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The line of sight velocity dispersion of the ultradiffuse galaxies (UDGs) NGC1052-DF2 and NGC1052-
DF4 have been reasonably explained only with the baryonic matter, without requiring any dark matter
contribution. The comparable ratio between the baryonic and halo mass also ascertain the above claim for
the two dark matter deficit galaxies. This paves the way for analyzing alternative gravity theories such as
the fðRÞ gravity and the renormalization group correction to general relativity (RGGR). The analysis of the
line of sight velocity dispersion shows that the choice of fðRÞ gravity models such as Taylor expanded
fðRÞ about R ¼ 0 or a simple power law model of choice Rn is consistent with the observational data.
Similar statistical analysis is done for the RGGR and is also found to be a viable explanation for the
observed velocity dispersion. We perform a global fit of the model parameters together with both the
UDGs. The coupling parameters of the theories are considered as the global ones, and local variables such
as the scale parameters are considered to be dependent on the individual galaxy.
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I. INTRODUCTION

The affinity of the ΛCDM [1,2] with the observations
makes it a successful model to understand the dynamics of
the Universe. Together with the introduction of dark matter
(DM) and dark energy (DE) to the total energy budget of
the Universe, ΛCDM can explain the observations on both
the cosmological and astrophysical scales, like accelerated
expansion of the Universe [3,4], missing mass problem in
galaxies and clusters [5,6] etc. However, ΛCDM also has
certain shortcomings. On the astrophysical scales there
are issues such as core-cusp problem, missing satellite
problem [7,8], satellite plane problem [9] and problems on
large scales include fine tuning problem, horizon problem,
coincidence problem, and tensions between early and late
time observations [10,11]. This motivates the study of
alternative proposals which introduces additional terms in
the gravity action, for example adding higher order Ricci
scalar, dynamical scalars, vectors or tensor fields, etc. [12].
This in turn introduces extra degrees of freedom. In context
of such alternative theories, the dynamical nature of
Universe is explained by the modified action of gravity
whereas the structure of energy momentum tensor con-
stitutes only of baryonic matter. Such an alternative theory
of gravity must be able to explain the gravitational
dynamics both in the strong and weak-field regimes. In
particular, it should regain a valid Newtonian limit on the

Solar System scales. Additionally, it must be relativistic,
self-consistent and a complete theory free of ghosts and
instabilities. These above mentioned criteria are crucial to
construct any consistent theory of gravity [13]. In this
regard, we look into the kinematics of two such galaxies in
different alternative gravity scenarios. The kinematics of
the galaxies NGC1052-DF2 and NGC1052-DF4 are rea-
sonably explained with the baryonic matter with almost no
requirement for DM. The DM deficit nature of ultradiffuse
galaxy NGC1052-DF2 (hitherto mentioned as DF2) [14]
became a key as it was the first galaxy observed to have
DM decoupled with baryonic mass. This contradicted
the common structure that galaxies are enclosed within a
spheroidal DM halo. Similar was the case with NGC1052-
DF4 (hitherto mentioned as DF4) [15] which was also
found to be DM deficit. Both the ultradiffuse galaxies
(UDGs) are near the same host galaxy NGC1052 [16] and
the DM deficit nature of galaxies came into light recently
using Dragonfly Telescope Array (DTA) [17]. Thus, the
kinematics of these dark matter poor UDGs become a
promising tool to study the alternative gravity frameworks
as the DM model details are of no consequence here.
Indeed, the Newtonian dynamics alone without DM can
explain the kinematics successfully. Thus, these systems
can be considered to give the most conservative estimate on
the alternative theory of gravity. Among the many gravity
models, Milgromian dynamics (MOND) [18] with external
field effects coming from the host galaxy NGC1052 of DF2
and DF4 could accommodate the observed velocity
dispersion (VD) [19–22]. Similarly, VD evaluated for
scalar-tensor-vector gravity (STVG), Emergent and Weyl

*b.esha@iitg.ac.in
†sayan.chakrabarti@iitg.ac.in
‡sovan@iitg.ac.in

PHYSICAL REVIEW D 108, 064021 (2023)

2470-0010=2023=108(6)=064021(10) 064021-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1332-0006
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.064021&domain=pdf&date_stamp=2023-09-11
https://doi.org/10.1103/PhysRevD.108.064021
https://doi.org/10.1103/PhysRevD.108.064021
https://doi.org/10.1103/PhysRevD.108.064021
https://doi.org/10.1103/PhysRevD.108.064021


conformal gravity model was found to lie within the range
of observations for UDGs [23–26]. In the following, we
study the kinematics of these UDGs in the light of the
modified gravity models and find the global best fit
parameters treating both the UDGs together. In particular
the radial variation of the VD for these UDGs are analyzed
for two different kinds of gravity models viz. fðRÞ and
renormalization group correction to general relativity
(RGGR) gravity.
The fðRÞ gravity model studied in this work assumes an

