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In the framework of the nonlinear Euler-Heisenberg electrodynamics coupled to general relativity, we
consider static Einstein-Euler-Heisenberg magnetically and dyonically charged black hole spacetimes.
These black holes are characterized, as usual, by mass M, magnetic charge Q,,, electric charge Q and the
Euler-Heisenberg nonlinear parameter. We find all possible equatorial trajectories for neutral and charged
test particles. We analyze the light rings by using the Plebanski pseudometric. The shape of the shadow of
these black holes is presented, discussed, and compared with the one of the corresponding Reissner-

Nordstrom linear cases.
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I. INTRODUCTION

In 1936 Euler and Heisenberg (EH) proposed a non-
linear electrodynamics (NLED) in the framework of the
Dirac’s theory of positrons [1,2]. The weak field version
of this theory results to be the effective theory arising
from quantum electrodynamics (QED) after one-loop of
nonperturbative quantization. It accounts for quantum
mechanical vacuum corrections to the Maxwell-Lorentz
theory. In this theory, the vacuum is treated as a medium
endowed with a kind of dielectric constant, its polarizability
and magnetizability are depicted by clouds of virtual charges
surrounding the real currents and charges. Schwinger
reformulated this one-loop effective Lagrangian in the
QED scheme [3]. The Euler-Heisenberg effect can be
direct measured [4] and therefore, it is a valid physical
effect [5].

The Einstein theory of gravity coupled to the class of
nonlinear electrodynamics proposed by Plebanski [6]
admits regular black hole solutions, [7-11], i.e., black
hole spacetimes whose curvature invariants are nonsingu-
lar, nevertheless, it is not clear if these solutions satisfy the
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condition of geodesic completeness. Therefore, there exist
nowadays a great revival of interest on it.

Recently, Ruffini et al. [12] studied Einstein-Euler-
Heisenberg (EEH) static black hole solutions endowed
with electric, magnetic monopole, and dyonic charges,
and they reduced the solutions to screened Reissner-
Nordstrom (RN) ones. Moreover, the nonlinear effects
act only in the screening of the electric charge generating
virtual charges around the real charges and currents and
affect the geometry only through the screened values of the
real charges, i.e., these are QED corrections to the black
hole horizon, entropy, total energy, and maximally extract-
able energy. Therefore Euler-Heisenberg is considered as a
screened Maxwell [13-17].

Another viewpoint is the work of Yajima et al. [18], they
obtained, numerically or analytically, electrically, magneti-
cally, and dyonically charged static black hole solutions.
They treated nonlinearity parameters as free parameters and
study the effective Euler-Heisenberg Lagrangian as a low
energy limit of the Born-Infeld theory. This standard way to
consider nonlinear contribution of the Euler-Heisenberg
electrodynamics adds a term Q*/r° in the mass-energy
function f(r) of the Maxwell linear electrodynamics, as
can be seen in Refs. [18-25]. This additional term modifies
the geometrical structure and the thermodynamics of the
Maxwell theory.

© 2023 American Physical Society
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Additionally, Bandos et al. [26] proposed, the so-
called modified Maxwell (ModMax) electrodynamics,
another approach to consider nonlinear corrections to the
Maxwell theory, they developed nonlinear corrections to
the Maxwell-Lorentz theory which preserve electromag-
netic duality and conformal invariance.

It is well known that light in gravitational fields
propagates along curved lines instead of straight lines,
and when the gravitational field is strong, like the one of
a black hole, an observer could see a dark central area
(shadow) around the black hole position [27]. The develop-
ment of the Event Horizon Telescope (EHT), allows the
study of supermassive black holes by direct imaging, as it is
the image of the black hole M87* [28] at the center of the
galaxy M87, or more recently, the image of Sgr A*, the
black hole at the center of the Milky Way [29]. Together
with the gravitational wave detection by LIGO and
Virgo [30], and very soon also by LISA, enhance the
possibility for studying the different features of black holes.

In this work, we follow the Ruffini approach, and
focus our study on the trajectories of neutral massive,
massless, and charged test particles in the spacetimes of
magnetically and dyonically charged static EEH black
holes. Additionally, we study light rings, by means of
the Plebanski pseudometric, related to the geometrical
metric and to the electromagnetic energy-momentum ten-
sor, since in NLED light orbits are null geodesics of it. We
present and discuss the shadow of these static black holes.

The outline of this paper is as follows: in Sec. Il we
briefly revisit the FEinstein-Euler-Heisenberg theory. In
Sec. III we display the solution for a magnetically charged
EEH spacetime, we present the equatorial trajectories for
massless, massive neutral and charged test particles.
Moreover we study the light ring using the Plebanski
pseudometric and the shape of the shadow of the solution is
obtained. In Sec. IV we address the EEH dyonic solution.
We calculate the equatorial trajectories for massive and
massless neutral test particles, then we analyze the geodesic
equations for dyonically charged test particles. Moreover,
we study the light ring and the shape of the shadow of this
dyonic black hole, and in Sec. V we summarize the results.

II. THE EINSTEIN-EULER-HEISENBERG
THEORY

The action of the Einstein general relativity theory
minimally coupled to a NLED [12] reads

1
S=—
4dnG M*

d“x\/:g[%R—E(X, Y)], (1)
where G is the Newton’s constant, which we will take
G =1, g is the determinant of the metric tensor, R is the
Ricci scalar, and £(X,Y) is the Lagrangian of the NLED
theory, which depends on the only two independent
relativistic invariants constructed with the Faraday tensor

for the Maxwell field in four dimensions, i.e., the scalar X
and the pseudoscalar Y, given by

1 1
X=—_F,F"=_(B2—E?

