and radial velocity near the horizon

In this subsection, we will find explicitly the asymp-
totic behavior of the expressions for accelerations listed
above. Before proceeding further, we want to make some
important reservations. We are interested in situations
when the tetrad components of acceleration are finite
in a relevant frame. By this frame, we imply a frame
comoving with respect to a particle or any other one that
moves with respect to it with a finite velocity giving
a finite local Lorentz boost between them. For a usual
particle, the role of such a frame is played by a frame
attached to a free-falling observer (FZAMO, if for
simplicity, we choose an observer with a zero angular
momentum). However, in the OZAMO frame, its com-
ponents may diverge since the Lorentz boost becomes
singular. By contrast, the fine-tuned particles cannot
cross a horizon. Therefore, it is the OZAMO frame that
is natural for them so that the tetrad components of
acceleration in the OZAMO frame should stay finite.
{This general issue is discussed in more detail in Sec. III
of [11]. In particular, see Eqs. (70) and (71) there}. It is
the study of concrete near-horizon asymptotic expres-
sions that we are now turning to.
Combining Eq. (25) with s > 0, (8) and (7) and

using (24), we arrive at the following set of cases.
(i) s < p=2, subcritical particle: in this case,

ur ¼ σ
ffiffiffiffi
Aq

κp

q
X svsþðq−pÞ=2 þ oðvsþðp−qÞ=2Þ that gives

us relation s ¼ p−q
2

þ c.
(ii) s ¼ p=2, critical particle: in this case,

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

p=2 − κpðL
2
H

gφ
þ 1Þ

r
νp=2 þ oðup=2Þ, ur ¼

σ
ffiffiffiffi
Aq

κp

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

p=2 − κpðL
2
H

gφ
þ 1Þ

r
νq=2 þ oðup=2Þ.

(iii) s ¼ p=2, ultracritical particle: in this case,

ur ¼ ðurÞcvc þ…; thus, P ≈
ffiffiffiffi
κp
Aq

q
ðurÞcv

p−q
2
þc.
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The case s > p=2 is impossible, because P would
become imaginary. Now let us compute components of
acceleration for each s. We will write the asymptotics
for P in the cases of subcritical and critical particles in the
form P ≈ Psν

s þ oðνsÞ, where Ps ¼ X s for s < p=2 and

Ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

p=2 − κpðL
2
H

gφ
þ 1Þ

r
for s ¼ p=2. For the ultracrit-

ical particle, we will write P ≈ Pp−q
2
þcv

p−q
2
þc, where

Pp−q
2
þc ¼

ffiffiffiffi
κp
Aq

q
ðurÞc.

Let us analyze behavior of radial acceleration. It follows
from (46) that

aðrÞo ≈
1ffiffiffiffiffiffi
Aq

p
�
Aq

κp
P2
s

�
s −

p
2

�
νs þ Aq

κp
X2

s
p
2
νs

þ Aq
X sLH

κp
kωkν

k

�
νsþq=2−p−1: ð56Þ

Note that the term with L2 that is present in (46) is of higher
order. To see this, let us consider parentheses in (46). The
first term is of order of v2s−p−1 and, as s ≤ p=2, this term is
divergent. Meanwhile, the L2 term ¼ Oð1Þ that proves the
aforementioned statement.
The near-horizon behavior of (56) depends on what is

bigger: s or k. Using Eq. (56), we can thus write:

n1 ¼ minðs; kÞ þ sþ q
2
− p − 1: ð57Þ

In accordance with reservations made above, now we are
not interested in usual particles, so s > 0, whereas the case
s ¼ 0 is excluded from consideration.

The case when aðrÞo does not include ∂rω deserves
separate attention. This may happen if ω is constant. As
a matter of fact, such a metric is static. In this case, we can
redefine angular coordinate φ̃ ¼ φ − ωt that will diago-
nalize metric (1), making it explicitly static. Then in (56),
only two first terms survive, which gives us

n1 ¼ 2sþ q
2
− p − 1: ð58Þ

Hereafter, we denote this case as k ¼ 0.

There is also a special case when coefficients in
expansion of X and L are such that several terms in
powers series (which are, generally speaking, potentially
divergent) in the expression for acceleration cancel each
other. Full cancellation happens, for example, for freely
falling particles, for which X þ ωL ¼ ε, where ε and L
are constants that gives us zero acceleration. Then,
∂rðX þ ωLÞ ¼ 0 exactly. In a more general case, we can
consider

ε¼XþωL¼ ε0þ terms of vm order; m>k: ð59Þ

Using relation (52) for aðrÞo , we see that the first term in
brackets has the order vm−1, while the second one has the
order of vb−1.
Thus, in this case,

n1 ¼ minðm; bÞ þ sþ q
2
− p − 1: ð60Þ

However, we will not pay much attention to this
case further.
Now we want to rewrite all possible solutions for n1 in

terms of c. In the case of usual, subcritical, and critical
particles, we can use relation s ¼ p−q

2
þ c that gives us

n1 ¼ min

�
p − q
2

þ c; k

�
þ c − 1 −

p
2

if k ≠ 0; ð61Þ

n1 ¼ 2c − 1 −
q
2

if k ¼ 0; ð62Þ

n1 ¼ minðm; bÞ þ c −
p
2
− 1 if X þ ωL ¼ ε0 þOðvmÞ:

ð63Þ

Thus, we found the expressions that include n1, c, s, p,
q, k. Our goal is to transform them to the form
c ¼ cðn1; p; q; kÞ. Then we take into account the data
from Table I in combination with the requirement n1 ≥ 0.
This can give us restrictions on metric parameters relevant
for different types of trajectories. Using the above formulas,
we find for subcritical and critical particles

c ¼

8>>>>>><
>>>>>>:

2n1þ2þq
4

if n1 ≤ 2kþ q−2−2p
2

; k ≠ 0

n1 þ p
2
þ 1 − k if n1 > 2kþ q−2−2p

2
; k ≠ 0

2n1þ2þq
4

if k ¼ 0

n1 þ p
2
þ 1 −minðm; bÞ if X þ ωL ¼ ε0 þOðvmÞ where m > k;

ð64Þ

where the relation s ¼ p−q
2

þ c was used.
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The first solution in (64) exists for n1 ≥ 0 if

k ≥
2pþ 2 − q

4
ð65Þ

only, while the second one exists for all k.
For ultracritical particles, we cannot use the aforemen-

tioned formula for s. In this case, c > q
2
, s ¼ p

2
. Then, we

obtain from (57) and (58):

cmay be any value grater then
q
2
; ð66Þ

n1 ¼ min

�
p
2
; k

�
þ q − p

2
− 1 if k ≠ 0; ð67Þ

n1 ¼
q − 2

2
if k ¼ 0: ð68Þ

The special case X þ ωL ¼ ε0 þOðvmÞ gives us,
according to (60),

n1 ¼ minðm; bÞ þ q − p
2

− 1: ð69Þ

We remind a reader that, according to what is said above,
there is no need to require the regularity of the time
component of acceleration. It is valid automatically if the
radial one is regular.

Now, let us consider aðφÞo . It follows from (51) and (30)
that for any type of particle,

aðφÞo ≈ Lhν
cþb−1; ð70Þ

where Lh is some constant, so

n2 ¼ cþ b − 1 → b ¼ n2 þ 1 − c: ð71Þ

As we require n2 ≥ 0, this gives us the restriction
b ≥ 1 − c. According to Table I, this entails b ≥ 1 − q

2

for critical and ultracritical trajectories.
One reservation is in order. The formulas under dis-

cussion include also the case when aðφÞo ¼ 0, so L ¼ const.
Then, formally, one can put b → ∞. Correspondingly, it
drops out from (64).
More information can be extracted from Table III.

Now, wewill analyze for which subspaces in the space of
parameters ðp; q; kÞ we can have near-horizon trajectories
with non-negative n0, n1, and n2 for all types of fine-tuned
particles described in Table I.

B. Subcritical particles

Let us start with subcritical particles. According to
Table I, q−p

2
< c < q

2
. If we use the first solution in (64),

we get q−2−2p
2

< n1 <
q−2
2
. Now, let us find how it correlates

with the condition of existence of the first solution in (64):
n1 ≤ 2kþ q−2−2p

2
. For k < p

2
, the condition n1 ≤

2kþ q−2−2p
2

is stronger than n1 <
q−2
2
; for k ≥ p

2
, the

condition n1 <
q−2
2

becomes stronger. The lower bound
for n1 is the same for all positive k. So, we can conclude
that for the first solution in (64),

q − 2 − 2p
2

< n1 ≤ 2kþ q − 2 − 2p
2

if k <
p
2
; ð72Þ

q − 2 − 2p
2

< n1 <
q − 2

2
if k ≥

p
2
: ð73Þ

For the second solution in (64), the condition q−p
2

<
c < q

2
entails q

2
− p − 1þ k < n1 <

q−p
2

− 1þ k. The con-

dition n1 > 2kþ q−2−2p
2

is stronger than the lower bound.
However, it is weaker than the upper one if k < p

2
. Thus, we

can conclude that for the second solution in (64),

2kþ q − 2 − 2p
2

≤ n1 <
q − p
2

− 1þ k if k <
p
2
; ð74Þ

Second solution is impossible if k ≥
p
2
: ð75Þ

The special case k ¼ 0 gives the condition q−2−2p
2

<

n1 <
q−2
2
. This completes the analysis for the subcriti-

cal case.

C. Critical particles

The first solution in (64) gives us c ¼ q
2
¼ 2n1þ2þq

4
→

n1 ¼ q−2
2
, so n1 is non-negative if q ≥ 2. The first solution

exists if n1 ≤ 2kþ q−2−2p
2

, which gives us k ≥ p
2
. If we deal

with the second solution, n1 þ p
2
þ 1 − k ¼ q

2
→ n1 ¼

q−2
2
þ k − p

2
. The condition n1 ≥ 0 gives us k ≥ p−q

2
þ 1.

The second solution exists if n1 > 2kþ q−2−2p
2

, which
entails k < p

2
. To conclude, we see that

If
p − q
2

þ 1 ≤ k <
p
2
; n1 ¼

q − 2

2
þ k −

p
2
: ð76Þ

If k ≥
p
2
n1 ¼

q − 2

2
: ð77Þ

TABLE III. Behavior of the angular component of acceleration.

Type of trajectory n2

1 Usual q−p
2

þ b − 1

2 Subcritical q−p
2

þ b − 1 < n2 < b − 1þ q
2

3 Critical q
2
þ b − 1

4 Ultracritical n2 >
q
2
þ b − 1
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The special case k ¼ 0 gives the same result as the first
solution in (64).

D. Ultracritical particles

When we turn to ultracritical trajectories, the situation is
somewhat different. In this case, c is independent of n1: c
may take any value greater than q

2
, while n1 ¼ q−2

2
if k ≥ p

2
,

n1 ¼ kþ q−p
2

− 1 if k < p
2
[see (66)]. It would seem that

these relations are the same as in the case of a critical
trajectory (because forces are the same). However, as we
discussed in Sec. IV, for ultracritical particles, an additional
condition (28) has to hold.

