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Numerical relativity simulations provide the most precise templates for the gravitational waves produced
by binary black hole mergers. However, many of these simulations use an incomplete waveform extraction
technique—extrapolation—that fails to capture important physics, such as gravitational memory effects.
Cauchy-characteristic evolution (CCE), by contrast, is a much more physically accurate extraction
procedure that fully evolves Einstein’s equations to future null infinity and accurately captures the expected
physics. In this work, we present a new surrogate model, NRHybSur3dg8 CCE, built from CCE
waveforms that have been mapped to the post-Newtonian (PN) BMS frame and then hybridized with PN
and effective one-body (EOB) waveforms. This model is trained on 102 waveforms with mass ratios g < 8
and aligned spins y ., y». € [-0.8, 0.8]. The model spans the entire LIGO-Virgo-KAGRA (LVK) frequency
band (with f,,, = 20 Hz) for total masses M = 2.25M, and includes the £ < 4 and (£, m) = (5,5) spin-
weight —2 spherical harmonic modes, but not the (3, 1), (4, 2) or (4, 1) modes. We find that
NRHybSur3dg8 CCE can accurately reproduce the training waveforms with mismatches <2 x 107*
for total masses 2.25M, < M < 300M and can, for a modest degree of extrapolation, capably model
outside of its training region. Most importantly, unlike previous waveform models, the new surrogate

model successfully captures memory effects.

DOI: 10.1103/PhysRevD.108.064027

I. INTRODUCTION

To date, there have been a total of 90 joint detections of
gravitational wave (GW) signals by the LIGO' [1] and
Virgo [2] collaborations. But, with increased sensitivity
in future observation runs and the inclusion of KAGRA? [3]
as well as other proposed future detectors, such as the
Einstein Telescope [4], the Cosmic Explorer [5], and the
space-based LISA® [6], the number of gravitational wave
observations is expected to increase dramatically [7,8]. To
fully take advantage of the ever-expanding catalog of
gravitational wave signals from compact binaries, it is
crucial that we have high-fidelity waveform templates to
compare the observed signals to. This is because accurate
waveform templates are necessary for reliably extracting

'"The Laser Interferometer Gravitational-Wave Observatory.
The Kamioka Gravitational Wave Detector.
The Laser Interferometer Space Antenna.
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astrophysical source properties that provide important
information about the binaries’ formation channels and
also for performing unique tests of general relativity.
Numerical relativity (NR) is the only ab initio method for
solving Einstein’s equations for the coalescence of two
compact objects and has played a fundamental role in both
GW theory and GW astronomy [9-12]. Even so, despite
continued efforts by the NR community to make simu-
lations more computationally efficient, they are still pro-
hibitively expensive for key multi-query applications, such
as parameter estimation. Because of this bottleneck,
numerous waveform models have been developed
[13-18] that can be evaluated much faster than evolving
an entire NR simulation. By construction, these semi-
analytical models rely on physically motivated or phenom-
enological assumptions to reduce the complexity of
parameter space. They then calibrate the remaining free
parameters by comparing to the waveforms produced by
NR simulations. While these waveform models tend to be

© 2023 American Physical Society
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fast enough for performing GW data analyses, they are not
nearly as accurate or reliable as NR waveforms.

NR surrogate models are a more recent addition to the
collection of compact binary waveform models [19-25].
Unlike semianalytic models, NR surrogates instead take a
data-driven approach: training the waveform model
directly on the waveforms output by simulations without
the need to make any assumptions about the physics.
Consequently, these surrogates recover NR waveforms
much more faithfully than other semianalytical models.
However, because of this unique data-driven approach to
waveform modeling, NR surrogate models can only be
constructed for the regions of parameter space in
which NR simulations exist.*

Both NR surrogates and other semianalytical models
have played a crucial role in studying previous detections of
gravitational waves [28-35]. Up until now, however, every
waveform model has always either been trained or cali-
brated by working with ‘extrapolated” waveforms. Because
NR simulations of binaries are necessarily run in a finite
volume, one needs a method of ‘extracting’ the asymptotic
waveform from the finite-volume data that is produced by
the simulation. This is because the gravitational radiation
that we observe on Earth can be well-approximated by the
radiative solutions to Einstein’s equations at future null
infinity. In NR, an ‘extrapolated’ waveform refers to the
asymptotic waveform from an extraction procedure called
extrapolation.5 However, a major limitation of these
extrapolated waveforms, which are the waveforms cur-
rently included in the SXS [12,37] and other catalogs
[39,40], is that they do not accurately capture phenomena
known as memory effects [41-44].

Gravitational memory effects correspond to persistent
phenomena that two observers can measure after the
passage of gravitational radiation [41-44]. In particular,
to measure memory effects, observers must measure
the change in spacetime induced by the passage of
radiation between two times: one before and one after
the radiation. While there are several types of memory
effects [45,46], the two most prominent, and therefore
detectable, effects are the displacement [41-44] and the
spin [47] memories. The displacement memory is what
two initially comoving observers will measure, while the
spin memory is what two observers with initial relative
velocities will measure, in conjunction with the usual
displacement that they experience due to their nonzero
relative velocities [46].

Apart from this classification of memory by the changes
experienced by observers, there is also a classification in

4Surlrogate models have also been constructed for semiana-
lytical EOB models [26,27].

Extrapolation uses Regge-Wheeler-Zerilli extraction to com-
pute the strain waveform on a series of concentric spheres of
constant coordinate radius and then extrapolates these values to
future null infinity by fitting a power series in 1/r [36-38].

the way in which memory is sourced: ordinary and null.®
Ordinary memory refers to the memory that is sourced by
changes in the £ > 2 mass multipole moment of “ordinary”
unbound masses, while null memory refers to the memory
that is sourced by a change in the energy radiated per unit
solid angle due to the radiation of “null” gravitons.
Consequently, null memory can be thought of as a form
of the ordinary memory in which the unbound masses are
individual gravitons. Generally, ordinary memory will be
most prominent in unbound scattering processes, such as
hyperbolic black hole encounters [49—-54]. In contrast, null
memory will be most prominent in bound scattering
processes, such as binary black hole mergers. Because
of this, in this work we will primarily be interested in the
null memory.

While memory effects are an undetected phenomenon,
various works have investigated their detectability using a
forecast of future binary merger observations [55-57] and
their observational consequences [58-60]. Furthermore,
apart from their allure as a means to test Einstein’s theory
of relativity, memory effects have also attracted significant
attention in the theory community because of their inherent
connection to asymptotic symmetries and soft theorems
[45,47,61-65]. Accordingly, it is crucial that templates for
gravitational waves contain memory.

