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The popular waveform templates of extreme-mass-ratio inspirals usually omit the mass-ratio corrections
in conservative dynamics, and employ adiabatic approximation to include the radiation reaction. With the
help of effective-one-body dynamics, we investigate the influence of mass-ratio corrections in the
conservative part on the gravitational waves. We find that for the extra-relativistic orbits, the mass-ratio
corrections can produce obvious orbital dephasing even for a very small mass ratio and then affect the
waveforms. More importantly, it is noted that omitting the mass-ratio corrections in waveform templates
may induce a fake signal of deviation from general relativity.
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I. INTRODUCTION

Extreme-mass-ratio inspirals (EMRIs) [1,2], consisting
of a stellar-mass compact object [SCO: white dwarf,
neutron star, or black hole (BH)] inspiraling into a super-
massive black hole (SMBH), are the prime sources of the
space-borne gravitational wave (GW) detectors, such as the
Laser Interferometer Space Antenna (LISA) [3], Taiji [4,5],
and TianQin [6].
EMRIs are very important in astrophysics, cosmology,

and basic physics. In astrophysics, EMRIs will provide us
with relevant information on stellar dynamics in galactic
nuclei, from which we can infer the formation mechanism
of EMRIs [1,7–9]. In cosmology, the detection of a single
EMRI event and its electromagnetic counterpart can
provide an accurate measurement of the luminosity dis-
tance and the redshift to estimate the Hubble constant
[10–13]. For basic physics, EMRIs can be used to test
general relativity (GR) and the nature of BHs in the strong-
field regime [14,15]. As an extreme mass ratio, SCO may
be considered approximately as a test particle in the
background of the central SMBH. The emitted GWs reflect
the space-time information of the central object. If
extracting this information from the gravitational-wave
signals, we can accurately distinguish whether the central
object is a Kerr BH or another corresponding object.

Extensive work has been done to quantify the ability of
space-based GW detectors (LISA, Taiji, TianQin, etc.) to
measure the deviation of multipole moments from the Kerr
BH and then test GR [15–19]. In particular, all of the
multipoles of Kerr BH are determined by its massM0 ¼ M
and spin S1 ¼ J ¼ Ma:

Ml þ iSl ¼ MðiaÞl; ð1Þ

where Ml and Sl are the mass and mass-current multipole
moments, respectively, and a is the standard Kerr spin
parameter. For example, Ryan found that for a simplified
case of circular, equatorial orbits, a LISA observation can
measure the mass quadrupole moment to the accuracy
of ΔM2=M3 ∼ 0.0015–0.015 [16]. Barack and Cutler
extended Ryan’s work to generic orbits and considered
the modulations caused by satellite motions [15]. Collins
and Hughes constructed the space-time of bumpy BHs,
which are similar to the Kerr BH, but with different
multipoles. If the BH candidates are indeed Kerr BHs in
GR, then their bumps should be zero [17]. Furthermore,
Kwinten Fransen and Daniel R. Mayerson estimated the
accuracy of LISA EMRIs to measure the equatorial
symmetry breaking using the lowest-lying odd-parity
multipole moments S2 and M3. They found that S2=M3

will typically be detectable with a measurement accuracy
of ΔðS2=M3Þ ≈ 1% [18].*wbhan@shao.ac.cn
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These tests require an accurate waveform template. With
the accumulation of observation time from several months
to a few years, the signal-to-noise ratio (SNR) of EMRIs
could become large enough to be detected by matched
filtering [1]. However, the accuracy of the waveform
template is also expected to be very high to detect such
long-duration signals and extract the source parameters. For
detection purposes, it is required that the dephasing over the
signal’s duration should be less than a few radians. For
source parameter extraction, the dephasing should satisfy
Δϕ≲ 1=SNR [2,20]. As in Ref. [21], the GW phase ϕ can
be expanded as

ϕ ¼ ν−1ϕ0 þ ν0ϕ1 þOðνÞ; ð2Þ

where ν is the mass ratio. The first term is the “adiabatic”
term, i.e., the zeroth postadiabatic (0PA) term, which
involves the dissipative part of the first-order self-force
(1SF). The second term is the first postadiabatic (1PA)
term, involving the conservative part of the 1SF and the
dissipative part of the second-order self-force (2SF), which
is required for exact EMRI models [22,23]. Models that get
ϕ0 might be enough to detect most signals, but models that
get both ϕ0 and ϕ1 should be enough for precise parameter
extraction [24].
Currently, there is a relatively accurate method based on

the black hole perturbation theory (BHPT), i.e., the wave-
form can be obtained by solving the Teukolsky equa-
tion [25]. This method is based on frequency domain
decomposition and treats the SCO as a test particle. The
ongoing gravitational self-force (GSF) program [21] is a
specific expansion within BHPT that aims to generate
EMRI waveforms satisfying the requirements of the EMRI
science. In this approach, EMRI is treated as a point mass
orbiting a black hole, and the dynamics can be described by
the equation of motion of the mass, including the influence
of the interaction with the self-field, i.e., the GSF [26].
Among the GSF formalisms, the recent postadiabatic (PA)
waveforms [23] are the most accurate waveforms to date.
Some other methods, such as the kludge models [27,28],
adiabatic waveforms [29,30], and the effective-one-body
(EOB) formalism [31–35], make it possible to efficiently
calculate a large number of relatively accurate waveforms.
Nowadays, kludge waveforms have been greatly devel-

oped, like analytical kludge [27], numerical kludge [28],
augmented analytical kludge (AAK) [36], etc. These
kludge models can generate waveforms more quickly than
using the Teukolsky equation or the GSF method, and are
often used for EMRI data analysis. However, they are less
accurate because they represent approximations to the 0PA
(adiabatic) waveforms [23]. They regard SCOs as test
particles in the orbital evolution using the matched asymp-
totic expansions [37], ignoring the mass-ratio corrections
in the conservative dynamics, which is related to the
conservative part of the 1SF. However, in the future, we

can incorporate the 1PA term into these waveform tem-
plates to model EMRIs exactly. While not being enough for
parameter estimation, models like the AAK might be
sufficient for detection, and they have been heavily used
for many LISA measurement studies.
Hughes [30] et al. computed adiabatic (0PA) waveforms

for EMRIs by “stitching” together a long inspiral waveform
from a sequence of waveform snapshots, each of which
corresponds to a particular geodesic orbit. But some effects
are neglected by this adiabatic approximation, such as
the conservative self-force and spin-curvature coupling.
However, we can extend this framework to include these
effects beyond the adiabatic approximation in the future.
Recently, Wardell [23] et al. produced the 1PA waveforms
for nonspinning compact binaries undergoing a quasicir-
cular inspiral, which will be invaluable to accurately model
EMRIs for the LISA mission.
As in Eq. (2), the 1PA contribution is non-negligible for

all mass ratios, and the 1PA term is both necessary and
sufficient for EMRI modeling [21–23]. So the lack of a 1PA
term will lead to inaccurate waveform templates, which
may give rise to some errors in GW parameter estima-
tion [38,39]. In particular, using a waveform template that
is not accurate enough can lead to the detection of a
spurious signal deviating from the Kerr black hole case.
Based on a simple linearized analysis and Fisher matrix
calculations, Moore [40] et al. estimated the waveform
errors accumulated among GWevents. They found that the
evidence for the deviation from GR grows as the catalog
size increases. Qian Hu and John Veitch [41] investigated
the impacts of overlapping signals and inaccurate wave-
form models on tests of GR. They confirmed that system-
atic errors could accumulate when combining multiple GW
events and could lead to a false deviation from GR in
some cases.
In our work, we are interested in evaluating the impact of