E. Classification of different k regions

In the above consideration, we discussed the conditions
of existence of different types of fine-tuned particles.
Meanwhile, we are also interested in more subtle details
that concern the relations between types of solutions
enumerated in the lines of Eq. (64) and those of trajectories.
To this end, it is convenient to systematize the obtained
results and collect them in an unified scheme. In a natural
way, the space of parameters ðp; q; kÞ is split depending on
a kind of particle (subcritical, critical, ultracritical) to
different regions in which the radial component of accel-
eration is finite. Introducing the values of k that correspond
to the borders of such regions, we obtain four different
regions for k

0 < k <
p − q
2

þ 1; region I; ð78Þ

p − q
2

þ 1 ≤ k <
pþ 1 − q=2

2
; region II; ð79Þ

pþ 1 − q=2
2

≤ k <
p
2
; region III; ð80Þ

k ≥ p=2; region IV: ð81Þ

They are presented on Fig. 1. Here, according to (65),
k ¼ 2pþ2−q

4
is the minimum possible value for which the

first solution in (64) exists, and k ¼ p
2
is the maximum

possible value for which subcritical particles given by the
second solution in (64) can exist according to (75).
In region IV (k ≥ p

2
), we have corresponding conditions

for different trajectories. As follows from (73), if
q−2−2p

2
< n1 <

q−2
2
, we have a subcritical particle. As

follows from (77), if n1 ¼ q−2
2
, a particle is critical, while

if n1 ¼ q−2
2

and the condition (28) holds, it is ultracritical.
In region III, we note that 2þ2p−q

4
≤ k < p

2
, and the

conditions somewhat change. Following (72) and (74),
we see that the first solution in (64) gives a subcritical
particle only for q−2−2p

2
< n1 ≤ 2kþ q−2−2p

2
. The second

solution in (64) gives a subcritical particle only for 2kþ
q−2−2p

2
< n1 <

q−p
2

− 1þ k [see (74)]. If we are interested
in the type of trajectory only, then these two regions may be
joined. This gives us that for all q−2−2p

2
< n1 <

q−p
2

− 1þ k,
we have subcritical particles. Critical particles can be
obtained only if n1 ¼ q−2

2
þ k − p

2
[see (76)]. In the ultra-

critical case, acceleration is the same as for the critical case
(n1 ¼ q−2

2
þ k − p

2
), but condition (28) has to hold.

Region II gives the same conditions as region III.
However, the first solution in (64) is absent [as we noted
in discussion after (64)]. Thus, we can get subcritical
particles only for 2kþ q−2−2p

2
< n1 <

q−p
2

− 1þ k in
region II (where c ¼ n1 þ 1þ p=2 − k). Relations for
critical and ultracritical are the same as for region III.
In region I, all types of trajectories give negative n1

because for all trajectories, n1 ≤ kþ q−p
2

− 1, but as k <
p−q
2

þ 1 in this region, we see that n1 < 0 for all types of
trajectories.
All these results are summarized in Table IV and Fig. 1.

We added also special cases there: k ¼ 0. As we see, the
restrictions on n1 and/or their exact expressions look
different in different k regions.
To complete the picture of all possible cases, we

explicitly present tables for different horizons. In the
case of a nonextremal horizon (q < 2), all trajectories
experience infinite forces (see Table VI). In the case of
extremal horizons (q ¼ 2), a finite force acts only if
particle is critical or ultracritical. In the second case, it is
possible only if k ¼ 0 or it lies in regions III and IV (see
Table V). In the case of ultracritical horizon (q > 2),

FIG. 1. Relevant regions of k. The left panel corresponds to q > 2. The right panel corresponds to q ≤ 2, where regions II and III do
not exist anymore and also points at regions’ I and IVoverlap. We define points on intersection to belong to region I (for explanation, see
Sec. VII E).
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the situation is more complicated, and all possible
trajectories are listed in Table IV.
However, there are several possibilities for these regions

to intersect or disappear. Let us start with region I. From
definition, we see that it disappears for q ≥ pþ 2, and then

the whole range consists only from regions II, III, and IV.
Region II is absent for q ≤ 2. However, if q ≥ 2pþ 2, the
upper bound becomes negative, and then this region also
disappears so that the whole range consists of III and IV
regions. Region III disappears only if q ≤ 2. In this case,
only regions I and IV remain. Moreover, they start to
intersect in this case. For definiteness, we prescribe the
corresponding points on this intersection to region I.
According to Table VI, this choice is not important because
in both I and IV regions, n1 is negative.
All obtained above results are collected in Table VII and

represented on Fig. 2. On this figure, we show the cross
section of the three-parametric space: k, p, and q by plane
k ¼ const (Fig. 2). Here, a blue color represents region I;
green, region II; orange, region III; and gray, region IV.

F. Case q= p

This case has to be considered separately because of
practical importance. In this case, if 0 < k < 1, we are at

TABLE V. Classification of near-horizon trajectories for different k regions for q ¼ 2 (extemal horizon). Regions
II and III in this case are absent, so they are not presented in this table. The fourth solution in (64) is also not
presented in this table. Definitions of different k regions are given in Fig. 1.

k Region n1 Range c Type of trajectory

Stationary metric
1 I For any type of trajectory, n1 is negative (forces diverge)

2 IV n1 ¼ 0 1 Critical
n1 ¼ 0 and (28) Any c > 1 Ultracritical

Static metric
3 k ¼ 0 Same results as in IV for stationary metric

TABLE VI. Classification of near-horizon trajectories for
different k regions for q < 2 (nonextremal horizon). Regions
II and III in this case are absent, so they are not presented in this
table. The fourth solution in (64) is also not presented in this
table. Definitions of different k regions are given in Fig. 1.

k Region n1 Range c Type of trajectory

Stationary metric
1 I and IV For any type of trajectory,

n1 is negative (forces diverge)

Static metric
2 k ¼ 0 For any type of trajectory,

n1 is negative (forces diverge)

TABLE IV. Classification of near-horizon trajectories for different k regions for q > 2 (ultraextremal horizon).
The fourth solution in (64) is not presented in this table. Definitions of different k regions are given in Fig. 1.

