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Here we extend the approach developed in [1] to study the thermodynamics of Taub-NUT-AdS and
dyonic Taub-NUT-AdS solutions. Furthermore, we investigate in details the possible phase structures of the
dyonic Taub-NUT-AdS solution. We show that the first law, Gibbs-Duhem and Smarr’s relations are all
satisfied for both solutions. Our study of phase structures shows some intriguing features, which were not
reported before, among which the existence of two distinguished critical points with a region of continuous
phase transitions in between, and the possibility of merging them into one point. To analyze these phases
we consider both canonical and mixed ensembles. The two distinguished critical points occur for the
canonical case as well as the mixed cases with 1=2 ≤ ϕe < 1. Another interesting case is the mixed
ensemble with ϕe ≥ 1, where we have one critical point but the continuous phase-transition region in the
P − T diagram is close to the origin, in contrast with what happens in Reissner-Nordstrom-AdS solutions
and Van der Waals fluids, i.e., the continuous phase transition happens only for low-enough pressures and
temperatures.
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I. INTRODUCTION

The Taub-NUT solution was first introduced by Taub
in [2], then was investigated by Newman, Unti, and
Tamburino (NUT) in [3]. It is a vacuum solution with
two Killing vectors, which possess a conical singularity.
This singularity forms a string called Misner string [4],
which is considered to be the gravitational analog of Dirac
string. This spacetime and its thermodynamics have been
widely studied in the Euclidean section in literature,
see [5–8] and references therein. To render this conical
singularity invisible, a restriction must be imposed on the
time periodicity β which leads to a relation between the
NUT parameter n and the horizon radius r0, namely,
βðr0Þ ¼ 8πn. As a result, there is no independent work
term, or ϕndn, for the NUT charge in the first law similar to
that of Kerr, ΩdJ, or charged solution, ϕdQ. In such
thermodynamics, the entropy is not equal to a quarter of the
horizon area, the temperature is not well-defined in the limit
n → 0, and the thermodynamic volume can be negative.
In recent works, several authors [1,9–18] considered the

possibility of constructing unconstrained thermodynamics
for Taub-NUT spaces in the Lorentzian section by relaxing
the above time-periodicity condition and obtaining an
independent work term which depends on n. These authors
found that in order to formulate a full cohomogeneity first

law where the NUT parameter can vary independently, it is
natural to introduce a new chargeN (which vanishes as we
send n to zero) together with its conjugate chemical
potential ψ . Then the first law can be written as
dU ¼ TdSþ VdPþ ψdN , where the entropy is equal
to a quarter of the horizon area and the temperature is
well defined in the limit n → 0. There are several proposals
in the literature which carry this spirit but they have
different conjugate pairs ðψ ;N Þ. Another quantity that
might not be the same in these proposals is the internal
energy U.
The leading approach for unconstrained thermodynam-

ics was introduced in [9] where the authors proposed a
conjugate pair ðψ ;N Þ to show the realization of the first
law and the entropy as the area of the horizon. A geometric
interpretation of this approach was presented afterwards
in [10], where ψ is shown to be proportional to the Misner
string temperature, and N can be interpreted as its entropy
(obtained from a Komar-type integration over Misner
tubes). Now we have a multitemperature system with a
horizon and a Misner temperatures. This reduces the
cohomogeneity of the first law since at equilibrium both
temperatures should be the same which takes us back to the
restriction βðr0Þ ¼ 8πn. In this proposal, it is unclear if
the NUT charge N is conserved or not, which might affect
the validity of the first law. This work inspired several
authors [1,15–18] to further study this approach creating
different possible ways to study this class of solutions with
NUT charge.
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In this work, we propose another unconstrained thermo-
dynamics approach for Taub-NUT-AdS spaces, following
our earlier works [1,16] on Taub-NUT solutions in
Minkowski space. Here we introduce a NUT charge N ¼
nð1þ 4n2=L2Þ and its potential ϕN , where the charge N is
conserved since it is the dual mass obtained from Komar’s
integral. We will see that one can also work with the
conjugate pair ðn;ϕnÞ instead of ðN;ϕNÞ since ϕn is related
to ϕN by some factor. When this approach was applied to
Taub-NUT in flat space [1], the resulting internal energy is
not the mass of spacetime but U ¼ M − nϕn. In this work
we show that in extended thermodynamics, i.e., allowing
the anti–de Sitter (AdS) radius to change, the enthalpy for
Taub-NUT-AdS, is H ¼ M − nϕn. This mismatch between
the enthalpy and mass is a key ingredient in our con-
struction; the enthalpy is not identified with the gravita-
tional mass anymore, instead, it is related to the mass by a
Legendre transform which vanishes as we send n to zero.
This is similar to the PV term that appears in the known
U −H Legendre transformation commonly used in
extended thermodynamics, namely, H ¼ U þ PV. Here
we extend our idea to the charged dyonic-Taub-NUT
solutions in AdS to build a consistent thermodynamics
with both electric and magnetic charges appearing in the
first law. We show that the first law, Gibbs-Duhem, and
Smarr’s relations are all satisfied. Also, the entropy is the
area of the horizon and the temperature goes to that of
dyonic-AdS black holes as n → 0. Furthermore, we have
studied phase structures in detail using the above approach
which shows some new interesting features which were not
reported elsewhere. In particular, we found two distin-
guished critical points, between them there exists a con-
tinuous phase-transition region. We also studied in details
the possibility of merging these two points into one in the
canonical and mixed ensembles. As we will see below we
have studied the phase structure of two ensembles; the
canonical ensemble in which the electric potential is set
ϕe ¼ 0, and the mixed ensemble in which the magnetic
charge is set as qm ¼ 0. The canonical case and a particular
class of the mixed case have the two distinguished critical
points. Another intriguing case is the one with ϕe ≥ 1 in the
mixed ensemble which has one critical point but the
continuous phase transition region in the P − T diagram
is close to the origin in contrast to the usual case of the
charged black holes in AdS. Also, the continuous phase
transition occurs in this case, if we go to low-enough
pressure and temperature.
Our paper is organized as follows; in Sec. II we study

neutral Taub-NUT-AdS in extended thermodynamics
where we calculate various thermodynamic quantities
and show that the first law, Gibbs-Duhem, and Smarr’s
relations are all satisfied. In Sec. III we study dyonic Taub-
NUT-AdS extended thermodynamics through calculating
its thermodynamic quantities and show again that the first
law, Gibbs-Duhem, and Smarr’s relations are all satisfied.

In Sec. IV we divide our study into canonical and mixed
ensembles where we show the existence of two critical
points. We further divide the mixed cases into a few
subcases for further investigation. In Sec. V we present
our conclusion with some remarks on possible extensions
of this work to other solutions with NUT charges.

II. TAUB-NUT-AdS SPACE THERMODYNAMICS

It is constructive to discuss first the neutral Taub-NUT-
AdS case to show some features of its thermodynamics.
The metric of this spacetime is given by [5,19]

ds2 ¼ −fðrÞðdt − 2nðcos θ þ kÞdϕÞ2 þ dr2

fðrÞ
þ ðr2 þ n2Þðdθ2 þ sin2 θdϕ2

eÞ; ð1Þ

where r is the radial coordinate, ϕ and θ are the spherical
polar coordinate angles, and n is the NUT parameter. The
function fðrÞ is given by

fðrÞ ¼ r2 − n2 − 2mr
r2 þ n2

þ r4 þ 6n2r2 − 3n4

ðr2 þ n2ÞL2
: ð2Þ

Here m is the mass parameter and L is the AdS radius
which is related to the cosmological constant through
Λ ¼ − 3

L2.
The parameter k is a dimensionless parameter which

determines the position of the Misner string, was intro-
duced in [20] (see also [11,19] for some discussion on it). In
particular, for k ¼ þ1, a single Misner string exists along
the positive z-axis, while for k ¼ −1, a single string exists
along the negative z-axis. But if k ¼ 0, the two strings exist
symmetrically along the z-axis with a conical singularity
along the axis as well. Imposing the periodicity condition
β ¼ 8πn leads to the removal of this conical singularity,
with the cost of producing closed timelike curves in this
spacetime [19,21]. As a result, thermodynamic properties
of such spacetime possess peculiar properties. For example,
the entropy is not the area of the horizon, the temperature is
fixed by the parameter n, and the temperature does not
reduce to that of Schwarzschild-AdS as n → 0, in fact, it is
not well defined in this limit.

