PHYSICAL REVIEW D 108, 064012 (2023)

Asymptotic black holes and conformal mass in AdS quadratic
curvature gravity

Olivera Miskovic®,"" Rodrigo Olea,”" Eleftherios Papamtonopoulos,S’i and Yoel Parra-Cisterna

L§

'Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso, Chile
2Departamento de Ciencias Fisicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago, Chile
3Physics Department, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece

® (Received 5 July 2023; accepted 24 August 2023; published 7 September 2023)

We explore the consistent truncation of conserved charges in quadratic curvature gravity (QCG) with
anti—de Sitter asymptotics to the linear order in the Weyl tensor. The QCG action is given by the most
general curvature-squared corrections to Einstein gravity, and it is suitably rendered finite by the addition of
extrinsic counterterms (Kounterterms). The conserved charges derived from this action are, as a
consequence, nonlinear in the spacetime Riemann tensor. A detailed analysis of the falloff of generic
static solutions leads to a charge proportional to the electric part of the Weyl tensor, without loss of
information on the energy of the system. The procedure followed provides firmer ground to the extension of
the notion of Conformal Mass to higher-curvature gravity, as it appears as associated to a renormalized
action. We observe that criticality condition in QCG poses an obstruction to the charge linearization, in
contrast to previous results in Lovelock gravity, where degeneracy condition plays a key role.
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I. INTRODUCTION

Over the years all theoretical physical theories have been
tested over their observational and experimental validity. In
the case of gravity theories, their validity has to be tested
against the astrophysical observations. Differences between
general relativity (GR) and alternative theories described by
modified gravity theories are expected to occur for strong
gravitational fields, such as the ones created by different
compact objects like neutron stars, strange stars and black
holes. The f(R) and Lanczos-Lovelock gravity theories in
higher dimensions have received more attention as they are
the simplest generalization of GR.

To avoid restrictions from the early times cosmological
observations on the gravitational Lagrangian as a linear
function of R, variable-modified theories of gravity were
investigated in the form of quadratic Lagrangians that
contain some of the four possible second-order curvature
invariants. One of the first such models was the Starobinsky
model f(R) =R+ aR?> [1] which was introduced to
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explain the inflation behavior of the early universe. In this
model neutron stars were studied [2], in which strong
gravity effects are non-negligible. It was found that, in
these theories, the neutron stars can differ significantly
from their GR counterpart which makes them a very good
candidate to test f(R) theories on astrophysical scales [3].
Also, f(R) models can give important corrections in the
late universe and they can lead to self-accelerating vacuum
solutions, providing a purely gravitational alternative to
dark energy [4-7].

In f(R) gravity theories there are black hole solutions
similar to the known black hole solutions of GR or they
differ considerably from their GR counterparts. Just to
mention some, static spherically symmetric solutions in
f(R) gravity were studied in [8—10], and exact spherically
symmetric solutions were discussed in [11] different from
the Schwarzschild-(A)dS solutions.

On the other hand, gravity theories that contain higher
powers of Riemann curvature and still possess second-
order field equations in the metric are known as Lanczos-
Lovelock (LL) gravity [12—14]. In four dimensions, GR is
the unique LL gravity, whereas in five dimensions there is
room for Einstein-Gauss-Bonnet gravity. In higher dimen-
sions, dimensional continuations of the Euler term are
added as LL curvature polynomials. There has been
extensive work on black holes in LL gravity, which appear
as the generalization of the spherically symmetric Einstein-
Gauss-Bonnet black hole solutions [15,16].

The f(R) gravity with the addition of quadratic poly-
nomials in the Riemann curvature is also referred to as
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Stelle gravity [17], and it is the most general quadratic in
curvature modification of four-dimensional GR. In general
modified theories of gravity, higher-order curvature terms
have been introduced in an attempt to understand the
cosmological history of the early and late cosmological
evolution in a consistent way to recent observations. On
more theoretical grounds, higher-order corrections to the
Einstein-Hilbert term lead to a renormalizable and thus
quantizable gravitational theory [17]. Also, it was shown in
[18] that QCG, unlike various other higher curvature
theories such as Einstein-Gauss-Bonnet, is free from
causality issues. Therefore, modified theories of gravity
with higher-order corrections provide a deeper understand-
ing of GR.