k Region n1 Range c Type of trajectory

Stationary metric
1 I For any type of trajectory, n1 is negative (forces diverge)

2 II 2kþ q−2−2p
2

< n1 <
q−p
2

− 1þ k n1 þ 1þ p=2 − k Subcritical

n1 ¼ q−p
2

− 1þ k q=2 Critical
n1 ¼ q−p

2
− 1þ k and (28) Any c > q

2
Ultracritical

3 III maxð0; q−2−2p
2

Þ < n1 ≤ 2kþ q−2−2p
2

2n1þ2þq
4

Subcritical

2kþ q−2−2p
2

< n1 <
q−p
2

− 1þ k n1 þ 1þ p=2 − k Subcritical

n1 ¼ q−p
2

− 1þ k q=2 Critical
n1 ¼ q−p

2
− 1þ k and (28) Any c > q

2
Ultracritical

4 IV maxð0; q−2−2p
2

Þ < n1 <
q−2
2

2n1þ2þq
4

Subcritical

n1 ¼ q−2
2

q=2 Critical

n1 ¼ q−2
2

and (28) Any c > q
2

Ultracritical

Static metric
5 k ¼ 0 Same results as in IV for stationary metric

BAÑADOS-SILK-WEST EFFECT WITH FINITE FORCES … PHYS. REV. D 108, 064029 (2023)

064029-11



region I; if 1 ≤ k < pþ2
4
, in region II; if pþ2

4
≤ k < p

2
, in

region III; if p
2
≤ k, in region IV. As in general case, in

region I, the force diverges for all types of horizons.
In region II, as we can see from Table IV, all three types
of trajectories are possible. The same holds for region III,
but depending on k, expressions for c may be different.
Also, as in general case, regions II and III are absent
if p < 2.
So, summarizing, we have such trajectories in regions II

and III:
(i) If 0 < n1 ≤ 2k − 1 − p

2
, trajectory is subcritical,

and c ¼ 2n1þ2þp
4

,
(ii) If 2k − 1 − p

2
< n1 < k − 1, trajectory is subcritical,

and c ¼ n1 þ 1þ p=2 − k,
(iii) If n1 ¼ k − 1, trajectory is critical,
(iv) If n1 ¼ k − 1 and condition (28) holds, trajectory is

ultracritical.
In region IV, however, we have:
(i) If 0 < n1 <

p
2
− 1, trajectory is subcritical,

(ii) If n1 ¼ p
2
− 1, trajectory is critical,

(iii) If n1 ¼ p
2
− 1 and condition (28) holds, trajectory is

ultracritical.

VIII. RESULTS FOR NONEXTREMAL,
EXTREMAL AND ULTRAEXTREMAL HORIZONS

In previous sections, we have analyzed relations between
a type of trajectory and behavior of force depending on
characteristics of a horizon. From these results, we extract
now information about the possibility to have finite forces
near the horizon for each type of horizon separately. We also
collect the cases when this is consistent with the BSWeffect.

A. Nonextremal horizon

For a nonextremal horizon, p ¼ q ¼ 1. All results
corresponding to this case may be found in Table VI.
For subcritical, critical, and ultracritical particles, accel-
eration diverges independently of k.

B. Extremal horizon

For extremal horizons, q ¼ 2, while p may take any
value p ≥ 2. All results corresponding to this case may be
found in Table V. For subcritical, critical, and ultracritical
particles, acceleration diverges for all k < p

2
. However, if

k ≥ p
2
or k ¼ 0 (static metric), finite acceleration becomes

possible for critical and ultracritical particles. In doing so,
the BSW effect is also possible in the scenario that
corresponds to line 4 in Table II.

C. Ultraextremal horizon

In this case q, p > 2. All results corresponding to this
case may be found in Table IV. In this case, for all
k < p−q

2
þ 1, acceleration diverges for all subcritical, criti-

cal, and ultracritical trajectories. If k ≥ p−q
2

þ 1 or k ¼ 0

(static metric), subcritical, critical, and ultracritical

FIG. 2. Plot showing in which region lies k for all types of horizons, depending on p and q. The left panel is drawn for k ¼ 2, and the
right panel for k ¼ 3. Different k regions are represented with different colors: IV (gray), III (orange), II (green), I (blue).

TABLE VII. Possible k regions depending on p and q.
Definitions of different k regions are given in Fig. 1.

Condition for q Possible k regions

q ≤ 2 I and IV
2 < q < pþ 2 I, II, III, and IV
pþ 2 ≤ q < 2pþ 2 II, III, and IV
q ≥ 2pþ 2 III and IV
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trajectories with finite accelerations can exist. The details of
relations between behavior of the four-velocity and accel-
eration can be found in Table IV. In doing so, the BSW
effect is described by lines 2, 3, and 4 in Table II.
The above results are summarized in Table VIII.
Thus, as long as we are interested in the existence of

finite acceleration, it is sufficient to use the Table VIII
under discussion only. However, previous tables give us not
only the conditions of such existence but also much more
detailed information about possible rates ni that character-
ize the behavior of different components of acceleration.

IX. PARTICLES WITH FINITE PROPER TIME:
KINEMATIC CENSORSHIP PRESERVED

In this section, we prove an interesting consequence
of previous results: all unusual trajectories with a finite
proper time either experience infinite force, or the horizon
fails to be regular.
To prove this, we recall that the proper time is finite if

q < pþ 2 and the trajectory satisfies the condition

q − p
2

≤ c < 1; ð82Þ

(see Sec. IV). Now our task is to find which values of n1
can be obtained for such trajectories.
We start with the simplest case q < 2. As we concluded

in Table VI, in this case, a force is infinite for all unusual
trajectories.
Now let us move to the q ≥ 2 case. The structure

of possible solutions is more complicated, so we will
analyze separately each of solutions obtained in (64) under
assumption q ≥ 2.
Let us start with the first solution in (64). From (82),

one can obtain

q − 2 − 2p
2

≤ n1 <
2 − q
2

: ð83Þ

As 2 ≤ q < pþ 2, both lower and upper bounds are
negative, which gives us negative n1. Also note that the
third solution in (64) gives the same result.