7w 5 ( ):

1
Y=F,F"=EB, (2)

where E and B are the electric field and the magnetic field
strength, respectively, while F,, is the Faraday electro-
magnetic tensor, and *F, its dual, defined by

1
F = 2V —9€uepF s €123 = —1,
*FHY — l 1 eHvor , 60123 — 1’ (3)
2\/=g o
€uwop 18 completely —antisymmetric and satisfies
€5, €MP = =41,
uvop

For the case of the Euler-Heisenberg theory [1],

2 2
X 4x? + 772, (4)

X,Y)=-X
£ ) +45m

with m the electron mass and « the fine structure constant.
The linear Maxwell electrodynamics is recovered when
a =0, L(X) = —X. The Einstein equations are obtained
varying the action Eq. (1) with respect to the metric g,,

1
~Rg,, = 8xT,,. (5)

R””_Z

where R, is the Ricci curvature tensor, the energy-
momentum tensor 7', is given by,

1
T/w = E [g/w£ - (ﬁXF;m + EY*F/M)FDGL (6)

the subscript on £ stands for derivative with respect to the
corresponding invariant. The variation with respect to the
electromagnetic four-potential A, yields the electromag-
netic field equations,

V, (LxF*™ + Ly F*) = 0, (7)

and the Jacobi identities read
V,(‘F*) = 0. (8)
It is useful to introduce a Legendre dual description of the

NLED theory [6], by means of the introduction of the
antisymmetric tensor P, defined by

1
dL(X.Y) = =5 P“dF,, )
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where L(X,Y) is the Lagrangian density for the Euler-
Heisenberg nonlinear electrodynamics, Eq. (4). In general
it reads

oL

oF,,

P =2

—[LxF"™ + Ly*F], (10)

then the field equation, Eq. (7), can be written as [31],
V, P =0. (11)

Equation (10) are the constitutive relations between the
electric field strength D and the magnetic field H with the
electric field E, and magnetic field strength B. For the EH
theory, the dual Plebanski tensor P, takes the form

4o

P, =F
45m?

Hv 2%

(4XF,, +7Y°F,),  (12)

and the invariants of the tensor P,, can be written as

1 1
s==gPuPt == PP (13)
where *PH* = ,/ ge"??P,,. The structural function H,
can be wntten as

1
H(s, t) = — EPWFW - L. (14)
For the Euler-Heisenberg theory the structural function (up

to terms of higher order in a) reads

2

2
H(s, 1) = 5 — ——— (42 + 712). (15)
m

The energy-momentum tensor, Eq. (6), written in the P
frame, reads [6,32]

T, = HPuP,* + g (25H, + tH, = H).  (16)

Notice that the Maxwell linear electrodynamics is
recovered when F,,, = P,,. In the particular case of Euler-
Heisenberg nonlinear electrodynamics, Eq. (4), the energy-
momentum tensor written in the F frame is given by

ro— (1262 Npsp
A 45m* W

28a?
FP'F,;+F JF, )
45m ( v+
202
g (x- axt+21v?))|. (7
o (X s 2a)) | )

which is suitable for the study of magnetic phenomena,
since it allows us to obtain exact magnetic solutions, while

the P framework is useful for the treatment of electric
effects. From Eq. (16) with the structural function, Eq. (15),
the energy-momentum tensor in terms of the dual variables

reads
1 1602 5
T =gz [\ ~a5e® )P P

+gw< 42524(12s+7t2)>] (18)

To recover the original variables we use the constitutive or
material equations that relate F,, with P,,. These are,

16a 7 "
W T5m 4|:SP +4 PW}

(19)

F,=HP, +H P, =P

III. MAGNETICALLY CHARGED EEH
BLACK HOLE

We consider the following static spherically symmetric
black hole line element:

1
ds* = —f(r)dr* + md}’2 + r}(d6* + sin? 0dg?),  (20)
r

with signature {—,+,+,+} and f(r) =1 —2’"—;’), where
m(r) is the mass-energy function to be determined from the
field equations. We look for magnetically charged black
hole solutions. For vanishing electric field, E = 0, and non-
zero magnetic field strength, B # 0, the pseudo-invariant Y
vanishes, and the gauge 4-potential reads

=0,0,0,-0Q,, cos 6], (21)

where Q,, is the black hole magnetic charge. Consequently
the Faraday tensor F,, is given by

F,, = Q,sin0(5.5; — 5,52). (22)
It is important to mention that there are only two inde-
pendent Einstein equations, the ¢# and rr-components are
linear dependent, as well as the 860 and ¢¢p-components.

From the t#-component of the Einstein field equations we
have that

m(r) = <1 _ 4 Q'2">Q—3" (23)

45m* r* ) 2%’

whose integration leads to the expression for the mass-
energy function m(r), hence, f(r) can be written as
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where M is the black hole mass, we have introduced the
critical electric field strength E. = - ~ 10'® V /cm. For
fields stronger than E. the creation of electron-positron
pairs from vacuum occurs. Throughout this paper we will
take ¢ = 7 = 1. Notice that the linear Reissner-Nordstrom
solution is recovered when a = 0. As it happens for the
electrically charged case [12,13], the magnetic charge is
also screened, due to the Euler-Heisenberg vacuum polari-
zation effect:

O = Qm< ﬁy (r)) ; (25)
where B (r) reads,
Bo(r) = rgg . (26)

The horizon radii ry, are determined by the condition
f(r,) =0 [33,34], which is equivalent to solve the
equation

2 2 2\ _
r 2Mr+Qm< 2253) 0.  (27)

whose roots are given by

— 2_p2 (1% m
rHiMi\/M Qm( 225 By ) (28)

where r, are the radii of the outer and inner horizons
respectively, and By, = BQ(rHRNi) is the critical magnetic

field evaluated at the Reissner-Norstrom event horizons.
The extreme case occurs when the inner and the outer

horizons are equal, Since By, =

ry = rH+ = rHe.
By(r =Q0,=M)= 9u_ it implies that r2, = M? =
O\ RN}, WE, p H,

3"(1 _22(157rB2 ) an

A. Trajectories of neutral test particles

Now, we study the trajectories of test particles in the
spacetime of the magnetically charged EEH black hole.
Due to the spherical symmetry, without loss of generality,
we restrict ourselves to the motion on the equatorial
plane.

The motion of neutral test particles is described by the
geodesic equation

dx® dx’

d*xv
v =0, 29
dr? T dr dt (29)

using the metric, Eq. (20), and the f(r), Eq. (24), its
components read

,.__f’(r),r. N (i
i= 70 t, = f(i+f(rrt=0 (30)
o o, Lf(). :
P OO 5 TR R (3]
N 2 s
¢_—2— =  rp+2rit=0, (32)

the dot means derivative with respect to the affine param-
eter 7 and f'(r) = df(r)/dr. The constants of motion,
associated with the Killing vectors 0, and d, can be
obtained by the first integration of the # and ¢» components
of the geodesic equation, i.e.,

= E=f(r, (33)

d . .
— [P =0 = [=r¢, (34)
dr

where £ is the energy per unit mass and [ is the angular
momentum per unit mass, of the test particle. From the
Lagrangian L = g, ¥*X", we have

2
— (R4

where L can take the values {—1,0, 1}, corresponding to
timelike, null, and spacelike geodesics, respectively.
Replacing Eqgs. (33) and (34) into Eq. (35) we obtain the
radial equation of motion

+ ¢, (35)

P2+ f(r) <i—22 ~ L> =&, (36)

thus the effective potential V4 reads

Ve = f(r) <i—22 - L). (37)

1. Orbits of massive test particles

The radius of circular orbits r,. is determined by the
following conditions,

dveff

dr (rc) =0, i/'(rc) =0, (38)

which explicitly read,
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FIG. 1.
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095

We display the behavior of (left) the angular momentum //M and (right) the energy £ of a circular orbit as a function of r./M,

for fixed values of the mass M = 10°M and 0,, = 0.5M (solid line), compared with the case 0,, = 0 (dotted line). The dashed
horizontal line indicates the minima of the functions £ and [, £, ~ 0.9391 and [;,/M = 3.328.

