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The uniqueness problem of static axially symmetric black hole in a magnetic universe filled with dark
matter component is considered in this paper. The dark matter model comprises of the additional Uð1Þ
gauge field (dark photon) interacting with the Maxwell one through the kinetic mixing term. We show that
all the solutions of Einstein-Maxwell dark photon gravity subject to the same boundary and regularity
conditions authorize the only static axially symmetric black hole solutions with nonvanishing time and
azimuthal components of Maxwell and hidden-sector gauge fields, e.g., Schwarzschild-like black hole
immersed in a dark matter Melvin universe.
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I. INTRODUCTION

Elucidating the dark matter sector which comprises of
over 23% of the mass of the observable Universe, and
interacts principally with ordinary visible sector through
gravity, is one of the predominant pursuit in observational
astrophysics; experimental high-energy physics and theo-
retical attempts of explaining its origin. Astrophysical
observations reveal that nonbaryonic cold dark matter
comprises the dominant factor for the formation of
large-scale structures in the Universe, motion of galaxies,
and clusters of galaxies, as well as, playing a crucial role in
light bending coming from outer space [1–4].
On the other hand, our times are known for black hole

physics, from the first LIGO gravitational wave detection
to the Event Horizon Telescope (EHT) images of a black
hole shadow.
Studies of black holes in magnetic field introduce an

interesting problem on its own; namely, the effect of
cosmological magnetic fields might lead to interesting
astrophysical behaviors in the nearby of them. Secondly,
because of the fact that black hole magnetic solutions are
not asymptotically flat ones, they also constitute an
interesting mathematical problem. Moreover, the problem
of a magnetic field in close to a black hole is interesting
from the point of view of the recent measurements done by
the EHT team.
For the first time, a regular static cylindrically symmetric

solution describing a uniform magnetic field in general
relativity were presented by Melvin in [5,6]. Next, the
problem of a rotating time-dependent magnetic universe
was contemplated in [7], while the case of gravitational
waves and charged matter ones, traveling through a

magnetic universe was studied in Refs. [8,9]. The influence
of the cosmological constant on the properties of Melvin
universe has been analyzed in [10,11].
Black holes immersed in a magnetic universe have also

attracted much attention too. Namely, the magnetic Kerr
and Kerr-Newman solutions were revealed in [12], while
the magnetized Kerr-Taub-NUT and Kerr-Newman-
Taub-NUT solutions were elaborated in Refs. [13,14].
Additionally, the ultrarelativistic boosts of black holes in
an external electromagnetic field was studied in [15,16] and
studies of the ergoregions and thermodynamics of a
magnetized black hole were presented in [17] [see also
the earlier works connected with black holes in a magnet-
ized universe, e.g., [18])].
Magnetized black hole solutions were also scrutinized in

generalizations of Einstein theory of gravity (i.e., a Melvin
universe with nontrivial dilaton and axion fields was
founded [19,20]) where the dilaton C-metric in a dilaton
magnetic universe was presented [21], and the case of a pair
creation of the extremal black hole and Kaluza-Klein
monopoles was examined in [22]. A Melvin-like solution
with a Liouville-type potential was given in Ref. [23], an
electrically charged dilaton black hole in magnetic field
was analyzed in [24], while the generalization of the
aforementioned problems to a higher-dimensional gravity
was the subject of examination in Refs. [25,26].
This interesting class of subjects was developed using

the Ernst’s solution generation technique which enabled us
to scrutinize black hole solutions in a magnetic universe in
Einstein-Maxwell theory coupled conformally to a scalar
field [27], axisymmetric stationary black holes with cos-
mological constant [28], the C-metric with conformally
coupled scalar field in a magnetic universe [29], as well as
the regular solution describing a couple of charged spinning
black holes in an external electromagnetic field [30].*rogat@kft.umcs.lublin.pl
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Moreover, the solution unifying both the magnetic Bertotti-
Robinson and the Melvin solution as a single axisymmetric
line element was revealed in [31].
Recent studies revealed that Melvin-type solution could

be found in gravity theories minimally coupled to any
nonlinear electromagnetic theory, including Born-Infeld
electrodynamics [32].
Furthermore, gravitational collapse, physics of black

holes, as well as the uniqueness theorem for black holes
(the mathematical formulation of Wheeler’s black hole no-
hair conjecture) attract much attention. The problem of the
classification of the domains of the outer communication of
suitably regular black hole spacetimes in Einstein gravity
has been widely elaborated on in [33].
Higher-dimensional generalization of gravity theory

motivated by contemporary unifications schemes such as
M/string theories the classification of higher-dimensional
charged black holes both with nondegenerate and degen-
erate component of the event horizon has been exploited
in [34], while the nontrivial case of n-dimensional rotating
black objects (black holes, black rings, or black lenses)
uniqueness theorem were revealed in [35].
The quest for a consistent quantum gravity theory