From the second solution of (64), one can obtain

q − 2 − 2p
2

þ k < n1 < k −
p
2
: ð84Þ

It would seem that this can give positive n1. However,
we will show that this is impossible. Let us start with
subcritical particles. For them, the second solution in (64)
exists only if k < p

2
[see (74)]. As q < pþ 2, both lower

and upper bounds in (84) are negative. For critical and
ultracritical particles, we have c ≥ q

2
. However, (82)

requires c < 1, which leads to q < 2 for which case forces
diverge, as is pointed out above.
The fourth solution gives us

minðm; bÞ þ q
2
− p − 1 < n1 < minðm; bÞ − p

2
: ð85Þ

By itself, this inequality can give us non-negative n1,
provided (59) holds with m ≥ p=2 and b ≥ p=2. However,
this case is impossible because of another reason, not
connected with a force. Namely, we can obtain a finite
proper time for nonregular horizons only. Indeed, unusual
trajectories can exist if ε0 ¼ ωHLH only, then it follows
from (21) and (59) that X ∼ −ω̂kLHvk. Thus, s ¼ k.
Meanwhile, a finite proper time can be obtained for c < 1
only. For subcritical particles (forwhich relation c ¼ q−p

2
þ k

holds), this entails k < p−q
2

þ 1, but this is not consistentwith
the regularity condition (23).
In the case of critical and ultracritical particles, c ≥ q

2
. At

the beginning of Sec. VII A, we noted that the requirement
P2 ≥ 0 entails s ≤ p

2
, which implies k ≤ p

2
, so we can write

c ≥ q−p
2

þ k. As a proper time is finite only if c < 1, this
also gives us violation of regularity condition (23).
This completes the proof of our initial statement.

X. USUAL PARTICLES

As we already said, we mainly investigate unusual
particles since this is an essential ingredient of the BSW
effect. Meanwhile, consideration of near-horizon trajecto-
ries of usual particles can be also of some interest beyond
the context of the BSW effect. In general, the time and
radial components of acceleration for such particles diverge
near the horizon in the OZAMO frame (see Sec. VII A
above). More precisely, the asymptotic form of the accel-
eration near the horizon takes the form {see Eqs. (70) and
(71) in [11]}

aðrÞo ¼
	
aðtÞf



0
−
	
aðrÞf



0

N
þ
h	

aðtÞf


1
−
	
aðrÞf



1

i
þ���; ð86Þ

aðtÞo ¼ −

	
aðtÞf



0
−
	
aðrÞf



0

N
−
h	

aðtÞf


1
−
	
aðrÞf



1

i
þ � � � ;

ð87Þ

TABLE VIII. Classification of cases when forces are finite for
different types of horizons and trajectories.

Type of horizon Type of trajectory Region of k

1 Nonextremal All types Absent

2 Extremal Subcritical Absent
Critical k ≥ p=2 or k ¼ 0

Ultracritical

3 Ultraextremal Subcritical k ≥ p−q
2

þ 1 or k ¼ 0
Critical

Ultracritical
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where

aðt;rÞf ¼
	
aðr;tÞf



0
þ
	
aðt;rÞf



1
N þ � � � : ð88Þ

Only in the exceptional case when ðaðtÞf Þ0 ¼ ðaðrÞf Þ0, aðt;rÞo

remains finite. It is worth noting that, as the four-
acceleration is a spacelike vector, it follows from (45)
that in this case, at least one of its angular components
should be nonzero.
We can pose a question, when such a case can be

realized. In our approach, this means the condition ni ≥ 0.
For usual particles, for all types of horizons, the expressions
for ni are given by (90), (92), and (94) (for stationary case)
and by (91), (93), and (94).
Let us start with the radial component of acceleration.

Usual particles correspond to s ¼ 0 or, equivalently,
c ¼ q−p

2
. In this case, we cannot use (56), because vs terms

in (56) vanish. To analyze higher order terms that become
dominant in this case, we use Eq. (49) and substitute
expansion for X in the form

X ¼ X0 þ X s1v
s1 þ oðvs1Þ; ð89Þ

where s1 > 0.
Using expression (49), we see that the first term in

brackets is ∼vs1−1, and the second term is ∼vk−1, while the
third one is ∼vpþb−1. This gives us

n1 ¼ minðs1; k; pþ bÞ þ q
2
− p− 1 for stationary metric:

ð90Þ

In case of static metric ω ¼ const, and vk terms in (49) are
absent, which gives us

n1 ¼minðs1;pþ bÞ þ q
2
−p− 1 for static metric: ð91Þ

Analyzing the time component, we are faced with the
same issue of vanishing of vs terms. Then, we need to find
higher order terms in (50). Now, in contrast to (49), there is
no term with ∂rL, so b drops out from the formulas, and the
conditions analogous to (90) and (91) read

n0¼minðs1;kÞþ
q
2
−p−1 if for stationarymetric; ð92Þ

n0 ¼ s1 þ
q
2
− p − 1 for static metric: ð93Þ

The angular component of acceleration can be obtained by
substitution c ¼ q−p

2
in (71), which gives us

n2 ¼
q − p
2

þ b − 1: ð94Þ

The condition of regularity requires

b ≥ 1 −
q − p
2

: ð95Þ

It is worth stressing that the condition of regularity has
now different status for (i) the time and radial components
and (ii) the angular one. For the reason explained above,
condition (i) singles out a special subclass of trajectories

for which ðaðtÞf Þo ¼ ðaðrÞf Þo. In the general case, (i) can be
violated for usual particles. This is because of singular
nature of local Lorentz transformation near the horizon
between FZAMO and OZAMO. Meanwhile, this trans-

formation does not touch upon the component aðφÞf .
Therefore, condition (95) is mandatory for physically
acceptable trajectories of usual particles.