A. Thermodynamics

The thermodynamics of the above solution is charac-
terized by a horizon temperature which takes the form

T ¼ L2 þ 3ðn2 þ r20Þ
4πL2r0

: ð3Þ

Using the counterterm method [22,23] one can calculate the
finite on shell gravitational action of the above solution
which has the form
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I ¼ β

�
m
2
−
r30 þ 3n2r0

2L2

�
: ð4Þ

Here we are following the thermodynamic treatment
introduced in [1,16] where we do not impose the perio-
dicity condition. Here we introduce a conserved NUT
charge N ¼ nð1þ 4n2=L2Þ, where the charge N is con-
served since it is the dual mass obtained from Komar’s
integral and ϕN is its potential as we will see below. We can
also work with the conjugate pair ðn;ϕnÞ instead of
ðN;ϕNÞ, as we will see below. As a result, the entropy
is the area of the horizon, while the limit n → 0 reduces the
temperature to that of Schwarzschild-AdS T ¼ f0ðr0Þ=4π,
in contrast with constrained treatments [8,24].
Euclidean path-integral boundary conditions fix the

boundary metric, which also fixes the NUT charge; there-
fore, we have a canonical ensemble with the following
partition function:

Zcanðβ; nÞ ¼ e−βF; ð5Þ

where F is the Helmholtz free energy, F ¼ I=β. The
entropy is related to the area of the horizon

S ¼ β∂βI − I ¼ πðr20 þ n2Þ: ð6Þ

The chemical potential can be calculated from the free
energy

ϕn ¼
�
∂F
∂n

�
T
; ð7Þ

or

ϕN ¼
�
∂F
∂N

�
T
: ð8Þ

Since the AdS radius L is a fixed parameter here, working
with N or n are the same since ϕN and ϕn are related,

ϕN ¼ L2

L2 þ 12n2
ϕn; ð9Þ

ϕn ¼
3nðr20 − n2Þ − nL2

2r0L2
: ð10Þ

To calculate the mass one can use the generalized
Komar’s integral introduced for asymptotically AdS sol-
utions in [10,25]. The mass of the Taub-NUT solution is
given by

M ¼ −
1

4π

Z
S2∞

ð�dξþ 2ΛωÞ ¼ m; ð11Þ

where ξ ¼ ∂t is a timelike Killing vector and ω satisfies
ξμ ¼ ∇νω

νμ, where

ω¼ 2n
3
dr ∧ ðdt− 2n cosθdϕÞ− 2r

3
ðr2 þ n2Þ sinθdθ ∧ dϕ:

ð12Þ

Also,

�dξ ¼ −
2n

r2 þ n2
fdt ∧ dr −

4n2f
r2 þ n2

cos θdr ∧ dϕ

− f0ðr2 þ n2Þ sin θdθ ∧ dϕ: ð13Þ
As was pointed out in [1], these solutions are not trivial

in the sense that there are mass distributions along the
Misner string. To see that one can calculate these mass
distributions using the above Komar’s integral for S2h as
well. Calculating the mass contained in S2∞ gives M ¼ m,
while the mass inside the horizon is

Mh ¼ r20 þ n2

2r0
þ r40 þ 3n4

2r0L2
: ð14Þ

Notice that this expression can be written as Mh ¼
M − 2nϕn. This reveals the existence of mass along the
Misner string, similar to what is found in [1], which is given
by Ms ¼ 2nϕn. To see that let us calculate it along the
positive z-axis, see [1] for details, one gets

Mþ ¼ −
1

4π

Z
Tþ

�dξ ¼ nϕn: ð15Þ

For the negative z-axis the mass calculation gives

M− ¼ nϕn; ð16Þ

which explains why the mass at the horizon is different
from that at infinity. One can also calculate the conserved
charge N as the dual mass, or

N ¼ 1

4π

Z
S2∞

ðdξ − 2Λ�ωÞ ¼ n

�
1þ 4n2

L2

�
; ð17Þ

where its chemical potential is given by

ϕN ¼
�
∂F
∂N

�
T
¼ 3nðr20 − n2Þ − nL2

2r0ðL2 þ 12n2Þ : ð18Þ

As a result, one can see that ϕn is the same as ϕN apart from
a n-dependent factor. Because of the previous property and
to keep the analysis simple, one can use the pair ðn;ϕnÞ
instead of ðN;ϕNÞ.
The internal energy is given by

U ¼ −∂β lnZcan ¼ ∂βI ¼ M − nϕn ð19Þ

¼ r30 þ r0ð3n2 þ L2Þ
2L2

: ð20Þ
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The free energy is related to the action through the relation

F ¼ I
β
¼ M − TS − nϕn: ð21Þ

Accordingly,

dF ¼ −SdT þ ϕndn; ð22Þ

and �
∂F
∂T

�
n;P

¼ −S;
�
∂F
∂n

�
T;P

¼ ϕn: ð23Þ

The above quantities satisfy the first law of thermo-
dynamics

dU ¼ dðM − nϕnÞ ¼ TdSþ ϕndn: ð24Þ

1. Extended thermodynamics

By considering a varying cosmological constant one can
add a pressure to thermodynamic relations, or P ¼ 3

8πL2,
with a conjugate volume V. In other words, we consider the
cosmological constant to be an input parameter which is
allowed to vary as a thermodynamical parameter rather
than a time-dependent quantity. In this treatment we
follow [25,26], where the authors used a varying cosmo-
logical constant and some scaling argument to write down a
Smarr’s formula for AdS black holes which is quite useful
for studying its thermodynamics and phase structure as was
shown in [27]. Notice that Smarr’s formula is not satisfied
unless this parameter is allowed to vary.
In this case, the gravitational action is related to Gibbs

energy,G, rather than Helmholtz energy F. The variation of
G ¼ I

β is given by

dG ¼ −SdT þ ϕndnþ VdP; ð25Þ

or

dG ¼ −SdT þ ϕNdN þ V 0dP; ð26Þ

where�
∂G
∂T

�
n;P

¼−S;
�
∂G
∂n

�
T;P

¼ϕn;

�
∂G
∂P

�
n;T

¼V; ð27Þ

and,

V ¼ 4πr30
3

�
1þ 3n3

r20

�
: ð28Þ

Notice that V 0 is different from V and one can choose to
work with the pair ðn;ϕnÞ or ðN;ϕNÞ. Here to keep the

analysis simple we choose to work with pair ðn;ϕnÞ and we
will do that in all the coming discussions.
The internal energy of the system and other quantities

satisfy the following Smarr’s relation

U ¼ M − nϕn − PV ¼ 2TSþ nϕn − PV: ð29Þ

The first law of thermodynamics as well as the Gibbs-
Duhem relation are satisfied

dU ¼ dðM − nϕn − PVÞ ¼ TdSþ ϕndn − PdV; ð30Þ

G ¼ U þ PV − TS ¼ M − nϕn − TS: ð31Þ

III. DYONIC TAUB-NUT AdS THERMODYNAMICS

Now we are ready to discuss the Taub-NUT-AdS case
with electric and magnetic charges and apply the thermo-
dynamical treatment introduced in [1]. First, we are going
to calculate the electric and magnetic charges of the
solution as well as their potentials, then calculate various
thermodynamic quantities and check the validity of the first
law, Gibbs-Duhem, and Smarr’s relations.

