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Results on the isolation of the radiative degrees of freedom of the gravitational field with a positive
cosmological constant in full general relativity are put forward. Methods employed in a recent geometric
characterization of gravitational radiation are used and, inspired by Ashtekar’s work on asymptotically flat
space-times, a space of connections is defined. Ground differences emerge due to the spacelike character of
the conformal boundary, and one has to put into play a fundamental result by Friedrich concerning the initial
value problem for space-times with a positive cosmological constant. Based on this, half of the radiative
degrees of freedom are identified; remarkably, they utterly determine the gravitational radiation content for
space-times with algebraically special rescaled Weyl tensor at infinity. Directions for defining the phase
space in the general case are proposed.
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I. INTRODUCTION

Gravitational radiation is a nonlinear feature of the full
theory of general relativity. Theoretical developments in the
study of this phenomenon trace back to Einstein’s quadru-
pole formula [1], followed by great achievements in the
nonlinear regime during the 1950s [2–4] and 1960s [5–8].
However, it was not until the 1970s when a robust
geometrical understanding was available thanks to the
work of Geroch [9]. The perspective adopted there does
not depend on the choice of coordinates nor any other
gauge and is built using the tools of the conformal
compactification by Penrose [10]. Arguably, this approach
is better suited to address underlying conceptual questions.
As an example, Ashtekar’s way of quantizing the asymp-
totic gravitational field [11] was grounded on this geomet-
rical formulation, upon which the radiative degrees of
freedom at infinity were determined [12] and symplectic
methods were developed [13].
It is important to point out that most of these advances

are only applicable when the cosmological constant van-
ishes and, while detection of gravitational waves [14] urges
us to study in detail this aspect of gravity, evidence of a
positive cosmological constant [15,16] in our Universe
requires new progress in the theory—this issue was already
exposed by Penrose in [17]. A new geometrical description
of gravitational radiation at infinity in full general relativity,
that applies to the case with non-negative cosmological
constant, is now available [18]—see also references therein
and [19,20] for review on other approaches too. Some of the

open questions to be addressed include the identification
of a phase space of radiative modes, an abstract formulation
of the characteristic problem in conformal space-time that
could be connected with the presence of gravitational waves
at infinity according to the new characterization, a general
formulation of energy-momentum and angular-momentum,
as well as a mass-loss formula describing the energy carried
by gravitational waves that arrive at infinity. This paper
focuses on the first of these issues.
In the first part of the work, a class of differential

operators associated to triads of vector fields is introduced
on an abstract three-dimensional Riemannian manifold.
The space of all such operators is shown to have the
structure of an affine space where each point is labeled by
two functions. Also, it is proved that for C∞ metrics the
Levi-Civita connection belongs to that space and is
determined by a set of three families of two-dimensional
connections associated to a triad of vector fields. In the
second part, the conformal boundary of space-times with
positive cosmological constant is considered. Based on
results by Friedrich [21,22] and using the new characteri-
zation of gravitational radiation in full general relativity,
it is argued how the two “coordinates” of the space of
differential operators correspond to half of the gravitational
radiative degrees of freedom. Remarkably, for space-times
having an algebraically special rescaled Weyl tensor at
infinity, the gravitational radiation is fully determined by
these two degrees of freedom. For the general case, it is
suggested how another pair has to come from the TT tensor
in the conformal initial data. Some examples of exact
solutions are given and, also, a comparison with Ashtekar’s
radiative phase space in asymptotically flat space-times
is presented.*francisco.fernandez@ehu.eus
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II. TWO-DIMENSIONAL CONNECTIONS
IN THREE-DIMENSIONAL
RIEMANNIAN MANIFOLDS

In the next two sections, an abstract three-dimensional
Riemannian manifold I with metric hab will be considered.
Let C denote a congruence of curves on I given by a unit
vector field ma and parameter v that can be viewed as a
function of the coordinates—a specific coordinate system
will not be introduced though. The quotient S ≔ I=C is a
two-dimensional differentiable1 manifold, not Riemannian
in general because it is not endowed with a standard metric.
This S is called the “projected surface”; the reader is
referred to Appendix A in [18] for a detailed formulation.
Let fEa

Ag and fWa
Ag be a couple of linearly independent

vector fields and forms on I , orthogonal toma and ma and,
hence constituting a pair of dual bases on S, where indices
A;B;C… ¼ 2, 3. Using these fields, the projector to the
space orthogonal to ma is constructed as2

Pa
b ≔Ea

CWb
C; Pc

bmc ¼ 0¼Pa
cmc; Pc

c ¼ 2; ð2:1Þ

which in terms of ma reads

Pab ¼ hab −mamb: ð2:2Þ

The acceleration, expansion tensor, and vorticity of ma are
denoted by

ab ≔ mc∇cmb; κab ≔ Pc
aPd

b∇ðcmdÞ;

ωab ≔ Pc
aPd

b∇½cmd�; ð2:3Þ

respectively, and the shear is defined as

Σab ≔ κab −
1

2
Pabκ; κ ≔ Pcdκcd: ð2:4Þ

Since these tensors are orthogonal to ma, they can be
expressed as

aa ¼ Wa
AaA; κab ¼ Wa

AWb
BκAB;

Σab ¼ Wa
AWb

BΣAB; ωab ¼ Wa
AWb

BωAB: ð2:5Þ

It is possible to define a one-parameter family (depending
on v) of metrics q

AB
, connections γA

BC
and volume forms

ϵAB in S (see Appendix A in [18]). From now on, for the
sake of briefness, they are referred to as metric, connection
and volume form. Nevertheless, one has to bear in mind
their true significance; it will be explicitly remarked when

necessary. In particular, the metric q
AB

on S and its inverse
qAB can be written as

q
AB

¼ Ea
AEb

Bhab; qAB ¼ Wa
AWb

Bhab: ð2:6Þ

Also, one introduces a two-dimensional connection γC
AB

as

γC
AB

≔ Ea
AWc

C∇aEc
B; ð2:7Þ

where ∇a stands for the covariant derivative associated
to the three-dimensional Levi-Civita connection Γ̂a

bc of
ðI ; habÞ. The connection γC

AB
is used to define a covariant

derivative DA on S in the usual way

DAvB ≔ Ea
A∂avB þ γB

AC
vC; with vA ¼ vaWa

A;

vama ¼ 0: ð2:8Þ

This derivative operator is metric and volume preserving
and for a general tensor field Ta1…ar

b1…bq on I one has

Wm1

A1…Wmr
ArEn1

Bq
…Enq

Bq
Er

C∇rTm1…mr
n1…nq

¼ DCTA1…Ar
B1…Bq

þ
Xr
i¼1

TA1…Ai−1sAiþ1…Ar
B1…Bq

ms

�
κC

Ai þ ωC
Ai

�

þ
Xq
i¼1

TA1…Ar
B1…Bi−1sBiþ1…Bq

�
κCBi

þ ωCBi

�
ms: ð2:9Þ

III. TRIPLETS OF TWO-DIMENSIONAL
CONNECTIONS AND TRIADS

If one considers different families of curves on ðI ; habÞ,
each one has its own projected surface. For the rest of the
work, it is convenient to introduce the following definition
involving three orthogonal congruences:
Definition 3.1 (Triad and triplet of connections). Let

feaig ¼ fma; ḿa; m̂ag be a triad with i ¼ 1, 2, 3, a set of
unit vector fields giving three orthogonal congruences on
ðI ; habÞ or on an open subset Δ ⊂ I , and denote by S, Ś,
and Ŝ their associated projected surfaces. Then, a triplet of
connections is a set fDA; D́Á; D̂Âg where each element
represents the one-parameter family of two-dimensional
connections in S, Ś, and Ŝ, respectively.
To prevent confusion, decorations are used in quantities

and Latin indices associated with Ś and Ŝ, respectively. The
following geometric identities follow by direct computation
from definitions in Eq. (2.3):
Lemma 3.1. Let ðI ; habÞ be a three-dimensional

Riemannian manifold. Then, the kinematic quantities of
a triad feaig ¼ fma; ḿa; m̂ag obey the identities

