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According to general relativity, an isolated black hole in vacuum shall be described by the Kerr metric,
whose geodesic equations are integrable. The violation of integrability leads to chaos for particles moving
around the black hole. This chaotic dynamics could leave imprints on the associated gravitational
waveform and could be tested with upcoming observations. In this paper, we investigate the chaotic orbital
dynamics induced by the violation of a certain spacetime symmetry, the circularity. Specifically, we focus
on the resonant orbits of a particular noncircular spacetime as an example and find that they form chains of
Birkhoff islands on Poincaré surfaces of section. We compare the island structures with those generated in
typical nonintegrable but circular spacetimes. The islands of stability induced by noncircularity appear
asymmetric on the most common Poincaré surface of section at the equatorial plane. The asymmetric
patterns of islands vary discontinuously when the spacetime parameters transit through integrable regions.
The origin of such features is explained in the context of perturbation analysis by considering the orbits
associated with stable fixed points on the section. Possible observational implications about testing
circularity through gravitational wave detection are discussed.
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I. INTRODUCTION

The direct detection of gravitational waves emitted by
binary merger events [1] and the images of supermassive
black holes released by the Event Horizon Telescope [2,3]
are of epoch-making significance in the field of black hole
physics. With future advancements in detectors, it becomes
possible to probe what is happening in the vicinity of black
holes. In particular, these observations may help to reveal
whether the black holes follow general relativity (GR) in
our Universe. More explicitly, we can directly test the Kerr
hypothesis, i.e., to what extent may the Kerr geometry
describes these extremely compact astrophysical objects.
According to GR, the exterior spacetime of an isolated

and spinning black hole should be the Kerr geometry. On
top of the apparent symmetries of stationarity and axisym-
metry, the Kerr geometry possesses additional symmetry
properties. First, the Kerr spacetime has a well-defined
equatorial plane with respect to which the spacetime is
symmetric. Second, the Kerr spacetime has a hidden

symmetry that allows for the separability of geodesic
equations. The separability of geodesic equations indicates
the existence of an additional constant of motion other than
the ones that correspond to stationarity and axisymmetry,
called the Carter constant [4]. For orbital dynamics on
pseudo-Riemannian manifolds, the separability of geodesic
equations implies the integrability in the Liouville sense.1

Therefore, the orbital dynamics has no chaos. The violation
of the Kerr hypothesis, which could be due to, for example,
the astrophysical environments, the existence of compan-
ions, physics beyond GR, or putative quantum gravitational
corrections, may break the aforementioned symmetry
properties. Therefore, the Kerr hypothesis could be tackled
by directly attacking the individual symmetry of the Kerr
spacetime, i.e., equatorial reflection symmetry, Liouville
integrability, etc. The violation of any of these symmetries
directly implies the violation of the Kerr hypothesis.
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1The separability here means that the radial and latitudinal
components of the geodesic equation can be separated. For the
Kerr metric, the wave equations also turn out to be separable.
When considering metrics beyond Kerr, the separability of
geodesic equations does not imply the separability of wave
equations [5,6].
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One specific possibility in this direction is to test the
Liouville integrability via gravitational waves. Specifically,
the nonintegrability of spacetimes may induce chaos in
orbital dynamics. The existence of chaos in the dynamics of
a spinning test particle in Schwarzschild background and
its imprints on gravitational waveforms were primarily
studied in [7,8], while the possibility of chaotic geodesics
in a non-Kerr spacetime was studied in [9]. Recently, in
Refs. [10–13], it has been shown that chaotic orbital
dynamics may leave a particular imprint on the gravita-
tional waves emitted by the extreme-mass-ratio inspirals
(EMRIs), which consist of a stellar size object gradually
spiraling toward a supermassive black hole. The extreme
mass ratio of EMRI systems implies that, at the leading
order of the mass ratio, the trajectory of the stellar object
can be approximated by the geodesic equations defined in
the spacetime of the supermassive black hole. If the
supermassive black hole violates the Kerr hypothesis by
breaking the Liouville integrability, the chaotic features
would directly appear in the geodesic dynamics and could
be identified through gravitational waves. In fact, the
gravitational waves emitted by EMRIs are one of the main
targets of future space-based gravitational wave detectors
[14], such as LISA [15–18]. Therefore, it has become
timely and crucial to investigate the possibility of testing
the Liouville integrability through gravitational waves.
Having mentioned the possibility of probing Liouville

integrability through gravitational waves, one naturally
asks if we may extract more information about the
geometry through the manifested chaos. Along this line of
thought, a geometrical property called circularity stands out.
Suppose we have a stationary and axisymmetric spacetime
with two Killing vectors. Their associated 1-forms are
denoted by k and η. The spacetime metric is circular if there
exist two-surfaces that are everywhere orthogonal to the
surfaces of transitivity, i.e., the surfaces spanned by the
Killing vectors. InGR, this geometric property induces some
constraints that the energy-momentum tensormust satisfy. In
the case of fluid, these constraints imply that there is no
convective motion, and only the circular motion around the
axis of symmetry is allowed [19–23]. According to
Frobenius’s theorem, the circularity condition is identical
to the following integrability conditions [24]:

C1 ≡ k ∧ η ∧ dk ¼ 0;

C2 ≡ k ∧ η ∧ dη ¼ 0: ð1:1Þ

Violating any of these two criteria would imply that the
spacetime is noncircular.
The motivation for noncircularity was originally to

incorporate the convective flow of matters, such as the
meridional circulation on neutron stars with toroidal
magnetic fields, into GR [19]. However, if any signatures
of noncircularity appear in an isolated black hole system,
which is supposed to be vacuum, they likely originate from

non-GR effects [25,26]. In Refs. [27–29], a class of non-
circular black hole spacetimes was constructed by disformal
transformations in the context of scalar-tensor theories of
gravity. In fact, noncircularity seems generic among metrics
generated by such a solution-generatingmethod [30]. On the
other hand, it was proved in Ref. [31] that, under some
assumptions, the black hole solutions obtained in generic
effective theories of gravity have to satisfy circularity
conditions if they can be attained perturbatively from a
given circular solution in theGR limit. This is consistentwith
Ref. [32], in which explicit examples were provided. The
result of Ref. [31] places a strict theoretical constraint on how
noncircularitymay occur in theories beyondGR.However, it
does not exclude the possibility that noncircular spacetimes
may arise in scenarios where the assumptions made in
Ref. [31] are not satisfied. Also, noncircular spacetimes
may appear in the branches of solutions that cannot pertur-
batively reduce to the GR limit.
In addition to considering noncircular solutions obtained

in individual theories of gravity, one can adopt a more
phenomenological perspective and construct models of
noncircular spacetimes in a theory-agnostic manner. In
Refs. [33,34], a class of phenomenological metrics for
regular black hole spacetimes was constructed. The model
is characterized by an additional non-GR parameter that not
only regularizes the spacetime but also makes the spacetime
noncircular.Rotatingblackhole spacetimes in the framework
of asymptotically safe gravity may have similar properties
[35,36].2 Recently, a general parametrized metric for non-
circular spacetimes has been proposed [38]. These para-
metrized and phenomenological frameworks allow for the
direct explorations of special observational features gener-
ated by noncircularity. It has been recently demonstrated that
the images cast by a noncircular black hole may have some
novel features, such as fractal structures [39], tiny cusplike
structures on the shadow boundary, and reflection asymme-
try of shadow boundaries on images that are not face-on
[35,36,38,40]. The possibility of testing the noncircularity of
the black hole spacetime of Refs. [27,28] using orbiting
pulsars was proposed in Ref. [41].
In this work, as what has been done for testing Liouville

integrability through gravitational waves, we will focus on
the orbital dynamics of a massive particle around non-
circular black holes. In general, noncircularity would break
the Liouville integrability, and hence, chaos would appear.
It has been shown in Ref. [42] to be so in the particular
noncircular spacetime of Refs. [27,28]. In this paper, by
examining the structures of Birkhoff islands on Poincaré
surfaces of section of orbital dynamics, we will show that
the chaotic features generated by noncircularity differ
substantially from those of circular spacetimes, especially
for resonant orbits. We will show that the region in phase