arbitrary functional form of Ricci scalar (R) as compared to
a linear R dependence as is done in general relativity (GR).
The fðRÞ model has a potential to give an alternative
description to dark energy [27,28]. The model is also
successful to explain inflationary era and bouncing
cosmology [28]. Many different functional forms for
fðRÞ have been proposed in the literature [12,27–29].
We study two such functional forms of fðRÞ as motivated
from [30,31]. In general, the fðRÞ theory is free of
Ostrogradsky ghosts [32,33] which haunts the stability
of many alternative gravity models. For fðRÞ theory to be
called successful it needs to be satisfied on all scales i.e.,
near and far IR regions. Our aim in this work is to test both
the UDGs in context of two different fðRÞ gravity models.
The first model assumes a more general functional form

for fðRÞ [30]. The solution for the weak-field potential for
this model adds a Yukawa like term (exponential form) to
the Newtonian potential. The exponential nature found here
is not unique and is also observed and studied for other
gravity models such as scalar-tensor vector gravity [34,35],
Horndeski gravity [36] etc. The earlier works on this model
check the validity of the theory in regions of spiral and
elliptical galaxies [30,37]. The second functional form we
analyze is motivated from [31]. This model assumes a
power law form for fðRÞ i.e., fðRÞ ∝ Rn with n > 1 as a
lower limit to the slope of the functional form. The rotation
curve (RC) for a selection of low surface brightness
(LSB) galaxies (expected to be DM dominant) showed a
promising fit with the observations for this power law
model [31,38,39].
We also look into another alternative gravity model which

involves the quantum group correction to GR namely,
renormalization group corrected general relativity (RGGR)
[40]. The dependence of gravitational coupling constant G
on the energy scale can cause significant influence on the
dynamics of the Universe [41]. The RGGR model with the
running of the gravitational coupling is parametrized in
terms of a phenomenological parameter ν̄, whose variation
can be as small as 10−7. However, this small change can have
impact on the kinematics of the galaxy. Previous works done
on the RGGR model [40–44] studied on astrophysical scales
show that the kinematics can be satisfactorily explained.
Interestingly, it is to be noted that the model parameter is
found to have a linear dependence on the baryonic mass of
the system [45].

In this work, we focus on statistical analysis of the
velocity dispersion data of these UDGs with and without
(Newtonian only) the alternative gravity models. Our work
statistically analyse the two fðRÞ proposals with the
observed velocity dispersion data. Similar analysis is also
done for RGGR gravity. We in this work initiate the probe
of the said alternative gravity models with the velocity
dispersion analysis. Additionally, we distinguish the local
and global parameters of the alternative gravity models. For
example, both the fðRÞ proposals require scale parameters
constrained by the size of the galaxy, such model param-
eters are treated as local ones. However, the coupling
parameters in these models can be considered to be global
and not dependent on the characteristics of the particular
galactic system. Therefore, we initiate the global analysis of
the alternative gravity models and fit the global parameters
together with the DF2 and DF4 VD observations data.
We compare the results between the individual and global
analysis.
It is to be noted that our choices of the gravity models in

this analysis are consistent [11,13]. However, these models
involve free parameters which are varied in the consistency
limits and are constrained from the observational data. The
phenomenological models we probe are in contrast with
the MOND which has a single fundamental constant in the
theory. Contrary to MOND, these gravity models contain
parameters which are not fundamental but the theories are
consistent according to the criterion mentioned above.
The paper is organized as follows. Section II talks about

the formalism where we discuss the analytical measure-
ments to evaluate VD. Section III discusses the observa-
tions and density profile of UDGs DF2 and DF4. The
next Sec. IVexplains the different gravity models chosen to
be looked into for such DM deficit galaxies. In Sec. V, we
describe the statistical analysis and compare the results.
This section also mentions the fitting for individual and
global scenarios. Finally, we conclude in Sec. VI.

II. FORMALISM

Velocity dispersion (VD) is an important tool to under-
stand the kinematics of galaxies which are not rotationally
supported [46]. The VD (σ) of a star under the influence of
gravitational potential of the surrounding mass of a galaxy
is governed by the radial Jeans equation [47];

∂

∂r
ðρðrÞσ2ðrÞÞ þ 2ρðrÞβσ2ðrÞ

r
¼ ρðrÞaðrÞ: ð1Þ

Here we assume a spherically symmetric mass distribution
and r is the radial distance from the center of the galaxy,
β is the anisotropy parameter which is the measure of
deviation of VD from radial isotropy, aðrÞ is the accel-
eration due to gravity and ρðrÞ is the density profile for the
galaxy. For an isotropic system the parameter β ¼ 0,
implying equal radial and the tangential components of
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VD. In this study we treat our systems to be isotropic and
under this assumption the expression for VD reduces to,