XI. CHECKING RESULTS:
ELECTROMAGNETIC FORCE

In this section, we check our results in the case when a
force has electromagnetic nature using an exact solution of
Einstein-Maxwell equations. To this end, we consider an
electrically charged black hole. Axial symmetry requires
that the vector potential has the form

A ¼ AtdtþAφdφ: ð96Þ

As before, we consider axially symmetric metrics (1)
and assume the same symmetry for the electromagnetic
field. Then, we introduce generalized momenta Pμ in a
standard way,

pμ ¼ Pμ − eAμ; ð97Þ

where e is a particle’s charge, pμ being the kinematic
momentum that obeys the normalization condition

−m2 ¼ gμνpμpν: ð98Þ

Because of symmetry of this system, the quantities
Ẽ ¼ −Pt and L̃ ¼ Pφ remain constant. Thus, the normali-
zation condition for the momentum gives us

−m2 ¼ −
1

N2
ð−Ẽ − eAtÞ2 −

2ω

N2
ð−Ẽ − eAtÞðL̃ − eAφÞ

−
�
ω2

N2
−

1

gφφ

�
ðL̃ − eAφÞ2 þ AðprÞ2: ð99Þ

Introducing E ¼ Ẽþ eAt, L ¼ L̃
m − e

m Aφ and X ¼ E−ωL
m ,

we can express ur ¼ A pr
m in a form:

ðurÞ2 ¼ A
N2

�
X2 − N2

�
1þ L2

gφφ

��
: ð100Þ
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(i) If Ẽ ≠ ωHðL̃ − eAφÞH − eðAtÞH, XH ≠ 0, so s ¼ 0
that gives us a usual trajectory.

(ii) If Ẽ ¼ ωHðL̃ − eAφÞH − eðAtÞH, XH ¼ 0, so s > 0
that gives us a unusual trajectory.

Now let us check what conditions we get in the case of
the Kerr-Newman-(anti-)de Sitter space-time.

A. Motion in Kerr-Newman-(anti-)de-Sitter spacetime

To test our results in some specific case, we use Kerr-
Newman-(anti-)de Sitter solution. In the Boyer-Lindquist
coordinates, it has a form (see p. 209-210 in [19]):

ds2 ¼ −
Δr

Ξ2ρ2
ðdt − asin2θdφÞ2 þ ϱ2

Δr
dr2 þ ϱ2

Δθ
dθ2

þ Δθsin2θ
Ξ2ρ2

	
adt − ðr2 þ a2Þdφ



2
; ð101Þ

ρ2 ¼ r2 þ a2 cos2 θ; ð102Þ

Δr ¼ðr2 þ a2Þ
�
1 −

1

3
Λr2

�
− 2MrþQ2; ð103Þ

Δθ ¼ 1þ 1

3
Λa2 cos2 θ; ð104Þ

Ξ ¼ 1þ 1

3
Λa2; ð105Þ

with the vector potential

A ¼ −
Qr
Ξρ2

ðdt − asin2θdφÞ ⇒ At ¼ −
Qr
Ξρ2

;

Aφ ¼ −asin2θAt: ð106Þ

Here, Λ is a cosmological constant, and a is the Kerr
parameter, with M being the mass of black hole and Q its
charge. Using this solution, we can write

N2 ¼ ΔθΔrρ
2

Δθðr2 þ a2Þ2 − Δra2sin2θ
; ð107Þ

ω ¼ Δθaðr2 þ a2Þ − Δra
Δθðr2 þ a2Þ2 − Δra2sin2θ

; ð108Þ

A ¼ Δr

ρ2
: ð109Þ

Now

X ¼ X̃ þ e
m
ð1 − aω sin2 θÞAt; ð110Þ

where X̃ ¼ Ẽ−ωL̃
m .

The horizons correspond to zeros of Δr function. Then
we see that near the horizon, A ≈ N2 ≈ Δr. The same
behavior of A and N2 near the horizon entails q ¼ p, and
this number is equal to degeneracy of a horizon. In what
follows, we consider motion within the equatorial plane
θ ¼ π

2
only.

1. Nonextremal horizon

Firstly let us consider a nonextremal horizon. In this
case, Δr ≈ αv, where α is a constant. Expanding (110) and
taking into account that θ ¼ π=2, we have

X ¼ X̃H þ e
m
ðAtÞHð1 − aωHÞ þOðvÞ: ð111Þ

If Ẽ ¼ ωHL̃þ eðAtÞHð1 − aωHÞ, then X ∼ v; s ¼ 1.
However, a corresponding particle cannot reach the horizon
because, as follows from Table I, s has to satisfy 0 < s ≤ p

2
,

which, in our case, gives 0 < s ≤ 1
2
.

If Ẽ ≠ ωHL̃þ eðAtÞHð1 − aωHÞ, X is not zero on
the horizon; that gives us s ¼ 0 (a usual trajectory).
Using (111), we deduce that s1 ¼ 1. According to (90),
that gives us n1 ¼ q

2
− p ¼ − 1

2
. We see that in this case,

acceleration in OZAMO frame diverges.
Thus, we conclude that for nonextremal horizons

electrogeodesics in the Kerr-Newman-(anti-)de Sitter
space-time, the existence of critical particles is forbidden,
while usual ones experience infinite acceleration in the
OZAMO frame.