; Ontl

ZZQZ
r I r2+3Pr, — 2—M'" =0, (39)

(1-&)rt —2Mr} + (P + Q)2 = 2MPr. + 05,1 = 0.

(40)
where we have taken L = —1 since massive test particles
travel on timelike geodesics. Equation (39) leads to

rX(Mr, — Q2
2 _TeMr. szz, (41)
r2—3Mr. + 203,
replacing Eq. (41) into Eq. (40) leads to

(2 =3Mr +205)

Figure 1 shows the behavior of the energy, Eq. (42), and the
angular momentum, Eq. (41), as a function of the radius of
the orbit. The solution of Eq. (39) provides us the radius of
circular orbits for massive test particles, i.e.,

2 4 cos ! arccos 34 3 + 2nn
v, = —_— — — _ -
S VA 3 2p\l p 3

the three roots correspond ton = 0, 1, 2, and p, g, and s are
given by

+s, (43)

1(05+ 1
_ 2 _ m__ -
=31 3( - ) (44)
PP-0n) L (P+03)°
1=y _2< M > (45)

L_P+on

M (46)

The root n = 0 corresponds to a minimum (stable circular
orbit), while n =2 to the maximum of the effective
potential (unstable circular orbit). The root n =1 is not
physical, since it corresponds to a negative r. The radius of
the innermost stable circular orbit (ISCO) r;, is determined
by the conditions for circular orbits, Eq. (38), plus

d2 Veff
ar (ris) =0, (47)
which explicitly reads,
Mr} —6M?r} +9M Q5 ris — 405 =0, (48)
whose solution is
302 —4M?* s
re=2m =222 Vs vE o)
VB++C
where we have introduced
~ 204
B=8M>-9MQ? + =2,
Qm + M
N
C=5M*Q% —908 +4ﬁ";. (50)

It is worthwhile to mention that the radius of stable circular
orbits, Eq. (43), with n = 0, for EEH is smaller than the one
for the linear RN, while the radius of the ISCO, Eq. (49),
is greater than the one for RN. In order to obtain the
trajectories r(¢) of massive neutral particles, we use the
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FIG. 2. The parametric plots x = rcos ¢(r), y = rsin ¢(r) are shown. The particle comes form infinity, it orbits some time at r, and
then falls into the black hole. Massive neutral particles (left). Massless test particles (right). For fixed values of the mass M = 10*M o>
magnetic charge of the black hole Q,, = 0.8M and angular momentum of the test particle / = 4M. r, and r_ denote the outer and inner
horizon radii respectively, and r,. corresponds to the radius of the maximum of the effective potential, Eq. (37).

angular momentum written in terms of qﬁ Eq. (33), and the
radial equation, Eq. (36), hence

2 4
(%) = ©@-varyz 51

with the effective potential, Eq. (37). Performing the
change of variable u = 1/r, Eq. (51) reduces to

Agp = / [—Q%,ud' +2Mu? — (14 Q2%,/1)u?
F(E2-1+ 2Mu)/lz}_l/ *du. (52)

Replacing the values of the angular momentum and the
energy, Eqs. (41) and (42), into Eq. (52), we obtain that

- / [—@;uz oM = Ol )u

A M -2 g
+ (M - Q%nuc - W) uc:| .

u—u,

+ constant, (53)

where u,. = 1/r, is the inverse of the radius, Eq. (43). It is

useful to make the change of variable & = M_lu , then

-+ constant, (54)

dé
:l: =
’ /\/céZ—bs—an

where

A M ~
¢ =3Mu, — 401> — —— b=2(M-2Q2u,).

Pu,’

(55)

Integrating Eq. (54) we obtain

zlog <2\/c(—Q3n +bE+ ) + 2cE + b>,

— L aresin [ —2cetb
= aresin < \/W) ,

(56)
where the logarithmic function requires that ¢ > 0 and the
arcsin one that ¢ < 0, the sign indicates the direction of

the trajectory. The orbits for massive neutral test particles
are shown in Fig. 2 (left).

2. Orbits of massless test particles

Since massless particles travel along null geodesics the
effective potential is obtained taking L = 0 in Eq. (37),
hence

Var = 1) (1): (57)

The circular orbits are determined by Eq. (38), which
lead to

r2—3Mr, +202% =0,
rE — P(r2 = 2Mr, + 02) =0, (58)
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respectively. The solution to the quadratic equation reads

3 803

r.. corresponds to the maximum of the effective potential, it
is the radius of an unstable circular orbit (UCO). Using the
geodesic equations for ¢ and r, the trajectories r(¢) can be

written as

dr\? (&

dp)  \ P
with f(r), Eq. (24). Performing the change of variable
u = 1/r, Eq. (60) becomes

210, (60)

R -1/2
+¢ = / [—anu“ +2Mud —u? + 1/;72] du,

=/[—Q3,,u2+2(M—Q2 Du+ (M = Qxu)u, >

X

+ constant, (61)
u—u,

where we have used the inverse of the impact parameter
2

=5 =ud(M - Qpu

dition Vg (u.) =0, ie.,

BE N
ne =57 (1 1- 9M2> (62)

Performing the change of variable £ = ——

), with u,. obtained from the con-

, we obtain an
equation like the one in Eq. (54), w1th

¢ =3Mu, —40%u2, b =2M—4Q%u,.. (63)
whose solutions can be written as the ones in Eq. (56). The
trajectories for massless test particles are shown in Fig. 2
(right), for fixed values of M, Q,,, and [//M. Notice that
massless circular orbits are closer to the event horizon r
than the ones for massive test particles.