σ2ðrÞ ¼ 1

ρðrÞ
Z

∞

r
ρðr0Þaðr0Þdr0: ð2Þ

However, the physically relevant quantity measured in
astrophysical observation is the projection of the above
mentioned radial VD on the line joining the observer and
the center of the system, termed as the line of sight (LOS)
velocity dispersion. Thus, σLOS expressed in terms of the
radial VD and the density profile of the system is written as:

σ2ðRÞLOS ¼
R
∞
R

σ2ðrÞρðrÞffiffiffiffiffiffiffiffiffi
r2−R2

p drR
∞
R

rρðrÞffiffiffiffiffiffiffiffiffi
r2−R2

p dr
: ð3Þ

The LOS VD is a function of R, which is the projected
distance from the center of the galaxy. Therefore, given the
weak-field limit potential for a gravity model, one can
compute the radial acceleration. This evaluates the radial
VD for a given mass density [ρðrÞ] for the galaxy. Now, the
variation of the LOS VD with R can be estimated and
matched with the observational data which puts constraints
on the parameters of different gravity models in question.

III. OBSERVATIONS

Observed baryonic matter with GR as the underlying
theory of gravity fails to explain the flattening of the
galactic rotation curves at large radius for majority of the
galaxies. One way to resolve the issue is the addition of DM
together with the baryonic matter [48]. This problem has
also been studied by modifying the underlying theory of
gravity with or without DM. The explanation with the
existence of DM is supported from the perspective of
cosmology and astroparticle physics. Thus, for such galac-
tic systems, the phenomenology of modified gravity gets
complicated due to the presence of additional DM model
parameters. In this sense, any DM deficit system is unique
and would provide a test bed for different modified gravity
models.
The first galaxy discovered [14] with negligible presence

of DM was NGC1052-DF2 (here on mentioned as DF2).
This ultra diffuse spheroidal galaxy DF2 is located near the
host galaxy NGC1052 which was originally discovered
in [16]. The total mass enclosed within the radius of
7.6 kpc for DF2 is 3.4 × 108M⊙ [49]. The observed ratio
MDM=Mstellar is of Oð1Þ which is almost 400 times lower
than typical galaxies enclosed by DM halos [14]. The radial
velocity of the 10 globular clusters within DF2 were
also studied from the Doppler shift of Calcium triplet
line [14]. These observations suggest an average velocity
of 1803 km=s for these globular clusters. The observed
VD at 90% CL turns out to be less than 10.5 km=s. The
mass density of DF2 is estimated from the luminosity

distribution using the stellar mass to light ratio. The
luminosity distribution is parameterized using the Sersic
profile [47,50] with Sersic index n ¼ 0.6, axis ratio b=a ¼
0.85 and half-light radius as 2.2 kpc. The stellar mass
for the galaxy calculated from this density profile is
2 × 108M⊙ and is consistent with the low DM interpreta-
tion of DF2 [14]. Another UDG observed [15] within the
same group NGC1052 i.e., NGC1052-DF4 (here on men-
tioned as DF4) shows similar nature. The spectroscopy and
imaging confirmed the presence of 7 globular cluster like
objects within. Similarly for DF4 the luminosity is esti-
mated by the Sersic profile with Sersic index n ¼ 0.79, axis
ratio b=a ¼ 0.89 and major-axis half light radius 1.6 kpc.
Similar analysis for DF4 showed intrinsic VDmeasurement
of about 4.2þ4.4

−2.2 km=s. The ratio of MDM=Mstellar computed
from the VD observation is of the Oð1Þ, suggesting the
existence of a second galaxy lacking DM [15].
The density profiles for both the UDGs, DF2 and DF4

are found to be similar and can be approximated as [23];

ρðrÞ ∼ 40ρ0
63rs

exp

�
−
�
11r
10rs

�
4=3

�
; ð4Þ

where ρ0 is the characteristic surface mass density and rs is
the effective radius. Both the ultra-diffuse galaxies are at a
distance of about 20 Mpc [14,15], resulting in the density
parameters (ρ0, rs) for DF2 to be (1.25 × 107M⊙=kpc2,
2 kpc) and (1.15 × 107M⊙=kpc2, 1 kpc) for DF4. Given
these density profiles one may estimate the VD for the
system.
To begin with, we probe the standard gravity paradigm

described by Newtonian gravity from the observational
data for the two UDGs. The acceleration for a spherically
symmetric system in Newtonian gravity is written as;

aðrÞ ¼ −
G
r2

Z
r

0

4πρðr0Þr02dr0: ð5Þ

Here, G is the gravitational constant and ρðrÞ is the
approximate density distribution of UDG as given in
Eq. (4). The LOS VDs evaluated for both the galaxies
are shown in Fig. 1. The left panel is for DF2 and right one
shows the case for DF4. The blue dashed lines in both
panels show the estimated radial variation of LOS VD.
Additionally, the orange, blue, and green shaded regions
are the 1σ and 2σ and 3σ regions on the predicted VD
measurements [19]. The red dots with error bars are the
observations of the individual globular objects present
within the galaxy i.e., 10 such objects for DF2 [14] and
7 objects for DF4 [15].
The above-mentioned UDGs due to the lack of DM

are the best candidates to probe the parameter space for
different alternative gravity models, resulting in LOS VDs
different than the Newtonian curves shown in Fig. 1.
In particular, for the modified gravity in the weak-field
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limit, aðrÞ will have an additional term compared to the
Newtonian scenario. We use this modified expression for
acceleration to estimate the velocity dispersion and con-
strain the gravity model parameters from the UDG
observations.