High derivatives of various fields appear in models,
which are consistent truncations of string/M theories
reduced to four spacetime dimensions. To make these
models tractable [19] constraints should be imposed on
the reduction process. A typical example is the gauge/
gravity duality [20], which is a powerful method of
studying strongly coupled phenomena using dual weakly
coupled gravitational systems (for a review, see [21]). This
duality can be considered one of the most successful
applications of string theory. Higher-derivative coupling
between various fields was considered in [22] in a gauge/
gravity holographic model.

In holographic models described by the gauge/gravity
duality, high-order curvature correction terms appear,
which generate fourth-order field equations enriching the
asymptotic structure of spacetime allowing the appearance
of new holographic sources at the conformal boundary, in
addition to new parameters to build a holographic theory
modifying in this way the dynamics of the strongly coupled
dual theory. In holographic hydrodynamic models, the
addition of R? terms changes the ratio of shear viscosity
over entropy density [23], violating the universal bound
1/4x proposed in [24]. In [25,26] high-curvature terms in
the form for the Gauss-Bonnet term were considered in the
framework of AdS/CFT correspondence and it was found
that higher curvature corrections make condensation harder
and the presence of these terms violate a universal relation
between the critical temperature of the superconductor and
its energy gap.

In [27,28], a universal definition of energy was provided,
and it was evaluated in appropriate asymptotic geometries,
for theories quadratic (or higher) in curvatures, with or
without Einstein and cosmological components. A formula
for gravitational energy in covariant form was proposed in
[29,30] in an arbitrary theory of gravity including quadratic
curvature terms in even dimensions via the Noether-Wald
method [31]. The basic idea is to add a topological term to
the action such that it renormalizes its variation. From a
finite surface term in the variation of the total action, finite
asymptotic charges are derived. This procedure had already
been consistently applied in second-derivative gravity

theories, such as Einstein-AdS [32] and Einstein-Gauss-
Bonnet-AdS gravity [33].

If a charged particle is moving in an orbit in the presence
of an electromagnetic field it will feel the electric or
magnetic field depending on its charge. Motivated by
electromagnetic field description, the Weyl tensor which
represents a pure gravitational field and it is a measure of
the curvature of spacetime in GR, is decomposed into
electric and magnetic parts. The electric part of the Weyl
tensor contains all information about the tidal forces due to
gravity, while the magnetic part contains all other infor-
mation about the Weyl curvature. The computations in GR
are known to be complicated as the tensors involved are up
to rank four and obtained using second-order partial
derivatives of the metric tensor and their combinations.

In Einstein’s gravity, the Weyl tensor is invariant under
conformal transformations. The conformal mapping
between the physical metric g,, (a given solution of the
Einstein equations) and a conformal one, g, = Q2g/w,
serves the purpose of defining a regular boundary, as long
as the conformal factor Q vanishes on the boundary and its
derivative is finite. In doing so, the conformal mass is
encoded in the electric part of the Weyl tensor for g,,.

The conformal mass is one of the conserved charges
which depend on the bulk geometry and there are various
ways one can define conserved charges by studying
asymptotic symmetries. Among them, the Ashtekar-
Magnon-Das [34,35] (AMD) method applies Penrose’s
conformal transformation to determine conserved charges
in the asymptotically AdS spaces. A defining feature of this
method is that all information about the conserved charge is
contained in the electric part of the Weyl tensor,

. 1 .
T Iy
gj _d_zwjvnll

n’, (1.1)
where n, is the normal vector to the boundary, whose local
coordinates are x'. Suitable rescaling of tensorial quantities
makes the conserved charge formula expressible in terms of
the Weyl tensor defined in (1.1).