1It can be the case that S is not globally differentiable.
2Underlining of tensors indicates that they are orthogonal to

some vector field giving a congruence; in this case, ma.
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Σḿ m̂ ¼ ω̂mḿ þ ώmm̂; Σ́mm̂ ¼ ωḿ m̂ þ ω̂ḿm;

Σ̂mḿ ¼ ωm̂ ḿ þ ώm̂m; ð3:1Þ

Σḿ ḿ ¼ −ám −
1

2
κ ¼ −Σm̂ m̂ ¼ âm þ 1

2
κ; ð3:2Þ

Σ́m̂ m̂ ¼ −âḿ −
1

2
κ́ ¼ −Σ́mm ¼ aḿ þ 1

2
κ́; ð3:3Þ

Σ̂ḿ ḿ ¼ −ám̂ −
1

2
κ̂ ¼ −Σ̂mm ¼ am̂ þ 1

2
κ̂: ð3:4Þ

Remark 3.1. Observe that, due to the orthonormality
of the triad feaig, one has

ma ¼ Éa
Ám

Á ¼ Êa
Âm

Â; ḿa ¼ Ea
AḿA ¼ Êa

Âḿ
Â;

m̂a ¼ Éa
Ám̂

Á ¼ Ea
Am̂A: ð3:5Þ

The subindices m, ḿ, and m̂ denote contraction with
fma; ḿa; m̂ag of the corresponding kinematic quantities.
For instance, Σḿ m̂ ¼ ḿAm̂BΣAB.
Since the vorticities are antisymmetric, summation of the

three relations in Eq. (3.1) produces another identity that
will be used later:
Corollary 3.1. Let ðI ; habÞ be a three-dimensional

Riemannian manifold. Then, the shears of a triad feaig ¼
fma; ḿa; m̂ag fulfill

Σḿ m̂ þ Σ́mm̂ þ Σ̂mḿ ¼ 0: ð3:6Þ

Next, one of the main results is presented,
Theorem 1 (Derivative operator associated to a triad).

Let I be a three-dimensional Riemannian manifold
endowed with metric hab, and consider a triad of unit
vector fields feaig ¼ fma; ḿa; m̂ag as in Definition 3.1.
Then, associated to this triad, there exists a unique well-
defined torsion-free differential operator D̄a whose action
on tensor fields Tb1…bn

c1…cq reads

D̄aTb1…bn
c1…cq ¼DaTb1…bn

c1…cq þ
Xn
i¼1

trabiTb1…r…bn
c1…cq

−
Xq
j¼1

tcjarTb1…bn
c1…r…cq ; ð3:7Þ

where tabc is a tensor field that is antisymmetric on
its covariant indices, vanishes under index contraction,
depends on the vorticities of feaig and can be expressed as

tabc ≔ 2maωbc þ 2ḿaώbc þ 2m̂aω̂bc; ð3:8Þ

and DaTb1…bn
c1…cq is a tensor field depending only on the

triplet of two-dimensional connections of Definition 3.1
associated with feaig and acting on components of
Tb1…bn

c1…cq . Also, this differential operator is related to

the Levi-Civita connection ∇a of ðI ; habÞ by

D̄aTb1…bn
c1…cq ¼∇aTb1…bn

c1…cq −
Xn
i¼1

srabiTb1…r…bn
c1…cq

þ
Xq
j¼1

scjarTb1…bn
c1…r…cq ; ð3:9Þ

where sabc is a tensor field symmetric on its covariant
indices, traceless in all of them, that can be written in terms
of the shears of feaig as

sabc ≔ 2Σm̂ ḿmam̂ðbḿcÞ þ 2Σ́m̂mḿam̂ðbmcÞ

þ 2Σ̂mḿm̂amðbḿcÞ: ð3:10Þ

Remark 3.2. By “well defined differential operator” it
is meant that the typical properties (e.g., see [23]) are
fulfilled: linearity, Leibnitz rule, commutativity with con-
traction of indices, coinciding with the partial derivative
when acting on functions, and torsion-free.
Remark 3.3. The tensor field sabc cannot be written in

terms of the triplet of connections fDA; D́Á; D̂Âg because
Σm̂ ḿ, Σ́m̂m, Σ̂mḿ depend on “purely three-dimensional” data
of the Levi-Civita connection. More concretely, the
Christoffel symbols given by Γ̄m

m̂ ḿ, Γ̄m̂
mḿ, and Γ̄ḿ

m̂m
are involved.
Proof.—Begin by introducing an auxiliary differential

operator Da defined by

DaTb1…bn
c1…cq ≔ ∇aTb1…bn

c1…cq

−
Xn
i¼1

ðsrabi þ trabiÞTb1…r…bn
c1…cq

þ
Xq
j¼1

ðscjar þ tcjarÞTb1…bn
c1…r…cq :

ð3:11Þ

Using the properties of∇a it is straightforward to check that
Da is unique and satisfies all properties of Remark 3.2
except for having torsion; i.e., for a general differentiable
function f, DaDbf −DbDaf ¼ −2tcab∂cf ≠ 0. The next
step is to show that DaTb1…bn

c1…cq depends only on the
action of the triplet of two-dimensional connections of
Definition 3.1 on Tb1…bn

c1…cq . To see this, consider first the
action on a one-form va,
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Davb ¼ ∇avb − ðsrab þ trabÞvr
¼ Wa

AWb
BDAvB þ ḿaḿbḿÂḿB̂D̂ÂðmevemB̂Þ þ m̂am̂bm̂Ám̂B́D́ÁðmevemB́Þ

þmaḿbmÂḿB̂D̂ÂvB̂ þmbḿamB̂ḿÂD̂ÂvB̂ þmam̂bmÁm̂B́D́ÁvB́ þmbm̂amB́m̂ÁD́ÁvB́

þmamb½mÁmB́D́ÁvB́ þmÂmB̂D̂ÂðḿB̂ḿ
eveÞ�: ð3:12Þ

In the computation above, one decomposes ∇avb into its tangent and orthogonal parts with respect to ma—or equivalently
with respect to ḿa or m̂a—and then does the same with the mixed terms, but this time with respect to the other two elements
of the triad, ḿa and m̂a. Afterwards, one introduces the derivative operators fDA; D́Á; D̂Âg where possible. There are terms
which cannot be written in terms of these derivatives (for the reasons given in Remark 3.3) which precisely compensate the
term ðsrab þ trabÞvb. The same type of algebraic manipulation leads to a formula for contravariant vector fields va,

Davb ¼ ∇avb þ ðsbar þ tbarÞvr

¼ Wa
AEb

BDAvB þ ḿaḿbḿÂḿB̂D̂ÂðmevemB̂Þ þ m̂am̂bm̂Ám̂B́D́ÁðmevemB́Þ
þmaḿbmÂḿB̂D̂Âv

B̂ þmbḿamB̂ḿ
ÂD̂Âv

B̂ þmam̂bmÁm̂B́D́Áv
B́ þmbm̂amB́m̂

ÁD́Áv
B́

þmamb½mÁmB́D́Áv
B́ þmÂmB̂D̂ÂðḿB̂ḿeveÞ� þ hrbðsear þ tearÞve þ ðsbar þ tbarÞvr: ð3:13Þ

By application of Eq. (3.1), the last line vanishes.
One proceeds in the same way with tensor fields of
arbitrary rank. This shows that DaTb1…bn

c1…cq depends
only on the action of fDA; D́Á; D̂Âg on Tb1…bn

c1…cq . Then,
using DaTb1…bn

c1…cq in Eq. (3.7), it follows that
D̄aTb1…bn

c1…cq is the desired torsion-free differential
operator. ▪
There is a classical result3 (see Theorem 4.2 in [26]) that
plays an important role in what comes next,
Theorem 2 (Classical metric diagonalization result.).