inaccurate waveforms due to ignoring mass-ratio correc-
tions (associated with the 1PA term), which may mistak-
enly lead to fake deviations from GR in parameter
estimation. In other words, even if GR is a correct
description of nature, there is a risk of making a wrong
judgment on the test of gravity theory if a mass-ratio
correction is ignored in waveform templates.
In the previous papers, taking advantage of the EOB

formalism [31–35], some of us discussed the influence of
mass-ratio corrections in conservative dynamics [42,43]. In
the present work, we make a further and detailed inves-
tigation of mass-ratio corrections on the orbital motion
(orbit, frequency, and phase) and gravitational radiation.
We also show the discrepancy of the Teukolsky-based
energy fluxes by using the EOB orbit and the test particle
one. We generate our waveforms by the following scheme:
First, we improve the hybrid scheme of fluxes proposed by
Gair and Glampedakis [44] (hereafter GG) to obtain the
orbital evolutions with a dissipative 1PA term. And then we
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solve the EOB dynamical equations including mass-ratio
corrections (conservative 1PA term) to get the orbital
frequency. Finally, the waveforms are computed via the
Teukolsly formalism. More importantly, based on the
Bayesian analysis, we evaluate the possibility of inducing
a fake signal of deviation from GR due to omitting the
mass-ratio corrections in waveform templates. We find that
for the case of the mass-ratio ν≲ 10−5, the mismatch
between the EOB and test particle waveforms is so small
that it can be ignored. However, for the case of ν≳ 10−5,
the mismatch is much larger, and there is a risk of making
an incorrect judgment, namely, that we have detected a
deviation from GR.
This paper is organized as follows. In Sec. II, the

conservative dynamics part of analytical EOB formalism
which includes the first-order mass-ratio corrections is
introduced in detail. In Sec. III, considering the gravita-
tional radiation, we introduce the Teukolsky equation and
generate the Teukolsky-based waveforms of EMRI by
combining the EOB orbit and the post-Newtonian (PN)
fluxes fitted by the Teukolsky one. In Sec. IV, we consider
EMRI models with different mass-ratios and SNRs to
illustrate the waveform mismatches using the EOB orbit
and the test particle one. We also calculate their Bayesian
factors in favor of a GR deviation. Finally, in Sec. V, we
draw the conclusions and discuss our results. Throughout
this paper, we set G ¼ c ¼ 1, where G is the gravitational
constant and c is the speed of light.

II. EFFECTIVE-ONE-BODY DYNAMICS

Thebasic idea of EOB formalism [45,46] is to simplify the
conservation dynamics of the two-body problem inGR to the
geodesic motion of the test particle in the reduced space-
time. That is to say, the two-body problemof the SMBHwith
a massm1 and the smaller compact object with a massm2 is
transformed into the single-body problem of the test particle
with the reduced mass μ¼m1m2=ðm1þm2Þ moving in the
equivalent external metric field. This is equivalent to the
post-Newtonian expansion of traditional two-body relative
motion. The EOB Hamiltonian is written as follows:

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ð3Þ

where M ¼ m1 þm2, ν ¼ m1m2=M2 ¼ μ=M, and Ĥeff¼
Heff=μ, Heff is the effective Hamiltonian. Once the expres-
sion of the Hamiltonian HEOB is determined, the equations
of motion can be written as

dr
dt

¼ ∂HEOB

∂P
;

dP
dt

¼ −
∂HEOB

∂r
þ F; ð4Þ

where r represents the coordinate of the small compact
object, and P is the momentum. We use F to denote the
radiation reaction force of GW, which causes the energy

and angular momentum of the two-body system to be no
longer conserved. In the conservative dynamic part, GW
radiation is ignored, that is, F ¼ 0.
The effective Hamiltonian is given by [42]

Heff ¼ HNS þHS −
ν

2r3
S2� ≈HNS; ð5Þ

whereHS andHNS represent the Hamiltonian of the particle
with and without spin, S� ¼ aMðm2=m1Þ is the effective
spin of the particle, and a is the deformed-Kerr spin
parameter. HS and S� are small enough to be ignored
within the range of error precision [47]. The deformed-Kerr
metric is given by [48]

gtt ¼ −
Λt

ΔtΣ
; ð6aÞ

grr ¼ Δr

Σ
; ð6bÞ

gθθ ¼ 1

Σ
; ð6cÞ

gϕϕ ¼ 1

Λt

�
−
ω̃fd

2

ΔtΣ
þ Σ
sin2 θ

�
; ð6dÞ

gtϕ ¼ −
ω̃fd

ΔtΣ
; ð6eÞ

with

Λt ¼ ðr2 þ a2Þ2 − a2Δt sin2 θ; ð7aÞ

Δt ¼ r2
�
AðuÞ þ a2

M2
u2
�
; ð7bÞ

Σ ¼ r2 þ a2 cos2 θ; ð7cÞ

Δr ¼ ΔtD−1ðuÞ; ð7dÞ

ω̃fd ¼ 2aMrþ ωfd
1 ν

aM3

r
þ ωfd

2 ν
Ma3

r
; ð7eÞ

whereωfd
1 ¼ −10,ωfd

1 ¼ 20 [34,49,50], u ¼ M
r , andA andD

are metric potentials for the EOB formalism mentioned in
Ref. [51], which are given in Appendix A. We still call the
coordinate (t; r; θ;ϕ) used here the Boyer-Lindquist-type
coordinate (i.e., in coordinates that reduce to Boyer-
Lindquist coordinates if the quadrupole perturbation is zero,
thus reducing the space-time to pure Kerr) [48].
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As in Ref. [42], the orbital evolution equations can be
expressed as functions of ðξ; χ; p; e; ιÞ∶

ξ̇ ¼ −
ð1þ e cos ξÞ2
epM sin ξ

grrP̂r

E=MðgttĤeff − gtϕL̂zÞ
; ð8aÞ

χ̇ ¼ −
gθθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2ð1 − Ĥ2

effÞðz2þ − z2− cos2 χÞ
q

E=MðgttĤeff − gtϕL̂zÞ
; ð8bÞ

ϕ̇ ¼
gtϕ − ½gttgϕϕ − ðgtϕÞ2� L̂z

gttĤeff−gtϕL̂z

gttE=M
; ð8cÞ

where cos2 θ ¼ cos2 θmin cos2 χ ¼ sin2 ι cos2 χ, r ¼ pM=
ð1þ e cos ξÞ, p is the semilatus rectum, e is the eccentricity
of the orbit, and ι is the orbital inclination. ξ varies from 0 to
2π corresponding to r going through a complete cycle, and
χ varies from 0 to 2π corresponding to θ oscillating through
its full range of motion [42]. Lz is the angular momentum in
the z direction; Pθ, Pr, and Pϕ are the polar, radial, and

azimuthal angular momentum; and E is the total system
energy. The expressions of these parameters are given in
Appendix A [Eqs. (A6)–(A7), Eqs. (A9a)–(A9c)].
By solving the above ordinary differential equations