B. Trajectories of charged test particles

The geodesic equations for a test particle with electric
and magnetic charge ¢, and g¢,,, respectively, can be
written as

d’x* dx® dx”
@ T g = P ()

where the right-hand side are the components of the
Lorentz force Fy ., which for the NLED theories can be
written as follows, [35],

Fior = |:_qu”/} + CIm(_‘CX*FD/} + EYFD/J)} i’ (65)

The function £ is the Lagrangian of the NLED theory. For
the Euler-Heisenberg case with ¥ = 0, the Lorentz force
Fi . reduces to

2a dx?
——— B} |'FY| ——. (66
451 Q) ﬁ} a9

and the geodesic equations read

Fllior = |:_QeFD/} + qm <1

_f/<r).~_QQO _2_a 2
s () @
i = —%f(r)f’( )7 +%J% i+ rf (r)6* + rf(r)sin?6¢*

_ QQOf(r) _ 2_a 2

r? (1 457rB ) (68)
6= —%i”f9+sin900s9¢2 +%251I19¢ (69)
;;5:——r¢ 2cot99¢—qg—Q"". (70)

2 sin @

On the equatorial plane, Eq. (69) implies that

qum¢ 0 = q,=0, (71)

i.e., test particles with both charges cannot be on the
equatorial orbits. The angular momentum is given in
Eq. (34), while the energy £ can be obtained by the first
integration of Eq. (67), i.e.,

=22 (- m) 5 o)

T r 457

= E=f(ri+

Q}an
7
En, (73)

where g, is the screened charge of the test particle,
given by

R 19a 1/2
4m = Clm<1 _EBZQ(F)) . (74)

Replacing the conserved quantities £ and [/, Eqgs. (34)
and (73), into the line element, Eq. (20), with 6 = z/2, we

obtain
2 P 2
P4 £ <%+ 1) - (5—M> —0, (75)

r

this equation is of the form i + V.4 = 0, hence
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0.1 T T T T T
Charged test particles

0.05

Vm 0r

—0.05

FIG. 3. Effective potential for a magnetically charged test
particle. For fixed values of the mass M = 10*My and the
screened black hole charge Qm = 0.8M, the energy £/u = 1, the
angular momentum / = 4M and increasing the charge of the test
particle from bottom to top ¢, /u = {-0.2,-0.1,0,0.1,0.2}.
The dotted line corresponds to g,, = O.

vasio(1) - (e-22:) g

The behavior of the effective potential depends on the
product of the screened charges of the test particle g,, and
of the black hole Qm, as it is shown in Fig. 3, it can also be
seen that there exist a minimum and a maximum, indicating
the existence of stable and unstable circular orbits. The
conditions for the circular orbits are given by Eq. (38),
with Vg, Eq. (76), which lead to a third degree polynomial
in r.,

32M

3_Q2m+12_qgn,\%1r2 r
M_SQQO ‘

ry =
M — g@QO
2[2 A2
Ao (77)
M - EQQO

whose solution is given in Eq. (43), with

_OMB(M = £4,,0) — (B + 021 - 33))°

P 3<M - 82]QO>2 ’ (78)
PV = 030+ ) + 263,03
(M_ 6éQO)2
2 L A2 (1 _ 22\13
_ 2[1 + Qm(1 Qm)] (79)

27(M - “:("\IQO)3 ’

P+ 0(1-42)

s = . (80)
3(M - SQQO)

Moreover, the radius of the ISCO, r;, is obtained from
Eq. (47), namely

3@%1(31‘/[ B Zf]QOg + @%;M)

r?s_6Mri2§+ ~ is
M_éQOg
4"2 N2 _ 222
_ Qm(QmA flQO) :O, (81)
M_memS

and the angular momentum for the ISCO, [;,, reads

_2(éQOg - M)r?s + 3(@5’1 - E]%ﬂ@%ﬂ)r%s

B = R
" 3r2, — 12Mr;; + 1007,

(82)

In order to find the trajectories r(¢) we use Egs. (34) and
(75) to obtain that

dr\2 2 g Q 27 4

— ) =- —4+1)-(&-22=2 —. (83
(@) =-lo(Er)-(e-=2) |7
Using the solution for circular orbits, Eq. (43), and
performing the change of variable u = 1/r, one obtains

= / {—Qﬁ,uz +2(M = Qu)u + (M = Qe

_M_gzlnlém u “12 du
ull? ¢ u—u,’

(84)

where u, = 1/r. with r. from Eq. (43) with Egs. (78)—(80).
It is useful to make the change of variable &= —!

u—u.’

therefore Eq. (84) reduces to Eq. (54), whose solution is
Eq. (56), with

M - SQm Qm
2y ’

b =2(M-202u,). (85)

¢ =3Mu, —402u? —

The circular orbits for a magnetically charged test particle
are shown in Fig. 4. The orbits are very similar to the ones
of neutral test particles in Fig. 2 (right), but the charged test
particles fall into the black hole slower than the uncharged
ones. It is interesting to note that the radius of stable
circular orbits for massive and charged test particles on
the EEH spacetime are smaller than the ones for RN.
Moreover, for EEH black hole, the radius of unstable
circular orbits for massive, charged, and massless test
particles are greater than the ones for RN. Additionally,
the ISCO radius for massive and charged particles of EEH,
are greater than the ones for RN.
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FIG. 4. The parametric plots x = rcos¢(r), y = rsing(r)
for magnetically charged test particles. For fixed values of the
mass M = 10*M, and magnetic black hole screened charge
Qm = 0.8M, test particle angular momentum [ = 4M, screened
charge g,, = 0.1 and energy £ = 1. r, and r_ are the outer and
inner horizon radii and r, is the radius of the circular orbit.

C. Photons trajectories

In Maxwell-Lorentz linear electrodynamics, the discon-
tinuities of the field propagate according to the equation for
the characteristic surfaces, that in standard optics is known
as eikonal equation. On a curved spacetime the equation
for the characteristic surfaces is ¢#*S S, = 0, where S,
are the normal vectors to the characteristic surface S, the
corresponding linear photons travel along null geodesics of
the geometrical metric g**.