Let I be a three-dimensional Riemannian manifold
endowed with metric hab of class C∞. Then, every point
p of I lies in a neighborhood Up on which there exists a
C∞ coordinate chart fxag in which the metric takes the
diagonal form

h ¼ h1 1dx1dx1 þ h2 2dx2dx2 þ h3 3dx3dx3: ð3:14Þ

This, together with Theorem 1, implies the following
result:
Corollary 3.2. Let I be a three-dimensional

Riemannian manifold endowed with metric hab of class
C∞. Then, every point p of I lies in a neighborhood Up on
which there exists a triad of unit vector fields feaig ¼
fma; ḿa; m̂ag such that the associated differential operator
D̄a of Lemma 3.1 coincides with the Levi-Civita connec-
tion of ðI ; habÞ:

D̄aTb1…bn
c1…cq¼Up∇aTb1…bn

c1…cq ;

and its action on arbitrary tensor fields Tb1…bn
c1…cq

depends only on the triplet of two-dimensional connections
fDA; D́Á; D̂Âg of Definition 3.1 associated to that triad of
vector fields.
Proof.—Using the coordinate chart fxag of Theorem 2,

one has that the triad given by

ma¼ 1ffiffiffiffiffiffiffi
h11

p δ
a
1; ḿa¼ 1ffiffiffiffiffiffiffi

h22
p δ

a
2; m̂a¼ 1ffiffiffiffiffiffiffi

h33
p δ

a
3 ð3:15Þ

has vanishing vorticities (see also Remark 3.5)

ωab ¼ ώab ¼ ω̂ab ¼ 0: ð3:16Þ

Then, tabc ¼ 0. According to Theorem 1, this proves that
the action of the associated D̄a on an arbitrary tensor field
only depends on the triplet of two dimensional connections.
Also, a direct calculation shows that

Γ̄m
m̂ ḿ ¼Up Γ̄m̂

mḿ ¼Up Γ̄ḿ
m̂m ¼Up

0: ð3:17Þ

Using this, one has

Σḿ m̂ ¼ Σ́m̂m ¼ Σ̂ḿm ¼ 0; ð3:18Þ

which, alternatively, could have been proved by using
tabc ¼ 0 in Eq. (3.1). Hence, sabc ¼ 0 and, as follows from
Theorem 1,

3See also Corollary 3.4 in [24] where analicity of the metric is
required, or [25] for an extension to pseudo-Riemannian
manifolds.
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D̄aTb1…bn
c1…cq¼Up∇aTb1…bn

c1…cq : ð3:19Þ

▪
Remark 3.4. By this result, the action of the covariant

derivative ∇a defined by the Levi-Civita connection of
ðI ; habÞ is determined in every neighborhood Up by the
action of a triplet of two-dimensional connections. In
principle, working by patches, one can cover I, however
different charts would have to be used, meaning that the
metric would be diagonalized by different triads on differ-
ent regions of I . Apart from that, it is interesting to notice
that all the curvature-related quantities of ðI ; habÞ can then
be computed on each Up by the action of three two-
dimensional connections.
Remark 3.5. An immediate consequence of

Theorem 2 is that a triad feaig ¼ fma; ḿa; m̂ag associated
to the D̄a that coincides with ∇a on each Up according to
Theorem 1 reads

ma ¼
ffiffiffiffiffiffiffi
h1 1

q
∂ax1; ð3:20Þ

ḿa ¼
ffiffiffiffiffiffiffi
h2 2

q
∂ax2; ð3:21Þ

m̂a ¼
ffiffiffiffiffiffiffi
h3 3

q
∂ax3: ð3:22Þ

These forms, each one being proportional to a gradient,
have vanishing vorticities there. Thus, they characterize a
set of three orthogonal foliations on Up.
A natural thing to do is to introduce a connection

associated to D̄a as

γ̂abc ≔ Γ̂a
bc þ sabc; ð3:23Þ

such that

D̄avb ¼ ∂avb þ γ̂bacvc: ð3:24Þ

Some properties of D̄a that can be computed straightfor-
wardly are

D̄½aD̄b�f ¼ 0; ð3:25Þ

D̄½avb� ¼ ∇½avb� ¼ ∂½avb�; ð3:26Þ

∇½a∇b�vc¼ D̄½aD̄b�vcþD̄½aðsrb�cÞvrþsfc½asrb�fvr

¼ D̄½aD̄b�vcþ∇½aðsrb�cÞvrþsfc½bsra�fvr; ð3:27Þ

D̄ahbc ¼ srbchra: ð3:28Þ

Let feaig be a triad defining D̄a. Then, for any
va ¼ vAWA

a,

Ea
AEb

B∇avb ¼ Ea
AEb

BD̄avb ¼ DAvB; ð3:29Þ

and the decorated version of this relation holds for va ¼
vÂŴ

Â
a and va ¼ vÁẂ

Á
a, respectively.

To conclude this section, consider conformal transfor-
mations of the metric hab,

h̃ab ¼ ω2hab; ð3:30Þ
where ω is a positive definite function. This change also
affects the metric on S,

q̃
AB

¼ ω2q
AB
: ð3:31Þ

Accordingly, the kinematic quantities of Eq. (2.3) trans-
form too; see Appendix E in [18]. In particular, one has that
m̃a ¼ ω−1ma and

Σ̃AB ¼ ωΣAB; ω̃AB ¼ ωωAB: ð3:32Þ
This should be expected, since umbilicity and surface
orthogonality are conformally invariant properties. Thus,
the conformal invariance of sabc and tabc follows,

s̃abc ¼ sabc; t̃abc ¼ tabc; ð3:33Þ

and, also, this shows that γ̂abc undergoes the same change
as Γ̂a

bc:

˜̄γabc¼
J
γ̂abc þ Ca

bc; Ca
bc ¼

1

ω
hatð2htðbω̄cÞ − hcbω̄tÞ;

ð3:34Þ

where ω̄a ≔ ∇aω. All the results above, including
Lemma 3.1, Theorem 1, and Corollary 3.2 are invariant
under these kind of transformations.

A. The space of connections

Different triads can lead to different operators D̄a,
according to Theorem 1. To study this, start with the
following definition:
Definition 3.2 (Space of connections). Define the

space Ξ as the set of all possible differential operators
D̄a of Theorem 1 on I or on an open Δ∈ I .
From now on, no distinction between I and Δ∈ I will

be made, but one has to take into account that these
operators may not be defined globally according to
Definition 3.1. The difference between any two elements
of Ξ can be characterized as the difference of their action on
an arbitrary form vb on I . From Theorem 1 one has

ðD̄0
a − D̄aÞvb ¼ deabve; deab ≔ seab − s0eab: ð3:35Þ

To know how many functions have to be specified to
determine a point in Ξ, one just has to study the algebraic
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properties of dabc. First note that lowering the contravariant
index sabc ¼ hdasdbc one has

(i) sabc ¼ sacb,
(ii) sabc þ sbca þ scab ¼ 0,
(iii) habsabc ¼ 0,
(iv) hacsabc ¼ 0,
(v) s½abc� ¼ 0 ¼ sðabcÞ, and
(vi) Pabsabc ¼ 0 ¼ Pacsabc, for any of the three projec-

tors associated to the elements of the triad feaig ¼
fma; ḿa; m̂ag defining sabc.

Not all the properties are independent from each other;
from properties (i) to (iii), one can derive properties (iv) and
(v), whereas (vi) is independent from the others. Properties
(i)–(iii) provide 9, 10 and 3 constraints, respectively, and
from (vi) one gets three additional independent equations,
giving a total of 25 constraints that leave two independent
components in sabc. The same can be shown if one looks to
Eq. (3.10); it turns out that all the information that has to be
specified is encoded in three scalars: Σḿ m̂, Σ́m̂m and Σ̂ḿm.
But recall that from Lemma 3.1 one has Eq. (3.6), which
reduces the number of independent components to just two
functions. However, this counting does not apply directly to
dabc ¼ hdaddbc . The reason is that while properties (i)–(v)
are satisfied by this tensor too, properties (vi) is not. Still, it is
possible to find three additional independent constraints.
One proceeds first by writing dabc using a generic basis
fẽaig with i running from 1 to 3,