by numerical integration, we can obtain ξ, χ, ϕ in the
coordinate time t. Projecting the Boyer-Lindquist coordi-
nate to the spherical coordinate grid, the corresponding
Cartesian coordinate system is defined by

x̃ ¼ p cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2−cos2χ

p
1þ e cos ξ

; ð9aÞ

ỹ ¼ p sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2− cos2 χ

p
1þ e cos ξ

; ð9bÞ

z̃ ¼ pz− cos χ
1þ e cos ξ

; ð9cÞ

where z− ¼ cos θmin.
In Fig. 1, we select four sets of parameters and compare

the orbital evolution in the x-y plane for different mass

FIG. 1. Four orbits in the x-y plane of different orbital parameters. The green, blue, red, yellow, and black lines represent
ν ¼ 10−4; 10−5; 10−6; 10−7, and ν ¼ 0, respectively. Note that ν ¼ 0 denotes the case of the test particle. (a) a ¼ 0.99; e ¼ 0.9;
ι ¼ 0∘; p ¼ 2.35M; (b) a ¼ 0.95; e ¼ 0.9; ι ¼ 30∘; p ¼ 3.15M; (c) a ¼ 0.9; e ¼ 0.9; ι ¼ 10∘; p ¼ 3.39M; (d) a ¼ 0.98; e ¼ 0.8;
ι ¼ 0∘; p ¼ 2.41M.
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ratios in each group. We can see that the difference between
the EOB orbit and the test particle one is obvious, especially
when the mass ratio is 10−4 and 10−5. Note that the four
orbits we choose here are all zoom whirl [52]. This
characteristic behavior involves several revolutions around
the central body near the periastron [53], which leads to
more pronounced orbital deviations than in generic orbits.
Figure 2 represents the dephasing, Δϕ, for the four orbits

presented in Fig. 1. For high values of ν, the phase shift Δϕ
becomes significant. It is crucial to understand that even
though the dephasing may be minor at very low values of ν
(ν ¼ 10−7), it cannot be dismissed as negligible. This is
because we require subradian dephasing throughout the
entire inspiral for an accurate extraction of the signal. It is
essential to consider even the smallest deviations in order
to obtain reliable results. Furthermore, we observe that as
time increases, the dephasing Δϕ derived for different mass
ratios becomes progressively larger.
The expressions of the coordinate-time frequencies ωr,

ωθ, and ωϕ, considering the mass-ratio corrections, are
given by [42]

ωr ¼
πKðkÞ

KðkÞW þ a2z2þE½KðkÞ − EðkÞ�X ; ð10aÞ

ωθ ¼
πβzþX

2fKðkÞW þ a2z2þE½KðkÞ − EðkÞ�Xg ; ð10bÞ

ωϕ ¼ KðkÞZ þ Lz½Πðz2−; kÞ − KðkÞ�X
KðkÞW þ a2z2þE½KðkÞ − EðkÞ�X : ð10cÞ

The expressions of KðkÞ, EðkÞ, Πðz2−; kÞ, X, zþ, and k are
given in Appendix A [Eqs. (A11a)–(A11h)].
In Fig. 3, we show the relative frequency shifts

Δω=ω0 ¼ jων − ω0j=ω0 (where the subscript 0 denotes
the case of the test particle ν ¼ 0) of four orbits with the
same parameters in Fig. 1. We find that the relative
frequency shifts increase with the mass ratio. In addition,
the relative frequency shifts can be up to about 2 orders
(102ν) larger than the mass ratio for extremely relativistic
orbits.

FIG. 2. Dephasing (Δϕ ¼ ϕν − ϕν¼0) for different orbital parameters. The green, blue, red, and yellow lines correspond to the cases
ν ¼ 10−4; 10−5; 10−6, and ν ¼ 10−7, respectively. (a) a ¼ 0.99; e ¼ 0.9; ι ¼ 0∘; p ¼ 2.35M; (b) a¼0.95;e¼0.9;ι¼30∘;p¼3.15M;
(c) a ¼ 0.9; e ¼ 0.9; ι ¼ 10∘; p ¼ 3.39M; (d) a ¼ 0.98; e ¼ 0.8; ι ¼ 0∘; p ¼ 2.41M.
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All the above results show that even in the case of
extreme mass ratio, the mass-ratio corrections will have a
significant impact on orbital frequency, and then affect
orbital evolution. This means that when constructing
EMRIs’ waveform template, the mass ratio should not
be ignored. In other words, if we neglect the mass-ratio
correction when building EMRIs’ waveform template, the
final estimated parameters may induce a fake signal of
deviation from GR, which will be discussed in more detail
in Sec. IV.
We point out that all the results presented in this section

only take into account the conservative dynamics, in
which the mass-ratio corrections are associated with the
conservative part of the 1SF. Though the mass-ratio
correction may not correspond to the exact conservative
GSF, we can always improve the accuracy of the EOB
model by calibrating it with GSF results [21,54,55]. It is
important to note that accurately modeling EMRI systems
throughout the whole inspiral requires 1PA corrections.
Besides the conservative part of 1SF, the dissipative part up

to 2SF is also essential and should be taken into
account [20,56].

III. WAVEFORMS AND ORBITAL EVOLUTION

The gravitational waveforms can be calculated in the
Teukolsky formalism, considering the perturbation on the
Weyl scalar ψ4 [25,57]. At infinity, the GW polarizations
hþ;× can be written as

ψ4ðr → ∞Þ ¼ 1

2

∂
2

∂t2
ðhþ − ih×Þ: ð11Þ

We decompose ψ4 in the frequency domain

ψ4 ¼ ρ4
Z þ∞

−∞
dω

X
lm

RlmωðrÞ−2Saωlm ðΘÞeimΦe−iϕ; ð12Þ

where ρ ¼ −1=ðr − ia cos θÞ, ω is the discrete frequency
spectrum, and ϕ ¼ R

ωdt. Here, −2S
aω
lm ðΘÞ denotes the

FIG. 3. Frequency shifts Δω=ω0 versus mass ratio ν of four orbits with different orbital parameters. The yellow, red, and blue lines
represent Δωϕ=ω0, Δωθ=ω0, and Δωr=ω0, respectively. (a) a¼0.99;e¼0.9;ι¼0∘;p¼2.35M; (b) a¼0.95;e¼0.9;ι¼30∘;p¼3.15M;
(c) a ¼ 0.9; e ¼ 0.9; ι ¼ 10∘; p ¼ 3.39M; (d) a ¼ 0.98; e ¼ 0.8; ι ¼ 0∘; p ¼ 2.41M.