2For detailed review on the black holes in asymptotically safe
gravity please cf. [37].
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space where chaos emerges, e.g., the location of islands,
depends sensitively on whether the spacetime is circular
rather than the strength of noncircularity. As a result, even if
the amount of noncircularity is tiny, it would already
generate considerable effects on the resonant orbits. This
would open a new window for testing circularity through
the gravitational waves emitted by EMRIs.
The rest of this paper is organized as follows. In Sec. II, we

will first introduce a phenomenological model of noncircular
black hole spacetimes that serves as the basis of our analysis.
Then, we will briefly review the Poincaré surface of section
and Birkhoff islands, which will bewidely used in this paper
to investigate chaotic orbital dynamics. A quick comment on
the relation between (non)circularity and (non)integrability
will be made at the end of this section. In Sec. III, we will
demonstrate our main numerical results. We will show how
noncircularity induces novel chaotic features on Poincaré
surfaces of section, which do not appear in nonintegrable but
circular cases. Then, in Sec. IV, we will adopt a perturbation
analysis to provide a quantitative description of these novel
features. The overall interpretations of our numerical results
and potential implications of gravitationalwave observations
will be discussed in Sec. V. Finally, we will conclude in
Sec. VI.

II. ORBITAL DYNAMICS IN NONCIRCULAR
SPACETIMES

In this section, we will review the ingredients needed to
investigate orbital dynamics in noncircular spacetimes. We
will first briefly introduce a class of non-Kerr spacetimes
that will be the main focus of this work. This class of
spacetimes contains new physics beyond GR that breaks
circularity manifested by the Kerr spacetime. Then, we will
focus on the geodesic dynamics of a massive particle
moving in the non-Kerr spacetime and introduce the
technical tools for identifying the chaotic features of the
orbits. The relation between noncircularity and chaotic
orbital dynamics will be elucidated as well.

A. Noncircular metric beyond Kerr

In Refs. [33,34,38], a class of phenomenological models
of noncircular black hole spacetimes has been constructed.
The procedure starts with the Kerr metric written
in the Boyer-Lindquist (BL) coordinates ðt; r; χ;φBLÞ with
χ ¼ cos θ:

ds2K ¼ −
�
1 −

2Mr
ρðr; χÞ2

�
dt2 −

4Mar
ρðr; χÞ2 ð1 − χ2ÞdtdφBL

þ ρðr; χÞ2
ΔKðrÞ

dr2 þ ρðr; χÞ2
1 − χ2

dχ2

þ 1 − χ2

ρðr; χÞ2 ½ðr
2 þ a2Þ2 − a2ΔKðrÞð1 − χ2Þ�dφ2

BL

where ρðr; χÞ2 ≡ r2 þ a2χ2 and ΔKðrÞ≡ r2 − 2Mrþ a2,
with black hole mass M and spin a. The above Kerr line
element can be rewritten in ingoing Kerr coordinates
ðu; r; χ;φÞ through the following coordinate transformations
on ðt;φBLÞ that leave ðr; χÞ coordinates and ð∂t; ∂φÞ basis
intact:

dt ¼ du −
r2 þ a2

ΔKðrÞ
dr; dφBL ¼ dφ −

a
ΔKðrÞ

dr: ð2:1Þ

In this coordinate system, one then promotes the constant
massM to amass functionMðr; χÞ that depends both on r and
χ [33,34,38]. The new spacetime metric so obtained can be
expressed as

ds2 ¼ −
�
1 −

2Mðr; χÞr
ρðr; χÞ2

�
du2 þ 2dudrþ ρðr; χÞ2

1 − χ2
dχ2

−
4Mðr; χÞar
ρðr; χÞ2 ð1 − χ2Þdudφ − 2að1 − χ2Þdrdφ

þ 1 − χ2

ρðr; χÞ2 ½ðr
2 þ a2Þ2 − a2Δðr; χÞð1 − χ2Þ�dφ2;

ð2:2Þ
where Δðr; χÞ≡ r2 − 2Mðr; χÞrþ a2 is promoted as well.
The new metric still respects stationarity and axisymmetry as
for Kerr one because Eq. (2.2) does not have explicit u and φ
dependence. However, it describes a class of non-Kerr
spacetimes [33,34,38] that is not circular anymore. In
particular, such a metric differs fundamentally from the class
of non-Kerr spacetimes obtained by promotingM toMðr; χÞ
directly in the Boyer-Lindquist coordinates because the latter
is always circular.
Extending from the metric of Refs. [33,34,38], in this

work we consider the following mass function:

Mðr; χÞ≡ M
1þ 48M2l4NP=ðr2 þ ζa2χ2Þ3 ; ð2:3Þ

which reduces to the one of Refs. [33,34,38] when the
dimensionless parameter ζ goes to unity. The parameter lNP
represents the length scale under which the spacetime gets
modified by some new physics (NP) beyond GR [34]. In
this work, we allow ζ to vary within ½−1; 1�. As will be
shown later, both lNP and ζ directly control the onset of
noncircularity. The addition of the parameter ζ allows us to
investigate the chaotic behavior of geodesics when the
metric transits between circularity and noncircularity.
The non-Kerr spacetime of Eq. (2.2) has some important

features. First, the singularity that would appear at
r ¼ χ ¼ 0 in the Kerr spacetime is resolved.3 Second,

3There could be a singular surface 48l4NP þ ðr2 þ a2ζχ2Þ3 ¼ 0
when ζ < 0. But it does not affect the validity of our analysis and
results.
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the geodesics of massive objects are Liouville integrable in
the following three scenarios:
(1) When a ¼ 0, i.e., when the spacetime becomes

spherically symmetric.
(2) When lNP ¼ 0, i.e., when the spacetime reduces

back to Kerr one.
(3) When ζ ¼ 0, i.e., when the mass function depends

only on r.4

Third, because in general, the mass function depends on
both r and χ, the spacetime is no longer circular. With
k≡ guμdxμ and η≡ gφμdxμ, the quantities inside the
circularity criteria of Eq. (1.1) are evaluated explicitly as

C1 ∝
a2ζl4NPrχðr2 þ a2ζχ2Þ2ð1 − χ2Þ
ð48M2l4NP þ ðr2 þ a2ζχ2Þ3Þ2 ;

C2 ∝
a3ζl4NPrχðr2 þ a2ζχ2Þ2ð1 − χ2Þ
ð48M2l4NP þ ðr2 þ a2ζχ2Þ3Þ2 ; ð2:4Þ

and are nonvanishing unless certain conditions are satisfied.
In particular, the spacetime meets the circularity criteria in
those scenarios where geodesics are integrable.
As will be mentioned later in Sec. II C, noncircular

spacetimes do not have any hidden nontrivial Killing
tensor,5 and chaos may appear in the orbital dynamics.
In the corollary, the Liouville integrability implies circu-
larity, as demonstrated in the above analysis. In fact, the
violation of circularity not only leads to chaotic orbital
dynamics but also to novel orbital characteristics unheard
of before in circular spacetimes. Later, we will explicitly
show this both numerically and analytically.

