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When gravitational waves (GWs) pass by a massive object on its way to Earth, a strong gravitational
lensing effect will happen. Thus, the GW signal will be amplified, deflected, and delayed in time. Through
analyzing the lensed GW waveform, physical properties of the lens can be inferred. On the other hand,
neglecting lensing effects in the analysis of GW data may induce systematic errors in the estimating of source
parameters. As a space-borne GW detector, TianQin will be launched in the 2030s. It is expected to detect
dozens of mergers of massive black hole binaries (MBHBs) as far as z ¼ 15 and thus will have high
probability to detect at least one lensed event during the mission lifetime. In this article, we discuss the
capability of TianQin to detect lensed MBHB signals. Three lens models are considered in this work: the
point mass model, the singular isothermal sphere (SIS) model, and the Navarro-Frenk-White (NFW) model.
The sensitive frequency band for space-borne GW detectors is around millihertz, and the corresponding GW
wavelength could be comparable to the lens gravitational length scale, which requires us to account for wave
diffraction effects. In calculating lensed waveforms, we adopt the approximation of geometric optics at high
frequencies to accelerate computation, while precisely evaluating the diffraction integral at low frequencies.
Through a Fisher analysis, we analyze the accuracy to estimate the lens parameters. We find that the accuracy
can reach to the level of 10−3 for the mass of point mass and SIS lens and to the level of 10−5 for the density of
the NFW lens. We also assess the impact on the accuracy of estimating the source parameters and find that the
improvement of the accuracy is dominated by the increasing of signal-to-noise ratio.
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I. INTRODUCTION

When electromagnetic waves pass near a massive object,
they are deflected, delayed, and amplified. This is known as
the gravitational lensing effect [1]. Gravitational lensing
has a wide range of applications in the study of cosmology,
the large scale structure, exoplanets, dark matter, and so on.
Similar to electromagnetic waves, gravitational waves
(GWs) may also be lensed [2]. We can use lensed GW
signals to study the nature of dark matter, the property of
GWs, and probe cosmology [3–16].
Gravitational waves from merging binary compact

objects have been detected by the LIGO/Virgo/KAGRA
Collaboration (LVK) [17]. Thus far, 90 events have been
confirmed by the LVK and announced in the Gravitational-
Wave Transient Catalog [18–21]. Many studies have been
conducted on gravitational lensing of gravitational wave

signals [3,22–36], although no convincing candidates of
lensed GW sources have been reported. Nevertheless,
prospects are high that many lensed GW events will be
found by next-generation GW detectors such as the
Einstein Telescope and Cosmic Explorer [37,38].
In the near future, space-borne GW observatories such as

LISA [39] and TianQin [40] are expected to discover
hundreds of mergers of massive black hole binaries
(MBHBs) [41,42]. In a previous study [43], it was argued
that almost 1% of the detected events may experience strong
gravitational lensing. Although the estimation may be
inaccurate due to simplification of the model, it is highly
likely that lensed GW signals at low frequencies will be
detected at future space-borne GW detectors. There is a
method that can be used to study the lensing of GWs emitted
by massive black hole binary mergers at high redshift [44].
If the wavelength is much shorter than the gravitational

radius of the lens, geometrical optics is applicable to the
calculation of the lensing effect. In the regime of strong
lensing, we may observe multiple signals that originate
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from the same source and arrive at different times with
different observed wave strengths.
However, if the GW wavelength is comparable to or

longer than the gravitational length of the lens, wave optics
must be used in the calculation, which requires accurate
evaluation of the diffraction integral. For example, if GWs
in the LVK band are lensed by stars, intermediate-massive
black holes (IMBHs), or other objects, they behave much
like light diffraction in the wave optics regime [45–48]. The
wave optics effect can perturb the plane of GW polarization
[49,50] and cause beat patterns in the time-domain wave-
form [51,52]. These effects might allow LVK to detect
massive stars, IMBHs, the dense cores of globular clusters,
and dark matter halos [53–60]. The space-borne GW
detectors will focus on the millihertz band; thus they
may observe a variety of sources such as Galactic ultra-
compact binaries [61–63], coalescing massive black holes
[42,64,65], low frequency inspirals of stellar-mass black
holes [66–69], extreme-mass-ratio inspirals [70–72], and
the stochastic GW backgrounds [47,73,74]. Because of
high event rates and the capacity in testing the nature of
gravity and black holes (BHs), MBHBs are one of the most
important sources. It can also be used to probe the nature of
BHs and gravity [75–78]. In this work, we will focus on the
lensing of GW signals from MBHBs events.
GWs emitted by MBHBs detectable by LISA allow the