In this work, we study the most general quadratic
curvature gravity (QCG) in d + 1 dimensions, consisting
of the Ricci-squared, the Ricci scalar-squared and the
Gauss-Bonnet (GB) terms. We first give a detailed descrip-
tion of QCG and we calculate the critically condition under
which the physical propagating modes exist. Then we
calculate the most general form of an asymptotic black hole
in (d + 1)-dimensional QCG, away from the critical point.
To calculate the conformal mass, we first discuss the
asymptotic form of the Weyl tensor and, to avoid possible
infrared divergences, we give a detailed discussion on
the kounterterm charges in asymptotic AdS QCG. Then we
give the explicit form of the conformal mass in odd and
even dimensions.
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The work is organized as follows. In Sec. II, we describe
the QCG theory, we derive the equations of motion and we
derive the propagating modes and the criticality condition.
In Sec. III, we derive the asymptotic black hole solutions
and the asymptotic form of the Weyl tensor. In Sec. IV, we
discuss the kounterterm charges in the asymptotic AdS
QCG. In Sec. V, we calculate the conformal mass in odd
and even dimensions. In Sec. VI are our conclusions and,
finally, we summarize our conventions in Appendix A, and
derive an asymptotic black hole solution in Appendix B.

II. QUADRATIC CURVATURE GRAVITY

In this section we will discuss the most general gravi-
tational theory with quadratic corrections in the curvature.
The action in d + 1 > 4 dimensions is given by

IQCG_Adde /—_g

1
x [—(R—2A0) +aR,, R +pR2+yGB|. (2.1)
K

It describes a modification of the standard GR in the
presence of a cosmological term A, thought of as a short-
range interaction. The presence of quadratic curvature
contributions consist of the Ricci-squared, the Ricci sca-
lar-squared, and the GB terms. The GB term is defined
by R,,qsR"* — 4R, R + R?.

The equations of motion for the theory are obtained by
performing functional variations of the action (2.1) with
respect to the metric field, g,,(x), which produces

1
E, = EG"” +yH,, +P, =0, (2.2)
where the first term is the Einstein tensor
1
G =Ry =5 9uR + Mgy (2.3)

2

The Gauss-Bonnet part of the action gives rise to the
Lanczos tensor, H s

1
H;w = _EgﬂD(R2 - 4RaﬂR(1/)’ + RaﬂiaRaﬂio‘)

+2(RR,, —2R,;R*, — 2R, sR™ + R ;0sR,).
(2.4)

Finally, the symmetric tensor P, contains higher-derivative
contributions to the field equations, which come from the
Ricci-squared and the Ricci scalar-squared terms in the
action (2.1), that is,

1
P,uu = ZﬁR (R,uy - Zg/wR> + (a + 2ﬂ)(gﬂIJ|:| - Vﬂvu)R

1
+aG,, + 2a (Rm,M - gﬂDRM) R, (2.5)

4

It is clear that, when P,, # 0, the equations of motion of
QCG are of fourth order in derivatives.

A. Effective cosmological constant
and degeneracy condition

In the action (2.1), the parameters «, f and y are
introducing length scales in the theory and therefore these
scales should redefine the bare cosmological constant A,
setting an effective cosmological constant A.y. On the
other hand, those couplings are such that they allow the
existence of maximally symmetric vacuum states present in
the action, which satisfy

2A
Ry — =g = 0.

ap dld—1) (2.6)

By plugging in the condition (2.6) into the expressions
(2.3), (2.4), and (2.5), respectively,

2(d=2)(d-3)

G;w = (AO - Aeff)g;wv H/w = d(d — 1) Agffgyyv
2(d—-3)
P;w = (d— 1)2 (a+ (d+ 1)ﬁ)A§ffgmn (27)

it is possible to make explicit the relation between the
effective cosmological constant with the bare one, by virtue
of Eq. (2.2),

Ao 1 (d-3)
kA% 2kAgr  (d—1)?

€

(d-2)(d-3)
d(d—1)
(2.8)

(a+(d+1)p)+r

The above expression implies the existence of two branches
of the theory

11 d-3 (a+(d+1)p d-2
=1k 14 8kA
AL, 2A0{ \/ oK 0d—1< -1 7

The Einstein’s branch A, describes a correction contin-
uously connected to Einstein’s theory, while the stringy
branch AZ; contains solutions which do not reduce to the
ones of Einstein gravity in the weak field limit [15].
This equation has real roots for the effective cosmologi-
cal constant, as long as the couplings satisfy the inequality

064012-3



OLIVERA MISKOVIC et al.