While extrapolated NR waveforms ultimately fail to
correctly capture memory effects,”® there is a much more
robust type of asymptotic waveform extraction, called
Cauchy-characteristic evolution (CCE), which fully
evolves Einstein’s equations to future null infinity and
correctly resolves the various memory effects [68—71].

In this work, we build a hybridized NR surrogate model,
NRHybSur3dg8 CCE, which is trained on CCE wave-
forms that have been created using the CCE module of the
code SPECTRE [69,70,72]. Furthermore, to build our hybrid
waveforms, using the technique outlined in [73], we first
map our NR waveforms to the post-Newtonian (PN)
BMS frame [73,74] before we hybridize them with effec-
tive one-body (EOB) phase-corrected PN waveforms. By
doing so, we find that NRHybSur3dg8 CCE performs on
par with a related extrapolated version of this surrogate,

6Originally this classification was linear and nonlinear [41-43],
but this terminology changed in recent years to more accurately
reflect the physics sourcing this phenomenon [48].

The reason why memory effects are not correctly resolved in
extrapolated waveforms is because memory effects tend to have
a much longer spatial dependence than the oscillatory compo-
nents of the waveform. Consequently, when expressing the
waveform as a series of 1/r terms, the convergence of the
memory’s contribution to the waveform is very slow and hard
to capture [36-38].

While some of the missing memory in extrapolated wave-
forms can be computed through postprocessing [66,67], there are
certain types of memory effects that cannot be corrected, e.g.,
spin memory, which makes extrapolated waveforms impractical
for formal analyses of memory.
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FIG. 1. Plus polarization of the strain for a GW150914-like event computed using the previous surrogate NRHybSur3dg8 (left) and

the new surrogate NRHybSur3dg8 CCE (right). The exact parameters that are used to calculate these two waveforms are m; = 36M,
my =29Mq, y1. = 0.32, y,. = —0.44, D; =410 Mpc, 1 = n/2, and ¢ = 0. Because we wish to highlight the main difference between
these surrogates, we used an inclination angle of 1 = z/2, i.e., the “edge on” orientation, for which the memory (red) (computed using
Eq. (17b) of Ref. [66]) is maximized. Note that the memory roughly scales as sinz(z).

NRHybSur3dg8, and in certain scenarios even outper-
forms NRHybSur3dg8, all while containing previously
unresolved physical effects. As an illustration of our
waveform model, we provide Fig. 1, which shows the
correct waveform for a GW150914-like binary black hole
merger event.

Throughout this paper, we adopt the common notations
used by previous works. The mass ratio is denoted as
q = m;/m,, where m; (m,) denotes the mass of heavier
(lighter) black hole, while the aligned spin of the heavier
(lighter) black hole (in the direction of the binary’s orbital
angular momentum) is denoted as y, (y,,). We use D, to
denote the luminosity distance, ¢ to denote the inclination
angle between the orbital angular momentum and the line-
of-sight to the detector, and ¢ to denote the azimuthal
angle. Furthermore, when outputting our waveform tem-
plates, we represent the two polarizations of the gravita-
tional wave—the plus and cross polarizations—as a single
complex waveform, #Z = /% __ — i/, which we then further
decompose into a sum of spin-weight —2 spherical har-
monic modes denoted as 7,

[So]

=33 a0

=2 m=-{

(1, 9) DY) (1)

Here _,Y,,, are the spin-weight —2 spherical harmonics. In
Eq. (1), the quadrupole modes (£ = |m|=2) typically
dominate the sum; however, the other modes are also
important for estimating binary source properties [75-79].
Therefore, our new model NRHybSur3dg8 CCE includes
¢ <4 and (5, 5) spin-weighted spherical harmonic modes,
but not the (3, 1), (4, 2) and (4, 1) modes. The reason for
excluding these three modes is explained in Appendix. Like
its predecessor, the new model NRHybSur3dg8 CCE is
an aligned-spin model, restricted to binary black holes

(BBHs) whose spins are aligned with the system’s orbital
angular momentum. Thus, due to orbital-plane symmetry,
we do not have to model the m < 0 modes separately as
they can be obtained from m > 0 through the well-known
relation %(_,) = (= 1)'%;,, where %] represents the
complex conjugate of %,,.

The rest of the paper is organized as follows. In Sec. II,
we describe the entire construction of NRHybSur3dg8
CCE. In Sec. III, we then evaluate the errors involved in
building this model. In particular, we check the error due to
hybridization, the error of the surrogate itself, the success of
the surrogate in extrapolating to values outside its training
range, and the difference between NRHybSur3dg8 and
NRHybSur3dg8 CCE. Finally, in Sec. IV, we conclude
with a few closing remarks. NRHybSur3dg8 CCE, our
new surrogate model, has been made publicly available
through the python package GWSURROGATE [80].

II. METHODS

In this section, we outline the steps that are required for
building the new surrogate model NRHybSur3dg8 CCE.
More specifically, in the subsequent text, we discuss the
parameter space that our training waveforms will cover,
Bondi-van der Burg-Metzner-Sachs (BMS) frame fixing,
hybridization, and, finally, the routine for constructing the
surrogate model NRHybSur3dqg8 CCE.

A. Training set generation

To build the new surrogate model NRHybSur3dg8
CCE, we need a set of training waveforms in addition to
their corresponding binary parameters. One cannot know,
a priori, the optimal distribution of binary parameters for
training the surrogate model. Fortunately, a previous
surrogate model, NRHybSur3dg8, already explored the
parameter space that we are interested in: mass ratio

064027-3



JOOHEON YOO et al.

PHYS. REV. D 108, 064027 (2023)

X2z
0.8

0.6

0.4

0.2

X1z

FIG. 2. Training set parameters used in the construction of the
new surrogate model NRHybSur3dg8 CCE. There are a total of
102 training data points used for NRHybSur3dg8 CCE, which
exactly match those of NRHybSur3dg8 minus two points, for
which the initial world tube data for CCE was not available. The
boundary of the training region is represented with the black
rectangle: 1 < g <8 and —0.8 < yy,, 2, <0.8.

g€ (1,8 and |yy.|. [r2.| < 0.8, where vy, (r,) is the spin of
the heavier (lighter) black hole in the direction of the orbital
angular momentum [22]. Hence, we use the same set of
existing NR simulations (SXS:BBH:1419-1509, but not
SXS:BBH:1468 or SXS:BBH:1488) that was used for
training NRHybSur3dg8. For an equal mass simulation
with unequal spins, we can exchange the two BHs to obtain
an extra training data point. This is performed by applying a
rotation (along the z-axis, defined as the axis of the orbital
angular momentum of the BBH) by z to the waveform of
(g.x12:x2.) = (1, . %) to obtain an extra waveform corre-
sponding to (q,yx1.,x2.) = (1,7,x) for y # %. From the
above 89 NR simulations, there are 13 of these cases,
leading to 102 distinct training data.’ In Fig. 2, we show the
three-dimensional distribution (q, yy,,,,) of our training
parameters.