triggered interest in the mathematical aspects of black
holes in the low-energy limit of the string theories and
supergravity [36], and various modifications of the Einstein
gravitylike Gauss-Bonnet extension [37,38] such as Chern-
Simons modified gravity [39,40], while the classification of
static black holes in the Einstein phantom-dilaton Maxwell/
anti-Maxwell gravity systems has been given in [41].
On the other hand, the uniqueness theorem for a black

hole in a magnetic universe in Ernst-Maxwell theory was
elaborated on in [42], whereas the magnetic Einstein-
Maxwell dilaton gravity case was treated in [43].
Motivated by the above key problems (i.e., dark matter,

black hole classifications, and the influence of the magnetic
field on the no-hair theorem) the main aim of our paper is to
study the uniqueness of static black hole solutions in a
magnetic universe. An additional point in our research will
be boundedness with the influence of the dark sector on
these objects. We shall pay attention to the so-called dark
photon model, where the ordinary Maxwell gauge field is
supplemented by an auxiliary Uð1Þ gauge field, which
interacts with the Maxwell one by the kinetic mixing term.
The organization of our paper is as follows. In Sec. I we

describe the main assumptions leading to dark photon
theory and derive equations governed by dark matter. Then,
one rewrites the Einstein-Maxwell dark photon relations in
the form of complex equations fulfilled by redefined gauge
field strengths. We also pay attention to the derivation of
the dark matter magnetic Melvin solution, which will be
needed for the uniqueness theorem for static magnetized
black holes with a dark matter sector. Section III is devoted
to the boundary conditions of the aforementioned equations
of motion. In Sec. IV we achieve the uniqueness of the

static magnetized Schwarzschild-like black hole solution
in the Melvin universe, i.e., the dark Melvin universe
Schwarzschild black hole. Section V concludes our
investigations.

II. EQUATIONS OF MOTION

The idea that the dark photon can be a candidate for dark
matter has been widely exploited on various backgrounds,
both theoretically ([44–49]) and experimentally ([50–55]).
Additionally, the model in question possesses some pos-
sible astrophysical confirmations [56–60]. We have cited
only some illustrative examples due to the vast amount of
work authorizing this blossoming field of researches.
To begin with, let us consider the Einstein-Maxwell dark

matter gravity, where the dark sector will be described by
the additional Uð1Þ gauge field (dark photon) coupled to
the ordinary Maxwell one by the so-called kinetic mixing
term, describing the interactions of both gauge fields. The
action related to Einstein-Maxwell dark photon gravity is
provided by

SEM−dark photon

¼
Z ffiffiffiffiffiffi

−g
p

d4xðR − FμνFμν − BμνBμν − αFμνBμνÞ; ð1Þ

where α is taken as a coupling constant between the
Maxwell and dark matter field strength tensors.
Introducing the redefined gauge fields Ãμ and B̃μ, in the

forms as follows:

Ãμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðAμ − BμÞ; ð2Þ

B̃μ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðAμ þ BμÞ; ð3Þ

one can get rid of the kinetic mixing term. Namely, one
arrives at

FμνFμν þ BμνBμν þ αFμνBμν ⇒ F̃μνF̃μν þ B̃μνB̃μν; ð4Þ

where we have denoted F̃μν ¼ 2∂½μÃν� and B̃μν ¼ 2∂½μB̃ν�,
respectively.
The rewritten action (1) is given by

SEM−dark photon ¼
Z ffiffiffiffiffiffi

−g
p

d4xðR − F̃μνF̃μν − B̃μνB̃μνÞ: ð5Þ

Variation of the action (5) with respect to gμν; Ãμ, and B̃μ

reveals the following equations of motion for Einstein-
Maxwell dark matter gravity:

Rμν ¼ 2F̃μρF̃ν
ρ −

1

2
gμνF̃2 þ 2B̃μρB̃ν

ρ −
1

2
gμνB̃2; ð6Þ
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∇μF̃μν ¼ 0; ∇μB̃μν ¼ 0: ð7Þ

In what follows we shall consider the static axially
symmetric background, due to the physical meaning of
the Melvin spacetime with a magnetic field. In our case, the
magnetic field will originate both from the visible and the
hidden sector components.
The static axially symmetric line element under inspec-

tion yields

ds2 ¼ −e2ψdt2 þ e−2ψ ½e2γðdr2 þ dz2Þ þ r2dϕ2�; ð8Þ

where we assume that the functions ψ and γ depend on the r
and z coordinates. On the other hand, the symmetry of the
elaborated problem enforces that one supposes the exist-
ence of time and azimuthal components of the Uð1Þ gauge
fields. Consequently they yield

Ãμdxμ ¼ Ãtdtþ Ãϕdϕ; B̃μdxμ ¼ B̃tdtþ B̃ϕdϕ: ð9Þ

As metric components, the gauge fields depend only on the
r and z coordinates.
The equations of motion for the considered dark matter