PING SHEN et al. PHYS. REV. D 108, 064015 (2023)

064015-6



spin-weighted (s ¼ −2) spherical harmonic coefficient,
which depends on the polar angle Θ. The function
RlmωðrÞ satisfies the radial Teukolsky equation

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ −T lmωðrÞ; ð13Þ

where Δ ¼ r2 − 2Mrþ a2, VðrÞ is the potential [Eq. (2.5)
of Ref. [58] ], and T is the source term [Eq. (2.14) of
Ref. [58] ]. The general solution of Eq. (13) is

RlmωðrÞ¼
R∞
lmωðrÞ

2iωBin
lmωD

∞
lmω

Z
r

rþ
dr0

RH
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2

þ RH
lmωðrÞ

2iωBin
lmωD

∞
lmω

Z
∞

r
dr0

R∞
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð14Þ

where Bin
lmω and D∞

lmω are the asymptotic ampli-
tudes [59,60]. R∞

lmωðrÞ and RH
lmωðrÞ are the two independent

solutions of the homogeneous Teukolsky equation, which
are given by

R∞
lmωðrÞ ¼ ZH

lmωr
3eiωr

�
; ð15Þ

RH
lmωðrÞ ¼ Z∞

lmωΔ2e−ipr
�
; ð16Þ

with

Z∞
lmω ¼ Bhole

lmω

2iωBin
lmωD

∞
lmω

Z
∞

r
dr0

R∞
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð17Þ

ZH
lmω ¼ 1

2iωBin
lmω

Z
r

rþ
dr0

RH
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð18Þ

where r� is the tortoise coordinate. The amplitudes ZH;∞
lmω ðrÞ

fully determine the energy and angular momentum fluxes
ĖH;∞, L̇H;∞

z and the gravitational waveforms

Ė∞;H ¼
X
lmω

jZH;∞
lmω j2
4πω2

; ð19Þ

L̇∞;H
z ¼

X
lmω

mjZH;∞
lmω j2

4πω3
: ð20Þ

Owing to the modification of the orbit by the mass ratio,
the orbital averaged energy flux between the EOB orbit and
the test particle one could obviously be different. Figure 4
shows that for a mass ratio of 10−4, the energy flux
spectrum is visibly different between both cases. Our
calculations from the Teukolsky equation show that for
the relativistic orbits, the relative difference of the energy
fluxes between the EOB and test particle orbits is up to 10ν
magnitude. This will produce enough GW dephasing
during the long evolution of EMRIs.

For the generic orbits, the particle’s motion can be
described as the harmonic of the frequency ωϕ, ωθ, and
ωr. We take ω ¼ ωmkn ¼ mωϕ þ kωθ þ nωr, ϕmkn ¼R
ωmkndt. Therefore, we can write hþ;× as the multipolar

sum of “voices” with these frequencies [61]. For an EMRI
system with a total mass M at a distance D, an altitude
angle Θ, and an azimuth angle Φ, its GW strain can be
written as [30,62]

hþ − ih× ¼ −
2μ

D

X
lmkn

Z∞
lmkn

ω2
mkn

−2S
aωmkn
lm ðΘÞffiffiffiffiffiffi
2π

p e−iϕmknþimΦ; ð21Þ

where
P

lmkn ¼
P∞

l¼2

P
l
m¼−l

P∞
k¼−∞

P∞
n¼−∞, and the

amplitude Z∞
lmkn of each mode can be calculated using

the radial Teukolsky equation. Here, −2S
aωmkn
lm ðΘÞ denotes

the spin-weighted (s ¼ −2) spherical harmonic coefficient,
which depends on the polar angle Θ.
In the present work, we combine the EOB formalism with

the Teukolsky equation, i.e., the EOB trajectory sources and
the Teukolsky equation, and the latter calculates the wave-
forms and feeds back the EOB orbit. The gravitational
waveforms are generated by using Eq. (21), which is the
multipolar sum of “voices” with orbital frequencies ωϕ, ωθ,
and ωr. Since the timescale of gravitational radiation of
EMRIs is far larger than the orbital period, we can calculate
these frequencies in a short time using Eqs. (10a)–(10c).
Unlike the case of the test particle, the EOB dynamics
includes the first-order conservative GSF corrections. Note
that it may not be entirely exact, but we can always improve
the accuracy of the EOB model by calibrating it with GSF
results [21,54,55].
Considering the gravitational radiation, the energy,

angular momentum, and the Carter constant are no longer
conserved. The rates of their changes are expressed by

-10 -5 0 5 10 15
0

1

2

3

4

5
10-3

=10-4

=0

FIG. 4. The spectrum of energy fluxes versus the harmonic
number k with parameters a ¼ 0.99, p ¼ 2.11, and e ¼ 0.7. The
yellow and blue bar represent ν ¼ 0 and ν ¼ 10−4, respectively.
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dE
dt

¼ ∂E
∂p

ṗþ ∂E
∂e

ėþ ∂E
∂ι

ι̇; ð22aÞ

dL̂z

dt
¼ ∂L̂z

∂p
ṗþ ∂L̂z

∂e
ėþ ∂L̂z

∂ι
ι̇; ð22bÞ

dQ̂
dt

¼ ∂Q̂
∂p

ṗþ ∂Q̂
∂e

ėþ ∂Q̂
∂ι

ι̇: ð22cÞ

By solving Eqs. (22a)–(22c), we can describe the evolution
of orbital parameters ðp; e; ιÞ by

ṗ¼ cðL̂z;Q̂Þðe;ιÞ
dE
dt

þcðE;Q̂Þðι;eÞ
dL̂z

dt
þcðE;L̂zÞðe;ιÞ

dQ̂
dt

; ð23aÞ

ė¼ cðL̂z;Q̂Þðι;pÞ
dE
dt

þcðE;Q̂Þðp;ιÞ
dL̂z

dt
þcðE;L̂zÞðι;pÞ

dQ̂
dt

; ð23bÞ

ι̇¼ cðL̂z;Q̂Þðp;eÞ
dE
dt

þcðE;Q̂Þðe;pÞ
dL̂z

dt
þcðE;L̂zÞðp;eÞ

dQ̂
dt

; ð23cÞ

where the coefficients are given by

cðC1;C2Þðo1;o2Þ ¼
∂C1

∂o1
∂C2

∂o2
− ∂C1

∂o2
∂C2

∂o1h
∂E
∂ι

∂L̂z
∂p − ∂E

∂p
∂L̂z
∂ι

i
∂Q̂
∂e þ

h
∂E
∂e

∂L̂z
∂ι −

∂E
∂ι

∂L̂z
∂e

i
∂Q̂
∂p þ

h
∂E
∂p

∂L̂z
∂e − ∂E

∂e
∂L̂z
∂p

i
∂Q̂
∂ι

: ð24Þ

Once we have the GW fluxes Ė, L̇z, and Q̇, substituting
expressions of these fluxes into Eqs. (23a)–(23c), we can
derive the orbital evolution. The −2S

aωmkn
lm and Z∞

lmkn can be
computed by using the analytical module of the Black
Hole Perturbation Club code [63–65]. Combining
Eqs. (10a)–(10c) and (21), we can generate the gravita-
tional waveforms. However, fully using the numerical
Teukolsky-based fluxes is computationally expensive.
Without impacting our main target, we here employ a
hybrid scheme of fluxes [44].
Compared with the numerical fluxes, the GG formalism

performs well for orbits of low eccentricity, especially for

circular, inclined orbits. We also include mass-ratio cor-
rections (dissipative 1PA term) to the original second
post-Newtonian (2PN) fluxes based on [43,65,66], though
this has almost no influence on the data analysis results.
The final expressions for Ė, L̇z, and Q̇ [Eqs. (B1)–(B3)
with Eqs. (B7)–(B8) and Eqs. (B10)–(B12)] are given in
Appendix B.
As an example, Fig. 5 shows two waveforms including

or excluding mass-ratio corrections starting at ðp0; e0; ι0Þ ¼
ð6.84; 0.166; 45°Þ, and the mass ratio is 10−5. We plot
the one-year evolving waveforms at the viewing angle
ðΘ;ΦÞ ¼ ð45°; 0°Þ. In our work, we generate the

FIG. 5. Two waveforms of EMRI systems with ðM; μ; aÞ ¼ ð5 × 106M⊙; 50M⊙; 0.43Þ, starting at ðp0; e0; ι0Þ ¼ ð6.84; 0.166; 45°Þ.
We plot the one-year evolving waveform at the viewing angle ðΘ;ΦÞ ¼ ð45°; 0°Þ. The orange line represents the waveform excluding
mass-ratio corrections, and the blue line denotes the waveform including mass-ratio corrections. The waveforms are generated using the
Black Hole Perturbation Club’s Teukolsky code [63,64].