B. Orbital dynamics: Poincaré surface
of section and Birkhoff islands

Before we move further to a detailed analysis of (chaotic)
orbital dynamics, let us briefly review the relevant theo-
retical basis for such systems.
Let us consider the orbital dynamics of a massive test

particle of mass μ moving in a stationary and axisymmetric
spacetime described by a metric gμν. For simplicity, we will
set μ ¼ 1 in the rest of the paper.6 The orbital Lagrangian of
the test particle is

L ¼ 1

2
gμνẋμẋν; ð2:5Þ

where the overhead dot denotes the derivative with respect
to the proper time τ. Through the Lagrangian, one can
construct the conjugate momenta pμ. The stationarity and

axisymmetry of the spacetime manifest themselves through
the metric being independent of time and azimuthal angle
[u and φ in the case of Eq. (2.2)], hence implying the
existence of two Killing vectors. These Killing vectors
correspond to two constants of motion: the energy E and
the azimuthal angular momentum Lz of the particle
measured at spatial infinity. With these two constants of
motion, the equations of motion that govern the orbital
dynamics are in general two coupled second-order differ-
ential equations involving two remaining coordinates [r, χ
in the case of Eq. (2.2)] and their derivatives, subject to a
Hamiltonian constraint. This Hamiltonian constraint is
associated with the conservation of the rest mass of the
test particle. Here, we mainly focus on the evolution of
bound orbits around the black hole, which can be obtained
by solving the equations of motion with appropriate
choices of E, Lz, and initial conditions.
One of our central goals is to demonstrate the chaotic

nature of the orbital dynamics of a noncircular spacetime. It
turns out that this can be more easily achieved by
constructing the Poincaré surface of section. Essentially,
with the Hamiltonian constraint, the trajectory of a bound
orbit around black holes lies in a three-dimensional phase
space. A Poincaré surface of section is essentially a two-
dimensional surface embedded in this three-dimensional
phase space. In the literature regarding the demonstration of
chaotic orbital dynamics, the Poincaré surface of section is
usually chosen as the ðr; ṙÞ or ðr; prÞ surfaces on the
equatorial plane χ ¼ 0 [12,13,43–57].
Suppose we choose the ðr; ṙÞ surface on the equatorial

plane as the Poincaré surface of section. With the time
evolution of a bound trajectory, the orbit would keep
intersecting the equatorial plane. We then record the points
when the orbit pierces the plane from the south, i.e., χ̇ > 0.
For a spacetime that possesses a hidden symmetry corre-
sponding to a nontrivial rank-2 Killing tensor, the orbital
dynamics is Liouville integrable. The hidden symmetry
leads to one additional constant of motion, the Carter
constant, that further confines the orbital trajectory in the
phase space. For an integrable orbital system, if the orbit
oscillates along both the radial and latitudinal directions,
with a rational oscillation frequency ratio between the two,
the orbit would intersect the equatorial plane at finite
locations, registered as some points on the Poincaré surface
of section. The number of points is determined by the
frequency ratio. These orbits are called resonant orbits. On
the other hand, if the frequency ratio is irrational, the orbits
are called quasiperiodic and they form invariant tori in the
phase space. Each of such orbits leaves a closed curve,
called invariant curves, on the Poincaré surface of section.
Typical invariant curves in an integrable system, e.g., the
orbital dynamics of the Kerr spacetimes, can be labeled by
the Carter constant, with other parameters and constants of
motion fixed. Different invariant curves with different
Carter constants are nested within each other on the

4According to Ref. [34], in this scenario the spacetime still
receives corrections that do not satisfy locality. The correction
can be interpreted as an isotropic screening to the bare mass.

5The trivial one is the metric tensor gμν itself.
6The conjugate momenta shall be scaled accordingly for

observational purposes.
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Poincaré surface of section. The complete collection of
resonant orbits with the same rational frequency ratio and
the same Carter constant also forms a closed curve on the
Poincaré surface of section. This is shown in Fig. 1 in
which we exhibit some phase space trajectories of the 1=2-
resonant orbits for the integrable subset of the metric of
Eq. (2.2) (see the caption for more detailed setting). The
black closed curve consists of the complete collection of
resonant orbits with different initial conditions but the same
rational frequency ratio and Carter constant. This closed
curve is sandwiched by invariant curves with an irrational
frequency ratio infinitesimally close to the rational one.
Chaos may appear when an integrable system receives

nonintegrable deformations, as in some cases of non-Kerr
spacetimes, including the one described by Eq. (2.2).
Depending on the strength and features of the deforma-
tions, the chaos may leave nontrivial imprints on the
Poincaré surface of section. In fact, according to the
Kolmogorov-Arnold-Moser (KAM) theorem [58,59], if
the deformations are small, the original invariant curves
would be slightly deformed but remain continuous and
nested. In this case, they are called KAM curves (black
curves in Fig. 2).
On the other hand, even if the strength of chaos is small,

according to the Poincaré-Birkhoff theorem [58,60,61], the
resonant points on the Poincaré surface of section may be
split into a series of periodic points. Half of the points are
stable while the other half are not, and they distribute
alternately on the Poincaré surface of section. The stable
points attract and lock neighboring orbits whose frequency
ratio is originally very close to the rational frequency ratio
of the stable point. These orbits appear as a series of small
islands surrounding the stable point called the Birkhoff

chain of islands. Within each island, the orbits form a
nested structure of closed curves. Because the island
structure looms out of the resonant points, each chain of
islands can be labeled by the order of resonance, which is
precisely the frequency ratio of the radial and latitudinal
oscillations of the resonant orbits, i.e., ωr=ωθ. For example,
we call the chain of islands in which the orbits have
ωr=ωθ ¼ 1=2 the 1=2-resonant islands. Practically speak-
ing, the existence of islands on the Poincaré surface of
section is a clear signature of chaos. As an illustrative
example, we show in Fig. 2 the Poincaré surface of section
and the structure of the 1=2-resonant islands (yellow) in the
case of a particular non-Kerr spacetime [43] (from now on
referred to as the DSK spacetime) different from the one in
Eq. (2.2). This non-Kerr spacetime has nonintegrable
deformations controlled by a dimensionless parameter
αQ.

7 We shall emphasize that although the DSK spacetime
has chaotic orbital dynamics, it remains circular.

C. Noncircularity, chaos, and the breakdown
of the phase space discrete symmetry

The circularity condition and chaos are deeply inter-
twined. In Ref. [62], the author proved the circularity as the
necessary and sufficient condition for the existence of
the codimension-2 foliation by conserved quantities of the
Killing vectors. Here we utilize the corollary of the proof
and show that the nonexistence of the foliation not only
gives rise to chaos but also leads to a particular kind of
chaos different from those manifested in systems satisfying
the circularity condition.

FIG. 1. The phase space trajectories of the 1=2-resonant orbits
with E ¼ 0.942 and Lz ¼ 2.76M for the integrable subset of the
metric of Eq. (2.2). We choose specifically lNP ¼ 0.4M, ζ ¼ 0,
and a ¼ 0.66M. The black curve is the closed curve formed by all
1=2-resonant orbits on the Poincaré section at the equatorial plane
(pink). The colored curves are some samples of orbits with
different initial conditions. The green points represent the
registered points of these orbits on the Poincaré surface of
section.

FIG. 2. Poincaré surface of section at the equatorial plane
(χ ¼ 0) of geodesics around the symmetric 1=2-resonant Birkhoff
island in the DSK spacetime [43] with αQ ¼ −0.01, E ¼ 0.942,
Lz ¼ 2.76M, and a ¼ 0.66M. The yellow curves show the
resonant orbits inside the Birkhoff island. The black curves that
nearly sandwich the islands are the deformed KAM orbits.

7The non-Kerr metric proposed in Ref. [43] has the other
deviation parameter α22. But this parameter does not break
integrability. Therefore, we simply set α22 ¼ 0 in this work.
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For the sake of completeness, let us briefly review the
integrability in Frobenius’ sense. When solving a geodesic
system, the geodesic is integrable in the Liouville sense if
enough conserved quantities exist. These conserved quan-
tities become unique labeling for each geodesic, forming a
foliation for the geodesic. The differences in these quan-
tities between a pair of geodesics must remain the same
under the geodesic evolution. As first investigated in
Ref. [63], we may identify these quantities through the
geodesic deviation equation

d2sλ

dτ2
¼ Rλ

σρη
dxσ

dτ
dxρ

dτ
sη; ð2:6Þ

that relates the evolution of the displacement between two
geodesics xμðτÞ and xμðτÞ þ sμðτÞ to the curvature tensor
Rλ
σμη. For “integrable” orbits that are closed on the phase

space, we should be able to express the geodesic deviation
sμ as a function of the position xμ and the velocity ẋμ

without explicit τ dependence. The inner product between
the vector field s and the velocity ẋ would be a conserved
quantity, as shown in Ref. [63].
Let us reorganize the equation using the Cartan con-