PHYS. REV. D 108, 064012 (2023)

d-2
d

d-3 (d+1)

> > 0. (2.10)
The saturation of the above bound sets a point in the
parameter space {k, Ay, @, f#, 7} such that there is a single,
degenerate vacuum state, Afy, = Aj; = 2A¢. This relation
is referred to as degeneracy condition for QCG, and
produces a class of solutions whose metric is inequivalent
respect to the ones in the Einstein branch, regarding their
asymptotic behavior.

The focus of the present study are asymptotically AdS
spaces in QCG, with the effective cosmological constant
given by

dld—-1)

At = — :
eff B fgff

(2.11)

in terms of the effective AdS radius £, which is a solution
of the equation

1 1 «xdd-3)(a+(d+1)p d-2
— = . 2.12
A= aT A ( a1 ra ) @

In order to understand better the special points in the
parameter space in higher-curvature gravities, in particular
in QCG, it is useful to introduce a parameter that character-
izes the degeneracy of the gravitational vacuum state,
including its multiplicity.

In general, for a Lagrangian of the form L(R}), with
Eﬁf =0L/ aRaﬁ, the effective AdS radius is obtained from

the equation
d
) ;§|Ads =0.

2.13
eff dfetf ( )

<l—d+2£

When the Lagrangian contains the Einstein’s term

=1 5:1,/,”R’;/”3 such that £ = Ké"ﬂ R" Y 4+ ..., itis convenient
to deﬁne the polynomial propomonal to Eq. (2.13), and
normalized as

2K d
= (1=d+2y = E?| .  (2.14
(d+1)d(d—1)< + ydy> a/}|AdS ( )

which has the same degree in y = 7> i as adegree of Lis in
the Riemann curvature. Then the solution y; corresponds to
a degenerate vacuum that has the multiplicity & if the first

(k) _ d*®,
@d =05

®dE

. In
Yk
particular, in Lovelock gravity, @gl) = 01is an obstruction to
linearize a theory and also to define the conformal mass,

because the coefficient (9511) appears as an overall factor in

the electric part of the Weyl tensor [36,37].
For QCG theory, the double trace of the auxiliary
tensor is

nonvanishing derivative of ©, in k is

ap
E(l} |AdS

! (ad+p(d+1)d+y(d—1)(d-2))|,

=(d+1)d|—
(d+1) 2k fsz

(2.15)
such that the polynomial ®, is quadratic in ¢,

1
ZAN

x <a+ (d+ l)ﬁ—i—yW). (2.16)

k d(d-3)

0,=—
d A d—1

Then, the degeneracy of the AdS vacuum is determined by
the coefficient

d(d-3)

1
o =170

wy, (217)

where the shorthand

Wy =

* <a+(d+ )ﬁ+y%>, (2.18)

2
feff

is introduced as it will be often used below. |
It is straightforward to check that, when @Ei) =0, the
coupling constants are not independent and the effective

AdS radii coincide at the value Z.4 = £/V/2.

B. Propagating modes and criticality condition

In order to identify the propagating degrees of freedom
of the theory, the linearized field equations for QCG are
analyzed in this section. In general, quadratic-curvature
corrections in the action (2.1), produce a massive tensorial
mode, namely a massive graviton.1 The corresponding
mass of this graviton will give rise to the notion of
criticality in the theory [39,40], which will also impact
in the definition of conformal mass in the theory.

When small perturbations of the spacetime metric, g,,,
around a maximally symmetric background, g, are
considered, that is,

G = G + Iy + O(R), (2.19)
the linearized version of the EOM can be obtained

following the procedure shown in Ref. [40]. The result
is an expansion in different orders in the metric fluctuation,

7 1
E, =E, +Ey +0(h?) =0, (2.20)

'For more information on the propagating modes in quadratic
gravity, see Ref. [38].
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where Eﬂy = 0 is satisfied identically in the vacuum, what
leaves the linear contribution in the form

1 a 1 ~ = SR d ~
E/(w) = ;G;(u) + (Of + 2/}) (.g;wlj - vﬂvl/ - ng/w> R(l)
eff
d—1

R (2.21)
fgff

+a(mc;,<,'3 + QWR“)) o,

Here, all differential operators with tilde are defined
with respect to the background metric and the constant
a is given by