possibility for wave optics effects of lensing to be detected
[79,80]. However, the sensitive band for TianQin will be a
little bit higher than LISA, so we need to consider the wave
optics and geometric optics separately for different parts of
the signals. In the calculation of the diffraction integral,
many different methods have been developed in previous
works [81–84]. In calculating the geometrical optics effects,
beyond the leading order effect, we will consider the
subleading order effect (i.e., the postgeometric correction)
following the method in [85]. This improves the accuracy
in evaluating the diffraction integral and enables a smooth
connection between results approximated in the wave
diffraction regime and in the geometrical optics regime.
In this paper, we analyzed the ability of TianQin on the

parameter estimation for the source and the lens object. We
also consider LISA as a comparison. We consider three
parametrized models for the lens, namely, the point mass
model, the singular isothermal sphere (SIS) model, and
the Navarro-Frenk-White (NFW) model. We compare
unlensed and lensed cases and quantify the precision
improvement in source parameter inference. We choose
the coalescence of MBHBs of equal masses 106M⊙ as a
fiducial GW source. The accuracy in the source parameter
inference sees an increase due to increased SNR caused by
magnification in lensing. As for the lens parameters, we
focus on parameter measurement accuracy of space-based
GW observatories. The best fractional uncertainty in
measuring the lens parameters is about 10−3 for point
mass and the SIS model and 10−5 for the NFW model.

The remainder of the paper will be organized as follows.
In Sec. II, we introduce the model for unlensed GW signals
as well as the detector response functions to be used in this
work. In Sec. III, we discuss the effect of gravitational
lensing on GWs, both in the regime of geometrical optics
and in the regime of wave optics. In Sec. IV, we study the
amplification factor FðfÞ with different lens models and
examine the results in both regimes. In Sec. VI, we present
the ability to estimate the parameters of the sources and
lenses for TianQin and LISA. In Sec. VII, we summarize
results and discuss related issues. Throughout this work,
the geometrized unit system (G ¼ c ¼ 1) is used.

II. WAVEFORM MODEL

As one of the most important GW sources for space-
borne GW detectors such as TianQin, MBHBs is expected
to have the chance to be gravitationally lensed. In this
work, we use the phenomenological waveform model
IMRPhenomD [86] to characterize its waveform including
inspiral, merger, and ringdown. The list of source param-
eters we take into account in parameter inference are η, M,
tc, DL, θS, ϕS, ι, and ψ . Here M ¼ m1 þm2 is the total
mass of the binary, η ¼ m1m2=M2 is the symmetric mass
ratio, tc is the coalescence time, and DL is the luminosity
distance at the source redshift zS. θS and ϕS are two angles
that parametrize the source position on the sky in the
detector coordinate system. ι and ψ are the inclination angle
and polarization angle, respectively. In each Michelson
channel of the interferometer, the strain hðtÞ can be
decomposed into the superposition of two linear polar-
izations [41]

hαðtÞ ¼
ffiffiffi
3

p

2

h
Fþ
α ðtÞhþðt − tDÞ þ F×

α ðtÞh×ðt − tDÞ
i
; ð1Þ

where α ¼ 1, 2 denotes the two Michelson channels of the
TianQin constellation, and tD is the difference in the light
travel time between the interferometer and the solar system
barycenter,

tD ¼ R sin θ̄S cos½Φ̄ðtÞ − ϕ̄S�: ð2Þ

According to the planned orbital configuration of the
TianQin satellite constellation, we choose R ¼ 1 AU and
Φ̄ðtÞ ¼ ϕ̄0 þ 2πt=T, where T ¼ 1 yr, and ϕ̄0 is the initial
orbital phase of TianQin at time t ¼ 0. The angles ðθ̄S; ϕ̄SÞ
are the orientation of the detector in the heliocentric ecliptic
coordinates.
The waveform is provided in the frequency domain,

while the antenna pattern functions Fþ
α and F×

α are
conveniently expressed as functions of time. Therefore,
we take the detected frequency-domain strain signal h̃αðfÞ
computed as the Fourier transform of the time-domain
signal as given by Eq. (1) [66],
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h̃αðfÞ ¼
ffiffiffi
3

p

2

n
F ½hþðt− tDÞFþ

α ðtÞ� þF ½h×ðt− tDÞF×
α ðtÞ�

o
; ð3Þ

where F ½…� denotes Fourier transformation. The results of Fourier transformation, for the two Michelson channels
α ¼ 1, 2, are given in [66] as