A. Charges and potentials

For this solution, the metric has the same form as the
uncharged Taub-NUT case in Eq. (1), but the function fðrÞ
is given by

fðrÞ¼ r2þq2eþq2m−n2−2mr
r2þn2

þ r4þ6n2r2−3n4

ðr2þn2ÞL2
; ð32Þ

where qe and qm are the electric and magnetic charges. The
gauge potential Aμ is given by

A ¼
�
nqm − qer
r2 þ n2

þ ϕe

�
dt

þ
��

2nqerþ qmðr2 − n2Þ
ðr2 þ n2Þ

�
cos θ þ C

�
dϕ; ð33Þ

where ϕe and C are integration constants. The gauge
potential in Eq. (33) and the above metric satisfy the field
equations

Gμν ¼ κTμν; ∇μFμν ¼ 0; ð34Þ

where

Tμν ¼ FμαFα
ν −

1

4
gμνF2: ð35Þ

The magnetic charge in a spatial region Σ, with a boundary
∂Σ, is given by
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Q0
m ¼ −

1

4π

Z
Σ
dF ¼ −

1

4π

Z
∂Σ
F: ð36Þ

The magnetic flux at any radius r is

q̄mðrÞ ¼ −
1

4π

Z
S2r

F ¼ qmðr2 − n2Þ þ 2nqer
r2 þ n2

; ð37Þ

which produces a magnetic charge at radial infinity,

Q∞
m ¼ qm; ð38Þ

and a magnetic charge at the horizon

Qh
m ¼ ðqm þ 2nϕeÞ: ð39Þ

The electric charge in a spacial region Σ is given by

Q0
e ¼

1

4π

Z
Σ
d�F ¼ 1

4π

Z
∂Σ

�F; ð40Þ

where �F is the Hodge dual of F. Also, the electric flux at
any radius r is

q̄eðrÞ ¼
1

4π

Z
S2r

�F ¼ qeðr2 − n2Þ − 2nqmr
r2 þ n2

; ð41Þ

which produces the following electric charge at infinity

Q∞
e ¼ qe; ð42Þ

but at the horizon it takes the form

Qh
e ¼ ðqe − 2nϕmÞ: ð43Þ

The electric and magnetic potentials are defined as

ϕe ¼ Φej∞ −Φejh; ð44Þ

ϕm ¼ Φmj∞ −Φmjh ¼
qm þ nϕe

r0
; ð45Þ

where Φe ¼ Aμξ
μ and Φm ¼ Bμξ

μ, with ξ is a timelike
Killing vector. Also, the one-form B is the solution of
dB ¼ �F, which is given by

B ¼
�
−
nqe þ qmr
r2 þ n2

þ V 0
�
dt

þ
�
2nqmrþ qeðr2 − n2Þ

r2 þ n2
þ C0

�
cos θdϕ; ð46Þ

where V 0 and C0 are integration constants. We will see now
the importance of these integration constants.
The thermodynamics imposes certain regularity condi-

tions on the gauge potential Aμ [1]. To have a nonsingular

one-form A on the horizon, the charges qe, qm and the
potential ϕe should be related as follows:

qe ¼
nqm þ ϕeðn2 þ r20Þ

r0
: ð47Þ

Also, to have a nonsingular potential along the z-axis we
should have two patches for A, one is smooth on the
northern hemisphere, and the other is smooth on the
southern hemisphere as in Dirac’s monopole case, or

C� ¼∓ðqm þ 2nϕeÞ; ð48Þ

then

Aϕ
� ¼ ðqm þ 2nϕeÞðcos θ ∓ 1Þ

ðr2 þ n2Þ sin2 θ : ð49Þ

Notice that the first condition is important for satisfying the
first law1 and the second is needed for obtaining the correct
magnetic charge in the first law, which is also consistent
with the path-integral conditions.2 Notice also that the
magnetic charge in the first law is different from the
magnetic charge at radial infinity, qm. The regularity of
the gauge potential along the z-axis is equivalent to
removing the whole z-axis from the enclosed volume
and it carries a magnetic charge −2nϕe; as a result, we
get Qm ¼ Qh

m. This is the magnetic charge that contributes
to thermodynamics and the first law.
Now let us calculate this magnetic charge directly from

the nonsingular one-form A after using Stock’s theorem.
This leads to

Qm ¼ −
1

4π

I
A

¼ −
1

4π

�Z
north-cap

Aþ þ
Z
south-cap

A−

�

¼ qm þ 2nϕe: ð50Þ

Our conclusion is that the existence of the NUT charge
causes a difference between the magnetic charge at the
horizon, which is relevant for thermodynamics, and the
charge at radial infinity. The magnetic charge that contrib-
utes to the first law is also the one resulted from having
finite gauge potential A, as required by Euclidean path
integral. But what if we did not impose the regularity of the
gauge potential along the z-axis? In this case we will see
that other electric and magnetic charges produce consistent
thermodynamics, i.e., the first law, the Gibbs-Duhem

1This also was shown in [28] in a special case where ϕe ¼ 0.
2Euclidean path-integral boundary conditions requires the

regularity of the spatial components of the metric and gauge
field at the boundaries, i.e., radial infinity and the horizon.
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relation, and Smarr’s relation will be satisfied. These cases
can be represented by a magnetic chargeQm ¼ qm þ αnϕe,
as was discussed in [1,12,16,17]. Among the most impor-
tant cases in this class is the case with Qm ¼ qm þ 2nϕe,
andQe ¼ qe, as well as the self-dual caseQm ¼ qm þ nϕe,
and Qe ¼ qe − nϕe. In the following thermodynamic treat-
ment and in our study of phase structure we are going to
work with a one-form A which is regular everywhere, this
leads to the charges Qm ¼ qm þ 2nϕe and Qe ¼ qe.

B. Thermodynamics

Now we calculate thermal quantities, starting with
temperature

T ¼ ð1 − ϕ2
eÞr20 − ðqm þ nϕeÞ2

4πr30
þ 3r20ðn2 þ r20Þ

4πL2r30
: ð51Þ

Again using the counterterms method [22,23] one can
calculate the on shell gravitational action. It takes the form

I ¼ β

�
m
2
þ ðqm þ nϕeÞ2 − ϕ2

er20
2r0

−
r40 þ 3n2r20
2L2r0

�
: ð52Þ

The mass of the solution is given by

m ¼ ðq2e þ q2m − n2 þ r20Þ
2r0

þ r40 þ 6n2r20 − 3n4

2L2r0
: ð53Þ

Recalling that the free energy is given by I=β, we substitute
(53) in (52) and using (47) to get

G ¼ ½ϕeðn2 þ r20Þ þ nqm�2
4r30

−
r40 þ 3n4

4L2r0

þ ðn2 − r20Þð2ϕ2
e − 1Þ þ 3q2m þ 4nqmϕe

4r0
: ð54Þ

It is important to see that the Euclidean path-integral
boundary conditions fix the boundary metric and the spatial
component of the gauge potential, i.e., gij and Ai, therefore,
we have a mixed ensemble with the following partition
function:

Zðβ; nÞ ¼ e−βG; ð55Þ

or G ¼ Gðβ; n; Qm;ϕe; PÞ (see discussion in [1], Sec. II on
thermodynamic ensemble), where

dG ¼ −SdT þ ϕndnþ ϕmdQm −Qedϕe þ VdP; ð56Þ

and

�
∂G
∂T

�
n;Qm;ϕe;P

¼ −S;
�
∂G
∂n

�
T;Qm;ϕe;P

¼ ϕn;�
∂G
∂P

�
T;n;Qm;ϕe

¼ V;

�
∂G
∂Qm

�
T;n;ϕe;P

¼ ϕm;

Qe ¼ −
�
∂G
∂ϕe

�
T;n;Qm;P

¼ Q∞
e : ð57Þ

Calculating these quantities we get

ϕn ¼
�
∂G
∂n

�
T;Qm;ϕe;P

¼ nðQm − nϕeÞ2 þ r20ð3nϕ2
e − n − 2QmϕeÞ

2r30

þ 3nðr20 − n2Þ
2r0L2

; ð58Þ

for the chemical potential of n. Also, the pressure P and the
volume V are identical to the results of the neutral case. The
magnetic potential is

ϕm ¼
�

∂G
∂Qm

�
T;n;ϕe;P

¼ ðQm − nϕeÞ
r0

; ð59Þ

while the internal energy is given by

U ¼ M − nϕn − PV: ð60Þ

The above thermodynamic quantities should satisfy the
following thermodynamic relations. First, the quantities
satisfy the Gibbs-Duhem relation

G ¼ M − TS − nϕn −Qeϕe: ð61Þ

All quantities satisfy Smarr’s relation which can be put as

M ¼ 2TSþ 2nϕn þQeϕe þQmϕm − 2PV: ð62Þ

More importantly, these quantities satisfy the first law

dU ¼ TdSþ ϕndnþ ϕmdQm þ ϕedQe − PdV: ð63Þ

IV. DYONIC TAUB-NUT-AdS PHASE

In this section, we are going to study different phases that
can emerge from dyonic Taub-NUT-AdS solutions. To keep
our analysis tractable, it is important to constrain ourselves
with two basic cases. The first case is the ensemble where
ϕe ¼ 0 while keeping qm and n fixed, which we will call
the “canonical case”. The second case is defined through
qm ¼ 0, while n and ϕe are fixed, which we will call the
“mixed case”.
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A. Canonical case

Now we begin our analysis by calculating the possible
critical points of the equation of state, Eq. (51). For
canonical case, since ϕe ¼ 0, the equation of state reads

P̄ ¼ T̄r30 − r20 þ q2m
r20ðr20 þ n2Þ ; ð64Þ

where T̄ ¼ 4πT and P̄ ¼ 8πP. Solving Eq. (64) together
with ∂P̄

∂r0
¼ 0 and ∂

2P̄
∂r2

0

¼ 0, one gets the following four

solutions

P̄ð1;2Þ
c ¼ 1

n4

�
6q2m − n2 þ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

q �
;

T̄ð1;2Þ
c ¼ � 1

3n4

"
16

�
3q2m −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

q �
3=2

þð8n2 − 96q2mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2m −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

qr #
;

rð1;2Þ
0ðcÞ ¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2m −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

qr
; ð65Þ

and

P̄ð3;4Þ
c ¼ 1

n4

�
6q2m − n2 − 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

q �
;

T̄ð3;4Þ
c ¼ � 1

3n4

"
16

�
3q2m þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

q �
3=2

þð8n2 − 96q2mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2m þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

qr #
;

rð3;4Þ
0ðcÞ ¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2m þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

qr
: ð66Þ

Only two of the above four solutions are physical, i.e.,
those with positive radii and temperatures. A special case
occurs when qm ¼ nffiffi

3
p , in which case the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2mð3q2m − n2Þ

q
ð67Þ

vanishes and we get two duplicated solutions, from which
only one is physical, i.e., we get one merged critical point.
The existence of two critical points renders this analysis

qualitatively different from the one that uses a different
thermodynamic approach in [29]. Note that these expres-
sions reduce to the known solutions in the case n ¼ 0. As
an example let us choose n ¼ 0.2 and qm ¼ 0.12, then one
gets two critical points

P̄a
c ¼ 14.303; T̄a

c ¼ 8.942; ra
0ðcÞ ¼ 0.2344; ð68Þ

P̄b
c ¼ 43.697; T̄b

c ¼ 20.662; rb
0ðcÞ ¼ 0.1773: ð69Þ

The corresponding AdS radii for these critical points are

La
c ¼ 0.458; & Lb

c ¼ 0.262: ð70Þ

The corresponding P̄ − r0 diagram is displayed in Fig. 1.
Evidently, for n ≠ 0 there are two critical points a and b.
When T̄ < T̄a

c the behavior resembles Van der Waals fluid,
see the left top panel of Fig. 1. In this region, a first-order
phase transition between the small and the large radii
occurs. Such transition is governed by Maxwell’s equal
area law, which guarantees two-phase coexistence when the
areas above and below the isobar drawn through the P̄ − r0
curve are equal. Also, there is a temperature T̄0,

T̄0 ¼
r20 − q2m

r30
; ð71Þ

below which the pressure is negative for some r0, which
was discussed in [27], where this region marked unphys-
ical. We are going to do the same here and will not consider
this region since in any case it corresponds to de Sitter (dS)
solutions rather than anti–de Sitter AdS ones.
As T̄ increases above T̄a

c , there exists a region of
continuous transition where only one radius exists, which
continues to happen as long as we have T̄ < T̄b

c , and till the
second critical isotherm is reached. As T̄ exceeds T̄b

c , as in
the right-top panel, the system imitates the Van der Waals
fluid again, meaning it retains the first-order phase tran-
sition between the small and the large radii. We can see the
behavior before and after both critical points together in the
bottom panel of the figure.

1. Phase structure

To investigate the phase structure of Taub-NUT solutions
we must study its free energy. For canonical ensemble the
free energy is given from Eq. (54) to be

Ω ¼ r20ðr20 − n2Þ þ 3r20q
2
m þ n2q2m

4r30
−
r40 þ 3n4

4L2r0
: ð72Þ

In Fig. 2 we plotted the free energy as a function of
temperature at different values of pressure P̄.
The free energy, as seen from Fig. 2, is characterized by a

swallowtail shape when P̄ < P̄a
c , as shown in the left panel,

and for P̄ > P̄b
c, in the right panel. This behavior shows the

existence of two critical points, not one as in the usual Van
der Waals fluids, or the Reissner-Nordström (RN) AdS
cases studied in [27,30], with a continuous-phase transition
region trapped between them. The swallowtail behavior, as
shown by Fig. 2, takes place in the temperature intervals
½T̄a

1; T̄
a
2� for P̄ < P̄a

c and ½T̄b
1; T̄

b
2� for P̄ > P̄b

c. Increasing
pressure results in diminishing the temperature range
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FIG. 2. Free energy as a function of temperature for the canonical dyonic AdS solutions plotted at different values of pressure for
n ¼ 0.2 and qm ¼ 0.12. Pressure increases from left to right in both panels. Left: First-order transition for P̄ < P̄a

c is characterized by the
swallowtail behavior represented by the solid lines. The dotted lines represent the continuous transition for P̄ > P̄a

c. The dashed line
corresponding to P̄ ¼ P̄a

c . Curves from left to right are plotted for P̄ ¼ 0.05P̄a
c; 0.1P̄a

c; 0.25P̄a
c ; 0.5P̄a

c; P̄a
c; 1.2P̄a

c, and 1.5P̄a
c . Right: The

small-large radii first-order transition occurs for P̄ > P̄b
c, solid lines. The two dotted lines for the continuous transition are now for