IV. MODELS

The breakdown of GR at different length scales has led to
the proposal of many alternative models of gravity. One set
of models where the Ricci scalar R in the Einstein-Hilbert
(E-H) action is replaced by an analytic function of the R,
known as the fðRÞ gravity models, has been extensively
studied in the context of astrophysics and cosmology. As
already mentioned earlier, one of the crucial successes
of using such fðRÞ models was to explain the cosmic
acceleration. It may be noted at this point that any analytic
form of fðRÞmay give rise to a new model of gravity, but it
is crucial to get the model tested against observations.
Toward this direction, testing the fðRÞ theories against
observations at astrophysical as well as cosmological scales
is extremely important. For example, on the astrophysical
scales, the velocity dispersion observations for the UDGs
can be used to constrain the modified gravity parameters. In
our work, we plan to study the kinematics of the two UDGs
by choosing two different types of gravity models viz.,
fðRÞ gravity and RGGR. Validity of these gravity models
are probed by scanning the free model parameter space
against the UDG velocity dispersion observations.

A. f ðRÞ gravity
In an alternative approach to ΛCDM, we can assume

E-H action to have a general fðRÞ form instead of Ricci
scalar R [27,51]. The literature suggests many different
functional forms for fðRÞ which satisfies different obser-
vational regimes of the Universe [12]. These different
choices for the functional form add to the complexity of

the theory. Additionally, there can be models such as
fðRÞ ∝ 1=R which consistently explains the acceleration
of the Universe without the need for DE but suffers from an
instability as discussed by Dolgov and Kawasaki [32].
Keeping the above mentioned factors in mind we look

into two cases of fðRÞ. The first model assumes a
generalized functional form which is Taylor expanded
about a flat background. Similarly, for the second model
a specific form of fðRÞ that is ∝ Rn is chosen and analyzed.

1. f ðRÞ gravity (model A)

This generic choice of fðRÞ gravity model assumes a
Taylor expansion of the functional form about the
Minkowskian background that is R ¼ 0 [30,52]:

fðRÞ ≃
X∞
i¼0

fið0ÞRi

i!
; ð6Þ

where fi are the coefficients associated with the expansion.
The first term of the series is a constant and can be set to
zero. Thus the further solution has no dependence on the
parameter f0. The resultant solution in the weak-field limit
can yield a modified potential given as [30]:

ϕðrÞ ¼ −
�
GM
1þ δ

�
1þ δe−r=λ

r
: ð7Þ

In the above Eq. (7), the additional Yukawa like term is
characterized by δ and λ. Also, as can be seen from
the equation above, for the pointlike baryonic mass M
the Newtonian part is scaled by a factor 1

1þδ. Here, δ is the
coupling which determines the nature of the additional
force and can be attractive or repulsive depending on the
sign of the parameter. Following [53], we consider δ to be
negative and within the range −1 < δ < 0, implying

FIG. 1. Radial variation of LOS VD for DF2 (left) and DF4 (right) shown using blue dashed line, assuming the underlying gravity to
be Newtonian with no DM component. The red dots with the error bars are the observational VD measurements for individual globular
cluster present within both the galaxies [14,15]. Additionally, we show the 1σ (orange), 2σ (blue), 3σ (green) deviations of VD [19] from
observations.
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repulsive nature of Yukawa force. Substituting δ ¼ 0 in
Eq. (7), gives back the GR case where potential varies as
1=r. The parameter λ is the scale length and corresponds to
the size of the system under analysis. Thus, λ is not an
universal parameter. However, this fðRÞ theory still sat-
isfies the consistency conditions to be a valid theory of
gravity. This gravity model has been looked into different
regions ranging from galactic clusters dynamics [54] to
studying the VD of elliptical galaxies [37]. The analysis
shows that the Yukawa model has the potential to explain
the kinematics on astrophysical scales without any need for
DM. The phenomenological parameter δ obtained lies
roughly within the range (−0.7, −0.9). The scale parameter
λ is also found to be dependent on the size of the systems.