Melvin axisymmetric spacetime are provided by

∇2ψ − e−2ψðÃ2
t;r þ Ã2

t;z þ B̃2
t;r þ B̃2

t;zÞ

−
e2ψ

r2
ðÃ2

ϕ;r þ Ã2
ϕ;z þ B̃2

ϕ;r þ B̃2
ϕ;zÞ ¼ 0; ð10Þ

∇rðre−2ψ Ãt;rÞ þ∇zðre−2ψ Ãt;zÞ ¼ 0; ð11Þ

∇rðre−2ψ B̃t;rÞ þ∇zðre−2ψ B̃t;zÞ ¼ 0; ð12Þ

∇r

�
e2ψ

r
Ãϕ;r

�
þ∇z

�
e2ψ

r
Ãϕ;z

�
¼ 0; ð13Þ

∇r

�
e2ψ

r
B̃ϕ;r

�
þ∇z

�
e2ψ

r
B̃ϕ;z

�
¼ 0; ð14Þ

γ;z
r
− 2ψ ;rψ ;z ¼ −2e−2ψ Ãt;rÃt;z þ

2

r2
e2ψ Ãϕ;rÃϕ;z

− 2e−2ψ B̃t;rB̃t;z þ
2

r2
e2ψ B̃ϕ;rB̃ϕ;z; ð15Þ

e−2ψðÃ2
t;r − Ã2

t;z þ B̃2
t;r − B̃2

t;zÞ

þ 1

r
e2ψ ðÃ2

ϕ;r − Ã2
ϕ;z þ B̃2

ϕ;r − B̃2
ϕ;zÞ ¼ ψ2

;r − ψ2
;z −

γ;r
r
:

ð16Þ

Equations (13) and (14) can be regarded as integrability
conditions for the magnetic scalar potentials Ã3 and B̃3.
Thus, one obtains

e⃗ϕ × ∇!Ã3 ¼
e2ψ

r
∇!Ãϕ; e⃗ϕ × ∇!B̃3 ¼

e2ψ

r
∇!B̃ϕ; ð17Þ

where for brevity of the notation we set ∇!g ¼ ð∂rg; ∂zgÞ,
while e⃗ϕ is one of the orthonormal triad in the coordinate
system ðr; z;ϕÞ. It can be noticed that Eqs. (17) lead to the
conditions

∂r∂zÃ3 ¼ ∂z∂rÃ3; ∂r∂zB̃3 ¼ ∂z∂rB̃3: ð18Þ

Further, the expressions for e⃗ϕ × ∇!Ãϕ and e⃗ϕ × ∇!B̃ϕ,
have been used and the complex potentials are written as

ΦðF̃Þ ¼ Ãt þ iÃ3; ΦðB̃Þ ¼ B̃t þ iB̃3: ð19Þ
In what follows, for brevity of notation, we rewrite the
potentials given by Eqs. (19) in the form given by

ΦðF̃Þ ¼ EðF̃Þ þ iBðF̃Þ; ð20Þ
ΦðB̃Þ ¼ EðB̃Þ þ iBðB̃Þ: ð21Þ

In view of the definitions (20) and (21) the Maxwell
equations yield

∂r

�
re−2ψ∂rΦðF̃Þ

�
þ ∂z

�
re−2ψ∂zΦðF̃Þ

�
¼ 0; ð22Þ

∂r

�
re−2ψ∂rΦðB̃Þ

�
þ ∂z

�
re−2ψ∂zΦðB̃Þ

�
¼ 0: ð23Þ

In the next step we define complex functions bounded with
each of the gauge fields

ϵðiÞ ¼ Z − jΦðiÞj2 þ iYðiÞ; ð24Þ

where Z ¼ e2ψ and i ¼ F̃; B̃ and one introduces new
potentials kðiÞ, provided by

∇!YðiÞ ¼ −2 Im
�
Φ�

ðiÞ∇
!
ΦðiÞ

�
: ð25Þ

Consequently the Einstein-Maxwell dark matter system of
relations can be rewritten in a couple of complex equations,
fulfilled by each of the gauge field F̃μν and B̃μν, which
implies the following:X

i¼F̃;B̃

ðReϵðiÞ þ jΦðiÞj2Þ∇2ϵðiÞ

¼
X
i¼F̃;B̃

�
∇!ϵðiÞ þ 2Φ�

ðiÞ∇
!
ΦðiÞ

�
∇!ϵðiÞ; ð26Þ

X
i¼F̃;B̃

ðReϵðiÞ þ jΦðiÞj2Þ∇2ΦðiÞ

¼
X
i¼F̃;B̃

�
∇!ϵðiÞ þ 2Φ�

ðiÞ∇
!
ΦðiÞ

�
∇!ΦðiÞ: ð27Þ
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The differential operators appearing in (26) and (27) are

defined as ∇!¼ ð∂r; ∂zÞ and ∇2 ¼ ð∂2r þ ∂
2
z þ 1=r∂rÞ and

constitute flat gradient and Laplacian operators in cylin-
drical coordinates ðr; z;ϕÞ; however, in our considerations
we restrict our attention to the functions depending on the
ðr; zÞ coordinates.