2

a=1- da)d + TK <a - Z(d - 2)}’) . (222)
feff

Taking the trace of the linearized equation of motion (2.21),

and upon the gauge choice Vi, = V,h, a wave equation

is obtained for h = g#*h,,

li|+1—d+d(d—3)0)d

((d+1)a+4dp) p

}h—o. (2.23)

The trace of the perturbation, %, becomes a propagating
mode, which corresponds to a scalar field whose dynamics
is governed by Eq. (2.23) and which, in general, has a
nonzero mass with respect to the background. This massive
scalar mode can be eliminated by imposing constraint on
the parameters given by (d + 1)a + 4dp = 0, resulting in
h = 0. This condition implies that a gauge choice reduces
to the transverse one, v”h,w = 0, such that the linearized
equation (2.21) becomes [40,41]

- 2 ~ 2
feff ?’ﬂeff
where the constant M takes the value
2 a
M=—_— 2.25
Lo K 229)

The Eq. (2.24) describes a massless spin-2 particle, h,([:”,

which satisfies

= 2\ m
<D+£2y%):Q (2.26)
eff
and a massive spin-2 propagating mode, hﬁ,l,f[),
=, 2 o\,
U+—%-=M"hy' =0, (2.27)
eff

Both modes are transverse and traceless (A" = hM) = ().
For an AdS background, the stability of the massive spin-2
mode requires that M? > 0, as shown, e.g., in [42].

It is important to stress that the existence of the massive
graviton depends mainly on the Ricci-squared term in the
action (2.1). By combining Eqgs. (2.22) and (2.25), it is
shown that the mass of the graviton takes the form

(2.28)

where the new constant Z; is defined as

2kd
4 gff

[1]

=1

(a+@ﬁ+nﬁ+r@:2%iiﬁ), (2.29)

which, in turn, can be rewritten in terms of Eq. (2.18) as

4(d-2)

Ey=1—-dw;+
d d
o

KY. (2.30)

When set to zero, the criticality condition Z; = 0 imposes a
constraint on the parameters of the theory, such that the
massive graviton turns massless with respect to the vacuum.
When the above condition is met, the linearized equation of
motion (2.24) reduces to

(O+z)
) hy =0,
fgff !

which is a sort of Klein-Gordon-squared equation. As
discussed in [43], it corresponds to a fourth-order differ-
ential equation, which exhibits degenerate solutions and,
therefore, logarithmic modes which appear naturally.

To conclude, the functions of the couplings which are
relevant in QCG are the ones that defines the degeneracy
condition, ® dl), and the criticality condition, Z;. In the next
sections we will discuss their role in the definition of
conserved charges.

(2.31)

III. ASYMPTOTIC FORM OF THE
BLACK HOLE METRIC

In this section, we will discuss generic black hole
solutions in QCG. In that respect, static, Schwarzschild-
like, black hole solutions in quadratic curvature gravity,
with and without cosmological constant, have been a
subject of study during the last few decades (see, e.g.,
[44-47]). In the context of asymptotically AdS gravity,
topological black hole solutions generalize the geometry of
the transversal section from a sphere to planar or hyperbolic
surfaces [48,49].

A static black hole ansatz in the local coordinates
X = (t,r,¢™), is described by the metric

dr?

ds* =—f*(r)dr* +f2(r)

(pm er\d—l’

(3.1)

+ Y (@) dep™ dp"
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where 7,,,(¢) is the metric of a (d — 1)-dimensional
Riemann space I~ with constant curvature k,

R (r) = ko, (3.2)

with the parameter k = +1, 0 and —1 that locally describes
a spherical, flat and hyperbolic transversal topology,
respectively. The spacetime between the horizon and
infinity is foliated by a radial coordinate adapted to the
topology of the transversal section and, in particular, the
one of the horizon r = r .