dijk ¼ 2Σλ3iλ1ðjλ2kÞ þ 2Σ́λ1iλ2ðjλ3kÞ þ 2Σ̂λ2iλ1ðjλ3kÞ
− 2Σ0ω3

iω
1ðjω2

kÞ − 2Σ́0ω1
iω

2ðjω3
kÞ

− 2Σ̂0ω2
iω

1ðjω3
kÞ; ð3:36Þ

where λii and ωi
j relate the basis fẽaig with feaig ¼

fḿa; m̂a; mag and fe0aig ¼ fḿ0a; m̂0a; m0ag, respectively,

ẽai ¼ λjieaj; ð3:37Þ

ẽai ¼ ωj
ie0aj: ð3:38Þ

Each of these transformation matrices can be expressed in
terms of three Euler angles4; denote them by fϕ; θ;ψg and
fβ; γ; αg, each set defining λij and ωi

j, respectively. Then,
one can express explicitly the components dijk as functions
of Σ; Σ́; Σ̂;Σ0; Σ́0; Σ̂0 and the two sets of Euler angles.
Observe that the following decomposition applies,

dijk ¼Aijkðϕ;θ;ψ ;Σ; Σ́; Σ̂ÞþBijkðβ;γ;α;Σ0; Σ́0; Σ̂0Þ: ð3:39Þ

Using this, a direct algebraic manipulation shows that5

ð∂ψ þ ∂αÞd133 ¼ −d211; ð3:40Þ

ð∂ψ þ ∂αÞd123 ¼ −d322; ð3:41Þ

d231¼−d123−2

Z
A322dψ −2

Z
B322dα: ð3:42Þ

Summing up, properties (i)–(v) can be used to reduce the
independent components to d123, d231, d133, d211, d322. Now,
using Eqs. (3.40)–(3.42) it is enough to specify two
components—d133 and d123—to determine the other three.
These properties can be straightforwardly generalized to any
linear combination of tensor fields dabc with constant
coefficients.
It is interesting to see that Ξ has the structure of an affine

space6 with underlying vector space Ξ⃗ (the vector space of
tensors dabc) over R. One can define the map Φ of
“translations” of Ξ as (omitting the indices in parenthesis
containing dabc and D̄a, for clearness)

ΦðD̄; dÞavb ¼ D̄avb þ deabve: ð3:43Þ

And for all D̄a and D̄0
a in Ξ there exists another map d:

Ξ × Ξ → Ξ⃗ such that D̄0
avb ¼ D̄avb þ dðD̄0; D̄Þeabve.

Observe that the symbol dðD̄0; D̄Þeab is used in an abuse
of notation, since deab are the elements of Ξ⃗. Notice also
that, for any D̄a, D̄0

a, and D̄00
a in Ξ,

ðdðD̄0; D̄Þeab þ dðD̄; D̄00ÞeabÞve ¼ dðD̄0; D̄00Þeabve: ð3:44Þ

Also, one can fix an origin7 ̊D̄a in Ξ—see Fig. 1. Then, any
other D̄a is characterized with respect to this origin by a
tensor field sabc, fulfilling properties (i)–(vi) no matter the
particular choice one does, the number of functions that
coordinatize Ξ is two. One could think that the natural
choice of origin in Ξ on each neighborhood Up is given by
the kind of triad of Remark 3.5 that, at least locally,

diagonalizes the metric for which one has ̊sabc¼
Up
0, D̄a¼

Up∇a:

ð ̊D̄a − D̄aÞvb¼
Up
seabve: ð3:45Þ

Remark 3.6. Importantly, one has that a triad feaig ¼
fma; ḿa; m̂ag defines a unique D̄a, but the contrary is not
true. Choosing ωi

j ¼ δji , one has that

ϕ ¼ a
π

2
; θ ¼ b

π

2
; ψ ¼ c

π

2
; ð3:46Þ

4The conventions for the definition of the Euler angles of [27]
are used.

5Equation (3.6) has to be used to derive Eq. (3.42).

6See [28] for example for the definition and nomenclature
used here.

7The choice of origin is arbitrary, so making Ξ a vector space
can be seen as a gauge fixing from the physical point of view.
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with a, b, c natural numbers, leads to dabc ¼ 0. That, is two
triads differing by a flip of sign and/or a swap of one or
more elements produce the same sabc, and hence the same
D̄a. Hence, one has that the map φ from the space of
possible triads ϒ to the set of triplets of connections Ξ

φ∶ϒ → Ξ

feaig → D̄a

is a surjection; see Fig. 2. It is possible, indeed, to have
more general transformations of a given triad that do not
modify the associated D̄a; an example is having two
different triads for which sabc ¼ 0. This is illustrated in
the case of the C-metric in Sec. IVA.
Introduce now the following subset of triads,
Definition 3.3. The strict set of triads is denoted by

ϒs ⊂ ϒ and consists of those triads feaig for which
tabc ¼ 0.
This subsetϒs is of interest as it can be put in connection

with the existence of the so called first components of news
(see Sec. IV and Lemma 4.1 later). Observe that by
Lemma 3.1 one has that

tabc ¼ 0 ⇒ sabc ¼ 0 ð3:47Þ
and therefore that the restriction φs of φ acting on ϒs maps
every triad to ∇a,

φs∶ ϒs → Ξ;

feaig → ∇a:

Remark 3.7. For any C∞ metric hab, one has ϒs ≠ ∅,
since the triad given by Remark 3.5, which diagonalizes the
metric according to Theorem 2, has tabc ¼ 0 and, con-
sequently, belongs to ϒs.
As a final note, consider the conformal rescalings (3.30).

While D̄a changes according to Eq. (3.34) “distances”
between points in Ξ are preserved, that is

dð ˜̄D0; ˜̄DÞeab ¼ dðD̄0; D̄Þeab; ð3:48Þ

as follows from Eq. (3.33).

IV. RADIATIVE DEGREES OF FREEDOM

Results presented so far apply to general three-
dimensional Riemannian manifolds, some of them requir-
ing a C∞ metric. This second part of the article is devoted
to show their connection with the characterization of
gravitational radiation in full general relativity with a
positive cosmological constant. Specifically, the aim is to
work out a strategy for determining the radiative degrees
of freedom at infinity. To that end, consider a physical
space-time8 ðM̂; ĝαβÞ admitting a conformal completion
à la Penrose ðM; gαβÞ, where the unphysical metric is
related to the physical one by gαβ ¼ Ω2ĝαβ. The conformal
factor Ω is strictly positive in M̂, vanishes at the conformal
boundary9 J and is not unique; there exist the freedom
of rescaling Ω by a positive definite function ω.

FIG. 1. The space Ξ of differential operators is represented.

Each D̄a is a point distancing from an arbitrary origin ̊D̄a by
dðD̄; D̊Þ, the map to the vector space Ξ⃗ of tensors dabc,
determined by two functions—either one specifies d123 and
d133 in an arbitrary basis, as functions of the shears and Euler
angles, or considers ̊sabc fixed and then has to specify the two
components that determine sabc. Independently of the choice of
origin, each point can be labeled by the components of the shears
Σḿ m̂ and Σ́mm̂, which can be viewed as “coordinates” on Ξ. The
point that represents the Levi-Civita connection ∇a has coor-
dinates (0, 0).

FIG. 2. The surjection φ maps triads of vector fields in ϒ to
differential operators in Ξ. There is a subset ϒs ⊂ ϒ of triads
whose image is∇a and their elements are surface-orthogonal; i.e.,
they have tabc ¼ 0. In a neighborhood of each point in I , it is
always possible to find a triad that diagonalizes the metric and
that, according to Corollary 3.2, belongs to ϒs. There might be,
however, triads that do not belong to ϒs but are mapped to ∇a
(those having sabc ¼ 0 but tabc ≠ 0).

8Greek letters are used for abstract indices of quantities in four-
dimensional space-time. The signature of the metric is chosen to
be ð−;þ;þ;þÞ.