F ½hþðt − tDÞFþ
1 ðtÞ� ¼

1

4
ð1þ cos2θSÞ cos 2ψS

�
e2iζ1ðf−2f0Þh̃þðf − 2f0Þ þ e−2iζ2ðfþ2f0Þh̃þðf þ 2f0Þ

�

−
i
2
cos θS sin 2ψS

�
−e2iζ1ðf−2f0Þh̃þðf − 2f0Þ þ e−2iζ2ðfþ2f0Þh̃þðf þ 2f0Þ

�
;

F ½h×ðt − tDÞF×
1 ðtÞ� ¼

1

4
ð1þ cos2θSÞ sin 2ψS

�
e2iζ1ðf−2f0Þh̃×ðf − 2f0Þ þ e−2iζ2ðfþ2f0Þh̃×ðf þ 2f0Þ

�

þ i
2
cos θS cos 2ψS

�
−e2iζ1ðf−2f0Þh̃×ðf − 2f0Þ þ e−2iζ2ðfþ2f0Þh̃×ðf þ 2f0Þ

�
;

F ½hþðt − tDÞFþ
2 ðtÞ� ¼ F

�
hþðt − tDÞFþ

1

�
ϕS0 −

π

4

��
;

F ½h×ðt − tDÞF×
2 ðtÞ� ¼ F

�
h×ðt − tDÞF×

1

�
ϕS0 −

π

4

��
; ð4Þ

where we introduce two functions of the frequency,
ζ1ðfÞ ¼ ϕS0 − πftD and ζ2ðfÞ ¼ ϕS0 þ πftD, and ψS is
the polarization angle. f0 is the frequency at which TianQin
satellites orbit Earth, and ϕS0 is the initial position of the
source in detector’s coordinate frame. As for the detector
response for LISA, we take Eq. (27) in [2].

III. LENSING EFFECT

At a fixed frequency f, the gravitationally lensed wave-
forms h̃Lþ;×ðfÞ are related to the unlensed waveforms
through

h̃Lþ;×ðfÞ ¼ FðfÞh̃þ;×ðfÞ; ð5Þ

where the multiplicative, complex-valued amplification
factor FðfÞ [87] is given by the diffraction integral
[57,88,89]

FðfÞ ¼ fð1þ zLÞ
i

dLdS
cdLS

Z
d2xei2πfð1þzLÞτðxÞ; ð6Þ

where x are the angular coordinates that parametrize
the two-dimensional lens plane, dL, dS, and dLS are the
angular diameter distances to lens at redshift zL, that to
the source at redshift zS, and that between the lens and
the source, respectively. The ray travel time τðxÞ is given
by the sum of the geometrical delay and the gravitational
Shapiro delay,

τðxÞ ¼ dLdS
cdLS

�
1

2
jx − yj2 − ϕðxÞþϕmðyÞ

�
; ð7Þ

where y is the dimensionless source position. ϕðxÞ is the
lensing potential. ϕmðyÞ is the phase modulation that makes
the minimum value of the time delay zero. Note that we set
the angular position of the lens at the coordinate origin. The
angular position of the source relative to that of the lens, on
the other hand, will be accounted for by appropriately
shifting the center of the lensing potential function ϕðxÞ.
We rewrite the amplification factor FðfÞ in terms of the

dimensionless quantity

w ¼ 2πfð1þ zLÞ
dS

cdLdLS
ξ2; ð8Þ

where ξ is the normalization constant of the length in the
lens plane.
The diffraction integral needs to be performed over the

entire lensing plane. This integral is conditionally con-
vergent because the integrand is a highly oscillatory phase
factor of unity absolute value. Direct integration of the
diffraction integral is well known to be difficult and will
typically take a prohibitive amount of time to achieve
the desired precision. In order to calculate FðfÞ more
efficiently, we use the asymptotic expansion method. For
any smoothly varying function fðzÞ multiplied by a fast
oscillating phase factor, the following integral can be
reexpressed as

Z
∞

0

dzeiwzfðzÞ ¼
Z

b

0

dzeiwzfðzÞ

þ eiwb
X
n¼1

∞ ð−1Þn
ðiwÞn

∂
n−1f
∂zn−1

����
z¼b

: ð9Þ
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Reference [83] suggests that truncating the infinite series at
n ¼ 7 achieves sufficient accuracy.
In the low frequency regime, defined by w ≤ 10, wave

diffraction causes amplitude and phase distortions in the
complex number FðfÞ. In this wave diffraction regime, we
compute FðfÞ by evaluating the diffraction integral using
the asymptotic expansion method explained in the previous
paragraph. In the intermediate and high frequency regime,
defined by w > 10, the result is well approximated by
geometric optics, which predicts that the overall amplifi-
cation factor is the sum of the amplification factor of
all geometric images j ¼ 1; 2;…. It has the following
expression [88–91]:

FgeoðwÞ ¼
X
j

jμjj1=2eiðwτj−π
2
njÞ; ð10Þ

where the magnification factor of the jth geometric image
is given by

μj ¼
�
det

�
I −

∂
2ϕðxjÞ
∂x∂x

��−1
; ð11Þ

where I is the 2 × 2 identity matrix, and ∂2ϕ=∂x∂x denotes
the 2 × 2 Hessian matrix of the lensing potential ϕðxÞ.
We define τj ¼ τðxjÞ to be the total light travel time
along the ray trajectory corresponding to the jth image
and set nj ¼ 0, 1, 2 depending on if the position of the
jth image xj is a minimum, saddle, or maximum point of
τðxÞ, respectively [90–92].
In fact, Fgeo is not an extremely accurate approximation

of the exact amplification factor in the intermediate to high
frequency regime. Consequently, corrections need to be
introduced to improve accuracy. In order to better match the
amplification factor in geometrical optics approximation
with the exact value, we include the postgeometrical optics
correction δF [84,85], which is the sum of terms for
correction to the geometric magnification of images δFm
and an additional contribution δFc from the diffracted
image that arises at the cuspy lens center. Including the
postgeometric optics correction beyond the geometrical
optics limit F can be rewritten as

FðwÞ ¼
X
j

jμjj1=2
�
1þ i

w
Δj

�
eiðwτj−π

2
njÞ; ð12Þ

where

Δj ¼
1

16

"
1

2α2j
ψ ð4Þ
j þ 5

12α3j
ψ ð3Þ
j

2 þ 1

α2j

ψ ð3Þ
j

jxjj
þ αj − βj

αjβj

1

jxjj2
#
;

ð13Þ

with the coefficients defined as

αj¼
1

2

�
1 −

d2ψðjxjjÞ
dx2

�
; βj ¼

1

2

�
1 −

1

jxjj
dψðjxjjÞ

dx

�
:

ð14Þ

The second term in Eq. (12) is the correction to the
magnification factor of the geometric image,

δFmðwÞ ¼
i
w

X
j

Δjjμjj1=2eiðwτj−π
2
njÞ: ð15Þ

The correction term δFc arises from the central density
cusp of the lens. Different lens models have different δFc.

IV. LENSING MODEL

To study a range of physical lenses with different mass
profiles, we consider three lens models. They are the point
mass lens, the singular isothermal sphere, and the Navarro-
Frenk-White lens. The point mass lens is the simplest
lensing model. The SIS model lens represents the early type
galaxies, while the NFW lens is suitable for the lensing
models of cold dark matter halos.

A. Point mass lens

The point mass lens has all of its mass concentrated at
one point. Its mass density is described by [84,93]

ρðrÞ ¼ MLδ
3ðrÞ; ð16Þ

where ML is the lens mass. Then ξ can be chosen as the
Einstein radius ξ ¼ rE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4MLdLSdL=dS
p

. The dimen-
sionless lensing potential is ϕðxÞ ¼ ln jxj.
The multiplicative factorFðfÞ of the point mass lens is [2]

FðwÞ ¼ exp

�
πw
4

þ iw
2

�
ln
w
2
− 2ϕmðyÞ

��

× Γ
�
1 −

iw
2

�
1F1

�
iw
2
; 1; y2

iw
2

�
; ð17Þ

where ϕmðyÞ ¼ ðxm − yÞ2=2 − ln xm with xm ¼ ðyþffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
Þ=2. Here ΓðzÞ is the Euler gamma function,

and 1F1ða; b; zÞ is Kummer’s confluent hypergeometric
function.
In the geometric optics regime w > 10, the amplification

factor is

FgeoðwÞ ¼ jμþj1=2 − ijμ−j1=2eiwΔτ; ð18Þ

where the magnification of the two geometric
images are μ� ¼ 1=2� ðy2 þ 2Þ=ð2y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
Þ, and

the time delay between the two images is
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Δτ ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
=2þ ln½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
þ yÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
− yÞ�.

In the point mass model, the term that corresponds to
the diffracted image at the center of lens δFc is zero [85],
and the postgeometric correction to the amplification of
the geometric images δFm is the only contribution to δF.
We have

δFðwÞ ¼ i
3w

4x2þ − 1

ðx2þ þ 1Þ3ðx2þ − 1Þ jμþj
1=2

þ 1

3w
4x2− − 1

ðx2− þ 1Þ3ðx2− − 1Þ jμ−j
1=2eiwΔT; ð19Þ

where x� ¼ ðy�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 2

p
Þ=2 are the positions of both

geometric images.