nection as

0 ¼ d2sλ

dτ2
− Rλ

σρη
dxσ

dτ
dxρ

dτ
sη

¼ ẋμẋν∇μ∇νsλ − Rλ
σρηẋσ ẋρsη

¼ Ωẋ:s; ð2:7Þ

where Ωẋ is the curvature form of the connection
ωẋ ≡ ½ẋ; e�, ½·; ·� is the graded Lie bracket, e is the vierbein,
and “.” denotes the inner product. This is precisely the
Frobenius theorem that a set of commutative Lie vector
fields along the geodesics implies the existence of con-
served quantities foliating the phase space. The converse is
trivial.
In a d-dimensional system with d − 2 known commu-

tative vector fields V1 � � �Vd−2, we may test if the last
conserved quantity could exist by checking the commuta-
tivity of these d − 2 vectors with the orthogonal directions.
This leads to the circularity condition

dVj ∧ V1 ∧ … ∧ Vd−2 ¼ 0; j ¼ 1 � � � d − 2: ð2:8Þ

Apparently, the circularity condition is a unique reali-
zation of the Frobenius integrability in a system with d − 2
conserved quantities. This setup is much broader than
expected, as the most typical d ¼ 4 axisymmetric and
stationary spacetime falls into this category. The corre-
sponding conserved quantity is the Carter constant. Notice
that while violating the circularity condition deprives us of
the Liouville integrability, the reverse does not always hold.
The last commutative vector field must be proportional to

the orthogonal vector �ðp ∧ V1 ∧ … ∧ Vd−2Þ where p is
the conjugate momentum, and � is the Hodge dual. If ẋ
explicitly depends on τ, e.g., when considering a chaotic
orbit, the circularity condition may be satisfied despite
missing the final conserved quantity.
According to the Frobenius theorem, if the circularity

condition is violated, the d − 2 vector fields would no
longer commute with their orthogonal vector field in the
Lie derivative sense. In this case, the quantities associated
with d − 2 vector fields are still conserved, but any trans-
formation along these vectors modifies the observable on
the orthogonal subspace.8 To wit, the system becomes non-
Abelian. It, therefore, bears both theoretical and practical
interests to analyze what happens if we apply some trans-
formations along those d − 2 directions in a noncircular
spacetime with additional discrete symmetries on the
orthogonal subspace that shall not manifest themselves.
Let us first focus on the circular spacetimes, e.g., the

DSK spacetime with a nonzero αQ in the Boyer-Lindquist
coordinates. Consider the discrete symmetries of the
orthogonal subspace. In this system, there exists the
equatorial-plane reflection symmetry (χ → −χ, χ̇ → −χ̇).9

In addition, we also have (t;φBL) simultaneous reversal
symmetry [69]. By the Frobenius theorem, two symmetry
transformations disentangle from each other. Therefore if
we consider a simultaneous reversal of ðτ; t; χ;φBLÞ, we
have (χ → −χ, ṙ → −ṙ), and the resulting changes in the
conserved quantities E and Lz vanish identically. The
Poincaré section of ðr; ṙÞ at the equatorial plane, once
including both directions of piercings, must be ṙ reflection
symmetric unless the geodesic of interest is unbounded (see
Fig. 2 and more in Ref. [43] for the symmetric islands in the
case of the DSK spacetimes). Similarly, the Poincaré
sections of ðχ; ṙÞ would be ðχ; ṙÞ simultaneous reflection
symmetric.
On the other hand, in a system that breaks the circularity

condition, the conserved quantities associated with the
Killing vectors do not properly foliate the phase space. In
the case of the noncircular spacetime of Eq. (2.2), the χ
reflection symmetry does not commute with ðu;φÞ simul-
taneous reflection symmetry. Therefore, the Poincaré sec-
tion of ðr; ṙÞ at the equatorial plane would be asymmetric if
the geodesic of interest does not explicitly possess χ
reflection symmetry, i.e., when the geodesic is inside
resonant islands. This observation suggests that the location
of resonant islands is a probe of the circularity condition.

8The observable on the orthogonal subspace, e.g., r, χ, ṙ, and χ̇
in the systems we are considering, must be generated by the
reduced Hamiltonian on the orthogonal subspace and the
orthogonal vector field.

9It is possible to construct a stationary and axisymmetric
metric that deviates from Kerr one in a way that breaks the
equatorial-plane reflection symmetry. See Refs. [64–66] in which
the orbital dynamics have no chaos and Refs. [67,68] in which
chaos may be present.
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The Poincaré sections of ðχ; ṙÞ would be ðχ; ṙÞ simulta-
neous reflection asymmetric as well.
With the breakdown of the symmetry, one may wonder

why should the equatorial plane remain the natural choice
for the Poincaré surface of section. We emphasize that the χ
reflection symmetry still remains intact in the spacetime
structure. Thus, if we focus on the latitudinal motion, the
orbit must be symmetric to, and thus likely passing
through, the equatorial plane, making it the optimal
Poincaré surface of section.
The subtle and partial breakdown of the symmetry is the

salient feature of the noncircularity. In the next section, we
will demonstrate explicitly through numerical treatments
how the location of islands is sensitive to noncircular
deformations, regardless of the strength of the deformations.

III. ASYMMETRIC BIRKHOFF ISLANDS

In the previous section, we have laid down our argu-
ments regarding possible chaotic signatures of orbital
dynamics in noncircular spacetimes. In particular, some
novel features may appear, such as asymmetric locations
and structures of resonant islands. Here, we will demon-
strate these features by directly showing the resonant orbits
on the Poincaré surface of section. Considering the non-
Kerr metric of Eq. (2.2), we numerically solve the equa-
tions of motion of the bound orbital system by fixing some
parameters while varying the rest to identify features
emerging from a family of geodesics. We fix E ¼ 0.942,
Lz ¼ 2.76M, and a ¼ 0.66M for the rest of our paper.
While solving the trajectories, we keep the accuracy of the
Hamiltonian constraint down to 10−8 during the integration
time. This is achieved by adopting the standard eighth-
order implicit Runge-Kutta method. In the calculation of
each trajectory, we terminate the calculation only after we
can distinguish KAM curves from the closed curves inside
islands.
In Fig. 3, we choose ζ ¼ 1 and lNP ¼ 0.4M, then focus

on the left branch of the 1=2-resonant islands. The
existence of Birkhoff islands on the Poincaré surface of
section is confirmed, indicating that the orbital dynamics of
the non-Kerr spacetime of Eq. (2.2) is chaotic. In particular,
the distribution of Birkhoff islands on the Poincaré surface
of section is not symmetric with respect to the horizontal
axis (ṙ ¼ 0). For circular spacetimes with nonintegrable
orbital dynamics, the resonant islands can only either be
symmetric (see Fig. 2) or mirror images of down-piercing
islands through χ̇ − ṙ inversion symmetry, as will be shown
later in Sec. IV. In the latter case, no island in the chain ever
crosses the ṙ ¼ 0 axis. On the contrary, in noncircular
spacetimes, as depicted in Fig. 3, the major portion of the
chain of islands has ṙ > 0 while a smaller but finite portion
has ṙ < 0. Such vertically asymmetric distribution of
islands that also cross the ṙ ¼ 0 axis is a feature of
noncircularity.

A. Quantify the asymmetry: Critical velocity

To quantify how much asymmetrically the islands
distribute on the Poincaré surface of section, we define
the critical velocity vc as follows. We first consider the left
branch of the 1=2-resonant islands. Among the nested
orbits within the islands, we look for the one that only
touches the horizontal axis once, say, at ðrc; 0Þ (see the red
contour in Fig. 3). Among the piercings recorded on the
contour, we identify the one that has the maximum jṙj.
Then we define the critical velocity vc as the ṙ of that
piercing (see Fig. 3 for graphical illustrations). If the
islands are symmetric with respect to the horizontal axis,
the critical velocity vanishes, and the associated orbit is
precisely the central point within the islands. In Fig. 4, we
consider two values of lNP ¼ 0.1M (blue) and 0.4M
(magenta), with other parameters ða; E; LzÞ fixed, and
show how the critical velocity vc and a shifted version of
rc, i.e., r̃c ≡ rc þ 18ð5lNP − 2MÞ=625,10 vary with respect
to ζ. Interestingly, even though r̃c changes smoothly, the
critical velocity has a discontinuous jump at ζ ¼ 0 where
the orbital dynamics is integrable. Furthermore, when
approaching the Kerr limit (blue), the critical velocity and
r̃c become less sensitive to ζ, but vc remains sizable, and
its discontinuity at ζ ¼ 0 remains.