P̄ < P̄b
c . The dashed line corresponding to P̄ ¼ P̄b

c . Curves from left to right are plotted for P̄ ¼ 0.5P̄b
c; 0.75P̄b

c; P̄b
c; 2P̄b

c, 3P̄b
c , and 4P̄b

c .
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FIG. 1. Behavior of canonical dyonic NUT-AdS solutions. In all panels, temperature decreases from top to bottom. Top left: P̄ − r0
diagram for the first critical point “a”. The two upper dash-dotted isotherms correspond to continuous transition behavior (one-phase
state) where T̄ > T̄a

c . The dashed line is the critical isotherm T̄ ¼ T̄a
c . The lower isotherms correspond to the first-order transition where

T̄ < T̄a
c . The first isotherm from below corresponds to T̄ < T̄0, followed by the T̄0 isotherm, then T̄0 < T̄ < T̄a

c isotherm. Isotherms
from below corresponding to T̄ ¼ 0.2T̄a

c; T̄0; 0.75T̄a
c ; T̄a

c ; 1.5T̄a
c , and 2T̄a

c . Top right: Diagram represents the second critical point “b”.
Here the one-phase isotherms correspond to T̄ < T̄b

c , these are the two dash-dotted lines, while the two-phases correspond to T̄ > T̄b
c ,

which are the two solid lines. The dashed line is the critical isotherm T̄ ¼ T̄b
c . Isotherms from below: T̄ ¼ 0.5T̄b

c; 0.75T̄b
c; ∼T̄b

c; 3T̄b
c , and

5T̄b
c . Bottom: Diagram shows isotherms for both critical points. Isotherms from below: T̄ ¼ 0.2T̄a

c; T̄0; 0.75T̄a
c; T̄a

c ; 1.5T̄a
c ;

0.75T̄b
c; T̄b

c ; 1.5T̄b
c , and 2T̄b

c . In calculations we considered n ¼ 0.2 and qm ¼ 0.12.
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½T̄a
1; T̄

a
2�, as seen by the left panel, in contrast, increasing the

temperature range ½T̄b
1; T̄

b
2�, as seen by the right panel, while

T̄1 and T̄2 coincide at P̄ ¼ P̄c. Inside each of these
temperature ranges there exists a transition temperature,
T̄tr ∈ ½T̄1; T̄2�, at which the free energies of the small- and
the large-horizon radii match. In the P̄ − T̄ plane, the
transition temperatures form a curve through which phase
transitions occur between solutions with small- and large-
horizon radii, but solutions with large radii possess smaller
free energy; therefore it is the stable phase. This is depicted
in Fig. 3.
The line of phase transition can be found using

Maxwell’s equal area law, or by finding the points in the
P̄ − T̄ plane for which the free energy and temperature
coincide for small ðr0 ¼ rsÞ and large ðr0 ¼ rlÞ radii.
Following the last method, the radii of the small and large
solutions at which the transition occurs are found to be

rs ¼
1

2

�
−yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4x

q �
; rl ¼

x
rs
; ð73Þ

where y is given by the relation

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1
q2m

h
P̄x3 − ðP̄n2 þ 1Þx2 − 3qmx

is
; ð74Þ

and x is one of the roots of the equation

P̄2x4 − ðn2P̄þ 1ÞP̄x3 þ 3ðn2P̄þ 1Þq2mx − 9q4m ¼ 0: ð75Þ

The transition temperature T̄tr is then obtained by sub-
stituting rs, or rl, in the temperature relation

T̄tr ¼
1

r3s
½r2sðr2s þ n2ÞP̄þ r2s − q2m� ð76Þ

which is obtained from (64).
As the pressure comes to its first critical value P̄ ¼ P̄a

c ,
the swallowtail behavior vanishes, keeping a kink on the
free-energy curve. Increasing the pressure further, P̄ > P̄a

c ,
the transition between the small and large solutions is now
continuous, and the free-energy curve becomes a mono-
tonic curve. The kink at the critical pressure in the free-
energy curve characterizes a point at the end of the first
transition curve in the P̄ − T̄ plane, where a continuous
transition begins to occur, as seen in Fig. 3. This continuous
transition occupies a region in the P̄ − T̄ plane where
P̄a
c < P̄ < P̄b

c . At the point P̄ ¼ P̄b
c , the kink appears again

on the free-energy curve and the two boundaries of the
temperature interval ½T̄b

1; T̄
b
2� are now coinciding.

Increasing the pressure to exceed P̄b
c renders the system

to have a first-order transition again. As the right panel of
Fig. 2 indicates, the interval ½T̄b

1; T̄
b
2� is now widened as P̄

increased. A new transition curve in the P̄ − T plane begins
at the point ðP̄b

c; T̄b
cÞ and continues endlessly, Fig. 3. The

first-order phase transition occurs again along this curve
from the small to the large radii.

2. Special case: Merged critical points

When qm ¼ nffiffi
3

p , A new phenomenon occurs. The two
critical points merge into one. All isotherms before and
after the critical isotherm resemble isotherms of RN-AdS
solutions. The first-order phase transition occurs for any
temperature except T̄c. This is clear in Fig. 4, where we
displayed the P̄ − r0 diagram for n ¼ 0.2.
The free energy curves confirm this phenomenon. In

Fig. 5 we plot the free-energy curves for the whole pressure
range. The figure shows that the swallowtail behavior
characterizing the first-order phase transition always exists
no matter P̄ < P̄c or P̄ > P̄c. However, relations give
imaginary results for most T̄ range when P̄ ¼ P̄c.
The corresponding phase diagram is plotted in Fig. 6 for

n ¼ 0.1. The circle on the curve represents the position of
the critical point. The graph shows that except for the
critical point, The first-order phase transition is the only
phase transition that occurs.

B. Mixed case

For the mixed ensemble case, we have qm ¼ 0. The
equation of state reduces to

First Critical Point

Second Critical Point

Small BH

Large BH

0 10 20 30 40T

P

0

20

40

60

80

FIG. 3. Phase diagram of the canonical Taub-NUT AdS
solutions calculated for n ¼ 0.2 and qm ¼ 0.12 showing first-
order phase transition for P̄ < P̄a

c and P̄ > P̄b
c . For P̄a

c < P̄ < P̄b
c,

a continuous transition occurs. The two critical points ðT̄a
c ; P̄a

cÞ
and ðT̄b

c; P̄b
cÞ are declared by dots.
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P̄ ¼ T̄r30 þ n2ϕ2
e þ ðϕ2

e − 1Þr20
r20ðr20 þ n2Þ : ð77Þ

Critical points are then obtained by solving this relation
together with ∂P̄

∂r0
¼ 0 and ∂

2P̄
∂r2

0

¼ 0. In doing so we get the

four solutions:

1 2 3 4 5
r0

–5

0
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P
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r00
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FIG. 4. Behavior of canonical dyonic NUT-AdS solutions when qm ¼ nffiffi
3

p . Isotherms decrease the temperature from top to bottom in all
panels. Top left: Diagram for T̄ ≤ T̄c. The dashed line represents a critical isotherm. Isotherms from below corresponding to
T̄ ¼ 0.1T̄c; T̄0; 0.5T̄c; 0.75T̄c, and T̄c. Top right: Diagram for T̄ ≥ T̄c. Isotherms from below: T̄ ¼ T̄c; 2T̄c; 3T̄c; 5T̄c, and 8T̄c. Bottom:
General behavior for merged critical point. Isotherms from below: T̄ ¼ 0.1T̄c; T̄0; 0.5T̄c; T̄c; 2T̄c, and 3T̄c.
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FIG. 5. Free energy as a function of temperature for different
values of pressure for n ¼ 0.2. The dashed curve is plotted at P̄c.
Curves from left to right are plotted for P̄ ¼ 0.01P̄c; 0.1P̄c;
0.25P̄c; 0.5P̄c, P̄c, 2P̄c, and 4P̄c.
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FIG. 6. Phase diagram of the canonical dyonic Taub-NUT-AdS
solutions for merged critical points for n ¼ 0.1 showing endlessly
first-order phase transition for all P̄ except for P̄ ¼ P̄c. The
critical point ðT̄c; P̄cÞ is declared by the circle.
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P̄ð1;2Þ
c ¼

�
1 − ϕ2

e

n4

��
6n2ϕ2

e

ϕ2
e − 1

þ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

�
−
ð1 − 13ϕ2

eÞ
n2

;

T̄ð1;2Þ
c ¼ � 1

3n4

2
6416ð1 − ϕ2

eÞ
�
−

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

�3=2

þ n2ð8 − 104ϕ2
eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

s 3
75;

rð1;2Þ
0ðcÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

s
; ð78Þ

and

P̄ð3;4Þ
c ¼

�
1 − ϕ2

e

n4

��
6n2ϕ2

e

ϕ2
e − 1

−
2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

�
−
ð1 − 13ϕ2

eÞ
n2

;

T̄ð3;4Þ
c ¼ � 1

3n4

2
6416ð1 − ϕ2

eÞ
� ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n4ð4ϕ4
e − ϕ2

eÞ
p

ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

�3=2

þ n2ð8 − 104ϕ2
eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

s 3
75;

rð3;4Þ
0ðcÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

s
: ð79Þ

Again, only two of these four solutions are physical, i.e.,
those with positive radii and temperatures. Another prop-
erty that specifies the critical points of the mixed ensemble
is the fact that the number of the critical points of this
ensemble depends on the value of ϕe. To see this let us
analyze the square roots that exist in the solutions. One
main square root is

n2jϕej
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ϕ2

e − 1Þ
q

: ð80Þ

Due to this root, physical critical points exist only if
ϕ2
e ≥ 1=4. For ϕe ¼ �1=2, the square root vanishes

and the two solutions coincide. In this case, the two
critical points merge irrespective of the value of the
NUT charge n.
Another square root exists in the critical temperatures

and radii, namely

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
ϕ2
e − 1

−
3n2ϕ2

e

ϕ2
e − 1

s
: ð81Þ

The existence of a real solution for this root depends on the
sign of the denominator. If the denominator is negative, in
which case jϕej < 1, terms will reverse signs. The square
root in this case is correctly rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

p
1 − ϕ2

e
þ 3n2ϕ2

e

1 − ϕ2
e

s
: ð82Þ

Accordingly, if the sign of the first term is positive, the root
is always real. If, on the other hand, the sign of the first term
is negative, a condition is put on the terms, i.e.,

3n2ϕ2
e ≥

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

q
; ð83Þ

to ensure a real solution. Analyzing this we come to the
condition jϕej ≤ 1, which is consistent with our starting
condition since we have to exclude the value of jϕej ¼ 1 as
it blows up our solutions. This guarantees the existence of
the other critical point.
On the other hand, a positive denominator in Eq. (81)

demands the condition jϕej > 1 on the potential. In this
case, one solution is always imaginary, while the other is
real only if

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4ð4ϕ4

e − ϕ2
eÞ

q
≥ 3n2ϕ2

e: ð84Þ

Which is verified only if jϕej ≥ 1. Since this is a consistent
solution (we again exclude the case jϕej ¼ 1), we then
guarantee the existence of one critical point.
A final case is characterized by jϕej ¼ 1, which lead an

equation of state

P̄ ¼ T̄r30 þ n2

r20ðr20 þ n2Þ : ð85Þ

Solving for critical points we get the two solutions
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P̄ð1Þ
c ¼ 12

n2
; T̄ð1Þ

c ¼ −16
ffiffiffi
2

p

n
; rð1Þ

0ðcÞ ¼
−nffiffiffi
2

p ; ð86Þ

P̄ð2Þ
c ¼ 12

n2
; T̄ð2Þ

c ¼ 16
ffiffiffi
2

p

n
; rð2Þ

0ðcÞ ¼
nffiffiffi
2

p : ð87Þ

Evidently, only one of these solutions is physical, i.e., we
have only one critical point.
Summarizing our results for mixed ensemble, we have

the following cases:
(1) 1=2 < jϕej < 1: two critical points exist;
(2) jϕej ¼ 1=2: A one duplicated, merged, critical point

exist;
(3) jϕej > 1: A single critical point exist;
(4) jϕej ¼ 1: A single critical point exist.

1. Case I: 1=2 < ϕe < 1

In this case, the system has two critical points, setting
n ¼ 0.1 and ϕe ¼ 0.53, we get

P̄a
c ¼ 32.08; T̄a

c ¼ 10.89; ra
0ðcÞ ¼ 0.127; ð88Þ

P̄b
c ¼ 161.18; T̄b

c ¼ 36.55; rb
0ðcÞ ¼ 0.085: ð89Þ

The corresponding AdS scales for these critical points are

La
c ¼ 0.306; & Lb

c ¼ 0.136: ð90Þ

In Fig. 7 we display the corresponding P̄ − r0 for such
solutions. Isotherms around each critical point are plotted
separately in the top panel, while in the bottom panel we
represent isotherms for both critical points together. We can
see that for P̄ < P̄a

c and P̄ > P̄b
c , isotherms resemble the

Van der Waals fluids. In these regions, a first-order phase
transition takes place between solutions with small and
large radii which is controlled by Maxwell’s equal area law.
While for P̄a

c ≤ P̄ ≤ P̄b
c, a continuous phase transition takes

place, i.e., we have a single-phase state, and a single
solution exists at any temperature. The temperature T̄0
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r

P
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r
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FIG. 7. Behavior of the mixed-dyonic NUT-AdS solutions for 1=2 < ϕe < 1. In all panels, temperature decreases from top to bottom.
Top left: P̄ − r0 diagram for the first critical point “a”. The two upper dash-dot isotherms correspond to continuous transition behavior
where T̄ > T̄a

c . The dashed line is the critical isotherm T̄ ¼ T̄a
c . The lower isotherms correspond to the first-order transition where

T̄ < T̄a
c . The first isotherm from below corresponds to T̄ < T̄0, followed by the T̄0 isotherm, then T̄0 < T̄ < T̄a

c isotherm. Isotherms
from below corresponding to T̄ ¼ 0.3T̄a

c; T̄0; 0.75T̄a
c; T̄a

c ; 1.5T̄a
c , and 2T̄a

c . Top right: Diagram for the second critical point “b”. For this
critical point, the one-phase isotherms correspond to T̄ < T̄b

c , which are represented by the two dash-dotted lines in the bottom, while the
two-phases correspond to T̄ > T̄b

c , which are represented by the two solid lines on top. The dashed line is the critical isotherm T̄ ¼ T̄b
c .