2. f ðRÞ gravity (model B)

This fðRÞ model replaces the Ricci scalar (R) in the
action by a power-law form given as f0Rn [31]. Solving the
equation of motion in the weak-field limit for the spheri-
cally symmetric system yields the potential,

ϕðrÞ ¼ −
Gm
2r

�
1þ

�
r
rc

�
β
�
; ð8Þ

where G is the Newtonian gravitational constant, rc is the
scale radius and β is related to the power (n) of the model as

β ¼ 12n2 − 7n − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36n4 þ 12n3 − 83n2 þ 50nþ 1

p

6n2 − 4nþ 2
:

ð9Þ

Under the conditions that the gravity is Newtonian on the
solar system scales and the potential converges even at
large distances β is constrained in the range 0 < β < 1 [31].
Additionally, rc is the scale radius at which the modified
gravity takes into effect. Thus, the parameter rc is not
universal in nature as it can change with the scale of the
problem. However, this alternative gravity model still fulfils
all the criteria to be a consistent theory. For example, on the
astrophysical scales the rotation curves of spiral galaxies
are reasonably explained with the above gravity model,
competitive to the ΛCDM explanation [39]. Similarly,
study of rotation curve of LSB galaxies showed that a
global value n ¼ 3.5 or β ¼ 0.85 can sufficiently explain
the circular velocities with rc being a local variable
depending on scale of the system [31,38].

B. RGGR

In this model we incorporate the RGGR following [40].
It is well known in quantum field theory that the relation
between the coupling constant and the energy scale is given
by a beta function, βi ¼ μ dgi

dμ , where gi are the effective
coupling constants and μ is the RG scale. Therefore, by
knowing the beta function, the coupling functions giðμÞ can

be easily determined. Although, the above approach works
well in case of field theories in flat space-time, the case
of gravity is different. The theory arising out of the
Einstein-Hilbert action is a nonrenormalizable one and at
present there is no complete theory of quantum gravity.
Nonetheless, some steps can be taken toward renormalizing
GR by treating it as a field theory in curved space-time
(see [55] for a review and related references). In the
renormalization approach, the gravitational coupling G,
which is constant in the far infrared regime (IR) is assumed
to vary with the energy scale (μ). Note that, there is no proof
that the RG induced running of the gravitational constantG
becomes zero at very low energies/large scales, however, if
the gravitational coupling runs, a natural beta function as
predicted in the literature [41,42] in various different
contexts is estimated as β ¼ μ dG−1

dμ . In particular, the
variation of gravitational coupling G is taken to be [44]

μ
dG−1

dμ
¼ 2ν

MPlanck

c2ℏ
¼ 2νG−1

0 ; ð10Þ

Solving the above equation, the variation of G with energy
scale takes the form:

GðμÞ ¼ G0

1þ ν ln μ2

μ2
0

; ð11Þ

where μ0 is the reference energy scale such that Gðμ0Þ ¼
G0 andG0 is the measured value of gravitational constant in
Solar System. Also, ν is a phenomenological parameter
determining modification to the gravitational coupling due
to RG effect. GR can be recovered by substituting ν ¼ 0 in
Eq. (11) and gravitational coupling becomes a constant
parameter. The coupling parameter is sensitive to ν hence, a
small variation of the order of 10−7 can make a significant
difference on the galactic scales. Additionally, correlating
the energy scale with some observable i.e., Newtonian
gravitational potential (ϕN) results in the relation [56];

μ

μ0
¼

�
ϕN

ϕ0

�
α

; ð12Þ

where ϕ0 is the potential measured in the Solar system and
α is the free parameter linearly dependant on the mass of the
galaxy [45]. Now, the E-H action of gravity contains, in
addition to the Ricci scalar, an energy dependent coupling
parameter G. Studying the equation of motion in the weak-
field limit, the circular velocity takes the form:

V2ðrÞ ¼ V2
NðrÞ

�
1 −

ν̄c2

ϕNðrÞ
�
; ð13Þ

where VN and ϕN are the Newtonian circular velocity and
potential respectively and c is the speed of light. The two
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unknown phenomenological parameters (ν, α) can be
written as a single unit i.e., ν̄≡ να. The connection of
the parameter with the stellar mass can be understood from
the example of Solar system having baryonic mass 10−10

times lesser than a typical galaxy. Thus, the phenomeno-
logical bound obtained (from solar system) on ν̄ is ≤ 10−17

which is consistent with the mass dependence claim of the
parameter [42]. The dependence of the phenomenological
model parameters on mass or running of gravitational
coupling parameter with defined energy scales suggests
that the free parameter changes with the scale of the
problem and hence not universal in nature. However, the
model still satisfies the consistency conditions to remain a
valid choice. In fact, phenomenological study for a selec-
tion of galaxies [44] finds the ν̄ to have a nearly linear
relation with the baryonic mass. In general, the acceleration
on the galactic scales can be written as:

ϕ0
RGGRðrÞ ≈ ϕ0

NðrÞ
�
1 −

c2ν̄
ϕNðrÞ

�
; ð14Þ

where ϕ0
RGGRðrÞ and ϕ0

NðrÞ is the RGGR and Newtonian
acceleration due to gravity respectively. For the spherically
symmetric galaxy such as UDGs, ϕN takes the form:

ϕNðrÞ ¼ −
�
GMðrÞ

r
þ 4πG

Z
∞

r
ρðRÞRdR

�
; ð15Þ

In the above equation MðrÞ is the stellar mass contained
within the radius r and ρðrÞ is the density profile of the
galaxy given in Eq. (4). The Newtonian potential ϕNðrÞ
also takes into account the effect of mass present external to
the radius r.
The phenomenological study of the RGGR model on

elliptical and disk galaxies shows best fit value of ν̄ lies in
the range of 10−6–10−8. The results obtained were in favor
with the observed dynamics of the galaxies that were
looked into [42,45].

V. RESULTS

To study the dynamical behavior of both the UDGs with
respect to the alternative gravity models we evaluate the
model parameters by comparing the estimated VD with the
observational data. We perform the statistical analysis in
two different ways. The first scenario constrains all the
model parameters for both the galaxies independently, this
we interpret as the local estimate. For the other scenario,
the global parameters for a model are fitted from both the
UDG analyzed together. While the local parameters, like
the scale parameters, are fitted individually for each UDG.
To constrain the model parameters we define a likelihood
function for each galaxy under the assumption that errors
follow a Gaussian distribution [57]:

Ljðθ; pÞ ¼ ð2πÞ−N=2

�YN
i¼1

σðriÞ−1
�

× exp

�
−
1

2

Xn
i¼1

�
σobsðriÞ − σLOSðri; θ; pÞ

σerrðriÞ
�

2
�
;

ð16Þ

where σobs are the observational data points for VD and
σLOSðri; θ; pÞ is estimated for the parameters (θ, p) pertain-
ing to the alternative gravity models. In this definition, the
parameters θ represent the global ones, while p is solely
dependent on the individual galaxy property and are the
local parameters of the gravity model. Here, σerr is the error
from the observational data. For the fðRÞ gravity the global
parameters are θ ¼ fδg and θ ¼ fβg for model A and B
respectively. The local parameters for model A and B are
p ¼ fλg and p ¼ frsg, respectively. Both these parameters
depend on the size of galaxy. Contrary to the fðRÞ model,
RGGR gravity has a single mass dependent free parameter
i.e., θ ¼ fν̄g. However the mass being similar for both the
UDGs one may treat the ν̄ as a global parameter in this
study. To compute the global parameters we now define
the total likelihood function. The observations for both the
galaxies being independent of each other allow the total
likelihood function to be defined as the product of the
likelihood function for each galaxy:

Lðθ; pÞ ¼
Y2
j¼1

Ljðθ; pÞ; ð17Þ

The best fit value for the parameter θ and p are found by the
minimization of the log-likelihood function with respect to
the model parameters.

A. f ðRÞ gravity
1. f ðRÞ (model A)

The parameter δ for the fðRÞ model A is interpreted as
the coupling signifying the deviation from the Newtonian
gravity and assumed to be in the range (−1, 0). The other
parameter λ is the scale radius and varies within the range of
size of the UDGs. The optimized model parameters values
are estimated using likelihood minimization. The best fit
(δ, λ) obtained for individual analysis of DF2 and DF4
are (−0.82, 6.16 kpc) and (−0.83, 5.39 kpc), respectively.
These results are shown as the local fit parameters in
Table I. As both the UDGs (DF2 and DF4) have almost
similar mass and size, the coupling and scale parameter as
seen from Table I are also found to be similar. For the global
analysis incorporating both UDGs, δ is treated as the
global parameter while the scale dependence parameters
(λDF2; λDF4) vary independently for each galaxy. The global
fit value for coupling parameter δ turns out to be −0.89 and
λDF2 ¼ 6.8 kpc, and λDF4 ¼ 6.5 kpc. These fit parameters
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are shown as global in the Table I. Comparing the global
parameter from UDGs with the study of elliptical galaxies
[37] it is observed that δ lies within the expected range i.e.,
(−0.7;−0.9) from the previous phenomenological study.
Also as different galaxies are of varying sizes, λ is different
but the order of the parameter does not changes drastically.
This signifies that the study of DF2 and DF4 is consistent
with the previous analysis done on the gravity model.
For these best fit parameters we plot the line of sight VDs

in Fig. 2. The DF2 results are shown in the left panel and
DF4 are in the right one. The local LOS VD results are
shown by the solid black curves in Fig. 2. The red dashed
lines in the plots represent the global scenario with the fit
parameters optimized from the total likelihood. The
Newtonian VD contribution is shown by the solid blue
line. The 1σ and 2σ and 3σ regions on the predicted VD
measurements [19] are also shown by the orange, blue and
green shaded regions. The red dots with error bars are the

observations of the individual globular objects present
within the galaxy. Our estimated VDs for all the different
fit scenarios come within the 1σ region. Comparing the
LOS VDs in both galaxies we observe that the difference of
the alternative model with Newtonian gravity is smaller in
case of DF4 galaxy. In general, the VD plot shows that
fðRÞ gravity to be a feasible choice and can explain the
kinematics for both the DM deficit UDGs. Results from
both the individual likelihood analysis and total analysis are
also in agreement.