B. Quantify the asymmetry: Latitude of symmetry

Though the standard Poincaré surface of section is
usually chosen as the surface that intersects orbits at
χ ¼ 0 for the reason mentioned in the last section, one
can in principle consider the Poincaré surface at any χ ¼
constant as long as every single orbit inside the island on
the equatorial plane still intersects the new Poincaré surface

FIG. 3. Some orbits nested within the left branch of the 1=2-
resonant islands are shown. The islands are asymmetric with
respect to the ṙ ¼ 0 axis. The critical velocity vc is defined on the
orbit (red) that only touches the ṙ ¼ 0 axis at a single piercing
ðrc; 0Þ. The inset zooms in on the region near that piercing. In this
figure, we choose ζ ¼ 1 and lNP ¼ 0.4M.

10r̃c is constructed such that the shift vanishes when
lNP ¼ 0.4M, relieving us from this artificial shift for the rest
of the paper.
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for every single revolution. In Fig. 3, we see that, inside the
Birkhoff islands, the piercings on the χ ¼ 0 plane are
asymmetric with respect to the horizontal axis (ṙ ¼ 0). This
indicates that for a resonant orbit on the noncircular
spacetime of Eq. (2.2), the maximum radial velocity at
χ ¼ 0 cannot be simply expressed as �jṙmaxj during its
whole evolution. This asymmetry varies as we shift the
section along the latitudinal direction. In particular, it can
be completely removed at a particular value of χ, given a set
of metric parameters. We dub it the latitude of symmetry,
denoted as χs. In Fig. 5, the island appears symmetric on
the Poincaré surface of section that intersects the phase
space at χ ¼ χs. For simplicity of the presentation, we show
only one orbit in the 1=2-resonant islands in Fig. 5, but
every orbit with the same set of ða; ζ; lNPÞ is symmetric
with respect to the ṙ ¼ 0 axis. In this figure, the parameters
ðE;Lz; a; ζ; lNPÞ are fixed as those in Fig. 3, and the latitude
of symmetry χs is χs ¼ −0.15064.

At this point, we have shown that, if the spacetime is
circular, the Birkhoff islands and the stable points, around
which the resonant orbits are nesting, could appear sym-
metric with respect to the ṙ ¼ 0 axis on the Poincaré
surface sectioned at χ ¼ 0, as one can see from Fig. 2. In
this case, the piercings of orbits would have ṙ ranging from
þjṙmaxj to −jṙmaxj on that surface of section.11 On the other
hand, if the spacetime is noncircular, like the one consid-
ered in this section, the Birkhoff islands and stable points
on the Poincaré surfaces of section at χ ¼ 0 and χ̇ ¼ 0 are
generically not symmetric with respect to the ṙ ¼ 0 axis.
The resonant orbits inside the islands and KAM curves can
appear symmetric with respect to the ṙ ¼ 0 axis only when
the surface of χ ¼ χs is chosen. It implies that the radial
turning points (ṙ ¼ 0) of the orbit corresponding to stable
fixed points, i.e., the center of nested curves inside islands,
move away from the equatorial plane and instead reside on
the χ ¼ χs plane.
In fact, the introduction of the latitude of symmetry χs

has its own unique merit. As we have mentioned, given a
set of ða; ζ; lNPÞ, each orbit on the Poincaré surface of
section at χ ¼ χs is symmetric with respect to the ṙ ¼ 0
axis. Because χs is uniquely determined in this sense, it can
serve as a measure of the asymmetry of islands that could
be induced by noncircularity, just as the critical velocity vc.
For example, for the DSK spacetime with a negative αQ,
these two measures, vc and χs, always vanish. In Fig. 6, we
fix lNP ¼ 0.4M as in Fig. 3 and show how χs varies with ζ.
Similar to what we have observed in vc, a discontinuous
jump at ζ ¼ 0 is clearly visible.
The symmetric pattern on the Poincaré surface of section

at χ ¼ χs also allows us to define the width of the islands.
As one can see in Fig. 5, we first consider the outermost
orbit within the left branch of the 1=2-resonant islands.
Since the pattern appears symmetric with respect to the
ṙ ¼ 0 axis, one can unambiguously define the width of the
island as the line segment connecting the two piercings of
the orbit on the ṙ ¼ 0 axis (see the red line segment in
Fig. 5). Essentially, the width of island, R, quantifies the
strength of chaos when varying the nonintegrable defor-
mation parameters of the system. In the bottom panel of
Fig. 6, we show how the width R varies with respect to ζ.
One can see that it approaches zero from both sides of the
ζ ¼ 0 axis. This is expected because the orbital dynamics is
integrable at ζ ¼ 0. Furthermore, the non-KAM-curve
region on the frequency ratio map, which can be estimated
by the width of islands, scales at the rate of the square root

FIG. 5. We show the Poincaré surface sectioned at
χ ¼ χs ¼ −0.15064. In this figure, the values of (E;Lz;
a; ζ; lNP) are the same as those in Fig. 3. The blue contour is
the outermost orbit among those nested ones inside the 1=2-
resonant island [the initial condition for this orbit is rð0Þ ¼
3.3514586M, χð0Þ ¼ χs and ṙð0Þ ¼ 0]. The inset zooms in on the
island around ṙ ¼ 0. The line segment in red represents the
horizontal width R of the island.

FIG. 4. The values of r̃c and critical velocity vc with respect to ζ
are shown. The blue circles and the magenta points correspond to
lNP ¼ 0.1M and 0.4M, respectively. The discontinuous jump of
vc at ζ ¼ 0 is clearly visible, although r̃c varies smoothly there.

11Later, we will show that the Birkhoff islands in some cases of
circular spacetimes, e.g. the DSK metric with αQ > 0, could not
even appear symmetric on ðr; ṙÞ surface sectioned at any value of
χ. There does not exist any χs at which the islands appear
symmetric. Rather they would be symmetric on the section of
χ̇ ¼ 0, or on the latitude where χ̇ vanishes for the central periodic
orbit of the island if we include both up and down piercing of the
Poincaré surfaces of section.
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of the nonintegrable deformation parameter [58]. The width
R follows closely with this rule all the way up to ζ ¼ �1.
This suggests the possibility of using perturbation analysis
in the parameter space to understand the origin of the
asymmetric features.
At this stage, we can draw the following conclusions

according to our analysis. Although the strength of chaos
smoothly reduces to zero at the integrable limit, i.e.,
jζj → 0, the asymmetry in the distribution of Birkhoff
islands on the Poincaré surfaces of section does not. Also,
the central 1=2-resonant orbit tends to move away from
the equatorial plane such that the whole family of 1=2-
resonant islands emerges asymmetrically on the Poincaré
section. We will see in the next section that this can be
interpreted as the existence of an off-equatorial net force
on the orbit. The asymmetric distribution of islands is an
important feature of the orbital dynamics in noncircular
spacetimes.
In Sec. II C, we have briefly mentioned that because the

conserved quantities associated with the Killing vectors do
not properly foliate the phase space, the Birkhoff islands
could have asymmetric distribution on the Poincaré surfa-
ces of section for noncircular spacetimes. This is then
supported by the numerical analysis in Sec. III. In the next
section, by using perturbation analysis, we will dig slightly
deeper to understand, from an analytic point of view, why
the islands acquire such patterns and why the asymmetry
appears to be changing discontinuously with respect to
parameter shifts at the integrable limit.