For each NR simulation used in our model, we extract
the asymptotic waveform at future null infinity Z* using
the SPECTRE code’s implementation of CCE [69,70,72]. We
run CCE on each of the four finite-radius worldtubes that
the Cauchy evolution outputs. While in principle the CCEs
that use these various worldtubes should yield valid and
identical waveforms, we find that because of how the initial
data for CCE is constructed there tends to be one worldtube

Note that two NR simulations (SXS:BBH:1468 and 1488) are
missing the world tube data that is necessary to produce the CCE
waveforms of interest. This is why in this work we have 102
training data rather than the 104 training data used in [22].

that yields a more physically correct asymptotic waveform.
We determine the best worldtube and waveform by
examining which waveform’s time derivative has the lowest
L? norm after the ringdown phase. We find that this test is
consistent with the previous method of checking which
waveform and Weyl scalars minimally violate the five
Bianchi identities [66,71,73,74], but tends to yield wave-
forms with less junk radiation in the inspiral phase. As for
the resolution of the CCE, we simply use the highest setting
possible which yields errors in the CCE that are well below
the errors from the Cauchy evolution. The waveforms that
we use are interpolated to a uniform time step of 0.1M,
which is a dense enough time array to capture the important
features of the waveform, including those that emerge near
and during the merger phase.

Like extrapolated waveforms, CCE waveforms contain
“Initial data transients” due to the imperfect initial data on
the first null hypersurface of the characteristic evolution.
These unphysical features, however, tend to persist much
longer than those observed in the extrapolated waveforms.
Fortunately, we find that by truncating the earlier parts of
the CCE waveforms, we can avoid this issue when
constructing our training set in every mode except the
(3, 1) and (4, 2) modes. Therefore, we exclude these modes
in our new model. For more details about these modes and
why we choose to exclude them, see Appendix.

B. BMS frame fixing

When building surrogate models, it is important to
ensure that the training waveforms are in the same frame.
Otherwise, undesired gauge artifacts can complicate or
even interfere with the various fitting and interpolation
steps that are used when building the surrogate model. The
earlier surrogate model, NRHybSur3dqg8, for example,
implemented a center-of-mass corrected version of the
extrapolated waveforms, in which the waveforms were
mapped to a “Newtonian” center-of-mass frame of the
binary using the coordinate trajectories of the black hole
apparent horizons from the simulation [12].

However, the true gauge degree of freedom possessed by
the gravitational waves at future null infinity is not the usual
Poincaré group, but the BMS group, which includes an
infinite-dimensional group of transformations that are
called supertranslations [81,82] in addition to the usual
Poincaré transformations. As a result, before using NR
waveforms for any analysis, one should first fix these
BMS freedoms.'® In Refs. [73,74] this task of fixing the
BMS frame was performed by computing the various BMS

""Note though that while fixing the BMS frame is important
for modeling purposes, e.g., constructing or comparing waveform
models, when examining waveforms at a point on the two-sphere,
the only frame freedom that is relevant is the Poincaré freedom.
This is because when looking at a point on the sky, super-
translations become degenerate with time translations.

064027-4
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charges that correspond to the symmetries of the BMS
group and then finding the transformations that change
those charges in a desired way. For example, to fix the
translation and boost symmetries Refs. [73,74] found a
transformation that mapped the center-of-mass charge to
have a mean of zero. More specifically, they found the
transformation which minimized the time integral of the L?
norm of this charge over a three-orbit window. Similarly,
for fixing the system’s supertranslation freedom, the same
works also found what supertranslation to apply to the
waveforms by examining a charge known as the Moreschi
supermomentum—an extension of the usual Bondi four-
momentum. By finding the supertranslation that mapped
the Moreschi supermomentum to the value expected from
PN theory, it was found that NR waveforms could be made
to much better agree with PN waveforms once they were
mapped to the same BMS frame of PN. This frame is called
the PN BMS frame.

Because the surrogate model that we are building is for
hybrid waveforms in which PN waveforms are stitched to
the NR waveforms, the natural BMS frame to work with is,
similarly, the PN BMS frame. Therefore, to fix the BMS
frame of our waveforms we use the frame fixing procedure
described in Ref. [73] and the python module scri1 [83-86].
That is, we fix the translation and boost freedoms by
mapping the center-of-mass charge to have a mean of zero,
we fix the rotation freedom by mapping the angular
velocity vector to be aligned with that of a PN waveform,
and we fix the supertranslation freedom by mapping the NR
Moreschi supermomentum to agree with the PN Moreschi
supermomentum [73]. We perform this frame fixing using a
three-orbit window that starts ~2500-3500M before the
peak of the L? norm of the NR strain. This choice of BMS
frame implies that the £ > 1 components of the Moreschi
supermomentum of our BBH vanish at t+ - —oo. This is
equivalent to matching the PN memory terms with the NR
system’s memory over the hybridization window. This
choice also implies that NRHybSur3dg8 CCE ’s strains
vanish at t - —oo0.

C. Hybridization

Because of computational limits, NR simulations of
BBHs typically only cover the last 20 orbits of inspiral.
Thus, they are not nearly long enough to span the full LVK
detection band for stellar mass binaries. More precisely, the
initial frequency of (2, 2) mode of these waveforms falls
within the LVK band, taken to begin at fiow = 20 Hz, for
total masses M = m; + m, 2 60My. To address this
limitation and extend the validity of our model to lower
values of total mass, we hybridize the CCE waveforms
that are obtained from NR with the early inspiral parts of
EOB phase-corrected PN waveforms. We create pure PN
waveforms using the python package GWFRAMES [87].
For the PN orbital phase we include nonspinning terms up
to 4 PN order [88-92] and spinning terms up to 2.5 PN

order [93-95]. For the PN amplitude we include non-
memory terms to 3.5 PN order [96-98], nonspinning
memory terms to 3 PN order, and spinning memory terms
up to 2 PN order [73,99]. We use the TaylorT4 [100]
approximant to compute the PN phase, but we replace this
with an EOB-derived phase for the following reasons.