PING SHEN et al. PHYS. REV. D 108, 064015 (2023)

064015-8



gravitational waveforms only considering the ðl; mÞ ¼
ð2; 2Þ mode, which is the dominant strain mode. The
bottom row and the top one represent the one-year evolving
waveforms and their three enlarged waveforms, respec-
tively. From magnified waveforms (top row), we can see
that at the beginning (left column), the difference between
two gravitational waveforms with or without mass-ratio
corrections is quite small, which is invisible to the naked
eye. However, waveform errors due to the mass ratio can
accumulate as time goes by. And then obvious waveform
differences (both in dephasing and amplitude) can be found
in the waveforms at the latter stage of evolution (middle and
right columns).
The accumulative errors are caused by the dual effects of

mass-ratio correction on the orbital frequencies and the
Teukolsky-based energy fluxes. First of all, under the same
orbital parameters, mass ratio will affect the orbital
frequencies and thus impact the frequencies of GWs at
OðνÞ −Oð102νÞ depending on the orbital parameters.
Furthermore, the orbit correction caused by mass ratio
will change the Teukolsky-based energy fluxes with a
relative difference above OðνÞ for relativistic trajectory.
Under the joint influence of these two factors, when the
mass-ratio correction is not considered in the orbit dynam-
ics, i.e., calculate the geodesic in the background field of
the massive body and then evolve the orbit by the adiabatic
approximation (the radiation reaction is considered as the
leading order self-force), it may produce accumulative
errors that cannot be ignored for EMRI waveforms.

IV. DATA ANALYSIS AND RESULTS

The matched filtering [67] technique is widely used in
LIGO and Virgo data processing, and it will also be
applicable to future space-borne GW detectors. We also
apply this technique to analyze the influence of mass-ratio
corrections on EMRI waveforms quantitatively. Given two
time series aðtÞ and bðtÞ, their maximized fitting factor
(overlap) and mismatch (M) are given by

overlap ¼ max
ts;ϕs

ðaðtÞjbðtþ tsÞeiϕsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp ; ð25Þ

M ¼ 1 − overlap ¼ 1 −max
ts;ϕs

ðaðtÞjbðtþ tsÞeiϕsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp ; ð26Þ

where ts is the time shift, ϕs is the phase shift, and ðajbÞ is
the inner product between two time series signals aðtÞ and
bðtÞ with the following expression:

ðajbÞ ¼ 2

Z
∞

0

df
ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ

SnðfÞ
; ð27Þ

where ãðfÞ is the Fourier transform of the series signal
aðtÞ, ã�ðfÞ is the complex conjugate of ãðfÞ, and SnðfÞ is

the power spectral density (PSD). In this work, we use
the PSD from the Online Sensitivity Curve Generator
website [68,69], representative of the design sensitivity
of LISA.
We use the PyCBC library [70] to compute the mismatch

between two EMRI waveforms at a distance of 1 Gpc, and
the result is presented in Fig. 6. We fix the mass of the SCO
at 50M⊙ and consider four EMRI systems with mass ratios
ranging from 10−4 to 10−7. The results show that when the
mass ratio (ν ¼ 10−6 and ν ¼ 10−7) is closer to the test
particle limit (ν ¼ 0), the mismatch is so small that it can be
ignored. In addition, for the case of ν ¼ 10−4 and ν ¼ 10−5,
as time passes, the mismatches between two waveforms
will increase and may be large enough to induce a fake
signal of deviation from GR, which will be explained later.
We follow the method of Moore [40] et al. to calculate

fake Bayesian factors for the deviation from GR. First, it is
assumed that GR is the correct description of nature. For
the combined parameter space λ ¼ ðα; θÞ, the observed
signal, s, can be described as the sum of the GW signal and
the detector noise:

s ¼ nþ hðα; θÞ ¼ nþ hðαTr ¼ 0; θTrÞ þ ΔhðθTrÞ: ð28Þ

Here, we treat α as the modified gravity parameter, and in
the case of GR, α is equal to 0. θ denotes the source
parameters including both intrinsic (masses, spins, etc.)
and extrinsic (distance, viewing angles, etc.) parameters.
ΔhðθTrÞ represents the errors caused by inaccurate wave-
form templates.
Assuming the instrument noise is Gaussian, the like-

lihood Lðα; θÞ ¼ Pðsjα; θÞ is

FIG. 6. The mismatches of waveforms coming from EOB
dynamical evolutions and the test particle one. The blue, red,
yellow, and green lines represent systems with different mass
ratios of 10−4, 10−5, 10−6, and 10−7, respectively. For each ν, we
calculate the mismatch considering different evolution times from
1 month to 12 months. We fix the EMRI parameters to a ¼ 0.9,
ðμ;MÞ ¼ ð50M⊙; μ=νÞ at the distance of 1 Gpc. Our waveforms
end at ðp; e; ιÞ ¼ ð5.1; 0.1; 80°Þ.
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logLðα; θÞ ¼ −
1

2
js − hðα; θÞj2 þ c

¼ −
1

2
jn − δhðα; θÞ þ ΔhðθTrÞj2 þ c; ð29Þ

where we set δhðα; θÞ ¼ hðα; θÞ − hðαTr; θTrÞ and c is a
constant. For simplicity, we assume that the prior on λ is
flat, so the posterior is proportional to the likelihood. The
maximum likelihood (ML) parameters can be decomposed
into the following three parts

λML ¼ λTr þ Δλstat þ Δλsys; ð30Þ

where λTr is the true source parameters; Δλstat is the
statistical error, which depends on the instrument noise
n; and Δλsys is the systematic error, which depends on the
model error Δh. Through the first-order Taylor expansion
of Δh, the log-likelihood at the ML parameters is given
by [40]

logLðλÞ ¼ c0 −
1

2
Γμνðλ − λMLÞμðλ − λMLÞν; ð31Þ

where c0 is another constant, Γμν is the Fisher matrix, and
we assume that Γoi ¼ 0 if i ≠ 0. We set k ¼ dimðθÞ, that is,
dimðλÞ ¼ kþ 1. For the non-GR submodel, The Bayesian
evidence integral is given by