IV. PERTURBATION ANALYSIS
OF THE ISLAND HAMILTONIAN

As we have seen in the previous section, the resonant
islands are no longer ṙ symmetric on the equatorial plane

for the noncircular spacetime of Eq. (2.2). Furthermore,
such asymmetry appears to depend strongly on the form of
noncircularity rather than on its strength. The location of
islands thus becomes a highly sensitive probe for non-
circularity. To better characterize the relation between the
two, we utilize the perturbation analysis to extract the
quantitative description of the orbits.
Let us expand the chaotic geodesic system on a sta-

tionary, axisymmetric manifold g around an integrable
system on another stationary, axisymmetric manifold
gð0Þ. Since the orbits on gð0Þ are integrable, there is a
hidden conserved quantity, say, C. We will denote the
background objects by subscript (0) and the perturbative
parts by subscript (1). The Hamiltonian and the equations
for the conserved quantities of the background system

−
1

2
¼ Hð0Þ ¼

1

2
pð0Þ;μg

μν
ð0Þpð0Þ;ν; ð4:1Þ

−E≡ pð0Þ;u ¼ gð0Þ;uνẋνð0Þ; ð4:2Þ

Lz ≡ pð0Þ;φ ¼ gð0Þ;φνẋνð0Þ; ð4:3Þ

Ċð0Þ ¼ fHð0Þ; CgP:B: ¼ 0; ð4:4Þ

determine exactly the geodesics on the background mani-
fold xμ0ðτÞ as functions of the proper time τ. fgP:B: in
Eq. (4.4) is the Poisson bracket. The equations of the
perturbed system can be expressed as

0 ≈Hð1Þ ≈ pð1Þ;μg
μν
ð0Þpð0Þ;ν þ

1

2
pð0Þ;μg

μν
ð1Þpð0Þ;ν; ð4:5Þ

0 ¼ pð1Þ;u ≈ gð1Þ;uνẋνð0Þ þ gð0Þ;0νẋνð1Þ; ð4:6Þ

0 ¼ pð1Þ;φ ≈ gð1Þ;φνẋνð0Þ þ gð0Þ;0νẋνð1Þ; ð4:7Þ

where only ṙð1Þ and χ̇ð1Þ remain to be solved. Notice that the
perturbation to the constants ofmotion μ,E, andLz vanishes.
In other words, as we introduce the perturbation, the initial
condition xμ has to vary consistently to ensure that the
constants of motion remain unperturbed. This is natural for
our methodology in Sec. III as we fix the constants of motion
regardless of the metric deformations.12

FIG. 6. The latitude of symmetry χs and the width of island R
are shown with respect to ζ, with other parameters fixed as those
in Fig. 3. A discontinuous jump of χs across ζ ¼ 0 is clearly
visible, as that of vc in Fig. 4. On the other hand, the width of
islands as defined by the red line in Fig. 5 decreases with jζj and
approaches zero as jζj → 0. The width scales almost perfectly as
R ∝ jζj1=2, as predicted (cf. Sec. 2.6.4 of Ref. [58], Sec. 6.2.2 of
Ref. [61] and Ref. [51]).

12One may take different approaches to the issue of the initial
condition. For instance, if the orbit is fitted against observational
data, the observed orbital frequency and the impact parameter
may be a better pair to be fixed than E and Lz.
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In general, such a system is chaotic, as we have seen in
previous sections. However, at the center of the Birkhoff
island lies a stable fixed point, that corresponds to a
recurring geodesic with a short period. Let us attempt to
locate that geodesic perturbatively.
Since the orbit is closed, the first-order perturbation to

the hidden conserved quantity C must be periodic. We may
evaluate its change rate along the perturbed orbit by
plugging it into the first-order Hamilton-Jacobi equation.
The change rate Ċð1Þ ¼ fHð1Þ; CgP:B: contains only explicit
first-order terms as C is conserved at the zeroth order. We
may therefore subject it to the background geodesic with
the Hamiltonian constraint Eq. (4.1).

Let us be more specific about the quantity C. Here we are
considering a particular form of the Carter constant

C ¼ a2χ2 þ Kμνpμpν; ð4:8Þ

Kuu ¼ a2ð1 − χ2Þ; Kuφ ¼ 2a; Kφφ ¼ ð1 − χ2Þ−1;
Kχχ ¼ ð1 − χ2Þ; Krμ ¼ Kuχ ¼ Kχφ ¼ 0; ð4:9Þ
where Kμν is related to the Killing tensor of the background
spacetime Kμν via Kμν ≡ Kμν − a2χ2gμν. The Carter con-
stant C foliates the phase space of a large class of space-
times, including the spacetime described by Eq. (2.2) with ζ
vanishing identically and, of course, the Kerr spacetime.

We may now write down the first-order change rate of the Carter “constant” in terms of r, χ, and C as

Ċð1Þ ¼ 576ζa2MM2
ζ→0l

4
NPr

−5χsignðχ̇Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χ2ÞðC − a2χ2 − a2ð1 − χ2ÞE2 þ 2aELzÞ − L2

z

q

×
�
ððr2 þ a2ÞE − aLzÞ þ signðṙÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr2 þ a2ÞE − aLzÞ2 − ðrðr − 2Mζ→0Þ þ a2ÞðCþ r2Þ

q �2

× ðrðr − 2Mζ→0Þ þ a2Þ−2ðr2 þ a2χ2Þ−2; ð4:10Þ

for the metric of Eq. (2.2), with Mζ→0 denoting the mass function in Eq. (2.3) at ζ → 0 limit. Similarly, we can also obtain
the change rate for the DSK metric:

Ċð1Þ ¼ 2M3αQa2χsignðχ̇Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χ2ÞðC − a2χ2 − a2ð1 − χ2ÞE2 þ 2aELzÞ − L2

z

q

×
�
ðððrðr − 2MÞ þ a2Þðr2 þ a2χ2Þ þ 4Mrðr2 þ a2ð1 − χ2ÞÞÞE − 4MraLzÞ2 − 4M2r2ððr2 þ a2ÞE − aLzÞ2

− 2ðrðr − 2MÞ þ a2Þðr2 þ a2χ2Þðððr2 þ a2ÞE − aLzÞ2 − ðrðr − 2MÞ þ a2ÞðCþ r2ÞÞ
�

× r−1ðrðr − 2MÞ þ a2Þ−2ðr2 þ a2χ2Þ−4: ð4:11Þ

To “separate” the geodesic equations, we have utilized the background constraints

ṙ2 ¼ ðr2 þ a2χ2Þ−2ðððr2 þ a2ÞE − aLzÞ2 − ðrðr − 2Mζ→0Þ þ a2ÞðCþ r2ÞÞ; ð4:12Þ

χ̇2 ¼ ðr2 þ a2χ2Þ−2ðð1 − χ2ÞðC − a2χ2 − a2ð1 − χ2ÞE2 þ 2aELzÞ − L2
zÞ; ð4:13Þ

for the metric described by Eq. (2.2) with ζ ¼ 0. For the
DSK metric, the mass function Mζ→0 in the equations is
replaced by the bare mass M. One may explicitly separate
the radial and latitudinal motions by casting the radial
equation of Eq. (4.12) into dr=dσ ¼ � ffiffiffiffiffiffiffiffiffiffiffi

VrðrÞ
p

, where Vr

is the radial potential and σ is the Mino time. It is
straightforward to identify the radial turning points
(ṙ ¼ 0) as solutions of vanishing Vr. One can apply the
same procedure to the latitudinal equation and locate the
latitudinal turning points (χ̇ ¼ 0). Furthermore, without
specifying the initial condition, the conserved quantities
ðE;Lz; CÞ alone can determine the period ratio between the
radial and the latitudinal motion in Mino time, which must

be the inverse of the frequency ratio in proper time.
Therefore, we can identify the conserved quantities corre-
sponding to a specific frequency ratio. For the 1=2-resonant
fixed point of the non-Kerr metric described by Eq. (2.2)
with ζ ¼ 0 and lNP ¼ 0.4M, the latitudinal turning points
are at χ ¼ �0.3555…, and the radial turning points are at
r=M ¼ 3.348… and r=M ¼ 11.933…, respectively.
Notice that Eqs. (4.12) and (4.13) determine the back-

ground geodesic up to initial conditions rð0Þ, χð0Þ, and
signs of ṙ and χ̇. We can and will fix the orbit to start at the
periapsis (minima of r) by shifting the proper time. For
quasiperiodic orbits of the background system, given
enough time, a single orbit would densely cover the
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ðr; χÞ torus. For resonant orbits, however, the latitude at the
periapsis remains constant throughout the evolution, sug-
gesting that each χð0Þ leads to a different, nonoverlapping
orbit that appears as a different set of fixed points on the
section. What we strive to investigate later is that, in the
integrable limit of a perturbed system, which resonant orbit
would correspond to the center of the 1=2-resonant islands.
Let us turn our attention back to the evolution of the