2. Extremal horizon

In the case of extremal horizon, q ¼ p ¼ 2. Expansion
for X has the similar structure:

X ¼ X̃H −
e
m
ðAtÞHð1 − aωHÞ þOðvÞ: ð112Þ

As in the previous case, if Ẽ¼ωHL̃þeðAtÞHð1−aωHÞ,
then X ∼ v; s ¼ 1. Such the near-horizon behavior of X is
allowed, because now s ¼ p

2
, which gives us the critical

particle. Also note that k ¼ 1. As in this case, k ¼ p=2,
we are in region IV. According to Table V, this gives
us the critical trajectory (second line). As follows
from (76), in this case, n1 ¼ q−2

2
. As now q ¼ 2, we

obtain n1 ¼ 0; thus, such a particle experiences an action
of a finite force.
If Ẽ ≠ ωHL̃þ eðAtÞHð1 − aωHÞ, XH ≠ 0, which gives

us s ¼ 0. From (111), we derive that s1 ¼ 1. In this case,
using (90), we obtain n1 ¼ −1. Thus, acceleration is
divergent. Thus, for extremal horizons, only critical electro-
geodesics can reach the horizon with a finite force in the
OZAMO frame.

BAÑADOS-SILK-WEST EFFECT WITH FINITE FORCES … PHYS. REV. D 108, 064029 (2023)

064029-15



3. Ultraextremal horizon

In this case, the horizon is triple, p ¼ q ¼ 3. We can
write the radial function Δr in the form

Δr ¼ −
Λ
3
ðr − bÞ3ðrþ r0Þ: ð113Þ

Comparing this with (102), we see that such factorization
is possible only if

b ¼ 1ffiffiffiffiffiffi
2Λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λa2

3

r
; r0 ¼

3ffiffiffiffiffiffi
2Λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λa2

3

r
; ð114Þ

with additional restriction on parameters:

Q2 ¼ Λ
3
b3r0; M ¼ Λ

2

�
b2r0 −

b3

3

�
: ð115Þ

As Q and M have to be positive, we have the condition
Λ > 0. This restricts us by the Kerr-Newman-(anti-)de
Sitter space-time. Also note that the triple horizon is a
cosmological one. However, this does not influence the
behavior of accelerations, which we discuss in this section.
In this case, expansion for X is the same:

X ¼ Ẽ − ωHL̃
m

−
e
m
ðAtÞHð1 − aωHÞ þOðvÞ: ð116Þ

If Ẽ ¼ ωHL̃þ eðAtÞHð1 − aωHÞ, then X ∼ v; s ¼ 1.
This value of s gives us subcritical particles because the
value s ¼ 1 is lower than p=2, typical of critical and
ultracritical particles. According to our classification, k lies
in region II since (78) gives us p−q

2
þ 1 ¼ 1 ≤ k ¼ 1 <

pþ1−q=2
2

¼ 5
4
. According to Table IV, this gives us the second

line (subcritical particle) with s ¼ c ¼ 1 and n1 ¼ − 1
2
.

Thus, we see that the force diverges.
If Ẽ ≠ ωHL̃þ eðAtÞHð1 − aωHÞ, XH ≠ 0, which gives

us s ¼ 0. From (111) we, as before, deduce that s1 ¼ 1. In
this case, using (90), we obtain n1 ¼ − 3

2
, so acceleration is

divergent. Thus, for ultraextremal horizons, both subcritical
and usual particles experience infinite forces in the
OZAMO frame.

B. Verifying results

Now let us verify our predictions explicitly. In [20,21],
a reader can find equations of trajectory of particle in
Kerr-Newman-(anti-)de Sitter space-time:

dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffi
RðrÞp
r2

; ð117Þ

where for equatorial motion

RðrÞ ¼
��

1þ Λ
3
a2
�
ðEðr2 þ a2Þ − aLÞ þ eQ

�
2

− Δr

��
1þ Λ

3
a2
�
ðaE − LÞ2 þm2r2

�
: ð118Þ

In the nonextremal case p ¼ q ¼ 1, we have Δr ≈ αv,
where α is a constant. Calculating acceleration [using (46)
and (44)], we find

ar ¼ 3eQ
r4hð3a2 þ ΛÞ2 ðð3a

2 þ ΛÞðEða2 þ r2hÞ − aLÞ

− 3eQrhÞ þOðvÞ: ð119Þ

We see that ar is finite. However, in the OZAMO

frame, aðrÞo ¼ arffiffiffi
A

p ∼ 1ffiffi
v

p , so it diverges as we concluded in

Sec. XI A 1.
For the extremal case p ¼ q ¼ 2, we have Δ ≈ αv2, and

ar¼ 3eQ
r4hð3a2þΛÞ2 ðð3a

2þΛÞðEða2þr2hÞ−aLÞ−3eQrhÞþ

ð120Þ

þ 3eQ
r5hð3a2 þ ΛÞ2 ð9eQrh − 2ð3a2 þ ΛÞðEð2a2 þ r2hÞ

− 2aLÞÞvþOðv2Þ: ð121Þ

If E ¼ aL
r2þa2 þ eQr

r2þa2
1

1þΛ
3
a2
, this is equivalent to the con-

dition E ¼ ωHL − eAHð1 − aωHÞ, which gives the critical
trajectory, and only the second term survives, so ar ∼ v.