In nonlinear electrodynamics, photons propagate along
null geodesics of the effective Plebanski pseudometric
7" [6,36], given by

64rna*

WU U
v ge+ 45m*

™, (86)

which differs from the geometrical metric ¢**, since it
contains the energy-momentum tensor 7#* as well. For the
EH nonlinear theory, with the energy-momentum tensor

T,,,Eq.(17),and Y = 0, up to the leading order in a, it can
be written as

3 1602 5 160> 5
}/M = (1 +WX>Q” +45m4FﬂﬁF ﬁ. (87)

The propagation equation for the nonlinear electromagnetic
field discontinuities read y**S ,S , = 0. For the EEH theory
the propagation equation reads

| 16a?
{( + 45m*
Therefore, the energy-momentum tensor, 7, of the EH
nonlinear field is responsible for the fact that these surfaces
are not null surfaces of the geometrical metric. Never-
theless, for a = 0, i.e., linear Maxwell-Lorentz electrody-

namics, both metrics coincide. Then the trajectories for
nonlinear photons are determined by

1602
Y = 1+-——

. 1602 uf
X ) g +45m4F F'41S,S,=0. (88)

16
X) G + e F /nyﬂ} i =0,

45m* 45m*
(89)
On the equatorial plane, this equation reads,
2a 1 2a
1 B2 —— (1 +—B
01+ 25,507 - 75 (1+ 25520
2a
- 1—=—B} |¢* =0. 90
g < 457 >¢ (90)

The conserved quantities, energy &, and angular momen-
tum [ are given by

E= (1+42?a32>f( ), (91)
= <1—42?“B2)¢ (92)

Then, from Eq. (90) one has that

(1 —42?“32> R(r). (93)

where we have introduced the effective potential

ﬂr); <1 +42?“B2)2]. (94)

Photons on the light ring satisfy the following conditions,

R(r) = 52[

R'(r,;,) =0, R(r,,) =0, (95)

the first condition implies that Vg (r.) = 0, with Vg (r)
the effective potential for massless test particles, Eq. (57),

ie. r,, =re Eq. (59). From the second condition in
Eq. (95) we can obtain the impact parameter #,

2 r2 2a 2
o=t T (1o 2% g
T=g f(rc)( 45n Q> 6)

Then, up to the leading term in a, the orbit equation reads
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¢ _ dr
im—/ 2 (1= 28y) VRO

457

du
N / [—Q2u4 +2Mud — u* + 1/17%]1/2’
(97)

where 7y = /(1 — 7% B}) with 5, Eq. (96). Notice that the
integral has the same form of the deflection angle for
massless particles, Eq. (61), thus, the solution is Eq. (54),
with ¢ and b given in Eq. (63). The EH contribution
increases the deflection angle for nonlinear photons relative
to the one for massless test particles, since from Eq. (97),
don = (1+ 425#‘; BZQ)¢MassleSS' It is interesting to note that for
EEH black hole, the radius of unstable circular orbits for
photons are grater than the ones for RN.

D. Shadow of the magnetically charged
EEH black hole

As we already mentioned, the spacetime curvature
deflects the light trajectories. In particular the strong
gravitational fields, like the ones generated by black holes,
are able to increase the deflection angles significantly. In
particular, they can produce unstable circular orbits of light
around them, the so called light rings. Since the orbits are
not stable, part of the photons leaves them and gets out to a
distant observer and the other part of them goes into the
event horizon and falls down into the black hole interior.

From the equations of motion, we can write the four-
momentum for a photon P, =y, "

()

For a distant observer located at fixed r,, whose word lines
are perpendicular to the plane 7, we can choose a basis as
follows

1
el = <W’O’ 0, 0), ety = (0.V/7().0.0).

1 1

u 1 b 2
6(6,) = (0, 0, }"’0>’ e(¢) — (07 0707 r)‘ (99)
Then, the four moment in this basis is P(® = (@) 6’(})1’ 4

w_[_€ R 1
P (m’\/ﬂr)’o’r'

Using the impact parameter, Eq. (96), we can write the
celestial coordinates (x,y) as follows

(100)

P&
X =—r <W> f(ro)n, (101)
r=ry
P(0)> ‘
y=ry <— =0. (102)
P(t) r=ry

These are the coordinates of the parametric equation of a
circle whose radius is the radius of the shadow r;, of the
black hole,

x4y = fron* =13, (103)
Replacing Eq. (96) into Eq. (103) we obtain
2a f(ro)

1-—B2 . 104

A ( a5zl )> fry 1%

The radius of the shadow of the RN black hole is

RN = . J;E “; therefore, the radius of the shadow for

the EEH black hole is always smaller than the RN one,

rEEH < /RN “as can be seen in Table I and Fig. 5. Figure 6
shows the radius of the shadow of magnetic EEH and RN
black holes, for fixed values of the mass and magnetic
charge, varying the position of the observer at . As can be
seen in Fig. 7, the radius of the black hole shadow ry,
measured by an observer located at fixed r, with an angle /3,

can be approximated through elementary trigonometry, by

(105)

Fgp = rosinﬁ.

mj—’ and some trigonometric
733 dop r=ry

identities, we find that for r, — co, BzQ(rO) =0, and the
radius of the black hole shadow coincides with Eq. (104).

Using that cotf =

TABLE I. The values of the radii of the shadow for magneti-
cally charged EEH and RN are shown, for different values of the
magnetic charge Q,,, as indicated in the table, for fixed mass
M = 10*My. The Schwarzschild case is recovered when
Q,, =0, and then ry, = 5.19615. Qm is the screened magnetic
charge.

0, O "N(0,) rEER(D,,)
0.1 0.0999997 5.18748 5.18509
0.2 0.199998 5.16124 5.1515
0.3 0.299993 5.11683 5.09409
0.4 0.399982 5.0531 5.01046
0.5 0.499962 4.96827 4.89661
0.6 0.599928 4.85957 4.74591
0.7 0.699873 4.72274 4.5469
0.8 0.79978 4.55088 4.27775
0.9 0.899618 4.33202 3.88859
1.0 0.999312 4.04697 3.20653
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FEH _ RN
g Ish < Tsh

FIG. 5. The shadow of the magnetic EEH and RN black holes
are shown. The continuous lines are for an observer at r, = 50M,
and the dashed lines for a one at ry — oo. The fixed values are
the mass M = 10*M,, the magnetic charge Q,, = 0.5M, and the
screened charge Q,, = 0.499962M. On the corner, we display a

zoom of the shadow, rEFH < rEEH (1) — 00) < PRN < RN () o0).