Isotherms from below: T̄ ¼ 0.5T̄b
c; 0.75T̄b

c; T̄b
c; 2T̄b

c , and 3T̄b
c . Bottom: Isotherms for both critical points. Isotherms from below:

T̄ ¼ 0.2T̄a
c; T̄0; 0.75T̄a

c ; T̄a
c ; 1.5T̄a

c ; 0.5T̄b
c; T̄b

c; 1.4T̄b
c , and 1.6T̄b

c . In calculations we considered n ¼ 0.1 and ϕe ¼ 0.6.
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below which the pressure is negative for some r0 is now
given by

T0 ¼
1 − ϕ2

e

r0
−
n2ϕ2

e

r30
: ð91Þ

2. Phase structure

The free energy for a mixed ensemble of Taub-NUTAdS
solutions is given by replacing qm ¼ 0 in Eq. (54)

Ω¼ϕ2
eðn2þr20Þ2þr20ðn2−r20Þð2ϕ2

e−1Þ
4r30

−
r40þ3n4

4L2r0
ð92Þ

In Fig. 8 we present the free energy as a function of
temperature for different values of the pressure P̄. The
swallowtail behavior appears clearly for P̄ < P̄a

c, in the left
panel, and P̄ > P̄b

c , in the right panel. Similar to the
canonical ensemble case, a first-order phase transition
occurs in these two regions which is controlled by
Maxwell’s equal area law. Following the same method
as before, the radii of the small and large solutions at which
the transition occurs are

rs ¼
1

2

�
−yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4x

q �
; rl ¼

x
rs
; ð93Þ

where y is given by the relation

y¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1
n2ϕ2

e

n
P̄x3−3½P̄n2þð1−ϕ2

eÞ�x2−3n2ϕ2
ex
os
; ð94Þ

and x is one of the roots of the equation

P̄2x4 − ½n2P̄þ ð1 − ϕ2
eÞ�P̄x3

þ 3n2ϕ2
e½n2P̄þ ð1 − ϕ2

eÞ�x − 9n2ϕ4
e ¼ 0: ð95Þ

The transition temperature T̄tr is then obtained by sub-
stituting rs, or rl, in the temperature relation

T̄tr ¼
1

r3s

h
r2sðr2s þ n2ÞP̄þ r2sð1 − ϕ2

eÞ − n2ϕ2
e

i
; ð96Þ

which is obtained from (77).
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FIG. 8. Free energy as a function of temperature for the mixed dyonic AdS solutions plotted at different values of pressure for n ¼ 0.1
and ϕ ¼ 0.53. Pressure increased from left to right for both panels. Left: Swallowtail behavior characterizes the first-order transition for
P̄ < P̄a

c represented by the solid lines. The dotted lines represent the continuous-phase transition for P̄ > P̄a
c cases. The dashed line

represents the P̄ ¼ P̄a
c case. Curves from left to right are plotted for P̄ ¼ 0.05P̄a

c; 0.1P̄a
c ; 0.25P̄a

c; 0.5P̄a
c; P̄a

c; 1.2P̄a
c, and 1.5P̄a

c . Right: The
small to large radii first-order transition which occurs for P̄ > P̄b

c is represented by the solid lines. The two dotted lines for the
continuous-phase transition represent the P̄ < P̄b

c cases. The dashed line represents the P̄ ¼ P̄b
c case. Curves from left to right are plotted

for P̄ ¼ 0.25P̄b
c ; 0.5P̄b

c; P̄b
c; 2P̄b

c; 3P̄b
c, and 4P̄b

c .
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FIG. 9. Phase diagram of the mixed dyonic Taub-NUT AdS
solutions for 1=2 < ϕe < 1 showing two critical points with a
continuous transition occurring in between. Here we set n ¼ 0.1
and ϕe ¼ 0.53. The two critical points ðT̄a

c; P̄a
cÞ and ðT̄b

c; P̄b
cÞ are

declared by the dots.
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Starting with P̄ < P̄a
c , as we increase the pressure to

reach a point where P̄ ¼ P̄a
c , the transition between the

small and large radii becomes continuous announcing a
continuous phase transition in this region. If we increased
the pressure more, where P̄ > P̄b

c , an abrupt transition
between the small and large radii will take place, and the
system goes through a first-order phase transition once
again. The phase diagram is shown in Fig. 9.

3. Case II: ϕe = 1=2

When ϕe ¼ 1=2, the two solutions merged into one. For
example, for n ¼ 0.1 we get

P̄c ¼ 75; T̄c ¼ 20; r0ðcÞ ¼ 0.1: ð97Þ

The corresponding AdS scale for this critical point is

r0

P
P
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r00
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1 2 3 4 5 0.0 0.5 1.0 1.5 2.0
r0

FIG. 10. Behavior of mixed-dyonic NUT solutions for merged critical point, ϕe ¼ 1=2. Isotherms decrease the temperature from top
to bottom for each panel. The dashed line corresponds to a critical isotherm. Top left: P̄ − r0 diagram for T̄ ≤ T̄c. Isotherms from below
corresponding to T̄ ¼ 0.2T̄c; T̄0; 0.5T̄c; 0.75T̄c, and T̄c. Top right: Diagram for T̄ ≥ T̄c. Isotherms from below: T̄ ¼ T̄c; 2T̄c; 3T̄c; 5T̄c,
and 8T̄c. Bottom: Isotherms mimicking Van der Waals fluids for both T̄ < T̄c and T̄ > T̄c. Isotherms from below are plotted for
T̄ ¼ 0.1T̄c; T̄0; 0.5T̄c; T̄c; 2T̄c, and 3T̄c. In calculations, n ¼ 0.1.
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FIG. 11. Free energy as a function of temperature for the mixed ensemble at n ¼ 0.1 and ϕe ¼ 1=2. The dashed lines corresponding to
P̄ ¼ P̄c. Left: First-order transition recognized by the swallowtail behavior for P̄ < P̄c. Curves from left to right represent
P̄ ¼ 0.04P̄c; 0.08P̄c; 0.2P̄c; 0.5P̄c, and P̄c. Right: Swallowtail behavior returns back for all P̄ > P̄c. Curves from left to right
represent P̄ ¼ P̄c; 2P̄c; 3P̄c; 5P̄c, and 7P̄c.
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Lc ¼ 0.2: ð98Þ

The region between the two critical points in the
previous case disappears as the two critical points become
one. As a consequence, the continuous-phase transition
exists only at the critical point, as indicated in Fig. 10. The
three solutions corresponding to the Van der Waals fluid
occur after the critical isotherm as well as before it. Only at
the critical isotherm we can see the continuous phase
transition.
In the free energy diagram, we note the swallowtail

phenomenon throughout the whole range of pressure,
except for P̄ ¼ P̄c, see Fig. 11. The phase diagram is
plotted in Fig. 12, where we can see that except for the
critical point, the first-order phase transition from the small
to the large radii continues to take place.

4. Case III: ϕe > 1

When ϕe > 1, a single critical point exists showing a
very new behavior, namely, the continuous phase transition
region in the P − T diagram is close to the origin, in
contrast with what happens in Reissner-Nordström-AdS
solutions and Van der Waals fluids, i.e., the continuous
phase transition happens only for low enough pressures and
temperatures! Isotherms now resemble Van der Waals fluid

Merged Critical Point
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Large BH

0 10 20 30 40 50
T0

50

100

150

200
P

FIG. 12. Phase diagram of the mixed-dyonic Taub-NUT AdS
solutions at ϕe ¼ 1=2 for n ¼ 0.1 showing a first-order phase
transition continues endlessly for all values of P̄ except for
P̄ ¼ P̄c. The critical point ðT̄c; P̄cÞ is declared by the circle.
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FIG. 13. Mixed-dyonic NUT solutions showing single critical point behavior for ϕe > 1. Isotherms decrease the temperature from top
to bottom for each panel. In calculations n ¼ 0.1 and ϕe ¼ 1.1. The dashed line corresponds to a critical isotherm. Top left: Continuous
transition for T̄ ≤ T̄c. Isotherms from below corresponding to T̄ ¼ 0.1T̄c; 0.2T̄c; 0.5T̄c; 0.75T̄c, and T̄c. Top right: First-order phase
transition behavior for T̄ > T̄c. Isotherms from below: T̄ ¼ T̄c; 2T̄c; 3T̄c; 5T̄c, and 8T̄c. Bottom: Single critical point behavior for
ϕe > 1. Isotherms mimicking Van der Waals fluids for T̄ > T̄c only. Isotherms from below: T̄ ¼ 0.2T̄c; 0.5T̄c; T̄c; 2T̄c, and 3T̄c.
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behavior only for T̄ > T̄c. We can see in this region the
existence of the three solutions with different radii (two of
them are thermodynamically stable), see the top right panel
of Fig. 13. A first-order phase transition then occurs from