9For a detailed description see e.g. [29].
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This ambiguity is gauge, and as such, physical statements
must not depend on the particular fixing.10 As already
anticipated in the introduction, the case of interest to this
work is that of ĝαβ being a solution to the Einstein field
equations with a positive cosmological constant Λ > 0. In
this context, J is a three-dimensional spacelike hyper-
surface with metric11 hab that transforms as Eq. (3.30)
under gauge changes and normal Nα ≔ ∇αΩ. In general,
J has a past and a future component that are discon-
nected. All the results in this paper apply equally to both of
them and hence no distinction will be made.
Under this setup, it is well known that the Weyl tensor12

Cαβγ
δ vanishes at J and that the rescaled version

dαβγδ ≔ Ω−1Cαβγ
δ ð4:1Þ

is regular and in general different from zero there. The
Bel-Robinson tensor [3] T αβγδ vanishes at J too, so one
constructs a rescaled version as

Dαβγδ ¼ dαμγνdδνβμ þ �dαμγν�dδνβμ; ð4:2Þ

where the star denotes the hodge dual operation on the first
couple of covariant indices. With it, one defines the
asymptotic supermomentum as

pα ≔ −NμNνNρDμνρ
α: ð4:3Þ

Based on this object, a new way of characterising gravi-
tational radiation in full general relativity at J in the
presence of a non-negative Λ was put forward in [30,31]
and later developed in [18,32]—for a review, see [19]. For
Λ > 0, Nα is future-pointing and timelike in a neighbor-
hood of J , and there one can work instead with the unit
vector field nα ≔ N−1Nα, with −N2 ¼ NμNμ. All the
information of the rescaled Weyl tensor at J is contained
in its electric and magnetic parts defined with respect to this
vector field,

Dab ≔
J

eαaeβbnμnνdμανβ; ð4:4Þ

Cab ≔
J

eαaeβbnμnν�dμανβ; ð4:5Þ

where feαag is any set of linearly independent vector
fields at J , orthogonal to nα. One can also introduce a
“canonical” version of the asymptotic supermomentum,

Pα ¼ −nμnνnρDμνρ
α; ð4:6Þ

and write the decomposition

Pα ¼J NαW þ eαaP̄a: ð4:7Þ

The tangent part P̄a to J is called asymptotic super-
Poynting vector field, and the scalar W, asymptotic super-
energy density.13 Using P̄a, there is a way of determining
the presence of gravitational radiation at J in full general
relativity that we recall here14:
Criterion 1 (Asymptotic gravitational-radiation con-

dition with Λ > 0). Consider a three-dimensional open
connected subset Δ ⊂ J . There is no radiation on Δ if and
only if the asymptotic super-Poynting vanishes there

P̄a ¼Δ 0 ⇔ No gravitational radiation onΔ:

Remark 4.1. The radiation condition is equivalent
stated in terms of the commutator of the electric and
magnetic parts of the rescaled Weyl tensor,

½D;C�ab ¼ 0 ⇔ P̄a ¼ 0: ð4:8Þ

Importantly, criterion 1 is invariant under conformal
gauge transformations (3.30).
This characterization is the first clue in the itinerary

towards the isolation of the radiative degrees of freedom of
the gravitational field; the second one is the results by
Friedrich [21,22], by means of which a three-dimensional
Riemannian manifold endowed with a conformal class of
metrics and a traceless and divergence-free (TT) tensor
constitute initial/final data that determine a solution of the
Λ-vacuum Einstein field equations. The Riemannian mani-
fold turns out to be the conformal boundary, and the TT-
tensor, the electric part (4.4) of the rescaled Weyl tensor.
Hence, all the available information about gravitational
radiation has to be encoded in the triplet ðJ ; hab; DabÞ. An
additional insight comes form calculating the magnetic part
of dαβγδ at J , which shows that

Cab ¼ −
ffiffiffiffi
3

Λ

r
Yab; ð4:9Þ

10From this point of view, the fact that these transformations
preserve Ξ—in the sense of Eq. (3.48)—is a favorable feature.

11To be considered C∞ when necessary for the application of
Theorem 2 and Corollary 3.2.

12The conventions for the curvature tensor are Rαβγ
μvμ ¼

ð∇α∇β −∇β∇αÞvγ and Rαβ ¼ Rαμβ
μ.

13Superenergy formalism shares many properties with electro-
magnetism [33]. For a general treatment, see [34]. For the precise
content used in the study of gravitational radiation at infinity, see
Sec. 2 of [18] and references therein for other applications too.

14The criterion has an alternative, more geometric description
in terms of principal directions of the rescaled Weyl tensor that is
not going to be used here. For more details on this, see [18,19].
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with Yab being the Cotton-York tensor of ðJ ; habÞ. This
proves that Cab is completely determined by the curvature
of ðJ ; habÞ, as

Yab ¼ −
1

2
ϵa

cd∇½cS̄d�b; ð4:10Þ

where the volume form ϵabc of J and the intrinsic
Schouten tensor S̄ab have been introduced. Therefore,
gravitational radiation is determined by an interplay
[Eq. (4.8)] between the intrinsic geometry of ðJ ; habÞ
and an extra piece of information—the TT-tensor Dab. This
is the perspective adopted here and largely illustrated
in [18].
Yet another point that deserves attention is the existence

of a “first component of news” VAB associated to a foliation
given by somema. It has been shown in [18] that this object
must be part of any possible news tensor. It is convenient to
recall some definitions and results from that work.
Definition 4.1 (Equipped J). An open, connected,

subset Δ ⊂ J with the same topology thanJ is said to be
equippedwhen it is endowed with a congruence C of curves
characterized by a unit vector field ma. The projected
surface S ≔ Δ=C and C are characterized by the conformal
family of pairs

ðPab;maÞ; ð4:11Þ

where Pab is the projector to S. Two members belong to the
same family if and only if ðP0

ab; m0
aÞ ¼ ðΨ2Pab;ΨmaÞ,

where Ψ is a positive function on J .
Definition 4.2 (Strictly equipped J). One says that

J is strictly equipped when it is equipped and the unit
vector field ma is surface orthognal, providing a foliation
by cuts.15

When considering a foliation (ωab ¼ 0), one can always
write

ma ¼ F∇av with
1

F
¼ £m⃗v; ð4:12Þ

where each leaf Sv is labeled by a constant value of the
parameter v along the curves. Next, define SAB ≔
Ea

AEb
BS̄ab and introduce the following combination where

Σ2 ≔ ΣABΣAB and ω2 ≔ ωABω
AB:

UAB ≔ SAB þ 1

2
κΣAB þ LAB; ð4:13Þ

LAB ≔
�
1

8
κ2 −

1

4
Σ2 þ 3

4
ω2

�
q
AB
: ð4:14Þ

Two key results read as follows:
Corollary 4.1 (The tensor field ρ for strictly equipped

J with S2 leaves). Assume J is strictly equipped with v
the parameter along the curves and such that Eq. (4.12)
holds. If the leaves have S2-topology, there is a unique
tensor field ρ

ab
on J orthogonal to ma (equivalently, a

one-parameter family of symmetric tensor fields ρ
AB
ðvÞ ≔

Ea
AEb

Bρab on the projected surface S) whose behavior
under conformal rescalings (3.31) is

ρ̃
AB

¼ρ
AB

−a
1

ω
DAωBþ

2a
ω2

ωAωB−
a

2ω2
ωCω

Cq
AB
; ð4:15Þ

where ωA ≔ DAω, a∈R, and satisfies the equation

Pd
aPe

bPf
c∇½fρd�e ¼ 0 ð4:16Þ

in any conformal frame. This tensor field must have a trace
ρe

e
≔ Paeρ

ae
¼ aK and reduces, at each leaf, to the

corresponding tensor ρAB with all its properties. In par-
ticular, it is given for the round-sphere one-parameter
family of metrics by ρ

ab
¼ PabaK=2.