4251 h

3.75 B
re/M

35 y

325 —_— ]

100 200 300 400 500 600 700
To /M

FIG. 6. The dashed lines correspond to the radius of the shadow
for an observer placed at r, — oo, for EEH and RN black holes,
respectively as indicated below the curves. The fixed values are
the mass M = 10*M, and the magnetic charge Q,, = 0.5M, and
the screened magnetic charge is Q,, = 0.499962M. Notice that

EEH RN
Tsh <r sh -

Observational constraints on magnetically charged EH-
BH from the shadow are found in Vagnozzi et al. [20],
derived from the EHT observations of the shadow of the
central black hole in Sagittarius A*. According to [20],
most of the effect on the shadow size comes from the
magnetic charge rather than from the nonlinear EH param-
eter and u ~ 0.3 is the largest allowed coupling before the

FIG. 7. The EEH black hole shadow measured by an observer
at rg. r_. is the outer horizon radius, r,;, is the light ring radius and
rgp, 1s the radius of the shadow.

perturbative approach to the theory around the Maxwell
Lagrangian ceases to be meaningful. Constraints depends
on whether the charge regime is less or greater than 1,
0, <lorQ, > 1. ForQ, <1 the upper limits are Q,, <
0.7M(10) or Q,, <0.8M(20), for u ~0.3.

For Q,, > 1 there appears a sharp discontinuity in the
shadow radius due to the existence of a singularity in the
nonlinear electromagnetic effective metric. The consistency
with the EHT observations requires that Q,, =~ 1.25M
for u~0.3; while for a lesser y the consistency allows
1LIM <0, < 1.5M.

IV. DYONICALLY CHARGED EINSTEIN-EULER-
HEISENBERG STATIC BLACK HOLE

Now, we consider a black hole endowed with electric and
magnetic charges, Q and Q,,, respectively, the electromag-
netic gauge potential reads [37]

All = [At(r)vov 07 _Qm COS@],

(106)

while the nonzero components of the Faraday tensor F,,
are Fy; = —F, for the electric field, and F,3 = —F3,, for
the magnetic field. The -component of the vector potential

A, takes the form

0 200 a
A ==(1-—=—E}-—B%|, 107
() r 2257z ¢ 457 ¢ (107)
where By = §E is the magnetic field strength, and the
electric field Ey = -2, with E, ="¢. The electric and
magnetic fields read
Q0 2a Q° aB(r)°Q
E S, 108
R G o0 2 2 U0
B(r) =2, (109)
r
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Therefore, the nonzero components of the Faraday tensor
are

2
FOl :7Q2 <1 7(1 E2 B2> F23 = Qm sin 6.
r

45779 9z
(110)
In this case, both X and Y invariants are nonvanishing [12],

they read
Q2 20 , a ,\? 2
1-—F-—B ,
254 457 ¢ 9 ¢ + 27t

2
y =2 (| 20 p p
r 457 In

The t#-component of the Einstein field equations leads to

X =-

(111)

(112)

E2F? a
E} +BY ———E},
2 < P45,

(04
- —B! —BZEZ
457 ¢ 9z )

(113)

m'(r) =

To first order in a, the metric function f(r) can be written as
a screened dyonic RN-like solution [12],

_2M 0F 0}
f()_1—7+7+—2, (114)

where the screened electric and magnetic charges of the
black hole are given by

A a a 1/2

A a
= 1 B —
in Qm ( 22571_

The horizon radii r,, are determined from the condition
f(rp) = 0, which leads to

M+ M- (1--2 - % p
Ths [ Q < 22579 T 90z 0

~ 02 1_732 _ % 12
" 225z 9% 90x 9= '

= By(ryY), with rgN the

32——E2 v 116
2 90x - (116)

(117)

where Eg, = Eg(ry~) and By,
horizons radii for the RN solution.

The extreme case is obtained when r, =r;, . In
Tables II and III the values for the inner horizon radius
r,_ and the outer horizon radius r;, are shown for different
values of the magnetic charge. Notice that the EEH inner
horizon radius is smaller, while the outer horizon is greater
than the RN ones.

TABLE II. Comparison between the inner horizon radius of the
Einstein-Euler-Heisenberg, rzzy , with the one of the Reissner-
Nordstrom, rgy , black holes, for fixed values of the mass
M = 106Mo and electric charge Q = 0.8M. Q and Qm are the
screened electric and magnetic charges, respectively.

o/M 0,,/M TRN_

On/M TEEH_
0.79963 0 0 0.4 0.39950
0.79964 0.1 0.0998931 0.40839 0.40789
0.79969 0.2 0.19983 0.43431 0.43382
0.79976 0.3 0.299824 0.48038 0.47991
0.79983 0.4 0.399861 0.55278 0.55236
0.79990 0.5 0.499914 0.66833 0.66798
TABLE III. Comparison between the outer horizon radius of

the Einstein-Euler-Heisenberg, rgpy , with the one of the
Reissner-Nordstrom, RN » black holes, for fixed values of the

mass M = 10°Mg and Q = 0.8M.

o/M 0,/M 0,./M RN, TEEH,
0.7999985 0 0 1.6 1.60049
0.7999984 0.1 0.0999995 1.59161 1.59212
0.7999981 0.2 0.199999 1.56569 1.56618
0.7999997 0.3 0.299998 1.51962 1.52009
0.7999966 0.4 0.399997 1.44721 1.44763
0.7999940 0.5 0.499995 1.33166 1.33202

A. Trajectories of neutral test particles

The motion of neutral test particles is described by the
geodesic equations, Eq. (29). The conserved quantities are
the energy £ and the angular momentum /, Eq. (33), with
the metric function f(r) given in Eq. (114).

The effective potential has the same form as the one in
Eq. (37), with f(r), Eq. (114), which is displayed in Fig. 8
for massive timelike (L = —1) and massless null (L = 0)
test particles, with two different values of the angular
momentum /.

1. Orbits of massive test particles
The equatorial circular motion for massive test particles
is the same as the one for the magnetically charged black

hole, replacing 0% — 02, + 07, the functions B and C for
the ISCO radius, Eq. (49), are now given by

2(0* + 0n)
M

—9M>(Q° + 05,) +4(0° + 03)
M
80*0,, +45M°Q*0;,(Q° + 05)
* M

B=8M3+ —9M(Q*+ 0).  (118)

SMA(Q* + On)

C=
—54M* 005,

(119)
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FIG. 8. The effective potential for massive (continuous line)
and massless (dashed line) test particles are shown for angular
momentum [ = 6M (bottom lines) and [ = 12M (upper lines).
In both cases for fixed values of the mass M = 10°M o, electric

charge (Q =05M and magnetic charge Q,, =0.8M,
(O = 0.49829M and Q,, = 0.79813M).
0.88 T T
0.86
Veff
1=2.9259 M
0841 ]
Tisco / M
2 4 6 8 10
™M

FIG. 9. The effective potential for the innermost stable circular
orbit, for angular momentum of the test particle / = 2.9259M and
for fixed values of the mass M = 10°M o screened electric
charge O = 0.5M and screened magnetic charge Q,, = 0.8M.
The vertical line indicates the radius of the ISCO, r;, = 4.1998M.