2. f ðRÞ (model B)

This fðRÞ model is also described by two free para-
meters (β, rc). The dimensionless parameter β varied in the
range (0, 1), has a quadratic relation with the power n as
given in Eq. (9). The parameter rc can be interpreted as the
local scale parameter varying within the size of the galaxy.
The fitting parameters (β, rc) obtained from the likelihood
analysis are summarized in Table I.
For DF2 and DF4, the fit value (β, rc) for the individual

likelihood analysis obtained are (0.65, 0.30 kpc) and (0.50,
0.25 kpc) respectively. Correspondingly, the value of n
evaluated for DF2 and DF4 from Eq. (9) is 1.92 and 1.46,
respectively. For the global analysis of the combined UDGs
the β obtained is 0.60 (n ¼ 1.72) and the scale parameters
obtained for DF2 and DF4 are 0.40 kpc and 0.35 kpc,
respectively. The comparison of the global parameter β
from our study and the analysis of LSBs (β ¼ 0.8) [31]
shows that the difference between the two is not large.
Also, the scale parameter rc dependent on the mass of the
galaxy is within the same range as obtained from the study
of other LSBs. Thus, the kinematics of UDGs is consistent
with the earlier work done on the fðRÞ ∝ Rn gravity model
choice.
From the obtained best fit parameters, the radial variation

of LOS VD is shown in Fig. 3. The black solid and red
dashed line in Fig. 3 are the local and global VD
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FIG. 2. Comparison of the Newtonian radial variation of VD (blue dashed curve) for both the UDGs with the fðRÞ gravity model A.
The black solid line is the velocity dispersion for fðRÞ gravity model A from individual likelihood analysis of the DF2 (left) and DF4
(right). The red dot-dashed lines depict the best fit LOS VD from the total likelihood (TL) analysis. Other details of the plots remains
same as given in Fig. 1.

TABLE I. The model parameters for different alternative
gravity models fitted for DF2 and DF4 are shown above. The
local columns in the table contains best fit values for the analysis
with the individual galaxy likelihood. The global column fit
values are for the total likelihood. For the global analysis the
parameters δ, β, and ν̄ in their respective models are considered as
global and the parameters λ and rc remained local to individual
galaxies.

NGC1052-DF2 NGC1052-DF4

Gravity model
Model

parameters Local Global Local Global

fðRÞ model A δ −0.82 −0.89 −0.83 −0.89
λ (kpc) 6.16 6.80 5.39 6.50

fðRÞ model B β 0.65 0.60 0.50 0.60
rc (kpc) 0.30 0.40 0.25 0.35

RGGR ν̄ × 10−8 0.30 0.16 0.10 0.16
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contribution for the Rn gravity model for DF2 (left) and
DF4 (right). The blue dashed lines in both the plots are the
VD contribution when underlying gravity is taken to be
Newtonian. For both the UDGs the black and red dashed
line lies within 1σ region of the LOS VD observation. Thus,
signifying that a model having a specific Rn functional
form for fðRÞ can also be accommodated to explain the
dynamics of our chosen UDGs. Both the global and the
local fits for this fðRÞ model also are in agreement and
signifies the similarity in the properties of the two UDGs.

B. RGGR

In the case of RGGR gravity, potential in the weak-field
limit is a function of the parameter ν̄. The ν̄ parameter is
found to have nearly linear dependence on the mass of
galaxy. DF2 and DF4 having similar baryonic mass are
expected to have similar values of ν̄. Therefore, for the global
analysis we treat ν̄ as a single parameter and to be optimized
for both the galaxies. The individual likelihood analysis
for both DF2 and DF4 evaluates ν̄ to be 0.30 × 10−8 and

0.10 × 10−8 as seen from Table I. Additionally, ν̄ is also
constrained from the total likelihood for both UDGs and is
found to be 0.16 × 10−8. This small value of ν̄ parameter is
correlated with the UDG mass. As both the UDGs have low
mass in comparison to typical galaxies, the estimated ν̄ is
atleast one order smaller to the previous analysis of spiral
galaxies where ν̄ lies in the range 10−6–10−8 [44].
The line of sight VDs for these likelihood fitting are

shown in the Fig. 4. Similar to the previous figures the DF2
case is shown in the left panel and the DF4 results in the
right panel. In both panels, the VDs for the local individual
likelihood results are shown by solid black lines. Similarly,
the LOS velocity dispersion curves for the global scenario
are shown by the red dot dashed line. The LOS VD
contribution from the Newtonian gravity is represented
by the solid blue lines.
As seen from Fig. 4, the RGGR gravity contributions

from both the analysis lie within the 1σ region of the
observations (orange region). The fact that the underling
alternative gravity model of RGGR can explain the