As in the case of Ernst attitude to the Einstein-Maxwell
system of differential equations, the real and imaginary
parts of the above relations represent adequate equations
of motion for the theory in question. Moreover, it can be
noticed that the effective action for the stationary axisym-
metric Ernst potentials given by

SðϵðiÞ;ΦðiÞÞ ¼
Z

drdz
X
i¼F̃;B̃

�
∇!ϵðiÞ þ 2Φ�

ðiÞ∇ΦðiÞ
��

∇!ϵ�ðiÞ þ 2ΦðiÞ∇!Φ�
ðiÞ
�

�
ϵðiÞ þ ϵ�ðiÞ þ 2Φ�

ðiÞΦðiÞ
�
2

; ð28Þ

leads to the aforementioned system of relations.

A. Melvin dark universe black hole

In the latter section we arrive at the equation of motion
for Einstein-Maxwell dark photon system. In order to
proceed to the uniqueness proof of static magnetized black
hole solution in the theory under considerations, one should
specify the boundary conditions at infinity. As in the case
of Einstein-Maxwell static black hole solutions, they tend
asymptotically to the Melvin magnetic universe solution
[42,43]. In the present case the magnetized static black hole
solution with dark photon sector ought to tend asymptoti-
cally to the dark Melvin universe one. Thus, firstly in this
section, we scrutinize the magnetostatic axisymmetric
solution of the Einstein-Maxwell dark matter system which
we shall call the dark Melvin universe.
The solution will be describe a static magnetic fields

stemming from both the visible and dark sectors. As in

ordinary Melvin solution in general relativity, the magnetic
fields will be given as a bundle of magnetic flux lines being
in magnetostatic equilibrium with gravity. The Killing
vectors of the underlying spacetime are bounded with time
translation symmetry, spatial translation along the axis,
rotational symmetry, as well as, boost along the axis.
Moreover, the fields under considerations will have zero
electric components, i.e., F̃αβnβ ¼ 0 and B̃αβnβ ¼ 0.
Having in mind the Maxwell equations of motion for

both gauge fields, we define the pseudopotentials

ΦðF̃Þ
;z ¼ −

e2ψ

r
Ãϕ;r; ΦðF̃Þ

;r ¼ e2ψ

r
Ãϕ;z; ð29Þ

ΦðB̃Þ
;z ¼ −

e2ψ

r
B̃ϕ;r; ΦðB̃Þ

;r ¼ e2ψ

r
B̃ϕ;z; ð30Þ

which enables us to rewrite the equations as follows:

∂
2ψ

∂z2
þ 1

r
∂ψ

∂r
þ ∂

2ψ

∂r2
¼ e−2ψ

��
∂ΦðF̃Þ

∂z

�
2

þ
�
∂ΦðF̃Þ

∂r

�
2

þ
�
∂ΦðB̃Þ

∂z

�
2

þ
�
∂ΦðF̃Þ

∂z

�
2
�
; ð31Þ

1

r
∂γ

∂r
− 2

∂ψ

∂r
∂ψ

∂z
¼ −2e−2ψ

�
∂ΦðF̃Þ

∂z
∂ΦðF̃Þ

∂r
þ ∂ΦðB̃Þ

∂z
∂ΦðB̃Þ

∂r

�
; ð32Þ

1

r
∂γ

∂r
þ
�
∂ψ

∂z

�
2

−
�
∂ψ

∂r

�
2

¼ e−2ψ
��

∂ΦðF̃Þ

∂z

�
2

−
�
∂ΦðF̃Þ

∂r

�
2

þ
�
∂ΦðB̃Þ

∂z

�
2

−
�
∂ΦðF̃Þ

∂z

�
2
�
; ð33Þ

In order to obtain a bundle of magnetic flux lines, one assumes that magnetic fields stemming from both gauge fields are
directed along the z-axis and the metric functions depend only on radial coordinates, one obtains

ΦðF̃Þ ¼ BðF̃Þ
0 z; ΦðB̃Þ ¼ BðB̃Þ

0 z; ð34Þ

ψðrÞ ¼ ln

�
1þ 1

4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2
�
; ð35Þ

γðrÞ ¼ 2 ln

�
1þ 1

4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2
�
; ð36Þ
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where BðF̃Þ
0 and BðB̃Þ

0 are constant bounded with the strength
of the adequate magnetic fields, pertaining to both the
visible and dark sectors.
From Eqs. (29) and (30) one finds that