Figure 9 shows the effective potential corresponding to
the ISCO, for an angular momentum of the test particle
[ =2.9259M. The deflection angle ¢(r), for massive test
particles is the same as the one in Eq. (54), with ¢ and b,
Eq. (55), replacing Qﬁ, — an + 0% In Fig. 10 the orbits for
massive neutral test particles are shown, r,. corresponds to the
maximum of the effective potential, Eq. (37), for L = —1,
i.e., the radius of the unstable circular orbits. r;,, are the radii
of the outer and inner horizons, given in Eq. (117).

I
)
P

FIG. 10. The parametric plots x = rcos ¢(r), y = rsin¢(r) for
neutral test particles. For fixed values of the mass M = 10*°M o
screened electric and magnetic charges of the black hole Q =
0.5M and Qm = 0.8M, respectively, angular momentum / = 4M.
r, and r_ stand for the outer and inner horizon radii and r.. is the
stable circular orbit radius.

2. Orbits of massless test particles

The effective potential for massless test particles is given
in Eq. (57) with f(r), Eq. (114). In order to find the circular
orbits, Eq. (38) must be satisfied, as before. The radius for
the UCO is the same as Eq. (59) replacing once again
Q%n — an + QZ. Similar to the massive case, the deflection
angle has the form of Eq. (56), with the constants ¢ and b
given by Eq. (63), adding to the square of the magnetic
charge the square of the electric charge of the black
hole. The behavior of the circular orbits for massive and
massless neutral test particles is very similar to the one
shown in Fig. 2.

B. Trajectories of dyonically charged test particles

The components of the geodesic equation, Eq. (64), with
the Lorentz force, Eq. (65), read in this case

(). 1 2a a
S ol L (Y

2 .
- mem(l —éBZQ —;EE)];», (120)
= =3 O T
f 2
01— r 58
2a a )
—mem(l —EBzg —%Ezgﬂz, (121)
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2a a 27 .
- :
4572 9z > }4’

(122)

1
0 :ﬁ |:qum +me<1

From the first integration of the ¢ equation we can obtain the
conserved energy per unit mass, £, of the charged test
particle.

=i~ (2.0-2,0,) 7. (123

where the screened electric and magnetic charges are given
as follows

19a 19a 1/2
o= qu(1- 22— g2 )" (124
e qg( 22529 90 ) (124)

19a 19a /2
bo=g (1= %2 )" (125
m q’"( 2257227 90z > (125)

The angular momentum per unit mass is given by
[ = r?¢. Replacing the conserved quantities into the radial
equation, we obtain the effective potential Vg,

vam g5 - (e4 2, o

where A, = c}eQ - 61,,,@,”. The circular orbits are deter-
mined by the conditions in Eq. (38), that in this case
reduce to

s P+ 0p+ 0" — A2 3PM
re — re
M+ EA, M+ EA,
212 2 2
M+ EA,
E+r)

(r2 =2Mr.+ 05, + 0%) (128)

=r2.
(Ere+A4,)?

From Eq. (127) we can obtain the angular momentum of
the test particle

(M + AE)r, + A2 = Q% — 07

2= . i
r2—3Mr.+20% +20?

(129)

The solution to Eq. (127) is Eq. (43), with

— Q2>2, (130)

IME 1 (A%, -2 -0,
p:

M+EA, 3 M+ EA,

27 M+ EA,
(M + EA,)? M+EA,
2 "%1 Y
P+ 0,+0 (132)

3(M + EA,)

The radius of the ISCO, r;,, is obtained from the extra
condition, Eq. (47). The angular momentum corresponding
to the ISCO can be written as

2 2
2 2(EA,+ M)ri —3(05, Jf 0 —AAé)ri C3)
312 — 12Mr; + 10(Q2, + Q%)

In order to determine the orbits for dyonic test particles, we
can use as before the geodesic equations for ¢ and r. ¢(r).
They are given by Eq. (56) with Q2 + Q% and

. . M+ EA
¢ =3Mu, —4(Q% + OH)u? - % (134)
b =2[M-2(0% + 0*)u,]. (135)

For a detailed analysis of the geodesic equations of
charged particles in the linear dyonic RN spacetime,
see [38].

C. Photons trajectories

As already mentioned nonlinear photons propagate
along null geodesics of the effective Plebanski pseudo-
metric. From Egs. (87) and (89), photons trajectories are
determined by the equation

2a 2a .
0= —f(r)(l +H32Q+—”E2Q>t2

s B 2 e
f(r) 457 ¢ ' 457

+r (1—332 2 >¢2 (136)

4572 45z

The conserved quantities,
momentum / read

the energy £ and angular

20, 20,
&= (1+FB +FE >f( )i,

200 200 .
_ 2 2 2
l=r <1 _457TBQ _45ﬂEQ>¢' (137)
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Then, replacing Eq. (137) into Eq. (136) we obtain the
radial equation

2a 2a
f=(1-—B% - —E2 R 1
d ( 457270 454 > (), (138)

where the effective potential is given by

R(r):52—f()l2 <1+2—“B +2—“E2>. (139)

45 45

The light ring is determined by the conditions, Eq. (95),

the first condition implies that Vg (r.) = 0, i.e. r,, =1,

where r,. correspond to the radius of the unstable circular

orbit of massless test particles, Eq. (59), with an —

0?2, + 0% Moreover, from Eq. (137) we can obtain the
impact parameter 7> = é—i

2 2 2

3 rs a o, a

~——|1—-—B -

LNTrN ( 4572000 = 455

Therefore, the geodesic equation for nonlinear photons can
be written as

EZQ(rC))Z. (140)

2 2 2
dr (1 a5z B0 45;:E> R(r) (141)
dr _ 7)
W (1+zBy i) !

Performing the change of variable £ = —— we have

</ Jeg —be— (02 +02)

(142)

2 2 2 2
(1+£ﬂ%*w§E

the result of the integral is Eq. (56), with ¢ and b given in
Eq. (63), with 0 + 02,

The deflection angle ¢(r) for the dyonically charged
black hole is greater than the one for the pure magnetically
charged case, because of the extra term on the denominator
of the left-hand side of Eq. (142).