B. Singular isothermal sphere

The SIS lens has a density profile [84,93,94]

ρðrÞ ¼ σ2v
2πr2

; ð20Þ

where σv is the velocity dispersion and ξ can be chosen
as the Einstein radius ξ ¼ rE ¼ 4πσ2vdLSdL=dS. Thus, the
mass inside this region is MLz ¼ 4π2σ4vð1þ zLÞdLdLS=dS.
The dimensionless lensing potential is ϕðxÞ ¼ jxj.
No close-form analytic result is known for the amplifi-

cation factor from a SIS lens. In the wave diffraction regime
w < 10, we rely on calculating the diffraction integral
numerically using the asymptotic expansion method intro-
duced before.
In the geometric optics limit, the amplification factor is

given by

FgeoðwÞ ¼
(
jμþj1=2 − ijμ−j1=2eiwΔτ; y < 1;

jμþj1=2; y > 1;
ð21Þ

where μ� ¼ �1þ 1=y and Δτ ¼ 2y. If y < 1, two geo-
metric images form on the image plane. If y ≥ 1, only a
single image forms on the image plane. The postgeo-
metrical optics correction δF is given by

δFðwÞ ¼ i
w

1

ð1 − y2Þ3=2 e
iw½y2=2þϕmðyÞ�

þ
8<
:

i
8w

jμþj1=2
yðyþ1Þ2 −

1
8w

jμj1=2
yð1−yÞ2 e

iwΔτ; y < 1;

i
8w

jμþj1=2
yðyþ1Þ2 ; y > 1;

ð22Þ

where ϕmðyÞ ¼ yþ 1=2. The first term on the right-hand
side of the equation corresponds to the diffracted image
forming at the lens’ cuspy center, while the remaining terms
are postgeometric corrections to the amplification of the
geometric image(s).

C. Navarro-Frenk-White lens

The NFW model was first proposed by Navarro, Frenk,
and White to describe the density profile of gravitationally
bound cold dark matter halos seen in numerical N-body
simulations of structure formation [95]. The density profile
of the NFW lens can be expressed as [94]

ρðrÞ ¼ ρs
ðr=rsÞðr=rs þ 1Þ2 ; ð23Þ

where rs is the scale length and ρs is the characteristic
density. The corresponding lensing potential is analytically
derived to be [96,97]

ϕðxÞ ¼ κs
2

8>><
>>:

ðln x
2
Þ2 −

�
arctanh

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p 	
2
; x < 1;

ðln x
2
Þ2 þ

�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p 	
2
; x > 1;

ð24Þ

where κs ¼ 16πρsðdLdLS=dSÞrs is the characteristic dimen-
sionless surface mass density (or the characteristic lensing
convergence) of the lens.
Since the Einstein radius of NFW lens does not have

an analytic form, we choose the scale radius rs as the
normalization length ξ instead of the Einstein radius. In the
sameway we treat the SIS lens, in the low frequency regime
the amplification factor FðfÞ is numerically calculated
using the asymptotic expansion method. When y < ycr,
there are three images. Whereas, when y > ycr, only one
image is formed.
Unlike what is done for the point mass lens and the SIS

lens, the position of the radial caustic ycr, the positions of
the geometric images xj, and their corresponding magni-
fication factors μj and time delays Tj are all computed by
numerically solving the ray equation of geometric optics.
As a result, the amplification factor in the geometric
optics limit Fgeo is obtained numerically. The postgeomet-
ric optics correction to the amplification factor is given by

δFðwÞ ¼ i
w

X
j

Δjjμjj1=2eiðwτj−πnjÞ þ
κs

ðwy2Þ2 e
iwðy2=2þϕmðyÞÞ;

ð25Þ
where the first term comes from the corrections for the
magnifications of the images, and the second term is the
diffracted image at the lens center.