Znon−GR ¼
Z

dλLðλÞ ¼ ec
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞkþ1

detΓμν

s
: ð32Þ

For the GR submodel, α ¼ 0, we have

logLGRðθÞ ¼ c0 −
1

2
Γ00α

2
ML

−
1

2
ðθ − θMLÞiΓijðθ − θMLÞj; ð33Þ

ZGR ¼
Z

dθLGRðθÞ ¼ ec
0−Γ00α

2
ML=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞk
detΓij

s
; ð34Þ

with

αML ¼ αstat þ αsys; ð35aÞ

αstat ¼
z
ρ
; ð35bÞ

αsys ¼
ffiffiffiffiffiffiffiffiffi
2M

p
cos ι; ð35cÞ

σα ¼
1

ρ
; ð35dÞ

Γ00 ¼ σ−2α ; ð35eÞ

where z ∼ Nð0; 1Þ is the random number associated with
the noise realization, ρ is the SNR of the signal, M is the
mismatch given in Eq. (26), σα is the standard deviation of
the distribution, and ι is the angle between the signals
ΔhðθTrÞ and ∂h=∂α. The Bayes factor in favor of the
deviation from GR is

B ¼ Π
A
Znon−GR

ZGR
; ð36Þ

where Π is the prior Bayes factor and A ¼ αmax − αmin is
the prior range of α. With the assumption that Γ0i ¼ 0,
detΓμν ¼ Γ00 detΓij, the Bayes factor simplifies to

B ¼ Π
A

ffiffiffiffiffiffiffi
2π

Γ00

s
exp

�
1

2
Γ00α

2
ML

�
: ð37Þ

Inserting the expressions in Eqs. (35a)–(35e) into Eq. (37),
the logarithm of the Bayes factor is given by

logB ¼ log

�
Π
A

ffiffiffiffiffiffi
2π

p

ρ

�
þ ðzþ ρ

ffiffiffiffiffiffiffiffiffi
2M

p
cos ιÞ2

2
: ð38Þ

In this work, our results are scaled to Π ¼ A ¼ 1, z ¼ 0,
cos ι → cos ιm ¼ 1, and the threshold of the Bayes factor
Bthreshold ¼ e10 as in Ref. [40]. The final expression of
logB is

logB ¼ log

� ffiffiffiffiffiffi
2π

p

ρ

�
þMρ2: ð39Þ

Fig. 7 shows the logarithm of the Bayes factor as a
function of SNR and mismatch (M). We take the mis-
matches ranging from 10−2 to 0.5 and SNRs ranging from 5
to 30. The yellow line represents the threshold (10) of
logB, above which we may mistakenly claim to have

FIG. 7. The logarithm of the Bayes factor, logB, of the EMRI
systems with different SNR and mismatch (M) values. The
yellow line represents the threshold (10) of logB.
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detected a deviation from GR. We can see that even if the
mismatch (M) is small, the calculated logB may still
exceed the threshold when the SNR is very large, which
may induce a fake signal of deviation from GR.

As we described in Fig. 6, the mismatch of waveforms
is related to the duration of signals. With the accumulation
of time, the mismatch between the two signals will
increase. In addition, the SNR depends on both the
luminosity distance of the source and the signal length.
As an example, Fig. 8 shows the logarithm of the Bayes
factor for different luminosity distances. We choose the
same orbital parameters as in Fig. 6. Solid triangles or
circles connected by solid lines indicate EMRI systems
with detectable SNRs greater than 10. Our results show
that for the system with a mass ratio of ν ¼ 10−4, the
calculated Bayesian factor will still exceed the threshold
(10) even when it is far away from us (5 Gpc) due to its
high mismatch and SNR, which may lead to a misjudg-
ment of testing GR. For the case of ν ¼ 10−5, the source at
1 Gpc can also lead to the same misjudgment. However,
for the system with a mass ratio of ν ¼ 10−6∼−7, due to its
small mismatch, even if the SNR reaches a detectable
threshold, it will not induce a false signal that deviates
from GR predictions.
In Table I, for quantitative comparison, we list the

logarithm of the Bayes factor (logB) due to mass ratio for
twenty different systems. We find that in the case of
ν≳ 10−5, when the SNR is high enough, ignoring the
mass ratio may indicate a deviation from the GR.
However, for the EMRI system with a smaller mass ratio,
there is almost no possibility that we will make a wrong
judgment.

FIG. 8. The logarithm of the Bayes factor (logB) versus
evolution times for the EMRI systems with the same orbital
parameters in Fig. 6. The dashed blue, yellow, red, and green lines
represent systems with different mass ratios of 10−4; 10−5; 10−6,
and 10−7, respectively. The dashed black line denotes the
threshold (10) of logB. The circles and the triangles mark
EMRIs at the distance of 1 Gpc and 5 Gpc, respectively. Solid
triangles or circles connected by solid lines indicate EMRI
systems with detectable SNRs greater than 10.

TABLE I. The logarithm of the Bayes factors (logB) between two waveforms including or excluding mass-ratio
corrections. The signals continue for one year and end at ðefin; ιfin; pfinÞ.
N a efin ιfinð°Þ pfin (M) μ (M⊙) ν D (Gpc) M SNR logB

1 0.30 0.12 45 5.7 50 1 × 10−4 2.5 8.4 × 10−1 150.1 18921.1
2 0.43 0.10 72 7.2 20 6 × 10−5 1.5 4.7 × 10−1 78.4 2885.4
3 0.73 0.08 81 5.8 25 6 × 10−5 7.0 7.4 × 10−1 16.2 192.3
4 0.14 0.16 70 6.9 35 5 × 10−5 2.0 3.0 × 10−1 81.8 2003.9
5 0.80 0.15 60 6.5 40 4 × 10−5 6.0 4.0 × 10−1 35.8 510.0
6 0.35 0.13 35 6.4 30 4 × 10−5 5.0 1.9 × 10−1 51.8 506.8
7 0.60 0.10 45 5.2 25 3 × 10−5 3.0 5.6 × 10−1 62.6 2191.3
8 0.70 0.20 10 6.0 20 3 × 10−5 2.0 4.4 × 10−1 80.7 2862.0
9 0.80 0.10 70 5.2 40 2 × 10−5 1.0 3.4 × 10−1 134.4 6137.6
10 0.90 0.20 85 6.3 45 1 × 10−5 8.0 2.4 × 10−2 9.0 0.7
11 0.70 0.12 50 6.0 35 1 × 10−5 1.5 1.6 × 10−2 78.5 95.2
12 0.10 0.30 40 7.1 30 8 × 10−6 3.0 2.4 × 10−3 38.5 0.8
13 0.60 0.22 45 7.2 40 6 × 10−6 4.5 2.4 × 10−4 24.6 −2.1
14 0.55 0.40 38 6.8 30 5 × 10−6 1.0 1.2 × 10−3 87.9 5.7
15 0.85 0.15 30 5.5 50 4 × 10−6 2.0 1.1 × 10−3 48.7 −0.4
16 0.20 0.35 55 7.0 30 3 × 10−6 8.0 2.5 × 10−4 7.1 −1.0
17 0.40 0.30 50 6.5 25 2 × 10−6 5.0 1.3 × 10−4 8.8 −1.2
18 0.50 0.22 20 6.0 10 2 × 10−6 4.0 5.0 × 10−4 8.9 −1.2
19 0.30 0.40 35 6.8 25 1 × 10−6 1.0 1.9 × 10−5 58.8 −3.1
20 0.62 0.30 60 5.8 10 1 × 10−6 3.5 6.2 × 10−4 4.9 −0.7
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V. CONCLUSIONS