FIG. 3. Comparison of the Newtonian radial variation of VD (blue dashed curve) for both the UDGs with the fðRÞ gravity model B.
Radial VDs for the fðRÞ model are shown by solid black lines when both galaxies i.e., DF2 (left) and DF4 (right) are treated
independently. The VDs from the global analysis using total likelihood (TL) with both the UDGs are shown using the red dot-dashed
lines. Other information about the Newtonian contribution and observations in the plots remain the same as in Fig. 1.

FIG. 4. Comparison of the Newtonian radial variation of VD (blue dashed curve) for both the UDGs with the RGGR gravity. Radial
VDs for the RGGR model are shown by solid black lines when both galaxies i.e., DF2 (left) and DF4 (right) are treated independently.
The VDs for the global analysis from total likelihood (TL) for both the UDGs are shown using the red dot-dashed lines. Other
information about the Newtonian contribution and observations in the plots remain the same as in Fig. 1.
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dynamical behavior of both the UDGs remains true for both
the global and local analysis.

VI. CONCLUSION

Several proposals are made for the Einstein’s action of
gravity by introducing terms such as vector, scalar, tensor
field in addition to Ricci scalar. Astrophysical observations
are often used as a testing probe for these models. The free
parameters of the alternative gravity models are constrained
from observations on different length scales. In this regard,
the discovery of UDGs such as DF2 and DF4 lacking DM
paves the path to study such modified gravity models. The
kinematics of these UDGs can be explained with normal
stellar matter without invoking the need for DM. Hence,
phenomenological study of the alternative gravity models
are free from the DM properties. In this study, we have
analyzed the line of sight VD for such galaxies for two
alternative gravity models i.e., fðRÞ gravity (a chosen fðRÞ
form and a general case) and RGGR gravity.
The free parameters of the gravity models have been

estimated by the likelihood analysis. While, constraining
the model parameters from both UDGs we treat certain
parameters as a global one and find the fit from both the
galaxies. The case of fðRÞ gravity is studied from two
perspective. The first model chooses a functional form
fðRÞ and adds a Yukawa like term to the Newtonian
potential. The second choice takes an effective power law
form for the fðRÞ resulting in a radius dependent power
term (∝ rβ) to the Newtonian potential. Studying both the
DF2 and DF4 galaxies for the two fðRÞ scenarios shows
that the best fit VD curve lies within the 1σ region of the
observation. Similarly, for the case of RGGR model a
potential-dependent term is added to the Newtonian grav-
ity. The free parameter of this model increases in a nearly
linear manner with mass of the galaxy. Hence, the free
parameter (ν̄) for the two UDGs having almost similar mass
turns out to be similar. The optimized VD fitted with the
free parameters also lies within the 1σ range of observa-
tions. Thus, all the alternative gravity models in this
discussion are found to be reasonable while explaining
the VD data.
In summary, the observed luminous content within both

the UDGs sufficient to understand the kinematics. Thus,
GR without DM is found to be consistent with the observed
VD for the galaxies. However, when the UDGs are looked

into the light of our chosen alternative gravity models, the
observed VD are found to be consistent with our choices
of the alternative gravity. The analysis suggests that these
gravity models with the present observational data preci-
sion cannot be ruled out. However, the presence of large
errors on the present observations for both the UDGs puts
a loose constraint on the model parameters and all the
models seem plausible. Future improvement of the data and
discovery of more such UDGs will reveal the true nature
of the galactic kinematics and boost model discrimination
capability. In the present scenario, we focus on the analysis
whether such UDGs can accommodate alternative gravity
models without the need for DM or not. Constraints can
also be put on the gravity models using alternative methods
such as rotation curve or cosmological study. Additionally,
tidal stability of UDGs in their host environment can
provide strong test of alternative gravity theories [58].
Note, that these studies are also sensitive to the distance of
the UDGs as the distance is crucial in estimating the
baryonic mass density. For our study we take the mass
density corresponding to the typical distance of DF2 and
DF4 at 20 Mpc. For the other claim of 13.2 Mpc [59] the
results would get modified. One may study the alternative
gravity models including the uncertainty of the mass
density models. These issues are beyond the scope of
our present analysis. Future discovery of similar galaxies
will definitely build a stronger avenue for these alternative
gravity models. Recently, a large number of UDGs were
found in the Coma cluster [60–62]. These UDGs in contrast
to DF2 and DF4 are rich in DM as observed from their
high rotational velocity. Studying these UDGs in light of
alternative gravity models will also be interesting.
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