As noted in the previous work with NRHybSur3dg8
[22], the accuracy of the inspiral parts from PN waveforms
can be improved by replacing the PN phase with the phase
that is derived from an EOB model, which undergoes an
NR calibration. This improvement is typically larger for
high mass-ratio systems, where the PN deviation from NR
tends to be more significant, as is shown in Fig. 3. For the
phase correction'' to the PN waveforms used in this new
surrogate model, we use the EOB model SEOBNRv4 opt
[101,102]."

Currently, the waveforms produced by CCE contain
“initial data transients” or “junk radiation” because of
imperfect initial data that forces us to discard early
parts of the waveforms [71]. We find that the transients
present in the CCE waveforms typically last noticeably
longer than the junk radiation of the extrapolated wave-
forms [70]. Because of this, we instead use a hybridization
window that is closer to the merger: roughly 2500 —
3500M before the peak of the L?> norm of the strain.
The later window further necessitates our use of the EOB-
corrected phase for the inspiral part fo the PN waveforms.

Once the NR waveforms are mapped to the same frame
as the EOB-corrected PN waveforms via the procedures
described in 11 B," we then hybridize NR and PN together,
for each spin-weighted spherical harmonic mode, %,,,, as

By = Hopn + f( t)(féNR i) (2)

using the following transition function

0 x <0,
flx) = < + exp [%4—1])_1 0<x<l, (3)
1 x> 1.

""The phase correction procedure is identical to that described
in Sec. IV B of Ref. [22].

*While SEOBNRvV4_opt is trained on extrapolated wave-
forms rather than CCE waveforms, we do not expect this feature
to noticeably impact the surrogate because the phase evolution of
these different waveforms should still be comparable. Still, it
would be interesting to see how our surrogate model construction
changes when using EOB waveforms that have been calibrated
with CCE waveforms.

PEven though we are using EOB-corrected PN waveforms as
the target waveform in the BMS frame fixing procedure, because
the EOB correction tends to zero as t — —oo, the frame that we
map our NR waveforms to is still consistent with the PN BMS
frame. The EOB-correction simply helps ensure that our mapping
to the PN BMS frame is as accurate as possible.
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FIG. 3. NR (black), PN (red), and EOB-corrected PN (blue) waveforms for an example simulation with binary parameters g = 8.0,

X1, = —0.8, and y,, = —0.8. The real part of both the (2, 2) and (2, 1) modes are shown in the top and bottom panels. Notice that the
EOB-corrected PN waveform is more faithful to the NR waveform than the PN waveform.

Our choice of transition function matches that used in
Ref. [74]. In the previous surrogate, NRHybSur3dqgs,
instead of hybridizing the complex waveforms directly,
the waveforms were decomposed into amplitude and
frequency before these components were hybridized
independently. This was done to avoid undesirable arti-
facts that their transition function introduced, which are
shown in Fig. 4 of Ref. [22]. Because CCE waveforms
contain memory, which acts as a time-dependent offset in
the waveforms, the decomposition into amplitude and
frequency is not as useful as it is for the extrapolated
waveforms which do not contain memory. Therefore, we
choose to not use the previous hybridization method and
instead directly stitch the NR and PN waveforms together.
We do observe some minor glitches in the orbital
frequency of a few of our hybrid waveforms in the
hybridization window. However, these effects are largely
negligible when compared to the other modeling errors for
NRHybSur3dgs8 CCE.

D. Postprocessing the training data

In this section, we now describe how we construct the
surrogate model from the hybrid waveforms of Sec. II C.

1. Down-sampling and common time array

First, we apply a time shift to each training waveform
such that the peak of the L?> norm

(4)

Atol([) - A l2|ﬁ’€m(t)|2
l,m

is aligned at r=0. The peak time of this curve is
determined from a quadratic fit using 5 time samples that
are adjacent to the discrete maximum of A,,. When we
compute the sum in Eq. (4), we use every mode of the
hybrid waveform, including the m < 0 modes.

To begin with, the length of each hybrid waveform is
determined by ensuring that the initial orbital frequency is
W, = 2 x 107 rad/ M, where @y, is approximated from
¢, the phase of the (2, 2) mode, using

_ ld¢y
Worh = 2 dt (5)

This frequency choice, however, results in waveforms with
different lengths for different mass ratios and spins. The
surrogate-building procedure, however, requires that every
training waveform share a common time array. Therefore,
to remedy this issue we truncate the training waveforms
such that they begin with time t = —5.8 x 108M, which is
the first time of the shortest waveform in the surrogate’s
training set. After truncation, the training set’s largest
starting orbital frequency is @y = 2.8 x 107 rad/M.
Consequently, this frequency is the low-frequency limit
of validity for the surrogate model.

For the LVK observatories, if we assume that 20 Hz is
the lowest GW frequency that can be measured, then the

064027-6
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(2, 2) mode of the surrogate model can be considered valid
for total masses M > 0.9M . The highest spin-weighted
spherical harmonic mode included in NRHybSur3dg8
CCE is the (5, 5) mode for which the corresponding
frequency is a factor of 5/2 more than that of the (2, 2)
mode. Thus, the entire surrogate is valid for total
masses M > 2.25M .

Because the hybrid waveforms are millions of M long, it is
not practical to sample the entire waveform with a small
uniform time step like 0.1M, as is typically used for NR-
only surrogates [23]. Fortunately, the early inspiral, low-
frequency portion of the waveform does not require as dense
asampling as the later high-frequency portion. Therefore, we
instead down-sample the time arrays of the truncated wave-
forms such that there are only 5 points per orbit for the
shortest hybrid waveform of the training set. However, for
t > —1000M, we switch to uniformly spaced time samples
with a time step of 0.1M to ensure that we have sufficiently
dense sampling for the late inspiral and merger-ringdown
phases where the frequency reaches its peak. We retain times
up to 135M after the peak to ensure that we fully capture the
numerically resolvable parts of the ringdown phase.