V. SIGNAL-TO-NOISE RATIO AND FISHER
INFORMATION MATRIX

In GW data analysis, the inner product between two
strain time series aðtÞ and bðtÞ is defined as

ðajbÞ ¼ 4Re
Z

∞

0

df
ãðfÞb̃�ðfÞ
SNðfÞ

; ð26Þ
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where ãðfÞ and b̃ðfÞ are the Fourier transform of time
series aðtÞ and bðtÞ, respectively, the asterisk denotes
complex conjugation, and SNðfÞ is the one-sided power
spectral density (PSD) for the strain noise in the detector
under consideration.
The expected noise PSD of TianQin can be approxi-

mated by the following analytic expression [40]:

SNðfÞ ¼
1

L2

�
Sa

ð2πfÞ4
�
1þ 10−4 Hz

f

�
þ Sx

�
; ð27Þ

with the acceleration noise Sa¼1×10−30m2 s−4Hz−1, the
displacement measurement noise Sx ¼ 1 × 10−24 m2Hz−1,
and the arm length L ¼ ffiffiffi

3
p

× 105 km. The estimated noise
PSD of LISA can be found in [98].
For a GW signal hðtÞ and a given detector, the SNR ρ is

defined as the square root of the inner product of itself,

ρ ¼ ðhjhÞ1=2 ¼
�
4Re

Z
∞

0

df
jh̃ðfÞj2
SnðfÞ

�
1=2

: ð28Þ

We follow the Fisher information matrix formalism [99]
to estimate the precision of parameter inference. In the limit
of large signal-to-noise ratios, the parameter estimation
uncertainty for parameters θi and Δθi have a multivariate
Gaussian distribution,

pðΔθ⃗Þ ¼ Ne−
1
2
ΓijΔθiΔθj : ð29Þ

Here, the inverse covariance matrix Γij is identified with the
Fisher information matrix, which can be calculated as

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

�
: ð30Þ

The appropriate normalization factor is given by N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΓ=2πÞp

. The root-mean-square of θi is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔθiÞ2i

q
¼

ffiffiffiffiffiffi
Σii

p
; ð31Þ

where Σ ¼ Γ−1 is the inverse of the Fisher matrix.

VI. PARAMETER ESTIMATION
FOR THE LENS OBJECTS

In this section, we exhibit the precision of parameter
estimation (PE) for source parameters and lens parameters
with lensed GW signals. As a default choice of the
parameters, we choose the redshift of the MBHB equal
to zs ¼ 1 and the time of coalescence tc ¼ 0. We also set
the angle parameters as θS ¼ π=3, ϕS ¼ π=3, ι ¼ π=6, and
ψ ¼ π=6. The lens object is set as zL ¼ 0.5. We assume
the operation time of TianQin and LISA to be five years.
Because the detector plane of TianQin is nearly

perpendicular to the ecliptic plane, the sunlight may
enter the telescopes directly if the sun is nearly coplanar
with the detector plane. In order to protect the
optical system from sunlight, TianQin will adopt the
“3 months on þ 3 months off” observation scheme, and
thus the effective observation time is 2.5 years.

A. Source parameters

As for source parameters, we take η andMz as examples,
and other parameters have similar behavior. In Fig. 1, we
exhibit the SNR and the precisions increased due to the
lensing effect for η and Mz in the point mass model, with
y ¼ 0.3. The horizontal axes are chosen to be the redshifted
mass of sourceMz and lensMLz. In addition to the increase
of SNR relative to the unlensed case plotted in solid lines,
we also plot the improvement of the precision for η and M
in dotted and dashed lines, respectively. The red and blue
lines are the result for TianQin (TQ) and LISA. The upper
panel of Fig. 1 shows the SNR and the precisions increase

FIG. 1. The SNR and precisions increase of η and Mz with the
variation of MLz and Mz with point mass lens.
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of η andMz with the variation ofMz, and the redshifted lens
mass is chosen to be MLz ¼ 107M⊙. The lower panel of
Fig. 1 shows the SNR and the precisions increase of η and
Mz with the variation of MLz, and the redshifted total mass
is chosen to be Mz ¼ 2 × 106M⊙.
We can learn from Fig. 1 that the improvements on the

PE accuracy of source parameters are mainly due to the
increase of SNR. If the mass of the source is small enough,
or the mass of the lens is large enough, the geometric optic
effect will dominate the result, thus we can see that the
improvement on the PE accuracy is almost proportional to
the increase of SNR. However, in the wave effect domi-
nated region it will have some fluctuations, but it is still
dominated by the effect of SNR.
The result for the SIS model with y ¼ 0.3 is plotted in

Fig. 2, corresponding to the case of (upper) MLz ¼ 107M⊙
with varying Mz and (lower) Mz ¼ 2 × 106M⊙ with
varying MLz. The result for the NFW model is plotted
in Fig. 3. We only consider the case of varying Mz with

κs ¼ 1,rs ¼ 0.4 kpc and y ¼ 0.3. We can find that, for all
three lens models, the increase of the PE accuracy of the
source parameters is dominated by the increase of the SNR
due to the lensing effect. For the geometric optic region,
they will have a linear relationship, but there will exist some
fluctuations in the wave optic region.