In order to find the asymptotic form of a static black hole
(3.1) in QCG, the first integral of the equations of motion
(2.2) should be found. In the ansatz (3.1), there is only one
independent component of the field equations, and that is
why one may analyze E! = 0, which consists of

rd !
T R

0

2pd-1
d-1

(3.3)

2pd-1
d-1

Hi=|-@-2@-sre-ap] . G4

where the prime denotes a radial derivative. Similarly, the
evaluation of the higher-order term P! produces

2pd-1
d—1

2pd-1
d—1

P=

1 a 2pd-1
26R <G;| A0°+ZR> + <§+2ﬂ) ——OR

2pd-1 2741 1
+a 1 OR! +2a 1 (R;j—ZRj> R:
=[¥(n)]". (3.5)
where W(r) is a function to be determined and the Einstein
tensor without cosmological constant contributes with
|

r2

fice = k+

The above function, when expanded for » — oo, adopts the
form

) mk pRr(d=2)(d-3)
f EGB = Kt 5 — = d-2 + =3 ,2d-2
O Byr =

1
+ O<r3d—2>’

where the falloff of the mass term is dictated by the constant

(3.10)

2ky(d —3)(d-2)
— = ’
eff

[1]

i=1 (3.11)

2pd-1

ﬁGHAO:O = [r2 (2 = 0] (3.6)

Putting together the expressions (3.3)-(3.5), the E!
component of the equation of motion (2.2) can be written
as a total derivative

2p4-1 1 rd

E— |22y~
d—1" x (f ) NG

p(d=2)(d =3 (k2 |
—0, (3.7)

such that its first integral gives rise to the mass parameter, 4,
as an integration constant

1 2 2_12 W
e
(3.8)

In a gravity theory with arbitrary quadratic-curvature
couplings, it is difficult to find the exact form of the
function W(r). Therefore, only an asymptotic analysis of
the equations of motion can be performed.

A. Degeneracy vs criticality

In order to illustrate the effect of curvature-squared terms
in the action over the behavior of the metric function, one
may consider topological black holes in Einstein-Gauss-
Bonnet AdS gravity (QCG with @ = f# = 0). The exact
solution corresponds to the Boulware-Deser black hole
whose metric function, in the Einstein’s branch of theory, is
given by [15]

a3 | \/1 _4"7("_2””1_3)(/;%_%)]'

(3.9)

|

which corresponds to the criticality condition defined in
Eq. (2.30), but for @ = f# = 0. Remarkably enough, in EGB
gravity, the notion of criticality coincides with the concept
of degeneracy, i.e., 2; = @Eil). Therefore, either condition
poses an obstruction to a Schwarzschild-like asymptotic
behavior in Eq. (3.10). The role of degeneracy in EGB AdS
gravity has been properly emphasized in the linearization of
the conserved charges in [36]: conformal mass cannot be
defined in the case both effective AdS radii coalesce.
A similar feature is made manifest by the general falloff
of the metric function in Lovelock AdS gravity, as
discussed in [37].
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It is reasonable then to expect that there exists a
class of solutions with an expansion as for asymptotic
Schwarzschild-Tangherlini-AdS black holes

where m and p are real constants yet to be determined. This
argument excludes the existence of logarithmic terms in a
relaxed asymptotically AdS behavior on critical points of
the theory [43].

|

Assuming the expansion (3.12), the asymptotic resolu-
tion of the field equations for QCG leads to the function
¥(r), which is*

d(d=3)(a+(d+1)p) ,

lP:\'PO—

(d_1>f‘elff
2d((5d—1)a+3(d—1)p I
240 Zﬁrd( ) )p+(9(,d+1>- (3.14)

Notice that the term coming from the derivatives in the
curvature appears as sub-leading contributions with respect
to the ones responsible for the mass. The first integral in
Eq. (3.8) can be expanded as

d(d=3)(a+ (d + l)ﬂ)] -
(d - l)l’ﬂgff

AL 1N r(d=2)(d=3)
ri= T k\E% 4G Lo
[, _2xdd=3) (¥
2 \2d(d-3)m

y(d—zw m__ miy(d=2)(d-3)

K.rd—2 r2d—2

d

. {1 _ 2kd(d - 3) <_ (5d - )a+3(d—1)p

2
l’ﬂeff

As expected, the first line is eliminated by recalling the
definition of the effective AdS radius &, (2.12). As for the
subleading order O(1/r%?), it determines the mass param-
eter in terms of the integration constant,