Given the common down-sampled time array, we then
use cubic splines to interpolate all of the waveforms in the
training set onto the common time array. However, we first
transform the waveforms to the coorbital frame, which we
construct via

ﬁ/c e ﬁ/emeimqjurb

tm —
co-orbital frame: ¢ 7%,, = A,,e'? (6)
¢orb = ¢22/2

where /%, is the inertial frame waveform, ¢, is the orbital
phase, and A,, and ¢,, are the amplitude and phase of the
(2,2) mode. The co-orbital frame is roughly corotating with
the binary and is obtained by applying a time-dependent
rotation about the Z-axis by an amount measured by the
instantaneous orbital phase. As the waveforms are slowly
varying functions of time in the co-orbital frame, by
transforming to this frame we can increase the interpolation
accuracy. For the (2, 2) mode, we sample the amplitude A,,
and phase ¢,,, while for all other modes we use the real and
imaginary parts of 4§ .

2. Phase alignment

After interpolating to a common time array, we align
the phases of the waveforms by rotating the waveforms
about the Z-axis such that the orbital phase ¢, is zero at
time ¢t = —1000M. This ensures that each waveform
corresponds to a binary with its heavier black hole on
the X-axis at that time. Note that this frame is constructed
using information from the waveform at future null infinity,
and as a result these BH positions need not correspond to
the gauge-dependent BH positions in the NR simulations.

TABLE I. Number of basis functions for each data piece.
Data piece Number of basis functions
Ax, b2 15

Re/S,, ImAS, 12

Re/%$, 12

Im#S, 12

Re4$;, ImAS, 12

Reﬁigs, Imﬁisc5 8

Others 10

3. Data decomposition

As mentioned earlier, it is easier to build a model for
slowly varying functions of time. Because of this, we
decompose the inertial frame strain %,,,, which is oscil-
latory, into simpler waveform data pieces and build a
separate surrogate model for each of these data pieces. For
the (2, 2) mode, we decompose this mode into the
amplitude A,, and the phase ¢,,, while for the other
m # 0 waveform modes, we model the real and imaginary
parts of the coorbital frame strain, ﬁlcm, using Eq. (6). For
the m = 0 modes of nonprecessing systems, fiecm is purely
real (imaginary) for even (odd) £. Because of this, we only
model the nontrivial part for the m = 0 modes.

Because our hybrid waveforms are rather long—
extending over roughly 3 x 10* orbits—¢,, roughly spans
10° radians. Accurately modeling the phase evolution of
such long hybrid waveforms poses a challenge. We find
that we can resolve this issue, however, by subtracting the
leading-order Taylor T3 PN phase [103], ¢33, and simply
modeling the phase residual, ¢35 = ¢, —qﬁg, as was
performed in Ref. [22]. The leading-order prediction from
the TaylorT3 PN approximant [103] is

2
% = bt — e (7)
with
0 = [n(ter — 1)/ (5M)]7V/%, (8)
where q,’er:f is an arbitrary integration constant, f.; iS an

arbitrary time offset, and 7 = ¢/(1 + ¢)? is the symmetric
mass ratio. Because, by definition, @ diverges at t = f,, to
avoid such divergences we set f = 1000M, which is
sufficiently long after the end of the waveform. We also
choose 2 such that ¢13 = 0 atr = —1000M, i.e., the time
at which we align the phase, as outlined in Sec. II D 2.

E. Surrogate building

Given the decomposed waveform data pieces, we build a
surrogate model for each individual data piece using the
same procedure as that of Sec. V. C of Ref. [22], with a few
minor modifications, which we summarize below.
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For each waveform data piece, we begin by constructing
a linear basis in parameter space, so that we can reduce the
training dataset to a smaller representative dataset. The
basis functions that we use are chosen in the following
iterative manner [104—107], called the “greedy algorithm™:
(1) Pick out the training data with the largest L?> norm
and add it to the basis set as the first basis function;
(2) Compute the projection error between each of the
training data and the basis set;
(3) Determine which of the training data has the highest
projection error and add this to the basis set;
(4) Repeat steps 2-3 until a predetermined number of
basis functions for each data piece is obtained.
For step 4, we determine the number of basis functions used
for each of the data pieces through trial and error. That is,
we increase the number of basis functions until the
inclusion of new basis functions introduces noise into
the model or gives diminishing returns in terms of min-
imizing the projection errors. The number of basis func-
tions that is used for each data piece is shown in Table 1.
Next, we build empirical time interpolants [105,108-111]
with the same number of empirical nodes as the number of
basis functions that are used to model the data piece.
Following the methodology of Ref. [22] we also require
that the start of the waveform always be included as one of
the empirical nodes. This provides an “anchor point” that
ensures that the waveform data pieces start with the correct
value. In Ref. [22], no empirical nodes were picked at times
past t > 50M to ensure that little to no numerical noise was
being modeled, particularly for the phase data piece. We
follow the same convention for the phase data pieces;
however, for the other data pieces we allow time nodes
past t > 50M to ensure that the surrogate correctly models
the memory throughout the entirety of the ringdown phase.
Finally, for each empirical time node, we construct a
parametric fit for the waveform data piece, following the
Gaussian process regression (GPR) fitting method
described in the supplementary material of Ref. [112],
using the python package SCIKIT-LEARN [113]. For the fit
itself, we use the parameterization used in Ref. [22]. That
is, we use the parameters log(q), 7, and y,, where 7 is the
leading order spin parameter [114-117] for the GW phase
in the PN expression

g et = 38n(x1. +;(22)/113’ ©)
1-76n/113
with
qxi; t X2
=0 10
Xeff = 1+g (10)
and y, is the antisymmetric spin defined as
1
5 e = x22)- (11)

ITII. ERROR QUANTIFICATION

With the methodology behind the construction of our
surrogate model outlined in Sec. II, we now examine the
quality of NRHybSur3dg8 CCE by conducting a variety
of model consistency checks and waveform comparisons.
This process involves examining both the error in the
hybridization and the error in the surrogate model itself as
well as the ability of the surrogate to model waveforms
outside of its training parameter space.

A. Hybridization errors

Before building the surrogate model, we first have to
map the NR waveforms to be in the same frame as the
EOB-corrected PN waveforms. As described in Sec. II B,
this fixes the BMS freedom of the NR waveforms by
mapping the waveforms to the PN BMS frame using the
procedure outlined in Ref. [73]. Following this, we then
stitch the two waveforms to create a hybrid waveform that
we use as our training waveform. One of the important
checks for the quality of our final training waveform is to
understand the errors that result from performing this
hybridization procedure between NR and PN waveforms.
There are two natural ways to conduct this check.