Carter “constant.” At first glimpse, there are terms con-
taining signðṙÞ in Eq. (4.10). Because of the presence of
such terms, the evolution of C is ṙ inversion asymmetric in
the noncircular spacetime of Eq. (2.2). This is the direct
manifestation of the ðχ; ṙÞ asymmetry discussed in
Sec. II C. To better illustrate the asymmetry, we utilize

Eqs. (4.12) and (4.13) to plot the change rate of the Carter
“constant” against ṙ and χ̇ in Fig. 7, alongside the numeri-
cally identified geodesic at the center of the resonant island.
If we take the Poincaré section of χ̇ ¼ 0, the asymmetry of
the Carter constant evolution deforms the radial evolution
of Eq. (4.12) unevenly between ṙ > 0 and ṙ < 0 branches,
breaking the ðṙ; χÞ symmetry of the orbits, including KAM
curves. The asymmetric patterns are visible in the top panel
of Fig. 8. For the DSK metric, on the other hand, the ðṙ; χÞ
symmetry is preserved, as can be seen from the bottom
panel.

FIG. 7. The heat map (orange: positive, blue: negative, white:
peak) of the change rate of the Carter “constant” Ċ given by
Eqs. (4.10) and (4.11), with constant-spacing contours on ðṙ; χ̇Þ
plane. The results are evaluated using the orbit parameters of the
geodesic at the center of the 1=2-resonant islands considered in
previous sections. The absolute value of Ċ is irrelevant. The map
is overlaid by the projection of the geodesic (green: χ < 0,
magenta: χ > 0) at the center of the island with the metric
parameters given in the subcaption. Ċ and the geodesic outside
r ¼ 6 are cut as Ċ is suppressed polynomially in terms of r. It is
important to note that the sign of Ċ flips as the geodesic reaches
the equatorial plane (transition between green/magenta), and we
only show the positive χ branch (magenta) of Ċ.

FIG. 8. The section of χ̇ ¼ 0, i.e., the latitudinal turning points,
projected onto the ðṙ; χÞ plane. Gray: The KAM curves with the
radial frequency to latitudinal frequency ratio ωr=ωθ slightly
smaller than 1=2. Magenta: The KAM curves with ωr=ωθ slightly
larger than 1=2. Cross: The center of the island, i.e., the stable
fixed point. Other circles: Geodesics from the edge of the island
to the center of the island.
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In order to identify the orbit that corresponds to the
center of islands in a perturbed system, we utilize the fact
that the total change to the Carter constant must vanish after
one period if the orbit is closed in phase space, i.e.,
resonating. Such an orbit can be identified by varying
χð0Þ. In the case of the DSK metric, the orbit can be
identified straightforwardly by its symmetry. Since the
ðχ; ṙÞ inversion leaves the change rate of the Carter
“constant” intact, the contribution from the ṙ > 0 branch
and the ṙ < 0 branch must cancel each other. Therefore,
either χ̇ð0Þ ¼ 0 or χð0Þ ¼ 0 has to be satisfied.
Furthermore, since the larger the Carter constant gets,
the quicker r revolves relative to χ,13 the fixed point is
stable if Ċ grows when r lags behind χ cycle and vice versa.
This only happens when αQχχ̇ transits from positive to
negative around the periapsis. Therefore, the stable fixed
point at ṙ ¼ 0 must reach the latitudinal turning points if

αQ > 0 and the equatorial plane if αQ < 0. We demonstrate
the branch-selecting rule by showing the phase space
trajectories of geodesics inside the 1=2-resonant islands
of various metric setups in Fig. 9, including the DSKmetric
with opposite signs of αQ.
In the case of non-Kerr spacetimes of Eq. (2.2), however,

the situation is far more complicated. As demonstrated in
the top panel of Fig. 7, the asymmetry shifts the peak of Ċ
horizontally by ṙ ∼ 0.01. One may be tempted to alter χð0Þ
equivalently as a shift in the radial cycle that matches the
said amount to balance Ċ, and it would be done so if all four
branches of the geodesic labeled by the sign of χ and χ̇ are
shifted with equal contribution. Unfortunately, due to the
symmetry presented at the Hamiltonian level, the edge of
the invariant tori, even without circularity, shown as the
allowed region of the geodesic by varying the initial
condition, is still symmetric with respect to ṙ inversion.
The branch crossings thus shift unevenly, leading to uneven
contributions to the variation of the Carter constant among
the four branches of χ, χ̇ signatures. Due to the radial
dependence of Mζ→0, the two secondary branches contrib-
ute about 1=2 of the main branches. Therefore to cancel out

FIG. 9. Phase space trajectory of geodesics around the island, with each subfigure corresponding to different spacetimes detailed in the
subcaption. The geodesics are chosen to be just inside the island (blue, with black dots equally spaced along geodesics) and at the center
of the island (yellow). The colored points are the Poincaré sections of the geodesics with section of ṙ ¼ 0 (red), section of χ ¼ 0 (green),
and section of χ̇ ¼ 0 (orange), respectively.

13If we treat the right-hand side of Eqs. (4.12) and (4.13) as an
effective kinetic energy, C contributes positively to the total
energy in Eq. (4.13), increasing χ period, and negatively in
Eq. (4.12).
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the asymmetry, one has to double the shift to ṙ ∼ 0.02 at
χ̇ ¼ 0 or χ ¼ 0, which is half of the critical velocity of the
ζ > 0 case, as shown in Fig. 4. We may derive the
corresponding location of periapsis, which turns out to
be at χ ¼ 0.322… for the case of χ̇ ¼ 0, extremely close to
χs of ζ < 0, as shown in Fig. 6.
Notice that the relation between the stable fixed point and

the choice of the branch is opposite of what we identified in
the DSK case. We cannot explain why this is happening,
except that numerical integration does suggest so.

V. IMPLICATIONS

Let us briefly discuss the possible implications of what
we have found. For noncircular spacetimes, as shown in
Figs. 4 and 6, across ζ ¼ 0 where the spacetime has
integrable orbital dynamics, expectedly, the width of
islands R shrinks to zero and the value of rc varies
smoothly. However, the amount of the asymmetry of
islands changes abruptly. This means that when an inte-
grable Hamiltonian receives nonintegrable perturbations,
resonant points split and form resonant islands in a way
sensitive to the type of perturbations. Specifically, unlike
nonintegrable but circular spacetimes in which islands
respect the discrete symmetries of the system, noncircular
ones break the symmetries, manifesting as abrupt
deformations of islands. As is well known, the whole
bunch of islands for a particular resonance encases a stable
periodic orbit which appears as the central point of islands,
i.e., the stable fixed point, on the surface of section.
This stable periodic orbit always appears at the center
of the nested curves inside islands, irrespective of the
choice of χ for a Poincaré section. For example, the
centers of the islands in both Figs. 3 and 5 correspond
to the orbit defined by the same initial condition
ðrð0Þ ¼ 3.34888; χð0Þ ¼ −0.15064; ṙð0Þ ¼ 0Þ. The cen-
tral periodic orbit is a stable fixed point on the Poincaré
section, and, therefore, the abrupt shift of the islands may
originate from the shift of the central periodic orbit.
Given the symmetry of resonant orbits inside the islands

on the section at the latitude of symmetry χs, the radial
turning points of the central periodic orbit have to reside on
χ ¼ χs as well. The main distinction between circular and
noncircular spacetimes is that symmetric islands appear
either at χs ¼ 0 or at the latitudinal turning points for the
circular case, but χs can be anything for the noncircular case.
Thus, in the case of noncircular spacetimes, the radial
turning points of the central periodic orbit seem to acquire
an off-equatorial shift, and the amount depends on the
parameters of the metric. For a particular parameter choice
of themetric, i.e., a ¼ 0.66M, ζ ¼ 1, and lNP ¼ 0.4M, these
radial turning points of the central periodic orbit shift toward
the negative χ. As a consequence, the central periodic orbits
in noncircular spacetimes would acquire asymmetric tem-
poral expanse with respect to the equatorial plane.