Thus, aðrÞo ¼ arffiffiffi
A

p ¼ Oð1Þ. If E ≠ aL
r2þa2 þ eQr

r2þa2
1

1þΛ
3
a2
, that

gives rise to a usual trajectory, ar ¼ Oð1Þ. Thus, we have

aðrÞo ¼ arffiffiffi
A

p ∼ 1
v. So, as we concluded in Sec. XI A 2, for

critical particles, acceleration in the OZAMO frame is
finite, while for usual one, it diverges.
In the ultraextremal case p ¼ q ¼ 3, we have Δr ≈ αv3,

and we have

ar¼ 3eQ
r4hð3a2þΛÞ2 ðð3a

2þΛÞðEða2þr2hÞ−aLÞ−3eQrhÞþ

ð122Þ

þ 3eQ
r5hð3a2 þ ΛÞ2 ð9eQrh − 2ð3a2 þ ΛÞðEð2a2 þ r2hÞ

− 2aLÞÞvþOðv2Þ: ð123Þ

We see that if E ¼ aL
r2þa2 þ eQr

r2þa2
1

1þΛ
3
a2
, that is equivalent

to the condition E ¼ ωHL − eAHð1 − aωHÞ. As now
s ¼ c ¼ 1 < p

2
, this corresponds to the subcritical trajectory

(line 2 in Table I). In the above formula, for ar, only the
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second term survives, so ar ∼ v. Thus, aðrÞo ¼ arffiffiffi
A

p ∼ 1ffiffi
v

p . If

E ≠ aL
r2þa2 þ eQr

r2þa2
1

1þΛ
3
a2
, ar ¼ Oð1Þ and aðrÞo ¼ arffiffiffi

A
p ∼ 1

v3=2
. So,

for subcritical and usual particles, the acceleration in the
OZAMO frame diverges.
We see that all the results for the metric under discussion

agree completely with our general scheme.

XII. RESTRICTIONS AND RESERVATIONS

In the present work, we considered collisions in the test
particles approximation. This means that we neglect
backreaction of particles on the metric. This is just the
same approximation that was made in pioneering
works [1–4]. Clearly, account of self-gravitation can
change the results qualitatively. For example, in the
paper [22], collisions of massive spherically symmetric
charged shells were considered. It was shown that the
self-gravitation bounds the energy in the center of mass
frame that otherwise would be as large as one likes [23].
In doing so, these authors found that according to their
Eq. (42), the factor η ¼ ðM1

μ Þ1=4 appears, which restricts
Ec:m:, where M1 is the mass of a central black hole, μ
being the proper mass of the shell, M1 ≫ μ. Although
the restriction does indeed take place, this factor, being
finite, is nonetheless very large, η ≫ 1, so qualitatively
the effect remains.
In [24], another approach was used for collisions

of particles (not shells) that was based on the hoop
conjecture [25]. Remarkably, the same factor η was
obtained there. Quite recently, Ref. [26] appeared in which
the hoop conjecture was applied to scenarios in the back-
ground of rotating black holes, with the conclusion that
this conjecture regularizes Ec:m:, making it finite, but this
quantity remains quite high. For example, these authors
found that Ec:m: can be only 3 orders of magnitude less than
the Planck energy.
In our view, all this is quite natural. If there exists an

effect that leads to indefinitely large values of energy,
something should exist that bounds it from above, leaving
it finite but large. In this respect, the test particle
approximation used in our work (as well as almost all
works on the BSW effect) is the only first step. The
scenarios considered in our paper are much more involved
than those in [1,23], since they take into account forces of
different nature and more types of trajectories. Therefore,
in our context, the effect of self-gravity is less obvious in
advance. It looked reasonable to study collisions firstly
in the text particle approximation and only afterward to
include into consideration self-gravitation in addition to
aforementioned factors. We hope to return to this issue in
our future work.

XIII. SUMMARY AND CONCLUSIONS

Thus, we constructed classification of near-horizon
trajectories according to their four-velocities and four-
accelerations. We singled out so-called usual particles
(without fine-tuned parameters) and fine-tuned ones. As
the necessary condition of the BSW effect implies the
process with participation of a fine-tuned particle, the main
emphasis was made on investigation of properties of such
particles. In turn, the set of fine-tuned particles is split to
subcritical, critical, and ultracritical ones depending on
their near-horizon behavior. We found the conditions when
the components of acceleration remains finite for each type
of a trajectory. For fine-tuned particles, the relevant frame
for measuring these components is the OZAMO frame
since a corresponding observer does not cross the horizon,
similarly to a fine-tuned particle.
The properties of the metric are characterized by the set

of three numbers p, q, k responsible for the near-horizon
behavior. We also introduced the numbers n0, n1, n2, which
show the rate with which the tetrad components of the
acceleration in the OZAMO frame change near the horizon.
Then, the requirement of finiteness of acceleration for
fine-tuned particles reduces to the conditions ni ≥ 0 for
i ¼ 0, 1, 2. These conditions lead to constraints in the space
of relevant parameters describing the metric. The results of
our work are presented in the Tables I–VIII.
A separate interesting issue that revealed itself in the course

of our investigation is the principle of kinematic censorship.
By itself, it looks very simple or even trivial since it is obvious
that in any act of collision, the energyEc:m: cannot be infinite.
Meanwhile, aswe saw it, the proof of the fact that this principe
is indeed realized in all scenarios under study turned out quite
nontrivial in our context. We showed that kinematic censor-
ship is indeed preserved. Namely, either (i) the proper time
required to reach the horizon for a fine-tuned particle
participating in the BSW process is infinite, (ii) the force
diverges, or (iii) the horizon fails to be regular. Actually, this
principle is a power tool that enables one to select between
possible and forbidden scenarios, even without having
explicit solutions of particle motion.
To verify the obtained results, we checked them using the

Kerr-Newman-(anti-)de Sitter metric as an example.
Although our main motivation was connected with the

study of the BSW effect, the obtained results for the
relationship between the type of trajectory and acceleration
can be of some use in more general contexts.
It is of interest to extend the present results to non-

equatorial motion, the BSW processes with circle orbits,
and near-critical particles. Also, it would be interesting to
take into account the effects of self-gravitation briefly
mentioned in the preceding section.
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