Here, K is the family of Gaussian curvatures on S; see
Appendix A in [18].
Proposition 4.1 (The first component of news on

strictly equippedJ with S2 leaves). Assume J is strictly
equipped with v the parameter along the curves and such
that Eq. (4.12) holds. If the leaves have S2 topology, there is
a one-parameter family of symmetric traceless gauge-
invariant tensor fields

VAB ≔ UAB − ρ
AB
; ð4:17Þ

that satisfies the gauge-invariant equation

D½AUB�C ¼ D½AVB�C; ð4:18Þ

where ρ
AB

is the family of tensor fields of Corollary 4.1 (for
a ¼ 1). Besides, VAB is unique with these properties.
Remark 4.2. In case the topology of the projected

surface S is not S2, one has the generalizations of
Corollary 4.1 and Proposition 4.1 (Corollaries 6.3 and
6.4 in [18], respectively). Standard topologies such as S2,
R × S1 or R2 are permitted.
In addition, for algebraically special rescaled Weyl

tensor at J , and under appropriate conditions, VAB
determines the presence of gravitational radiation (i.e.,
VAB ¼ 0 ⇔ P̄a ¼ 0, and VAB is the “whole” news tensor,

15By “cut” one means any two-dimensional Riemannian
manifold with induced metric qAB.
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see Theorem 2 in that reference)—as an example of this, the
C-metric is discussed in Sec. IVA. It is worth noting that
the news tensor of Λ ¼ 0 conformal infinity enters in the
expression of the (Bondi-Trautman) energy-momentum
derived by Geroch [9] and angular momentum using the
symplectic formalism [13] (see also [35]). Hence, any
deeper understanding of this class of tensor fields is of
interest if one aims at a mass-loss formula in the scenario
with Λ > 0.
After this brief review, observe that if one knows the

Levi-Civita connection ∇a of ðJ ; habÞ, then Cab can be
computed. Thus, from the viewpoint of Criterion 1, ∇a
must contain one part of the radiative degrees of freedom.
In fact, one can be tempted to say that it should be
characterized by half of the degrees of freedom, noticing
the symmetry between the role played by Cab and Dab in
Eq. (4.8). Next, consider the affine space Ξ of differential
operators D̄a on ðJ ; habÞ. By Corollary 3.2, on each
neighborhood Up, the Levi-Civita connection belongs to

this space, ∇a ∈Ξ, and it is determined with respect to a

fixed origin ̊D̄a ∈Ξ by two functions encoded in ̊scab,

½∇a − ̊D̄a�vb ¼ ̊seabve: ð4:19Þ

These represent one part of the asymptotic radiative
degrees of freedom of the gravitational field in full
general relativity with a positive cosmological constant.

Note that ̊sabc corresponds to dð∇; ̊D̄Þabc and, complemen-
tarily, ∇a can be given coordinates (0, 0) in Ξ—see Fig. 1.
Remarkably, there is a broad class of space-times for which
these two degrees of freedom suffice to determine the
content of gravitational radiation at infinity; those having
an algebraically special dαβγδ at J (see Sec. IVA). Noting
that tabc ¼ 0 imposes that each element of eai ∈ϒs is
surface-orthogonal (i.e., defines a foliation), Proposition
4.1 is applicable to each of the elements feaig ¼
fma; ḿa; m̂ag of the triad, leading to the following result
Lemma 4.1. Let fma; ḿa; m̂ag be the elements of a

triad feaig∈ϒs. Then, provided that the corresponding
projected surfaces S, Ś, and Ŝ associated with each of
the elements satisfy the topology restriction of Proposition
4.1—or its generalization to other topologies indicated in
Remark 4.2—there exists a set of three first components of
news, VAB, V̂Â B̂, V́Á B́, corresponding to each of the
elements of the triad.
Remark 4.3. Recalling Remark 3.7 and using

Lemma 4.1, it follows that locally, and provided that the
topology requirements of Remark 4.2 are met, it is always
possible to find three first components of news.
One further justification of Ξ containing part of the

radiative degrees of freedom comes from Eq. (3.29). Given
a foliation by umbilical cuts—ΣAB ¼ 0—defined by ma,
and the set of all possible triads containing this vector field,

there is an associated set of operators fD̄ag that induce the
covariant derivative DA in S. And this determines the
associated VAB. A different umbilical foliation, given
by m0a, has a different V 0

AB, and its connection DA
0 is

determined now by a different set of operators fD̄0
ag. From

the point of view of Ξ, any element of fD̄ag is determined
from any element of fD̄0

ag by two functions.

A. The algebraically special case

The casewithdαβγδ algebraically special atJ—i.e., when
the rescaled Weyl tensor has at least one repeated principal
null direction at J—is worthy of attention. A result16

of [18] (Lemma 6.8) is applicable, and allows to translate
this condition to an equation involving just ðJ ; hab; DabÞ
and a vector field ma,
Lemma 4.2. Assume that dαβγδ is algebraically special

at J and denote by ma the unit vector field aligned with
the projection to J of (any of the) repeated principal null
directions. Then

Dab −
1

2
Defmemfð3mamb − habÞ

¼ mdϵedðaðCbÞe þmbÞmfCf
eÞ: ð4:20Þ

Thus, in this case, the TT-tensor Dab is determined by
Cab except for the component mambDab. Nevertheless, the
latter is not involved in the gravitational condition, as one
has that Eq. (4.20) implies

P̄a ¼ 0 ⇔ Dab ¼
1

2
Defmemfð3mamb − habÞ

⇔ Cab ¼
1

2
Cefmemfð3mamb − habÞ: ð4:21Þ

This last statement follows from Corollary 6.7 in [18],
where the radiant superenergy formalism was used.17

Notice that, due to the fact that Dab and Cab are traceless,
one has

PabDab þmambDab ¼ 0; PabCab þmambCab ¼ 0;

ð4:22Þ

so that, indeed, no mambDab (mambCab) component is
involved in Eq. (4.21). Hence, in this particular scenario,
the presence of radiation is fully ruled out by the Cotton-
York tensor of ðJ ; habÞ, that is, by the two degrees of

16The wording has been adapted to suit better the present work.
17With Eqs. (2.50), (2.52) and property (c) on page 16 in that

work, one recasts the result as (4.21).
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freedom18 of Ξ. Notably, this situation is in correspondence
with what happens in the scenario with Λ ¼ 0, where the
phase space of connections introduced by Ashtekar [12] at
J has precisely two degrees of freedom, as the transport
equations for the relevant curvature fields along the gen-
erators are sourced by the fields themselves.19 Working out
further details, one can introduce a notion of incoming
radiation, and the analogy with Λ ¼ 0 goes deeper, as in that
case the “electric” part of the curvature is determined by the
“magnetic” part except for the Coulomb component—see
Remark 6.7 in [18] for more details. Hence, this situation
may be the closest one, from the point of view of
gravitational radiation, to the asymptotically flat case. The
analogy does not come at any price, as condition (4.20)
constrains the radiative degrees of freedom. Thus, it should
not be surprising that adapting nongeometric methods of the
Λ ¼ 0 scenario such as coordinate systems à la Bondi or
boundary conditions on metric coefficients [37–39] may
give answers that differ from the general ones obtained in the
present approach.
Some relevant examples of exact solutions for which

dαβγδ is algebraically special at J include the Robinson-
Trautman metrics and the C-metric (both radiative) and the
Kerr-de Sitter-like solutions20 [40] (nonradiative) whose
content on gravitational radiation was analyzed in [18] (see
also [19]). In what follows the Kerr-de Sitter metric and
C-metric with Λ > 0 are used to illustrate the relation
between shears of different triads, serving as examples for

Lemma 3.1, Corollary 3.2, and Lemma 4.1, and also to give
cases of the surjection φ of Remark 3.6. The basic radiative
properties are concisely reviewed and conventions are
followed according to Sec. 8 of [18].