100 200 300 400 500 600T

–8

–6

–4

–2

0

FIG. 14. Free energy as a function of temperature for the
mixed-dyonic NUT-AdS solutions for n ¼ 0.2 and ϕe ¼ 1.1. The
dashed line for P̄ ¼ P̄c. Curves from left to right represent
P̄ ¼ 0.25P̄c; P̄ ¼ 0.5P̄c; 0.75P̄c; P̄c; 1.5P̄c; 2P̄c, and 3P̄c.
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FIG. 15. Phase diagram of the mixed dyonic Taub-NUT-AdS
solutions for n ¼ 0.2 and ϕe ¼ 1.1 indicating a continuous
transition for P̄ ≤ P̄c, while a first-order transition from small
to large solutions for P̄ > P̄c. The critical point ðT̄c; P̄cÞ is
declared by a dot.
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FIG. 16. Mixed-dyonic NUT solutions showing single critical point behavior for ϕe ¼ 1. Isotherms decrease the temperature from top
to bottom for each panel. In calculations n ¼ 0.1. The dashed line corresponds to a critical isotherm. Top left: Continuous transition for
T̄ ≤ T̄c. Isotherms from below corresponding to T̄ ¼ :1T̄c; 0.2T̄c; 0.5T̄c; 0.75T̄c, and T̄c. Top right: First-order phase transition behavior
for T̄ > T̄c. Isotherms from below: T̄ ¼ T̄c; 2T̄c; 3T̄c; 5T̄c, and 8T̄c. Bottom: Single critical point behavior for ϕe ¼ 1. Isotherms
resembling Van der Waals fluid behavior for T̄ > T̄c only. A continuous transition occurs for T̄ ≤ T̄c. Isotherms from below:
T̄ ¼ 0.2T̄c; 0.5T̄c; T̄c; 2T̄c, and 3T̄c.
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the small to the large radii for these temperatures,
which is controlled by Maxwell’s equal area law.
The region where T̄ ≤ T̄c, on the other hand, is a region
of continuous transition, top left panel of Fig. 13. Notice
that we do not have a temperature T̄0 below which the
pressure is negative for some r0 as in previous cases. The
value of T̄0 becomes negative, see Eq. (91), i.e., is
unphysical.
The free-energy diagram shows the phase transition as

presented in Fig. 14. The Figure indicates that the free
energy has a monotonic behavior for all pressures P̄ ≤ P̄c,
meaning a continuous transition between the small and the
large solution radii. Increasing the pressure beyond the
critical pressure leads to the appearance of a swallowtail
behavior characterizing the first-order phase transition,
which is a result of the abrupt change in the entropy of
the system.
We then expect a phase diagram with a first-order phase

transition that begins immediately after P̄c and continues
endlessly, while for all values of the pressure with P̄ ≤ P̄c
the system goes to the one-phase state, or a continuous
transition. This is declared in Fig. 15.

5. Case IV: ϕe = 1

This case is very similar to the previous one, where again
there exists a single critical point. For n ¼ 0.1 we get the
single critical point

P̄c ¼ 1200; T̄c ¼ 226.27; r0ðcÞ ¼ 0.07: ð99Þ

The corresponding AdS scale is

Lc ¼ 0.05: ð100Þ

The resulting critical point has the mirror image behavior
as in the previous case. Isotherms resemble the Van der

Waals fluid when T̄ > T̄c. Only in these temperature
regions we can find a first-order phase transition, see the
top right panel of Fig. 16. While for the temperatures
T̄ ≤ T̄c, we get a continuous transition in this region, top-
left panel of Fig. 16. The temperature T̄0 is also negative in
this region and is given by

T̄0 ¼ −
n2

r30
ð101Þ

The above behavior is confirmed by the free energy
diagram, Fig. 17, and the phase diagram, Fig. 18.

V. CONCLUSION

In this article, we extend our earlier approach [1,16] to
study Taub-NUT-AdS and dyonic-NUT-AdS solutions by
introducing a NUT charge N ¼ nð1þ 4n2=L2Þ and its
chemical potential ϕN to the thermodynamics of these
solutions. The charge N is conserved since it is the dual
quantity of the mass obtained from Komar’s integral. One
can work as well with the conjugate pair ðn;ϕnÞ instead of
ðN;ϕNÞ, since ϕn is related to ϕN by a simple factor. We
have shown that in extended thermodynamics, i.e., as we
allow AdS radius to change, the enthalpy for Taub-NUT-
AdS is H ¼ M − nϕn. Here the enthalpy is not identified
with the gravitational mass anymore, instead, it is related to
the mass by a Legendre transform which vanishes as we
send n to zero. We have extended this previous idea to the
charged dyonic Taub-NUT-AdS solutions to construct a
consistent thermodynamics for the dyonic solution. We
were able to show that the first law, Gibbs-Duhem, and
Smarr’s relations are all satisfied. Also, the entropy is the
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FIG. 17. Free energy diagram for the mixed-dyonic NUT-AdS
solutions for ϕe ¼ 1 at n ¼ 0.1 showing a first-order phase
transition only for P̄ > P̄c. The dashed line for P̄ ¼ P̄c. Curves
from left to right represent P̄ ¼ :25P̄c; P̄ ¼ 0.5P̄c; 0.75P̄c; P̄c;
1.5P̄c; 2P̄c, and 3P̄c.
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FIG. 18. Phase diagram of the mixed Taub-NUT-AdS solutions
for ϕe ¼ 1 and n ¼ 0.1 showing endless first-order small-large
radii transition for P̄ > P̄c. The critical point ðT̄c; P̄cÞ is declared
by a dot.
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area of the horizon and the temperature goes to that of a
dyonic-AdS black hole as n → 0. An important part of this
work is our study of possible phase structures which was
analyzed in details using the above approach. We have
classified these phase structures into canonical ensembles
in which the electric potential is set ϕe ¼ 0, and mixed ones
in which the magnetic charge is set qm ¼ 0. Our analysis
shows some new interesting features which were not
reported elsewhere. We found that the phase structure of
these solutions is characterized by two distinguished
critical points between them there exists a continuous
phase transition, especially, in the canonical case and
the mixed case with 1=2 ≤ ϕe < 1. We also studied
the possibility of merging these two points into one for

the canonical and mixed ensembles. Another intriguing
cases are those with ϕe ≥ 1 in the mixed ensemble which
have one critical point but the continuous phase transition
region in the P − T diagram is close to the origin in contrast
to the usual case of the charged black holes in AdS. Also,
the continuous phase transition happens, in this case, if we
go to low enough pressure and temperature. It is interesting
to check if the two critical point phase structure is
analogous to any known fluids in condensed matter
systems. This should be interesting, especially upon study-
ing what happens around the merged point! A natural
extension of this work is Kerr-NUT-AdS and Kerr-NUT-
Newman-AdS which we hope to report on them in the near
future.
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