First, we can simply compare the hybrid waveform to the
NR waveform in the hybridization window. This check will
determine the combined discrepancy that results from the
discrepancy between the PN and NR waveforms and from
using the smooth transition function in Eq. (3). Next, to
examine the error introduced from using PN for the early
inspiral parts of our hybrid waveform, we can compare the
hybrid to a simulation that has identical binary parameters,
but a larger initial BH separation. Fortunately, of the
simulations that we include in our surrogate’s training
dataset, 37 of them have these longer extensions that we
can use for a comparison with the hybrid waveforms.

To quantify the error for these comparisons, we use the
following function:

1 Ji 1A (0) = A (1) Pt
2 Zﬁmflz |ﬁ |2d[

For the first comparison, we compute the error within the
hybridization window, where ¢, is roughly 3000M before
merger and 1, is the time at which the system has undergone
3 orbits since ¢;. For the latter comparison, we first map the
long NR waveforms to the BMS frame of the training NR
waveforms and then compute the error between these
waveforms from #; = —6000M to the end of the hybridi-
zation widow. The results of these comparisons are shown
in Fig. 4. We observe that our two estimates for the
hybridization error are low, but tend to be higher than
the estimate of the NR resolution error. Note, though, that
the NR resolution errors, which were computed for a
smaller subset of NR simulations for which the higher

I ARNACIES

(12)
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FIG. 4. Two unique estimates of the hybridization error.
El7ing. #ingp)> using Eq. (12), computes the error between the
hybrid and the NR waveforms in the hybridization window.
Meanwhile, E[/4ns-Nr> %nyn] computes the error between the
hybrid and the long NR waveforms from an initial time of #; =
—6000M to the end of hybridization window. We also include
Elpligherres 4 =) as a resolution error between the two highest
resolution NR waveforms, computed within the hybridization

window. E[/ing, Znyg,) Was computed for every one of the 102

training waveforms, while E[/jone-nr: Znyb) and E[7y sy higher—res

Zng] were computed for the 37 waveforms for Wthh longer
and higher resolution simulations were available. The dashed lines
represent the median values.

resolution data was available, come from simulations that
are for more comparable mass binaries. Because the
difficulty of NR simulations increases with mass ratio,
we therefore expect that the NR resolution error that we
computed is a minor underestimate of the true error.
Regardless, Fig. 4 suggests that our training waveforms
are primarily limited by the accuracy of the PN waveforms,
rather than the NR resolution error.

B. Model errors

We now evaluate the accuracy of the surrogate model
NRHybSur3dg8 CCE by comparing the waveforms that
it produces to the hybridized PN/NR waveforms that were
used to train it. We quantify this model accuracy by
computing the frequency-domain mismatch M between
two waveforms 7, and /%, via

1 _ <ﬁ17ﬁ2>
Mt VB, 7o1) (Fa, %) 1)

with

(%1, %,) = 4Re [/f %df . (14)

where 7%(f) denotes the Fourier transform of the strain
%(r), * the complex conjugate, and S,(f) the one-sided
power spectral density of, say, a GW detector. The mis-
matches are optimized over shifts in time, polarization
angle, and the initial orbital phase following the procedure
described in Appendix D of Ref. [20]. For each pair of
waveforms, we compute mismatches at a total of 37 sky
points that are uniformly distributed over the two-sphere.

Before performing the Fourier transform, we taper both
ends of the time domain waveform."* The tapering at the
start of the waveform is done over 1.5 cycles of the (2, 2)
mode. Because the waveforms that we are examining
include memory effects, tapering them in the ringdown
region can produce a significant level of windowing
effects” in the Fourier spectrum. Therefore, before com-
puting mismatches we first pad the end of the waveforms
with their final values for 1000M and then taper them over
this padded region. We find that a padding length of 1000M
is enough to significantly reduce windowing effects from
tapering and that the mismatch result is not very sensitive to
this choice of padding length.

Because we use all available hybrid waveforms for the
training of the model NRHybSur3dg8 CCE, if we com-
pute the mismatch of our model against hybrid waveforms
we would obtain a training error, rather than an estimate of
the true modeling error. Thus, we instead estimate the out-
of-sample error by performing leave-five-out analyses for
the NRHybSur3dg8 and NRHybSur3dg8 CCE models.
We construct exactly 20 trial surrogates, leaving out 5 or 6
waveforms from the training set for each surrogate. By
calculating the mismatch between each surrogate and the
left-out waveforms, we are then able to assess the perfor-
mance of each surrogate against waveforms that were not
used in the training process.

The left panel of Fig. 5 shows the mismatches for
NRHybSur3dg8 CCE that are computed using a flat
(white) noise curve (S, = 1) over the late inspiral part
(NR part) of the hybrid waveforms, truncating the wave-
forms to start at t = —3500M for NRHybSur3dg8 and at
t = —2500M for NRHybSur3dg8 CCE.'® We define f
to be the frequency of the (2, 2) mode at the end of the
initial tapering window, and fig = 5755, where 55 is
the frequency of the (2, 2) mode at its peak. The choice of

A value mismatch at both ends of the waveform tends to
result in the presence of Gibbs phenomenon in the Fourier
spectrum. To avoid this, we taper the waveform to zero at both
ends using a Planck window [118].

A new scheme for preprocessing that potentially reduces this
w1nd0w1ng effect is proposed in Ref. [119].

"*The discrepancy is due to the later hybridization window that
was used for NRHybSur3dqg8 CCE as explained in Sec. II C.

064027-9



JOOHEON YOO et al.

PHYS. REV. D 108, 064027 (2023)

1.4

1.0

0.6

Case Density

0.2

1076

10-° 1074

Mismatch, M

1077

FIG. 5.

Mismatch, M

10-3 —— NRHybSur3dq8 10-3
F —— NRHybSur3dq8 CCE 7
1074 =104
L .==:t:: ::-o.\ 4

5 \.‘\ \.\‘\ -0 _5
107 = e O -eq---0- T #H10
E oo o ]
C ~e- ]
—6 I Ll P R B | L | —6
10 1 10 25 50 100 300 10
M [Mg)]

Frequency-domain mismatches for the NRHybSur3dg8 and NRHybSur3dg8 CCE surrogates when compared to their

respective training hybridized waveforms (extrapolated and CCE, respectively). The results for NRHybSur3dqg8 are taken from Fig. 6
of Ref. [22] and are plotted for comparison with NRHybSur3dg8 CCE. For both of these surrogate models, we compute leave-five-out
errors at several points in the sky of the source frame using all available modes in each model: £ < 4 and (5, 5), but excluding (3, 1),
(4, 2), and (4, 1) for NRHybSur3dqg8 CCE and (4, 1) and (4, 0) for NRHybSur3dg8. Left: mismatches computed using a flat noise
curve for only the late inspiral part (NR part) of the hybrid waveforms. The dashed vertical line represents the median mismatch value.
Right: mismatches computed using the Advanced-LIGO noise curve as a function of the system’s total mass. The solid (dashed) line

represents 95th percentile (median) mismatch values.

fmax ensures that we capture the peak frequency of
every mode.