The asymmetric islands, or explicitly, the off-equatorial
shift to the central periodic orbits, could be interpreted
as due to an off-equatorial net force acting on the orbits. This
net force is a feature of noncircularity. Consider an EMRI
system with a small spinning compact object gradually
spiraling into a massive black hole with noncircular space-
time, and suppose that the spin of the smaller object is
initially (anti-)aligned to the orbital angularmomentum. The
off-equatorial net force would cause the parallel spin
component to partially get converted into a perpendicular
component so that a nonzero spin component orthogonal to
orbital angular momentum emerges [70,71]. Therefore, the
evolution of the parallel component of the secondary’s spin
in the noncircular background should deviate from that in
the Kerr background, though the detectability of such
deviation through LISA is still not clear [72,73]. In any
case, if the off-equatorial net force can be quantified
independently through feasible observable, one may further
infer the position of the 1=2-resonant islands and even that of
the stable fixed points. This could be achieved through the
measurements of the time the small object of EMRIs spends
inside resonances, with sufficient events and statistics.
The way EMRI systems may help to investigate resonant

orbits is the following. Typical EMRI models utilize the
adiabatic approximation in which the constants of motion
are assumed to evolve very slowly along the orbital motion
[74,75]. In this approximation, the trajectory of the small
object follows the geodesic for several periodic cycles up to
a timescale at which the radiation reaction starts picking up.
After one such time, the constants of motion should be
updated by self-force effects averaged over ðr; θÞ torus. The
self-force term has a phase like krqr þ kθqθ þ kφqφ, where
qA’s are angle variables conjugate to the conserved quan-
tities ðE;Lz; C; μÞ in the action-angle formalism. In non-
resonant regimes, the phase oscillates rapidly and vanishes
after taking averages over a radiation reaction time. On the
contrary, during the resonance, since krωr þ kθωθ can be
zero for some combinations of kr and kθ, the phase could
evolve slowly and be non-vanishing after averaging, caus-
ing cumulative dephasing effects (around the order offfiffiffiffiffiffiffiffiffiffi
M=μ

p
) in the gravitational waveforms [76]. If these values

can be extracted from multievent analysis that calibrates
and aggregates different phases inside short resonance
windows of each event, one may understand how qr and
qθ are spread over the ðr; θÞ torus and further distinguish
noncircular resonances from circular ones.
In addition to the asymmetric islands and the existence of

off-equatorial net forces, we would like to emphasize that,
for noncircular spacetimes, the amount of asymmetry of
islands, i.e., vc and χs, appears discontinuous at the
integrable limit. The discontinuous jump of vc and χs at
the integrable limit could have a crucial observational
implication. Suppose a Kerr black hole receives minuscule
noncircular deformations. Although the Birkhoff islands
shall be narrow, vc and χs may acquire sizable values
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abruptly. If such a sizable value is directly associated with
some observables and can be measured, perhaps through
the methods mentioned above, it could be a powerful tool to
test the circularity of the black hole spacetime.
Presently, it is still not clear what the associated

observables would be. Naively, such observables should,
at least statistically, be able to infer the location of resonant
islands. Suppose the observables can be parametrized as

O ¼ OðR; vc; χs; XÞ; ð5:1Þ

where X represents other dependencies unrelated to the
supermassive black hole spacetime geometry. Note that O
has an implicit dependence onM, a, lNP, and ζ through R,
vc, and χs. If an observable depends on the island width R
in a way that it smoothly approaches zero toward the
integrable limit, then it becomes challenging to test
circularity through the measurement of said observable,
even when vc and χs have sizable values. On the other
hand, if an observable acquires sizable nonzero values
directly determined by vc and χs near the integrable limit,
it can be a perfect tool to test the circularity of black hole
spacetimes. It requires further exploration to understand
whether the observable O belongs to the former case,
which could lead to a no-go for testing circularity through
the asymmetry of islands, or it belongs to the latter case. It
has been shown in Refs. [10,11,55] that the existence of
chaotic orbital dynamics may leave imprints such as
glitches on the spectrogram of the gravitational
waves emitted by EMRIs. Variations of such imprints
may serve as the observable to capture the asymmetry of
the islands.

VI. CONCLUSIONS

The future space-based gravitational wave detectors,
such as LISA, are going to create a new arena as precision
tests of the Kerr hypothesis become possible. In particular,
by examining the gravitational waves associated with the
orbital dynamics of EMRI systems, one could possibly
tell whether the orbital dynamics around the super-
massive black hole is chaotic [10–13,55,56]. If any
signs of chaos are detected, they would strongly hint
toward physics beyond GR, as the orbital dynamics is
integrable and nonchaotic in the Kerr spacetime preferred
by GR.
In this paper, we investigate the chaotic features of

orbital dynamics induced by black hole spacetimes that
break circularity. From the analytic point of view, non-
circularity prohibits any proper definition of two-surfaces
that are everywhere orthogonal to the surfaces of transi-
tivity, i.e., the surfaces spanned by the Killing vectors. Two
surfaces entangle in a nontrivial way and destroy the
Liouville integrability of geodesics. Numerically, upon
choosing a specific noncircular spacetime of Eq. (2.2),
we exhibit the existence of chaos by identifying the

resonant islands in the Poincaré surfaces of section. A
similar analysis has been done in Ref. [42] in which the
authors considered a different noncircular spacetime and
confirmed the existence of chaos in orbital dynamics.
In addition to confirming the existence of chaos, in this

paper, we find that noncircularity not only gives rise to
chaos but also induces chaotic features unheard of in
typical nonintegrable but circular spacetimes. More
explicitly, the resonant islands appear asymmetric with
respect to the ṙ ¼ 0 axis on the ðr; ṙÞ Poincaré surface of
section at the equatorial plane. The perturbation analysis
conducted in Sec. IV shows that such asymmetric patterns
also happen to non-resonant orbits. The orbits in the phase
space lose the ðṙ; χÞ symmetry precisely due to the surface
of transitivity not properly foliating the noncircular
spacetime.
To quantify the asymmetry of resonant islands, we define

two measures in Sec. III, the critical velocity vc and the
latitude of symmetry χs. These two measures are uniquely
defined for a given set of E, Lz, and the metric parameters.
As opposed to circular but nonintegrable spacetimes, these
two measures are in general not zero for noncircular
spacetimes. Interestingly, we find that vc and χs acquire
discontinuous jump at the parameter space where the
geodesics are integrable (see Figs. 4 and 6). It implies
that the asymmetry of islands, or more explicitly, the way
that central periodic orbits develop islands, is sensitive to
the form of noncircularity rather than to its strength. This is
in contrast to the size of islands that depends heavily on
the strength of chaos because the islands shrink toward the
integrable limit following the KAM theorem (see the
behavior of the island width R in Fig. 6).
We would like to emphasize that although we choose

the metric in Eq. (2.2) as an example to demonstrate our
results, we expect our conclusions to be genuine in the
presence of noncircularity. One timely extension of this
work is to identify physical observables that link to the
asymmetric patterns of islands. In Sec. V, we lay down
some preliminary statements regarding possible observa-
tional implications of noncircularity. It becomes timely to
investigate the possibility of inferring the asymmetric
distribution of islands from gravitational wave data or
from possible but yet-to-know features of noncircularity
in the gravitational wave glitches [10,11,55,56]. Due to
the discontinuous jump at the integrable limit, an
extremely tiny amount of noncircularity would already
give rise to sizable effects of this kind. Therefore, if we
may infer the position of islands inside the phase space
from gravitational wave data, it would be a perfect tool to
test the circularity of black hole spacetimes. In addition,
the resonant orbits can be investigated perturbatively
using the effective resonant Hamiltonian approach [77].
It could be possible to apply the approach, perhaps with
some generalizations, to noncircular spacetimes. We leave
these topics to future work.
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