1. Kerr-de Sitter

Kerr-de Sitter is an example of a space-time with
conformally flat metric hab at J , hence the Cotton-
York vanishes and condition (4.8) is satisfied, meaning
that there is no gravitational radiation arriving at infinity.
The metric at J reads

h ¼ N2dt2 þ sin2θ
1þ N2a2

dϕ2 −
N2asin2θ
1þ N2a2

ðdϕdtþ dtdϕÞ

þ 1

1þ N2a2cos2θ
dθ2; ð4:23Þ

where N2 ¼ Λ=3. Now, consider the following triad feaig,

ma ¼ 1þ N2a2

Nð1þ N2a2cos2θÞ1=2 ðδ
a
t þ aN2δaϕÞ; ð4:24Þ

ḿa ¼ ð1þ a2N2Þ1=2
sin θ

δaϕ; ð4:25Þ

m̂a ¼ ð1þ a2N2cos2θÞ1=2δaθ : ð4:26Þ

It has Σḿ m̂ ¼ Σ́m̂m ¼ Σ̂ḿm ¼ 0, which trivially fulfils
Eq. (3.6) and shows that sabc ¼ 0. Then, according to
Theorem 1, the associated D̄a coincides with the Levi-
Civita ∇a connection. Not only that, but one can compute
the vorticities to get ωḿ m̂ ¼ ώm̂m ¼ ω̂ḿm ¼ 0, which is in
agreement with Lemma 3.1 and implies that tabc ¼ 0.
Thus, feaig∈ϒs and, according to Corollary 3.2, not only
D̄a coincides with ∇a, but its action on arbitrary tensor
fields is completely determined by the triplet of two-
dimensional connections associated to this triad:

∇avb¼ D̄avb¼Wa
AWb

BDAvBþḿaḿbḿÂḿB̂D̂ÂðmevemB̂Þ
þm̂am̂bm̂Ám̂B́D́ÁðmevemB́ÞþmaḿbmÂḿB̂D̂ÂvB̂

þmbḿamB̂ḿÂD̂ÂvB̂þmam̂bmÁm̂B́D́ÁvB́

þmbm̂amB́m̂ÁD́ÁvB́þmamb½mÁmB́D́ÁvB́

þmÂmB̂D̂ÂðḿB̂ḿ
eveÞ�: ð4:27Þ

In passing by, notice that tabc ¼ 0 implies that one can
find scalar functions u, v, w, A, B, C, depending on the
coordinates ft;ϕ; θg, such that

ma ¼ Adu; ḿa ¼ Bdv; m̂a ¼ Cdw: ð4:28Þ

Indeed, one can easily identify

18In [36] it is stated that “The condition Cab ¼ 0 removes
‘half the radiative degrees of freedom’ in the gravitational field
and, in addition, the gravitational waves it does allow can not
carry any of the de Sitter momenta across J .” From the
perspective of criterion 1, Cab ¼ 0 not only cuts the degrees
of freedom by half, but it kills gravitational radiation—which
somehow solves the puzzle of having waves that “can not carry
any of the de Sitter momenta across J .” Instead, what it is
stated in this work is that half of the radiative degrees of freedom
are removed by condition (4.20) in a very different way, as
neither Cab nor Dab vanish in general, so that the presence of
gravitational waves at infinity is completely feasible—and,
indeed, that is the case except for dαβγδ having two repeated
principal null directions (type D) atJ coplanarwith the normal
Nα [18].

19This last point also suggests that the missing pair of degrees
of freedom in the general case may appear at J by some kind of
time derivative of the intrinsic fields of a previous spacelike
hypersurface.

20The Kerr-de Sitter like solutions are characterized by having
a KVF whose associated rescaled Mars-Simon tensor vanishes. In
general, they have nonvanishing Dab and Cab at J , and their
form is that of Eq. (4.21) with ma being the conformal KVF
induced by the space-time KVF, therefore they do not have
gravitational radiation at J . There is a generalization called
asymptotically Kerr-de Sitter-like, in which the rescaled Mars-
Simon tensor is required to vanish at J but not necessarily
everywhere; this more broad class can contain gravitational
radiation at infinity.
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u ¼ t; v ¼ ϕ − aN2t; w ¼ θ ð4:29Þ

and

A ¼ Nð1þ a2N2cos2θÞ1=2
1þ a2N2

; B ¼ sin θ

ð1þ a2N2Þ1=2 ;

C ¼ 1

ð1þ N2a2cos2θÞ1=2 : ð4:30Þ

Then, fu; v; wg diagonalizes the metric

h ¼ N2ð1þ a2N2cos2wÞ
ð1þ a2N2Þ2 du2 þ sin2w

1þ a2N2
dv2

þ 1

1þ N2a2cos2w
dw2; ð4:31Þ

which also illustrates Remark 3.5. In addition to this, it is
possible to compute [18] the first component of news VAB
associated to this ma and check that

VAB ¼ 0: ð4:32Þ

As a different choice of triad, make a rotation around m̂a

to get a new couple of elements,

ma ¼ 1

N
δat ; ð4:33Þ

ḿa ¼ 1

ð1þ a2N2cos2θÞ1=2 ½a sin θδ
a
t þ ð1þ a2N2Þδaϕ�:

ð4:34Þ

Observe that ma is a Killing vector field, thus one has
Σḿ m̂ ¼ 0. For the other two shears one finds

Σ́m̂m ¼ −Σ̂ḿm ¼ aN cos θ; ð4:35Þ

which again satisfies Eq. (3.6). That is, in this case sabc ≠ 0

and the operator D̄a is different from the previous one, so
that it does not coincide with ∇a. This D̄a can be labeled
with the values of any of the three shears’ components,
e.g. ðΣḿ m̂; Σ́m̂mÞ ¼ ð0; aN cos θÞ.

2. C-metric with positive cosmological constant

The C-metric (here assuming Λ > 0) represents two
black-holes accelerating [41]. Hence, it is not surprising
that it contains gravitational radiation at J [31], whose
metric in the gauge choices of [18] reads—see also [42] for
a recent treatment of the generalized black holes metrics of
Petrov type-D which include the C-metric:

h ¼ ða2Sþ N2Þdτ2 þ N2

Sða2Sþ N2Þ dp
2 þ Sdσ2: ð4:36Þ

Here 2ma < 1, SðpÞ ≔ ð1 − p2Þð1 − 2ampÞ ≥ 0 with
p∈ ð−1; 1�, σ ∈ ½0; 2π=ð1 − 2amÞÞ and N2 ¼ Λ=3 as
before. The rescaled Weyl tensor is algebraically special
atJ but the metric is not conformally flat. Thus Eq. (4.20)
holds and all the information about gravitational radiation
can be encoded in the Cotton-York tensor Yab [see
Eq. (4.9)] and having a nonvanishing asymptotic super-
Poynting vector field,

P̄a ¼J
ffiffiffiffi
3

Λ

r
18am2S

�
1þ 6

Λ
Sa2

�
δap: ð4:37Þ

It was shown in [18] that, associated to the foliation
given by

ma ¼
�
−
N
T̄
δaτ −

aS
N

δap

�
ð4:38Þ

the first component of news Vab reads

VAB ¼ H
S2

DApDBp −HDAσDBσ; ð4:39Þ

where on each leaf S

H≔S
Z

3amSdp¼S 3am

�
1

2
amp4 −

1

3
p3 − amp2 þ p

�

þ 3

2
m2a2 − 2am: ð4:40Þ

Indeed, not onlyma, Cab, andDab obey Eq. (4.20), but also

VAB ¼ 0 ⇔ P̄a ¼ 0 ⇔ no gravitational radiationða ¼ 0Þ:
ð4:41Þ

One can complete a triad by choosing, for instance,

ḿa ¼ aS1=2

Sa2 þ N2
δaτ þ S1=2δap; ð4:42Þ

m̂a ¼ 1

S1=2
δaσ : ð4:43Þ

The explicit computation of the shears gives sabc ¼ 0.
The vorticity of ma was computed in [18], and it vanishes.
Thus, using these results and Lemma 3.1 one has also that
tabc ¼ 0. That is, feaig∈ϒs, so that D̄a ¼ ∇a and this
connection is determined by the triplet of two-dimensional
derivative operators fDA; D̂Â; D́Ág. In addition, it serves as
a nontrivial example of the surjection φ from the space of
triads ϒ to the space of connections Ξ—see Remark 3.6—
as the triad

ma ¼ ðða2Sþ N2ÞÞ1=2∇aτ; ð4:44Þ
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ḿa ¼
�

N2

Sða2Sþ N2Þ
�

1=2

∇ap; ð4:45Þ

m̂a ¼ S1=2∇aσ; ð4:46Þ

which diagonalizes the metric in the given coordinate
system, is also in ϒs and produces the same D̄a.
It is worth showing that a different triad can be defined,

such that sabc ≠ 0 ≠ tabc. Keeping the ma of Eq. (4.38),
now choose

m̂a ¼ a
N2 þ a2S

δaτ þ δap −
ffiffiffiffiffiffiffiffiffiffiffi
S − 1

p

S
δaσ ; ð4:47Þ

ḿa ¼
ffiffiffiffiffiffiffiffiffiffiffi
S − 1

p
a

a2Sþ N2
δaτ þ

ffiffiffiffiffiffiffiffiffiffiffi
S − 1

p
δap þ

1

S
δaσ: ð4:48Þ

This triad is only defined for S > 1, but for fixed a and m
(obeying 2am < 1) one can always find a region on J
(a range of values for de coordinate p) in which this
condition is satisfied; enough for the purposes of this
example. The new components of the shears read

Σ́m̂m ¼ −Σ̂ḿm ¼ −
a

2N
ffiffiffiffiffiffiffiffiffiffiffi
S − 1

p ∂pS: ð4:49Þ

This leads to a different connection D̄a ≠ ∇a, and can be
given coordinates ðΣḿ m̂; Σ̂m̂mÞ ¼ ð0; að2N ffiffiffiffiffiffiffiffiffiffiffi

S − 1
p Þ−1∂pSÞ.