The right panel of Fig. 5 show results that are more
relevant to GW observations: namely, the mismatches
computed with the Advanced-LIGO design sensitivity
zero-detuned-high-power noise curve [120] with f ., =
20 Hz and f,.x = 2000 Hz for various total masses. We
also include the mismatch result for NRHybSur3dg8 from
Ref. [22] for comparison. On the horizontal axis, different
total masses correspond to different portions of the wave-
form falling within the [20 Hz, 2000 Hz] window. This
roughly implies that the low end of the total mass axis is a
proxy for the fidelity of the early inspiral part of the
waveforms, while the high end is a proxy for the late
inspiral parts. We show the mismatch for various total
masses: from the lower limit of the range of validity of the
surrogate, i.e., M 2 2.25M , up to M = 300M . For each
total mass point that we plot, we show both the median and
the 95th percentile mismatches.

For the surrogate modeling errors, we obtain values that
are comparable to—and often better than—those of
NRHybSur3dgs, despite the additional modeling chal-
lenges resulting from the new contributions due to the
presence of memory. The 95th percentile mismatches fall
below ~3 x 10~ for the entire mass range.

Last, we test how well the surrogate models both the
displacement and spin memory contributions. To do this,
we compute the displacement and spin null memories, i.e.,

Egs. (17b) and (17d) from Ref. [66] which only depend on
the strain, using both the training waveforms and the
surrogate evaluation, and then calculate the normalized L2
norm error between the two using Eq. (12) over the
t€[—1000M, 135M] window. The choice of the window’s
starting time is arbitrary but early enough to capture most
of the memory. For this check, we again perform leave-
five-out analyses to estimate NRHybSur3dg8 CCE ’s
modeling error. As a reference for these errors, we also
show the numerical resolution error from the same set of
37 simulations used for Fig. 4. As shown in Fig. 6, the
modeling error for the two memory effects is at a
reasonable level, albeit higher than our estimate of
the resolution error. As shown in Fig. 7, even for the
case that corresponds to the largest error value in
Fig. 6, the memory effects computed from the surrogate
evaluation closely agree with those computed from NR
waveforms.

We suspect that the spin memory accuracy is typically
worse than that of the displacement memory because the
spin memory is smaller than the displacement memory and
is thus harder to resolve. The discrepancy between the
modeling error and the resolution error suggests that there
is room for future improvements in modeling the memory
contribution. Building future surrogate models using CCE
waveforms from higher resolution and longer NR simu-
lations might help improve this modeling error; however, a
new data decomposition scheme or even a new modeling
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FIG. 6. Errors for the displacement (blue) and spin (orange)
memory effects computed by comparing the training waveforms
to NRHybSur3dg8 CCE ’s output using Eq. (12). For this
result, we show the leave-five-out cross-validation errors (solid
line). As a reference, we also include the errors computed
between the two highest resolution waveforms (dashed line).

strategy could be necessary to obtain an improved model-
ing of memory effects.

C. Extrapolating outside training region

The errors that we have examined thus far have been
restricted to the training region of the parameter space:

q = 6.0, y1, = 0.80, Yo, = 0.15
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=
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FIG. 7. Amplitudes of the most dominant modes of the

displacement and spin memory effects when computed from
the NR waveform and the surrogate evaluation for the case with
the largest errors in Fig. 6. The top and bottom panels show the
(2, 0) mode of the displacement null memory and the (3, 0) mode
of the spin null memory.

tween NRHybSur3dg8 CCE and NR simulations that are
outside the model’s training region. The numbers in the legend
correspond to the NR simulation’s mass ratio ¢, primary spin y,
and secondary spin y,.. The mismatches that are shown are
computed at several points in the sky of the source frame using
the Advanced-LIGO noise curve. Each of the solid lines
represents the 95th percentile mismatch values.

q <8, x1;.22.€[—0.8,0.8]. It is possible, however, to
evaluate the surrogate outside the training region, e.g.,
for larger mass ratio, g, or even higher primary or
secondary spin magnitudes: |y;.|, |y».|. Consequently, to
understand the extrapolation capability of the model, we
compute errors of the model against a few existing
simulations (SXS:BBH:0185, 0189, 0199, 1124 2085,
2105, 2132, and 2515) [12,19,37,121] that have relatively
high mass ratios or spin magnitudes.

As shown in Fig. 8, the mismatch results, while worse
than those shown in Fig. 5, are nonetheless reasonable. The
highest three mismatch results correspond to the three most
extreme parameter simulations: mass ratio ¢ = 10 or spin
magnitude |y .|, [x2.| = 0.998, for which we do not expect
the NRHybSur3dg8 CCE to perform well. Apart from
these, we find that the surrogate performs well for a modest
degree of extrapolation, with many of the mismatches
falling below values near ~107%.

D. Systematic bias in waveforms that omit memory or
add it through postprocessing

Finally, in Fig. 9, we show the mismatch between the
training waveforms used for NRHybSur3dg8 CCE and
those that were used for NRHybSur3dqg8. The primary
purpose of this analysis is to obtain a rough estimate of the
level of systematic bias that one could expect from analyzing
a GW signal that contains memory using a waveform that
does not. Apart from this, we also show the mismatch
between an extrapolated waveform, once we have added the
expected memory contribution to it using Eq. (17b) of
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FIG. 9. Noise-weighted frequency-domain mismatches be-
tween extrapolated and CCE hybrid waveforms in red. These
are the hybrid waveforms that were used to train NRHyb-
Sur3dg8 and NRHybSur3dg8 CCE. Apart from this, we also
include the mismatches between the memory-corrected extrapo-
lated and CCE waveforms in green. The mismatches that are
shown are computed at several points in the sky of the source
frame using the Advanced-LIGO noise curve. The solid (dashed)
line represents the 95th percentile (median) mismatch values.