Ãϕ ¼ 2BðF̃Þ
0�

BðF̃Þ2
0 þ BðB̃Þ2

0

� 1h
1þ 1

4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2
i ; ð37Þ

B̃ϕ ¼ 2BðB̃Þ
0�

BðF̃Þ2
0 þ BðB̃Þ2

0

� 1h
1þ 1

4
ðBðF̃Þ2

0 þ BðB̃Þ2
0

�
r2
i : ð38Þ

It can be seen that the dark photon field influences the
obtained potentials. In order to envisage the dark photon

impact let us use Eqs. (2) and (3) and rewrite BðF̃Þ
0 and BðB̃Þ

0

as follows:

BðF̃Þ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2

�
BðFÞ
0 − BðBÞ

0

�
;

BðB̃Þ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2

�
BðFÞ
0 þ BðBÞ

0

�
; ð39Þ

where BðFÞ
0 denotes constant Maxwell magnetic field and

BðBÞ
0 stands for the constant dark photon magnetic compo-

nent. After some algebra we obtain

Ãϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðPðFÞ − PðBÞÞ; ð40Þ

B̃ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðPðFÞ þ PðBÞÞ; ð41Þ

where we set

PðFÞ ¼ 2BðFÞ
0h

1þ 1
4

�
BðFÞ2
0 þ BðBÞ2

0

�
r2
i ; ð42Þ

PðBÞ ¼ 2BðBÞ
0h

1þ 1
4

�
BðFÞ2
0 þ BðBÞ2

0

�
r2
i : ð43Þ

On the other hand, at large distances of r, the obtained
metric reveals that ψðrÞ ≃ 2 ln r, as in ordinary Einstein-
Maxwell Melvin case [6]. However at infinity, the dark
Melvin universe solution approaches to a nonflat solution,
which will constitute the crucial point in the boundary
conditions and then in the uniqueness theorem.

III. BOUNDARY CONDITIONS

This section will be devoted to the relevant boundary
conditions in the case under consideration. In the present

case the spacetime is asymptotically cylindrical, i.e., the
static magnetized black hole solution will tend asymptoti-
cally to the dark Melvin universe, describing the bundle of
magnetic flux lines. This fact constitutes the main difference
between the studied case and the asymptotically flat one.
To begin with we introduce the two-dimensional mani-

fold, equipped with the spheroidal coordinates provided by
the relations

r2 ¼ ðλ2 − c2Þð1 − μ2Þ; z ¼ λμ; ð44Þ

where μ ¼ cos θ is chosen in such a way that the black hole
event horizon boundary is situated at a constant value of
λ ¼ c. On the other hand, two rotation-axis segments which
distinguish the south and the north segments of the event
horizon are described by the respective limit μ ¼ �1. We
obtain the line element in the form as

dr2 þ dz2 ¼ ðλ2 − μ2c2Þ
�

dλ2

λ2 − c2
þ dμ2

1 − μ2

�
: ð45Þ

We choose the domain of outer communication ⟪D⟫ as a
rectangle

∂Dð1Þ ¼ fμ ¼ 1; λ ¼ c;…; Rg;
∂Dð2Þ ¼ fλ ¼ c; μ ¼ 1;…;−1g;
∂Dð3Þ ¼ fμ ¼ −1; λ ¼ c;…; Rg;
∂Dð4Þ ¼ fλ ¼ R; μ ¼ −1;…; 1g: ð46Þ

The relevant boundary conditions may be cast as follows.
At infinity, we insist that Z; Ãϕ; Ãt and B̃ϕ; B̃t are well-
behaved functions and the solution under inspection
asymptotically tends to the Melvin dark matter universe
line element, presented in the preceding section. Namely,
they satisfy

Z ¼
�
1þ 1

4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2
�
2

ð1þOðλ−1ÞÞ; ð47Þ

Ãϕ ¼ 2BðF̃Þ
0�

BðF̃Þ2
0 þ BðB̃Þ2

0

�
2
641þ 1

1
4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2

3
75
−1

× ð1þOðλ−1ÞÞ; ð48Þ

Ãt ¼ Oðλ−1Þ; ð49Þ

B̃ϕ ¼ 2BðB̃Þ
0

ðBðF̃Þ2
0 þ BðB̃Þ2

0 Þ

2
641þ 1

1
4

�
BðF̃Þ2
0 þ BðB̃Þ2

0

�
r2

3
75
−1

× ð1þOðλ−1ÞÞ; ð50Þ
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B̃t ¼ Oðλ−1Þ; ð51Þ

where now r stands for the asymptotical cylindrical
coordinate given by r2 → λ2ð1 − μ2Þ. The difference in
the boundary behaviors at infinity comprises the main
distinction between the considered case and the asymp-
totically flat one. As was previously mentioned the solution
should display the asymptotically dark Melvin universe
one, in order to reveal the cylindrical nature of the
elaborated spacetime.
On the black hole event horizon, where λ → c, the

quantities in question should behave regularly (see,
e.g., [33]), i.e., they yield the following relations:

Z ¼ Oð1 − μ2Þ; 1

Z
∂μZ ¼ −

2μ

1 − μ2
þOð1Þ; ð52Þ

∂λÃϕ ¼ Oð1 − μ2Þ; ∂μÃϕ ¼ Oð1Þ; ð53Þ

∂λÃt ¼ Oð1Þ; ∂μÃt ¼ Oð1Þ; ð54Þ

∂λÃϕ ¼ Oð1 − μ2Þ; ∂μÃϕ ¼ Oð1Þ; ð55Þ

∂λÃt ¼ Oð1Þ; ∂μÃt ¼ Oð1Þ; ð56Þ

∂λB̃ϕ ¼ Oð1 − μ2Þ; ∂μB̃ϕ ¼ Oð1Þ; ð57Þ

∂λB̃t ¼ Oð1Þ; ∂μB̃t ¼ Oð1Þ; ð58Þ

∂λB̃ϕ ¼ Oð1 − μ2Þ; ∂μB̃ϕ ¼ Oð1Þ; ð59Þ

∂λB̃t ¼ Oð1Þ; ∂μB̃t ¼ Oð1Þ: ð60Þ

On the other hand, in the vicinity of the symmetry axis,
where μ → 1 (North Pole segment) and μ → −1 (South
Pole segment), one requires that Ãϕ; Ãt; B̃ϕ; B̃t; Z should be
regular functions of λ and μ, such that

Z ¼ Oð1Þ; 1

Z
¼ Oð1Þ; ð61Þ

Ãϕ ¼ Oð1Þ; ∂λÃϕ ¼ Oð1Þ; ð62Þ

Ãt ¼ Oð1Þ; ∂λÃt ¼ Oð1Þ; ð63Þ

B̃ϕ ¼ Oð1Þ; ∂λB̃ϕ ¼ Oð1Þ; ð64Þ

B̃t ¼ Oð1Þ; ∂λB̃t ¼ Oð1Þ: ð65Þ

IV. UNIQUENESS OF SOLUTIONS

To commence with, we recall that the Ernst equations of
the type described by relations (26) and (27), can be cast in
the matrix type system of equations

∂r½P−1
∂rP� þ ∂z½P−1

∂zP� ¼ 0; ð66Þ

where P are 3 × 3 Hermitian matrices with unit determi-
nants, while including parts bounded with the adequate
gauge fields, described by the field strengths F̃μν; B̃μν. For
the first time this problem was investigated in [61].
Moreover if one considers any constant invertible

matrix A, the matrix built in the form as APA−1 constitute
the solution of (66). The different forms of these matrices
enable us to construct all the transformations referred to the
Ernst’s system of partial differential equations.
To proceed further let us examine a domain of outer

communication ⟪D⟫ of the two-dimensional manifold M,
with boundary ∂D. Suppose next, that the matrix P
components are differentiable enough in the domain of
outer communication in question. Let us inspect the two
different matrix solutions of (66), i.e., P1 and P2, subject to
the same boundary and differentiability conditions.
The difference between the aforementioned relations

fulfils the equation as follows:

∇ðP−1
1 ð∇QÞP2Þ ¼ 0; ð67Þ

where we have denoted byQ ¼ P1P−1
2 . In the next step one

can multiply the equation (67) byQ† and taking the trace of
the result. One arrives at the following:

∇2q ¼ Tr½ð∇Q†ÞP−1
1 ð∇QÞP2�: ð68Þ

In the above relation we set q ¼ TrQ. Further the hermicity
and positive definiteness of P allow to postulate the form of
it given by P ¼ MM†, which leads to the relation

∇2q ¼ TrðJ †J Þ; ð69Þ

where J ¼ M−1
1 ð∇QÞM2.

Defining homographic change of the variables, for the
previously defined quantities connected with both gauge
fields, provided by

ϵðiÞ ¼
ξðiÞ − 1

ξðiÞ þ 1
; ψ ðiÞ ¼

ηðiÞ
ξðiÞ þ 1

; ð70Þ

enables us to find that the P matrix implies

Pαβ ¼ ηαβ −
2ξαξ̄β
hξδξ̄δi

; ð71Þ

where we define the scalar product in the form as

hξδξ̄δi ¼ −1þ
X
γ

ξγξ̄
γ; γ ¼ 1;…; q: ð72Þ

To proceed to the uniqueness of the considered solution,
one has to calculate qðiÞ ¼ TrðP1P−1