B. Comparison with Ashtekar’s phase space

The investigation by Ashtekar [12] of the radiative
degrees of freedom in asymptotically flat space-times
has ground differences with respect to the one put forward
here. One of them, which underlies everything else, is
the lightlike nature of J when Λ ¼ 0. Yet, inspired by
Ashtekar’s work, the present work aims at isolating the
asymptotic radiative degrees of freedom by constructing a
space of connections. Thus, some similarities arise and the
next brief comparison between Ashtekar’s phase space21 Γ
and the space Ξ can be depicted:
At J with Λ ¼ 0,
(1) Each of the (equivalence classes of) connections in

the space Γ determines a curvature �Kab—NCab in
the notation of [32] and a news tensor. When seen
from the viewpoint of the space-time, �Kab is the
pullback of the “magnetic” part with respect toNa of
the rescaledWeyl tensor, and the induced connection
on J selects one of these connections.

(2) The space Γ has an affine structure and can be
parametrized by two functions. These correspond to

the two degrees of freedom of the radiative compo-
nents of the gravitational field. In this case, due to
the lightlike character of J , they represent all the
degrees of freedom of the phase space of gravita-
tional radiation. This is supported by the radiation
condition based on the vanishing of the news tensor
or, equivalently, by the vanishing of the asymptotic
(radiant) supermomentum pα [32].

(3) To specify the induced connection with respect to a
suitably fixed point in Γ, it is enough to give the
shear of a one-form lb that satisfies lbNb ¼ −1,
where small Latin indices are used, as the normal to
J is also tangent.

At J with Λ > 0,
(1) On each neighborhood Up ∈J , there is a differ-

ential operator D̄a ∈Ξ that coincides with the Levi-
Civita connection∇a of ðJ ; habÞ. This determines22

the Cotton-York tensor Yab of the manifold. Also,
from the viewpoint of the space-time, Yab is the
magnetic part of the rescaled Weyl tensor at J , and
∇a, the induced connection; in this sense, ∇a on
each Up “selects” a D̄a ∈Ξ.

(2) The space Ξ has an affine structure and can be
parametrized by two functions. Due to the spacelike
character of J , they cannot represent the complete
set of radiative degrees of freedom in the general
case. This is supported by the radiation criterion 1
based on the vanishing of the tangent part of the
asymptotic supermomentum pa which involves Dab
too. However, for algebraically special rescaled
Weyl tensor at J , these two degrees of freedom
determine completely the gravitational radiation.

(3) To specify the induced connection with respect to an
arbitrary point D̄a in Ξ, it is enough to give the
crossed components of two shears of a triad feaig.

V. DISCUSSION

It has been shown that an affine space Ξ of differential
operators D̄a emerges in Riemannian manifolds from the
space ϒ of possible triads feaig, such that the action of
each D̄a on arbitrary tensor fields depends on the action of a
triplet of two-dimensional connections fDA; D́A; D̂Ag and
an antisymmetric term tabc containing the vorticities of
feaig. Also, that there is a surjective map φ from ϒ to Ξ.
Remarkably, for C∞ Riemannian metrics, the Levi-Civita
connection belongs to Ξ, and is fully determined by a triplet
fDA; D́A; D̂Ag; hence, the subset ϒs ∈ϒ of triads that have
tabc ¼ 0 and are mapped to ∇a is not empty. Apart from
that, points in Ξ can be labeled by two functions which
have been justified to represent half of the degrees of

21Elements of Ashtekar’s phase space are equivalence classes
of connection arising from some restricted conformal rescaling.
Here, such identification is unnecessary.

22One could also take a different perspective; namely, defining
with each D̄a a curvature and a Cotton-York-like tensor.
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freedom of the radiative gravitational field at infinity with a
positive cosmological constant. Further investigation has to
be carried out to extract all the possible structure in Ξ.
One way of understanding the spirit of this work comes

from the dimension and causal character of J . It can be
argued that local methods do not suffice to determine the
radiative degrees of freedom of gravity e.g., see discussion
in Chapter 9 of [43]. Also, it is reasonable to think of
gravitational radiation as linked to two-dimensional sub-
manifolds. As an example, the theorems for the existence of
news tensors—either the one of the asymptotically flat case
or the first component of news with Λ > 0—depend on
two-dimensional cuts e.g., see how the dimension inter-
venes in the proof of Corollary 5.2 in [18]. Additionally,
observables such as the energy-momentum or mass-loss
formula involve integration over a two-dimensional sur-
face, which also relates to topology; when the cosmological
constant vanishes, J has R × S2 topology [44] and the
null generators naturally provide the conformal boundary
with a 1þ 2 decomposition. For Λ > 0, however, the
topology of J is not unique [36,45] and, in general, there
is no natural choice of an intrinsic evolution direction
equipping infinity with a 1þ 2 splitting. The space of triads
ϒ represents this directional freedom and induces a space
of differential operators Ξ. From it, the geometry of the
two-dimensional projected surfaces associated with a triad
is used to show that the Levi-Civita connection belongs to
Ξ, in a way that the curvature of J can be determined by
two-dimensional connections; see Remark 3.4. Indeed, this
result (Corollary 3.2) depends critically on the dimension,
and generalizations of Theorem 2 to dimension greater than
3 require restrictions on the curvature [46].
On a different note, one of the big pieces missing is how

to account for the total number of degrees of freedom in the
general case; that is, when dαβγδ is algebraically general at
J . A possible way out is to construct a map from one
detached abstract Riemannian manifold to another, such
that the image of Yab on the second manifold is identified
with Dab. The intuition behind this proposal is the
following: the electric and magnetic parts of the rescaled
Weyl tensor can be expressed as

Cab ¼
ffiffiffiffi
3

Λ

r �
ϵpqa∇½pσ̇q�b þ

1

2
ϵpba∇cσ̇

c
p

�
; ð5:1Þ

Dab ¼
1

2

ffiffiffiffi
3

Λ

r
σ̈ab; ð5:2Þ

with σab being the shear of nα, and where the dot denotes
covariant differentiation along this vector field. This
suggests the possibility of identifying the missing pair of
degrees of freedom as the evaluation at J of a time
derivative of the other pair or as a map between detached
three-dimensional Riemannian manifolds. Then, the two
pairs would represent the 4 degrees of freedom of the phase
space of gravitational radiation withΛ > 0. This matter has
to be tackled rigorously elsewhere.
Yet another important issue is how asymptotic sym-

metries come into play, and how they preserve/change the
structure of Ξ. As an example, distances between points of
Ξ are left invariant by conformal transformations of the
Riemannian metric in the sense that operators D̄a change,
but the labels sabc do not, see Eq. (3.48). Thus, it is to be
expected that basic infinitesimal asymptotic symmetries,
i.e., those generated by CKVF ξa of ðJ ; habÞ that satisfy

£ξ⃗Dcd ¼ −
1

3
∇aξ

aDcd; ð5:3Þ

act simply and transitively on Ξ. Additionally, it is
necessary to understand the interplay between translations,
the first piece of news associated with a congruence of
curves [18] and Ξ; Lemma 4.1 goes in that direction.
The final goal is to identify a complete phase space for

the radiative gravitational field atJ with Λ > 0 that could
be used to shed light on open problems, such as the
formulation of the total energy-momentum carried away by
gravitational waves in an accelerating expanding universe.
Hereby, this work is just a first step on that itinerary; other
important pieces, such as the ones pointed out above, are
yet to be fit into the jigsaw.
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