D. Shadow of the dyonically charged
EEH black hole

The four-momentum for a photon in a basis for a distant
observer at fixed ry, whose word lines are perpendicular to
the plane #; has the same form as in Eq. (100). Using the
celestial coordinates (x,y), Eq. (102), and the impact
parameter, Eq. (140), we obtain the parametric equation
of a circle, x> + y* = f(ry)n*, whose radius corresponds
to the radius of the shadow r,;, of the dyonically charged
black hole

L L 1 !

0 02 04 0.6 038 1
N\
Q/M

FIG. 11. The shadow radius for fixed values of the electric
charge Q = 0.5M and different values of the magnetic screened
charge Q,,, from 0 to 0.9M in 0.2 steps, with fixed mass
M = 10*M,.

The shadow radius for fixed value of the electric charge and
different values of the magnetic screened charge is shown
in Fig. 11. For the linear RN case, the shadow radius is

RN =, ;E:";, the shadow of the EEH black holes is

always smaller than the RN one, as can be seen in Table IV,
Figs. 12 and 13.

TABLE IV. The values of the shadow radius for EEH and RN
black holes are shown, for different values of the magnetic
charge, for fixed values of mass M = 10*M, and electric charge

Q0 =05M.

O 0, 0 i ot

0 0 0.499962 4.96791 4.89605
0.1 0.0999806 0.499958 4.95824 4.88289
0.2 0.199958 0.499945 4.92891 4.84277
0.3 0.29993 0.499923 4.87902 4.77356
0.4 0.399891 0.499888 4.80687 4.67115
0.5 0.499836 0.499836 4.7096 4.52819
0.6 0.599753 0.499759 4.5825 4.33115
0.7 0.699621 0.499642 4.41723 4.05222
0.8 0.799397 0.499449 4.1966 3.6189
0.9 0.898935 0.499062 3.86892 2.66789
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EEH __ RN
_— Ish <Ta

FIG. 12. The radii of the shadows of dyonic EEH and RN black
holes are shown. The continuous lines corresponds to the shadow
of EEH and RN black hole for an observer at ry = 50M, the
dotted lines are the corresponding to an observer at ry, — o0. The
fixed values are the mass M = 104Mo, the electric charge
Q = 0.8M, and the magnetic charge Q,, = 0.5M. The square
on the corner is a zoom to the shadow, notice that r¥FH(ry) <

rEEH () = 00) < rRN(rg) < rRN(ry — ).

sh

15 | N 1 " | | " 1 A\
1.5 2 25 3 35 4 45

FIG. 13. The shadow radius for fixed values of the magnetic
charge Q,, = 0.5M, black hole mass M = 10*M, and
ro = S0M. From left to right: dyonic EEH and RN black holes
shadows with electric charge Q = 0.8M, and the dashed lines are
for magnetically charged EEH and RN black holes shadows.

V. SUMMARY AND CONCLUSIONS

In this work, in the framework of the QED interpretation
of the Euler-Heisenberg nonlinear electrodynamics, as a
screening effect of the real charges, we studied the test

particles orbits in magnetically and dyonically charged
static Einstein-Euler-Heisenberg black hole spacetimes.
These solutions represent a screened generalization of
the linear magnetically and dyonically charged Reissner-
Nordstrom black hole ones. For @« =0 they reduce to
the linear Reissner-Nordstrom solutions. If additionally,
the charges are zero (Q,, = Q =0), one recovers the
Schwarzschild black hole. The screening effect on the
charge extends a little the size of the RN event horizon,
i.e., rEEH > /RN while the inner horizon radius for EEH is
smaller than the RN one, i.c., rEEH < /RN,

The study, of the equatorial motion of massive, massless,
neutral, magnetically and dyonic charged test particles in
these spacetimes, is performed by analyzing the effective
potentials resulting from integration of the geodesic equa-
tions. The EH nonlinear contribution scantily modify stable
and unstable circular trayectories of massive test particles.
Moreover, the ISCO, almost imperceptibly stretches the
one of RN case. We also calculated the orbits of charged
test particles on the equatorial plane, resulting that for
a magnetically charged black hole, only magnetically
charged test particles can remain constrained, while for
the dyonic black hole case, they can be endowed with both
charges. It is important to note that in nonlinear electro-
dynamics, the Lorentz force is slightly different from the
linear case, see Eq. (65)and [35]. It is worthwhile to note
that the charges of the test particles are screened as well.

Moreover, the radius of stable circular orbits for both,
massive and charged test particles in EEH blak hole space-
time, is smaller than the one of the RN black hole. While the
radius of unstable circular orbits for massive, massless, and
charged test particles as well as the ISCO for massive and
charged particles in EEH, are a bit larger than the ones in RN.
This is true for both the magnetic and dyonic black holes.
Hence, the screening effect of the black hole charges on the
orbits of neutral and charged test particles is hardly visible.

However, for the photons orbits the Euler-Heisenberg
effect enhances, since, as already mentioned, nonlinear
photons propagate on null geodesics, not of the geometrical
metric g,,, but of the effective Plebanski pseudometric y,,
which contains additional to the geometric metric, the
energy-momentum tensor 7, of the EH nonlinear electro-
magnetic field [6,39]. The effective potentials for the
nonlinear photons remain always inside of that for the
linear Reissner-Nordstrom ones. The deflection angle is
larger than the one for massless test particles, for both the
magnetic as well as the dyonic EEH black holes.

By using the effective Plebainski pseudometric, we also
calculate the shadow of the black holes, measured by a
distant observer. We found that, due to the screening effect,
Einstein-Euler-Heisenberg black hole shadows are always
inside the shadows of the corresponding linear RN black
holes, i.e., rEFH < rRN. Moreover, the radius of the shadow
for the dyonic black hole is smaller than the shadow for the
magnetic one, as can be seen in Fig. 13. In our study we
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considered magnetic charges in the allowed ranges of the
observational data of the shadow of Sagittarius A*; and as
far as we know the actual precision in the shadow
observations does not allow to rule out electromagnetically
charged black holes.

It is worth mentioning that the tiny variations caused by
the Euler-Heisenberg screening effect are almost negligible
and hence very difficult to observe unless very precise
measurements of the parameters of the black hole and the

distance to the observer are obtained (cf. [13]), what is
ordinarily not the case.
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