Ref. [66], and a CCE waveform from the same simulation.
This highlights that, while there is a noticeable difference
between CCE waveforms and extrapolated waveforms,
these discrepancies are largely reduced by adding memory
to the extrapolated waveform. Because of this result, we
suspect that memory-detection studies that have used this
memory-correction technique, like Refs. [55-57,122,123],
would likely obtain similar estimates had they used our new
surrogate model NRHybSur3dg8 CCE. Note though that
NRHybSur3dg8 CCE will be better for performing analy-
ses of the spin memory, seeing as the contribution of spin
memory to extrapolated waveforms cannot be as easily
corrected [66]. Regardless, it would still be interesting to see
if the conclusions made by these studies on memory,
or even parameter estimation results, change when using
NRHybSur3dqg8 CCE instead of NRHybSur3dgs.

IV. CONCLUSION

In this work, we present a new surrogate model,
NRHybSur3dg8 CCE, the first GW model to contain
both the oscillatory and memory components of the strain.
Consequently, NRHybSur3dg8 CCE is the first model to
fully capture the expected GW physics of binary black hole
mergers. The model is trained on 102 NR/PN hybrid
waveforms from aligned-spin binary BH systems with
mass ratios ¢ <8 and aligned spins |y.], |[rs.| <0.8.
These hybrid waveforms are constructed by first mapping
CCE waveforms to the PN BMS frame before hybridizing
them with PN waveforms whose phase has been corrected

using EOB waveforms. Performing this frame fixing helps
eliminate unwanted gauge artifacts that could potentially
interfere with modeling. The model includes £ <4 and
(5, 5) spin-weighted spherical harmonic modes, but not
the (3, 1), (4, 2), or (4, 1) modes, and spans the entire LVK
band (with f,, = 20 Hz) for total masses M > 2.25M .
By conducting a series of leave-five-out cross-validation
analyses, we find that NRHybSur3dg8 CCE can accu-
rately reproduce the hybrid waveforms that were used to
train it with mismatches below ~3 x 10~ for total masses
in the range 2.25M < M < 300M . These accuracies are
on par with—and often better than—the previous aligned-
spin NR surrogate model, NRHybSur3dg8, despite the
modeling challenges that result from the inclusion of
new modes and memory effects. Apart from this, we
also importantly find that NRHybSur3dg8 CCE can
successfully capture the null memory contributions with
mismatches below ~2 x 107*. Last, NRHybSur3dg8
CCE 1is also found to reproduce waveforms outside
of its trained region of parameter space for a moderate
degree of extrapolation; however, we advise caution
when extrapolating the model. This new model is
made publicly available through the python package
GWSURROGATE [80].

With the expected advances in detector sensitivity for
both current and future gravitational wave observatories,
waveform templates with memory effects will prove to be
crucial for analyzing future compact binary detections. The
new surrogate model NRHybSur3dqg8 CCE serves as the
first step in an important endeavor to produce a complete
set of waveform templates that contain these undetected
effects and thus correctly capture the expected gravitational
wave physics of binary black hole mergers.
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APPENDIX: CHALLENGES IN MODELING
CERTAIN MODES

1. Impact of long-lived transient junk

The waveforms produced by CCE contain initial data
transients that typically persist much longer than those of the
Cauchy evolution. Because of this effect, as was outlined in

q=1.0, x1. = 0.7, x2. = 0.8
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FIG. 10. An example of the unphysical oscillations that are seen
in the amplitude of the (3, 1) mode for one of the CCE training
waveforms (blue). As a reference, we also show the extrapolated
waveform (orange) for the same simulation and the higher-
resolution CCE waveform (green).

Sec. II C, we choose to remove the early parts of our NR
waveforms when constructing our surrogate’s training
waveforms. Nevertheless, even after we perform this trun-
cation, some of the waveforms that we use for the surrogate
still exhibit unphysical effects that we do not see when using
extrapolated waveforms, or CCE waveforms from higher
resolution or longer Cauchy evolutions.

We find that initial data transients are most pronounced
in the (3, 1) and (4, 2) modes, and are often identified
by unphysical amplitude oscillations, as shown in Fig. 10.
As is the case with all models, the surrogate model
NRHybSur3dg8 CCE is only as good as the data that it
is trained on. In fact, we find that having even only a few
training waveforms with these issues can result in noisy and
unphysical features being modeled by the surrogate.

We find that these unphysical oscillations in certain
modes are significantly reduced for waveforms extracted
from both higher resolution and longer Cauchy evolutions.
Unfortunately, such simulations only exist for one third of
our training dataset. Therefore, we instead choose to not
model the (3, 1) and (4, 2) modes in our new surrogate
NRHybSur3dg8 CCE. We also omit the (4, 1) mode
because it is subdominant to the (4, 2) mode and, as a
result, does not significantly impact the overall waveform
accuracy provided that the (4, 2) is already excluded. For
future surrogate models that are built using CCE wave-
forms, it is important that we have higher resolution and
longer NR simulations to avoid these issues until the
problem of constructing initial data for CCE is resolved.

2. Impact of a simulation-dependent BMS frame

As stressed in Sec. II B, it is crucial to ensure that the
training waveforms are in the same BMS frame to avoid
undesired frame artifacts that tend to complicate the
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FIG.11. Phase and amplitude of the (3, 1) mode for a CCE (blue) and an extrapolated (orange) waveform. We also include the memory

contribution (red) to highlight the fact that the CCE waveform does not decay to zero as t — oo.
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waveform modeling. Because the surrogate model that
we are building is for hybrid waveforms, we work with
waveforms that are in the PN BMS frame. However,
while this ensures that the waveforms are in the same
frame during the inspiral phase,17 this is not necessarily
true for the ringdown phase [129]. This is because, for
example, the remnant black holes can have different kick
velocities or supertranslation fields because of compli-
cated effects that arise during the merger phase.
Consequently, there are unresolved frame artifacts during
the ringdown phase that can impact the modeling of the
strain waveforms.

I7Fonnally, this only ensures that the waveforms are in the
same BMS frame at t - —co.

These additional challenges of modeling the strain in the
ringdown using the current PN BMS framework are most
pronounced for the (3, 1) and (4, 2) modes where the strain
is oscillatory and does not decay to zero due to the impact
of memory. Because these modes do not decay to zero as
t — oo, we find that the decomposition of the strain into co-
orbital frame data does not work well as the phase of these
two modes is ill-defined. We highlight this phase issue in
Fig. 11, which shows the amplitude and the phase of the
(3, 1) mode for both a CCE waveform and an extrapolated
waveform. One potential remedy to this problem is to
instead work in a co-BMS frame, in which there is little-to-
no time evolution of the BMS charges, i.e., a noninertial
frame similar to the corotating frame that simplifies the
waveform data. However, such a project is nontrivial and
we therefore postpone it for future work.
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