B. Lens parameters

In this part, we choose the total mass of the MBHB as
106 þ 106M⊙, and thus the SNRs of the unlensed signal are
4285 and 7541 for TianQin and LISA, respectively.

1. Point mass lens

In Fig. 4, we show the precesions of MLz (upper) and y
(lower) with the variaion of MLz for different values of y.
The solid and dashed lines are the estimation errors of MLz
of TianQin and LISA, respectively. In the upper panel, we
plot the estimation errors of MLz with the variation of MLz
with y ¼ 0.1, y ¼ 0.3, y ¼ 1, and y ¼ 3 in different colors.
The curves in the lower panel are the estimation errors of y
with the variation of MLz with these different y. In general,
the trend of the estimation errors declines. When MLz is
large enough, the precisions of lens parameters become
stable. It is obvious that the estimation ability of y ¼ 1 is
best, and the estimation ability of y ¼ 0.3 is better than that
of y ¼ 0.1. However, if y is too large, such as y ¼ 3, the
estimation ability will be worse. Comparing the curve of
y ¼ 0.1 and y ¼ 3, we can find that the estimation errors of
y ¼ 3 converge more rapidly, but the estimation ability is
worse when the estimation errors converge. The larger y is,
the more quickly estimation errors converge. The best
accuracy of lens parameters with the point mass model is
about 10−3. The estimation ability of LISA is better than
TianQin, and this is mainly caused by the higher SNR of
LISA, which is about 1.8 times the SNR of TianQin for the

FIG. 2. The SNR and precisions increase of η and Mz with the
variation of MLz and Mz with SIS lens.

FIG. 3. The SNR and precisions increase of η and Mz with the
variation of Mz with NFW lens.
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source with 106 þ 106M⊙. This feature can also be found
for SIS and NFW models in Figs. 6–8.
We also exhibit the precisions of MLz and y of different

MLz with the variation of y in Fig. 5. In the upper panel, the
curves in different colors are the estimation errors of MLz

with the variation of y withMLz ¼ 106M⊙,MLz ¼ 107M⊙,
andMLz ¼ 108M⊙, respectively. The estimation errors of y
with the variation of y for different MLz are plotted in the
lower panel. When MLz ¼ 108M⊙, the blue curves in the
upper panel are almost the same as those in the lower panel.
The parameter estimation accuracy of MLz is better for
10−2 < y < 10. Similarly, the green curves in the upper
panel are almost the same as those in the lower panel, too.
When y < 10−1, the estimation errors of MLz are stable.
When 10−1 < y < 10, the accuracy of MLz is best. In the
case that MLz ¼ 106M⊙, if y is smaller than 1, the
estimation errors of MLz will be stable. In other words,
if y is small enough, the curves will be stable. While y
approaches 1, the accuracy of MLz will approach its best
value. When y equals 10, the value of the negative

magnification μ− is about 10−4, and thus the second image
is almost invisible. We can take this situation as the case of
that without lensing.

2. Singular isothermal sphere

The estimation errors calculated from SIS are exhibited
in Figs. 6 and 7 for TianQin in solid lines and for LISA in
dashes lines. In the upper panel of Fig. 6, we plot the
estimation errors of MLz with the variation of MLz with
y ¼ 0.1, y ¼ 0.3, and y ¼ 3 in different colors. In the
lower panel of Fig. 6, the lines in different colors are the
estimation errors of y with the variation ofMLz for different
y. We can learn from Eq. (22) that if y ¼ 1, there will be a
singularity, so we do not consider this situation in Fig. 6.
When y ¼ 0.1 or y ¼ 0.3, if MLz > 107M⊙, the estimation
errors of lens parameters tend to be stable. Instead, when
y ¼ 3 and MLz > 106M⊙, if MLz becomes larger, the
estimation errors of lens parameters will become larger
too. If MLz is close to 106M⊙, the accuracy of lens
parameters will be best. The best accuracy of lens

FIG. 4. The precisions of MLz and y of different y with the
variation of MLz.