In this work, based on the EOB orbits and Teukolsky
equation, we investigated the influence of mass-ratio
corrections on the orbital motion (orbit, frequency, and
phase) and gravitational radiation. Our results show that
even in the case of extreme mass ratio, the mass-ratio
corrections may have a great impact on orbital frequency,
and then affect orbital evolution. In addition, we also
illustrated the discrepancy in Teukolsky-based energy
fluxes caused by mass ratio, in which case the gravitational
radiation was considered. We find that for the relativistic
orbits, the relative difference of energy fluxes between the
EOB orbit and the test particle one is about 10ν in
magnitude, which cannot be ignored. Both the difference
in conservation dynamics and that in Teukolsky-based
energy fluxes may generate accumulated errors during
the long-term evolution of EMRIs and then affect the
waveforms. This means that when constructing waveform
templates of EMRIs, the mass ratio cannot be ignored in the
orbital calculation. In other words, if we neglect the mass-
ratio corrections when building the EMRI waveform
templates, there is a risk of inducing a fake signal of
deviation from GR.
One of the scientific goals of the study of EMRIs is to

test GR and the nature of BHs. In order to support this goal,
an accurate and effective waveform template is needed.
However, this is still a challenge at present. The waveform
template given in this work, combining EOB orbits and
the Teukolsky equation, including mass-ratio corrections, is
more accurate than the test particle one. Based on the
Bayesian analysis, we evaluated the possibility of inducing
a fake signal of deviation from GR because of the omission
of the mass-ratio corrections in waveform templates. We
find that for the case of ν≲ 10−5, the mismatch of wave-
forms coming from EOB dynamical evolutions and the test
particle one is so small that it can be ignored. However, for
the case of ν≳ 10−5, the mismatch is much bigger, and
there is a risk of making an incorrect judgment, namely, that
we have detected a deviation from GR. We may conclude
that the mass-ratio correction in the EMRI waveform
templates is important, especially when ν≳ 10−5.
It is noted that we just use EOB dynamics to include the

conservative mass-ratio correction which may not exactly
describe the self-force effect at the extreme mass-ratio limit.
However, our result should be kept at least qualitatively
correct. We will compare our findings with existing wave-
forms such as those obtained from the GSF formalism [21]
or the numerical relativity simulations to validate our
results and assess agreement between different approaches
in the future. In our current study, we have not considered
the spin of the secondary and its potential impact on the
metric of the central black hole. However, in future work,
we plan to investigate the effects of the spin of the smaller
object and estimate the order of magnitude of the spin

contributions in our analyses [56,71,72]. Doing so could
provide a more accurate picture of the dynamics of compact
object inspirals in such extreme gravitational environments.
In our Bayesian parameter inference, we used a simple

linearized analysis with the help of Fisher matrix calcu-
lation. We use a Gaussian distribution as a prior to describe
the detector noise. It is known that this is not the case, due
to a lot of transient noise that affects the sensitivity of the
detector, so a more suitable prior could be used to improve
our work. We should point out that GR is assumed to be the
correct description of nature in this work, which is not
necessarily correct. If instead we use gravitational wave-
forms for data analysis but GR is wrong (stealth bias) [73],
what will happen to the results? A joint analysis will be
conducted by using the waveforms with the GR
assumption in the present paper and the non-GR one to
confirm whether ignoring the mass ratio in waveform
templates will induce misjudgment on testing GR in the
forthcoming work. In addition, here we only discussed
the fake deviation of GR caused due to the omission of the
mass ratio for a single GW event. However, waveform
errors may accumulate as the catalog size increases and
lead to incorrect scientific conclusions [40,41]. In the
future, we will also study the case of GW events in
the catalog using a hierarchical Bayesian approach with
the assumption that the non-GR parameters follow
Gaussian distribution [74]. We hope our work will be
useful for developing EMRI waveform templates for
space-borne GW detectors.
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APPENDIX A: EOB FORMALISM

The metric potentials A and D for the EOB formalism
mentioned in Ref. [51] are given by

AðuÞ ¼ Δu −
a2

M2
u2 ðA1aÞ

D−1ðUÞ ¼ 1þ logðDTaylorÞ ðA1bÞ

with
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Δu ¼ Δ̄uðΔ0νþ ν logðΔ5u5 þ Δ4u4 þ Δ3u3

þ Δ2u2 þ Δ1uþ 1Þ þ 1Þ ðA2aÞ

Δ̄u ¼
a2u2

M2
þ 1

ðKν − 1Þ2 þ
2u

Kν − 1
ðA2bÞ

Δ5 ¼ ðKν− 1Þ2
�
64

5
logðuÞ þ

�
−
1

3
a2ðΔ3

1 − 3Δ1Δ2 þ 3Δ3Þ

−
Δ5

1 − 5Δ3
1Δ2 þ 5Δ2

1Δ3 þ 5Δ1Δ2
2 − 5Δ2Δ3 − 5Δ4Δ1

5ðKν− 1Þ2

þΔ4
1 − 4Δ2

1Δ2 þ 4Δ1Δ3 þ 2Δ2
2 − 4Δ4

2ðKν− 1Þ

þ 2275π2

512
þ 128γ

5
−
4237

60
þ 256 logð2Þ

5

�
ðA2cÞ

Δ4 ¼
1

96
½8ð6a2ðΔ2

1 − 2Δ2ÞðKν − 1Þ2 þ 3Δ4
1

þ Δ3
1ð8 − 8KνÞ − 12Δ2

1Δ2

þ 12Δ1ð2Δ2Kν − 2Δ2 þ Δ3Þ
þ 48Δ2

2 − 64ðKν − 1Þð3Δ3 − 47Kνþ 47Þ
− 123π2ðKν − 1Þ2� ðA2dÞ

Δ3 ¼ −a2Δ1ðKν − 1Þ2 − Δ3
1

3
þ Δ2

1ðKν − 1Þ
þ Δ1Δ2 − 2ðKν − 1ÞðΔ2 − Kνþ 1Þ ðA2eÞ

Δ2¼
1

2
ðΔ1ðΔ1−4Kνþ4Þ−2a2Δ0ðKν−1Þ2Þ ðA2fÞ

Δ1 ¼ −2ðΔ0 þ KÞðKν − 1Þ ðA2gÞ

Δ0 ¼ KðKν − 2Þ ðA2hÞ

DTaylor ¼ 1þ 6νu2 þ 2νu3ð26 − 3νÞ: ðA2iÞ

The Hamilton-Jacobi equation is given by [45]

gαβPαPβ þ
Q4M2P4

r

r2μ2
þ μ2 ¼ 0; ðA3Þ

where the nongeodesic term Q4 ¼ 2ð4−3νÞνM2

r2 appears at
3PN order, and here we omit this term as in Ref. [42].
Pt ¼ −Heff , Pϕ ¼ Lz. By substituting the metric expres-
sions (6) into Eq. (A3), we get four conserved quantities of
motion,