2 Þ, having in mind the
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adequate Ernst’s potentials ϵðiÞð1Þ and ϵðiÞð2Þ and their ingredients given by Eqs. (20), (21), and (24), like
EðiÞ1; BðiÞ1; YðiÞ1; ZðiÞ1 and EðiÞ2; BðiÞ2; YðiÞ2; ZðiÞ2, where i ¼ F̃; B̃. Consequently, after some algebra, one achieves the
relation provided by

q ¼ Pαβð1ÞP
αβ
ð2Þ

¼ 3þ 1

Z1Z2

X
i¼F̃;B̃

�
ðZ1 − Z2Þ2 þ

1

4

h
ðEðiÞ1 − EðiÞ2Þ2 þ ðBðiÞ1 − BðiÞ2Þ2

i
2

þ ðZ1 þ Z2Þ
h
ðEðiÞ1 − EðiÞ2Þ2 þ ðBðiÞ1 − BðiÞ2Þ2

i
þ
h�

BðiÞ1E
ðiÞ
2 − BðiÞ2E

ðiÞ
1

�
þ 1

2
ðYðiÞ1 − YðiÞ2Þ

i
2
�
: ð73Þ

On the other hand, the use of the Stoke’s theorem authorizes the integration of the relation given by (69) over the chosen
domain of outer communication ⟪D⟫, described by the relation (46), reveals

Z
∂⟪D⟫

∇mqdSm ¼
Z
∂⟪D⟫

dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼const þ

Z
∂⟪D⟫

dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ¼const

¼
Z

c

∞
dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼−1 þ

Z
∞

c
dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼1 þ

Z
−1

1

dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ¼c þ

Z
1

−1
dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ→∞

¼
Z
⟪D⟫

TrðJ †J ÞdV: ð74Þ

To proceed further, we ought to indicate the behavior of the
left-hand side of the equation (74), taking into account the
integrals over each part of the domain of outer communi-
cation ⟪DðiÞ⟫, where i ¼ 1;…; 4, taken as the rectangle in
the two-dimensional space ðμ; λÞ and described by the
relations (46).
On the black hole event horizon, ∂Dð2Þ, the functions are

well-behaved, with the asymptotic given by Oð1Þ. For the
r-coordinate given by Eq. (44) we have that r ≃Oð ffiffiffiffiffiffiffiffiffiffi

λ − c
p Þ

as λ → c. Moreover, the square root
ffiffiffiffiffi
hμμ
hλλ

q
≃Oð ffiffiffiffiffiffiffiffiffiffi

λ − c
p Þ. It

all leads to the conclusion that ∇mq vanishes on the black
hole event horizon.
On the other hand, on the symmetry axis, ∂Dð1Þ and

∂Dð3Þ, when μ� 1, all the considered quantities are of order
Oð1Þ. The r-coordinate tends to Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p Þ, as μ → 1.

When μ → −1, one obtains that r ≃Oð ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p Þ. As far
as the behavior of the square roots is concerned they

are provided by
ffiffiffiffiffi
hλλ
hμμ

q
≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ, when μ → −1 andffiffiffiffiffi

hλλ
hμμ

q
≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p Þ, when μ → 1. Bearing in mind Eq. (73)

enables us to conclude that ∇mq ¼ 0, for μ� 1.
It remains to take into account the contribution for the

integration along ∂Dð4Þ, when λ ¼ R → ∞. We remark that
the main difference between the case under consideration
and asymptotically flat one, is in the boundary conditions at
infinity, where we insist that all functions in question are
well-behaved and have asymptotic behaviors given by

Eqs. (47)–(51). The square root in the considered limit

tends to
ffiffiffiffiffi
hμμ
hλλ

q
≃OðλÞ.

Let us analyze q given by the equation (73), term by
term, in the considered limit of λ. They will have the same
behavior for each gauge field, described by F̃μν and B̃μν.
The first one is equal to the constant value, while the second
one is given by

ðZ1 − Z2Þ2
Z1Z2

≃
ΔB4

ð1Þ − ΔB4
ð2Þ

ΔB4
ð1ÞΔB

4
ð2Þ

�
1þO

�
1

λ

��
; ð75Þ

where we have denoted

ΔB2
ðiÞ ¼ BðF̃;B̃Þ2

0ðiÞ þ BðB̃;B̃Þ2
0ðiÞ ; ð76Þ

i ¼ 1, 2. For the third term in Eq. (73) one obtains the
relation

1
4

h
ðEðF̃;B̃Þ1 − EðF̃;B̃Þ2Þ2 þ ðBðF̃;B̃Þ1 − BðF̃;B̃Þ2Þ2

i
2

Z1Z2

≃
μ4
�
BðF̃;B̃Þ
0ð1Þ − BðF̃;B̃Þ

0ð1Þ
�
2

ΔB4
ð1ÞΔB

4
ð1Þð1 − μ2Þ2 O

�
1

λ6

�
; ð77Þ

while the fourth one implies
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ðZ1 þ Z2Þ
Z1Z2

h
ðEðF̃;B̃Þ1 − EðF̃;B̃Þ2Þ2 þ ðBðF̃;B̃Þ1 − BðF̃;B̃Þ2Þ2

i

≃
μ4
�
ΔB4

ð1Þ þ ΔB4
ð2Þ
��

BðF̃;B̃Þ
0ð1Þ − BðF̃;B̃Þ

0ð2Þ
�
2

ΔB4
ð1ÞΔB

4
ð2Þ

O
�
1

λ2

�
:

ð78Þ

For the last one, the fifth term, it can be revealed thath�
BðF̃;B̃Þ1E

ðF̃;B̃Þ
2 − BðF̃;B̃Þ2E

ðF̃;B̃Þ
1

�
þ 1

2

�
YðF̃;B̃Þ1 − YðF̃;B̃Þ2

�i
2

Z1Z2

≃

�
BðF̃;B̃Þ
0ð1Þ − BðF̃;B̃Þ

0ð2Þ
�
2ð1 − 2μ2Þ

ΔB4
ð1ÞΔB

4
ð2Þð1 − μ2 þ μÞ2ð1 − μ2Þ2O

�
1

λ6

�
: ð79Þ

Consequently the function q displays the following way of
acting:

qjλ→∞ ≃Oð1Þ þO
�
1

λ6

�
þO

�
1

λ2

�
þO

�
1

λ6

�
≃Oð1Þ:

ð80Þ

In view of the above relations, one has that q tends to a
constant value, as λ → ∞. All the aforementioned argu-
ments lead to the conclusion thatZ

⟪D⟫
TrðJ †

ðiÞJ ðiÞÞ ¼ 0: ð81Þ

This relation implies that PðiÞ1 ¼ PðiÞ2 at all points belong-
ing to the domain of outer communication, being a two-
dimensional manifold M with coordinates ðr; zÞ.
Thus, if we consider two black hole solutions of the

Einstein-Maxwell dark photon gravity characterized by
ðZð1Þ; Ãtð1Þ; Ãϕð1Þ; B̃tð1Þ; B̃ϕð1ÞÞ and ðZð2Þ; Ãtð2Þ; Ãϕð2Þ; B̃tð2Þ;
B̃ϕð2ÞÞ, respectively, being subject to the same boundary
and regularity conditions are identical.
In summary, the consequences of our research can be

summarized as follows:
Theorem: Let ⟪D⟫ be a domain of outer communica-

tion constituting a region of a two-dimensional manifold
with coordinates ðr; zÞ defined by (44), having a boundary
⟪∂D⟫. Suppose, that PðiÞ are Hermitian positive, three-
dimensional matrices, with unit determinants. On the

boundary of the domain ⟪∂D⟫, matrices Pð1Þ and Pð2Þ
being the solution of the equation

∂r½P−1
∂rP� þ ∂z½P−1

∂zP� ¼ 0;

satisfy the relation ∇mq ¼ 0. Then, Pð1Þ ¼ Pð2Þ in all
domain of outer communication ⟪D⟫, implying that for
at least one point d∈⟪D⟫, one has that Pð1ÞðdÞ ¼ Pð2ÞðdÞ.
In other words, all the solutions of Einstein-Maxwell dark

photon gravity subject to the same boundary and regularity
conditions, say a dark Melvin universe Schwarzschild-type
black hole, comprise the only static, axisymmetric symmet-
ric black hole solution, possessing a regular event horizon
with nonvanishing Ãt; Ãϕ; B̃t, and B̃ϕ components of the
Maxwell visible and hidden-sector gauge fields.

V. CONCLUSIONS

Our paper is devoted to the uniqueness problem of static
axially symmetric black hole spacetime in Einstein-
Maxwell dark photon gravity.
The dark photon model comprises a new Abelian gauge

field coupled to the ordinary Maxwell one, by the kinetic
mixing term. The model in question is subject of extensive
theoretical and experimental studies.
The equations of motion for the dark photon Einstein-

Maxwell gravity can be rewritten in the form of Ernst-like
system of complex relations, which can be rearranged in the
form of matrix equations. In the studies, the domain of outer
communication ⟪D⟫ was chosen as a two-dimensional
manifold with coordinates ðr; zÞ. It has been revealed that
the two matrix solutions of the equations of motion, subject
to the same boundary and regularity conditions, are equal in
the considered domain of outer communication.
One may conclude that a Schwarzschild Melvin-like

solution with dark photon (representing model of dark
matter sector), is the only axisymmetric static black hole
in Einstein-Maxwell dark photon gravity with nonzero
components of visible Maxwell and hidden-sector Uð1Þ
gauge components provided by Ãt; Ãϕ; B̃t, and B̃ϕ, being
Schwarzschild-type black hole immersed in a magnetic
Melvin universe, filled with dark matter.
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