FIG. 5. The precisions of MLz and y of different MLz with the
variation of y.
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parameters with the SIS model is about 10−3 and a little
better than that with the point mass model. The estimation
ability of LISA is slightly better than TianQin.
Then, we show the estimation errors of MLz and y of

different MLz with the variation of y in Fig. 7, and the
results for TianQin and LISA are plotted in solid and
dashed lines, respectively. The curves with different colors
on the upper panel correspond to the estimation errors of
MLz with the variation of y with differentMLz. In the lower
panel, these different curves are the estimation errors of y
with the variation of y with differentMLz. When y < 1, the
estimation errors of MLz are stable. When y approaches 1,
we calculate the amplification factor FðfÞ and ∂FðfÞ=∂θi
using the diffraction integral. We can learn from Fig. 7 that
the estimation errors of MLz are oscillating in the geomet-
rical optics approximation. In the lower panel of Fig. 7,
when MLz ¼ 106M⊙, if y is small enough, such as smaller
than 10−2, the curves of estimation errors of y will become
stable. However, when MLz ¼ 108M⊙, in this case the
estimation errors are stable. When y is near 1, the
estimation abilities are best.

3. Navarro-Frenk-White lens

For the NFW model, we plot the estimation errors
of κs and y of different κs with the variation of y in
Fig. 8. Since the main purpose of this work is to consider
wave diffraction effects, we choose rs ¼ 0.4 kpc for κs ¼ 1
and rs ¼ 0.01 kpc for κs ¼ 10. Thus, the corresponding
M200 will be about 4 × 109M⊙ and 5 × 107M⊙, respec-
tively. While these examples correspond to very different
values of rs and M200, they exhibit wave diffraction
distortion to the amplitude and phase of the waveform at
similar levels. The results for TianQin and LISA are plotted
in solid and dashed lines, respectively. In the upper panel of
Fig. 8, the curves are the estimation errors of κs for different
y, with red curves for κs ¼ 1 and green curves for κs ¼ 10.
In the lower panel of Fig. 8, the curves are the estimation
errors of y with the variation of y. The upper and lower
panels of Fig. 8 are similar. When y is less than 1 ycr, the
curves are almost smooth. If y is close to the radial caustic,
there will be a peak in every curve. As expected, if y is more
than 1 ycr, the larger y is, the larger the estimation errors

FIG. 6. The precisions of MLz and y of different y with the
variation of MLz.

FIG. 7. The precisions of MLz and y of different MLz with the
variation of y.
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are. The same as in the SIS model, the upper limit of y is 3
because we cannot calculate the case where y > 3 correctly.
However, like the point mass model and SIS model, if y
keeps going larger, the errors will also be larger. What is
more, when κs ¼ 1, the ycr is small. So the impact
parameter is small. If y < 2ycr, the estimation errors are
especially small. When κs ¼ 10, the estimation errors are
still smaller than the other two models because the absolute
value of y is small enough. The smallest error is about 10−6

when κs ¼ 1, and the smallest error is about 10−5

when κs ¼ 10.

VII. CONCLUSION AND DISCUSSION

In this work, we analyze the detection of the gravitational
lensing effect of gravitational waves. In the calculation, we
consider three types of lensing models: the point mass lens,
the SIS lens, and the NFW lens. For each lens model, we
calculate the amplification factor in diffraction limit for the

lower frequency part and in geometric optics limit for the
higher frequency part. For the geometric optics calculation,
we consider both the leading order geometric optics part
and the first order postgeometric optics part, and thus the
amplification factor for the connection frequency band will
be continuous.
For the parameter estimation analysis, we use the Fisher

information matrix method. We consider the effect both on
the source parameters, and the PE accuracy on the lens
parameters. For the source parameters, we find that, due to
the increase of SNR caused by lensing effect, the PE
accuracy will also be higher than the case without lensing.
Moreover, the improvement on the accuracy is almost
proportional to the improvement on the SNR, while the
influence of the source mass and the lens mass is not
significant.
Another important approach is to measure the parame-

ters of the lens with the lensed gravitational signal. We
consider both the impact parameter y and the parameter that
characterized the total mass of the lens, which is MLz for
the point mass and SIS models and κs for the NFW model.
We find that the parameter of the source, such as the total
mass or the mass ratio, will not affect the PE accuracy of the
lens parameters significantly, so we choose the equal mass
binary source that constitutes two 106M⊙ black holes. For
the point mass and SIS models, the mass of the lens can be
measured to the level of 10−3 for the best cases, and the PE
accuracy will approach a constant as the is lens heavy
enough. For the NFW model, the characteristic density can
be measured to the level of 10−5. For all the cases, the result
will diverge as y become larger and larger, since the lensing
effect can be neglected at that time. The PE accuracy
of LISA is higher then TianQin, since for the signal we
consider, LISA has a better sensitivity.
Our current work has assumed that the signal is lensed,

and the lens is described by some special lensing model.
However, this could not be achieved easily. So, in the
future, we expect to study how to identify the lensing event
in the GW data and whether we can distinguish different
types of lensing models with the lensed signal.
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