Q̂ ¼ cos2θmin

�
a2ð1 − Ĥ2

effÞ þ
L̂2
z

sin2θmin

�
ðA4Þ

Heff ¼
gtϕ

gtt
Pϕ þ

1ffiffiffiffiffiffiffiffi
−gtt

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ

�
gϕϕ −

ðgtϕÞ2
gtt

�
Pϕ

2 þ grrP2
r þ gθθP2

θ

s
ðA5Þ

L̂2
z ¼

ða1 − a2Þ2ðb1 þ b2Þ2 − ðb21 − b22Þðb21c1 − b22c2Þ − 2ða1 − a2Þb1b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 − a2Þ2 − ðb21 − b22Þðc1 − c2Þ

p
½ða1 − a2Þ2 − ðb21c1 − b22c2Þ�2

ðA6Þ

E2

M2
¼ 1þ 2ν

0
B@a1L̂z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1L̂

2
z þ 1

b1

s
− 1

1
CA ðA7Þ

with

a1 ¼
ω̃fd1

Λt1
ðA8aÞ

a2 ¼
ω̃fd2

Λt2
ðA8bÞ

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ1Δt1

Λt1

s
ðA8cÞ

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ2Δt2

Λt2

s
ðA8dÞ

c1 ¼
Σ1

ð1 − cos2 θminÞΛt1
ðA8eÞ

c2 ¼
Σ2

ð1 − cos2θminÞΛt2:
ðA8fÞ

With the help of these constants of motion, we can drive the
expressions of angular momentum by
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P̂θ
2 ¼ Q̂ − cos2θmin

�
a2ð1 − Ĥ2

effÞ þ
L̂2
z

sin2θmin

�
ðA9aÞ

P̂r
2 ¼

½aL̂z − ðr2 þ a2ÞH2
eff �2 − ðr2AðuÞ þ a2Þ

h
r2 þ k̂þ 2

ω̃2
fdþar2ðAðuÞ−1Þ
r2AðuÞþa2 ĤeffL̂z − GðrÞL̂2

z

i
ðr2AðuÞ þ a2Þ2D−1ðuÞ ðA9bÞ

Pϕ ¼ Lz; ðA9cÞ

where Pθ, Pr, and Pϕ are the polar, radial, and azimuthal
angular momentum.
From Eqs. (6), (A4)–(A7), and (A9), the orbital evolu-

tion equations for r, ϕ, and θ can be obtained by

ṙ ¼ ∂E
∂Pr

¼ −
grrP̂r

E=MðgttĤeff − gtϕL̂zÞ
ðA10aÞ

ϕ̇ ¼ ∂E
∂Pϕ

¼
gtϕ − ½gttgϕϕ − ðgtϕÞ2� L̂z

gttĤeff−gtϕL̂z

gttE=M
ðA10bÞ

θ̇ ¼ ∂E
∂Pθ

¼ −
gθθP̂θ

E=MðgttĤeff − gtϕL̂zÞ:
ðA10cÞ

The parameters in the expressions of the coordinate-time
frequencies ωr, ωθ, ωϕ [Eqs. (10a)–(10c)] are expressed by

KðkÞ ¼
Z

π=2

0

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

p ðA11aÞ

EðkÞ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ksin2χ

q
dχ ðA11bÞ

Πðz2−; kÞ ¼
Z

π=2

0

dχ

ð1 − z2−sin2χÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ksin2χ

p ðA11cÞ

X ¼
Z

π

0

ep sin ξ
ð1þ e cos ξÞ2

dξ
ΔrPr

ðA11dÞ

z− ¼ cos θmin ðA11eÞ

zþ¼
L2
zþQþβþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

zþQþβÞ2−4βQ
p

2β
ðA11fÞ

β2 ¼ a2ðμ2 −H2
effÞ ðA11gÞ

k ¼ z2−=z2þ: ðA11hÞ

APPENDIX B: 2PN FLUXES

The hybrid scheme of fluxes proposed by Gair and
Glampedakis [44] is given by

ðL̇zÞmod ¼ ð1 − e2Þ3=2½ð1 − e2Þ−3=2ðL̇zÞ2PNðp; ι; e; aÞ − ðL̇zÞ2PNðp; ι; 0; aÞ þ ðL̇zÞfit� ðB1Þ

ðQ̇Þmod ¼ ð1 − e2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðp; ι; e; aÞ

p �
ð1 − e2Þ−3=2

�
Q̇ffiffiffiffi
Q

p
�

2PN
ðp; ι; e; aÞ −

�
Q̇ffiffiffiffi
Q

p
�

2PN
ðp; ι; 0; aÞ

þ 2 tan ι

�
ðL̇zÞfit þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðp; ι; 0; aÞp
sin2ι

ðι̇Þfit
��

ðB2Þ

Ė ¼ ð1 − e2Þ3=2
�
ð1 − e2Þ−3=2ðĖÞ2PNðp; ι; e; aÞ − ðĖÞ2PNðp; ι; 0; aÞ −

N4ðp; ιÞ
N1ðp; ιÞ

ðL̇zÞfitðp; ι; 0; aÞ

−
N5ðp; ιÞ
N1ðp; ιÞ

ðQ̇Þmodðp; ι; 0; aÞ
�
; ðB3Þ

with
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where

da1 ¼ −10.7420; db1 ¼ 28.5942; dc1 ¼ −9.07738; da2 ¼ −1.42836; db2 ¼ 10.7003; dc2 ¼ −33.7090;

ca1 ¼ −28.1517; cb1 ¼ 60.9607; cc1 ¼ 40.9998; ca2 ¼ −0.348161; cb2 ¼ 2.37258; cc2 ¼ −66.6584;

ca3 ¼ −0.715392; cb3 ¼ 3.21593; cc3 ¼ 5.28888; ca4 ¼ −7.61034; cb4 ¼ 128.878; cc4 ¼ −475.465;

ca5 ¼ 12.2908; cb5 ¼ −113.125; cc5 ¼ 306.119; ca6 ¼ 40.9259; cb6 ¼ −347.271; cc6 ¼ 886.503;

ca7 ¼ −25.4831; cb7 ¼ 224.227; cc7 ¼ 490.982; ca8 ¼ −9.00634; cb8 ¼ 91.1767; cc8 ¼ −297.002;

ca9 ¼ −0.645000; cb9 ¼ −5.13592; cc9 ¼ 47.1982; ca10 ¼ −0.0309341; cb10 ¼ −22.2416; cc10 ¼ 7.55265;

ca11 ¼ −3.33476; cb11 ¼ 22.7013; cc11 ¼ −12.4700; fa1 ¼ −283.955; fb1 ¼ 736.209; fa2 ¼ 483.266;

fb2 ¼ −1325.19; fa3 ¼ −219.224; fb3 ¼ 634.499; fa4 ¼ −25.8203; fb4 ¼ 82.0780; fa5 ¼ 301.478;

fb5 ¼ −904.161; fa6 ¼ −271.966; fb6 ¼ 827.319; fa7 ¼ −162.268; fb7 ¼ 247.168; fa8 ¼ 152.125;

fb8 ¼ −182.165; fa9 ¼ 184.465; fb9 ¼ −267.553; fa10 ¼ −188.132; fb10 ¼ 254.067: ðB9Þ

However, the mass-ratio correction is not involved in the expressions of their 2PN fluxes. In this work, we make some
corresponding improvements by adding mass-ratio correction terms in Eqs. (B4)–(B6) to get the evolution expressions of
orbit parameters ðp; e; ιÞ. Our improved 2PN fluxes are given by [26,43,66]
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Our final hybrid scheme of fluxes is given by Eqs. (B1)–(B3) with Eqs. (B7)–(B8) and Eqs. (B10)–(B12).
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