= [1—y(a+(d+1)ﬁ+—y(d_2zl(d_3))]

—d
=—m, 3.15
L (315)

|3

using the corresponding value in Eq. (3.13). Finally, the
order O(1/r*2) leads to

2xd(5da +2(2d — 1D)p)] p
z, XA 2O DN P iy a - 2)(a -3,
eff K
(3.16)
such that
2 — —
= m*ky(d —2)(d - 3) (3.17)

B Ed+§}§?(5da+2(2d— Np)

Summing up the above results, the expansion of the
metric function in a generic QCG theory is

y(d—2) p
d-3 + d Kr2d—2 + '

p23y(d —2)(d - 3)
531(5@ + %j (5da +2(2d — 1)B))r*=2

1
colh)

We conclude that, in QCG, the criticality parameter
Ey # @Eil)) is the one that determines the asymptotic
behavior of the mass term in static black holes.

(3.18)

B. Asymptotic form of Weyl tensor
and AdS curvature in QCG

It is a well-known fact that, in general relativity, the Weyl
tensor adequately packs the components of the Riemann
tensor which are not fixed by the Einstein equations. On the
other hand, the addition to the Riemann tensor of a precise
combination of the Ricci tensor and Ricci scalar acts as a
compensator field for conformal transformations of the
metric, such that

The integration constant ¥, may be fixed only by nonlocal
considerations. Indeed, the value

2d(a+ (d+ 1)f)m
lPO == f2 N
eff

(3.13)

appears as coming from a detailed discussion on (global)
conserved charges in later sections.
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1 R

Wity = Riyy = —— SRy + Ta=T o 319
is a conformally covariant object. Here, the notation
Xy = X#yv — X*Y* was used. The electric part of the
Weyl tensor, defined in Eq. (1.1) carries information on
gravitational waves propagating in vacuum, tidal forces
[50] and, in asymptotically AdS gravity, conserved charges
[35]. Besides, in AdS gravity, there is a tensor which
measures the deviation of the spacetimes with respect to a
maximally symmetric background (global AdS), known as
AdS curvature

1
Fly =R + 25{1;. (3.20)
0
In a Riemannian manifold, the AdS curvature is the only
nonvanishing part of the field strength associated to the
AdS group. For Einstein-AdS spaces, the Weyl tensor
coincides with the AdS curvature, namely

Pl = Wi (3.21)

(E)ap*
In presence of higher-curvature terms, the relation between
the on-shell Weyl tensor and the effective AdS tensor

v ] v
Fiiy = Riy + 330, (3.22)
eff

is no longer valid. One may consider the difference
between these two notions of curvature

Xty = Wos — Fop, (3.23)

which, by employing the corresponding definitions, can be

evaluated asymptotically for solutions of QCG theory.
By direct use of the definition of the Weyl tensor (3.19)

and the AdS curvature (3.22), this difference is expressed as

1 R v 1 v
R &

1
X = a af — 2 Yapr
dd=1)"" 2,77

af — d—1 6[(1R/}] (324)

The radial expansion of the relevant components of the
curvature (see Appendix B) implies the asymptotic form

2d—1)p 1
X§£:( r2d> +O<r2d+1)’

oo (@ =3d+1)p 1
Xgn:X,,,:—<d_1)r2d 5+ O\ 7 )

(3d—1)p o 1
Xkl :(d_l)rldékl +0 p2d+1l )°

In sum, the tensor X7; behaves asymptotically as

(3.25)

1
Xﬁ; = O(m) (3.26)
for the generic metric (3.12) describing a static black hole
in quadratic curvature gravity. As a result, in many
asymptotic computations of physical interest, one may
trade off the AdS curvature by the Weyl tensor, without loss
of gravitational information.

IV. KOUNTERTERM CHARGES IN AAdS
QUADRATIC CURVATURE GRAVITY

A. Extrinsic counterterms in asymptotically
AdS gravity

The on-shell action of pure FEinstein-AdS gravity is
proportional to the volume of the spacetime, which is
infinite. Therefore, computations which use this bulk
functional to define physical quantities for asymptotically
AdS black holes (e.g., mass, angular momentum, free
energy, etc.) are expected to be plagued with infrared
divergences. In the context of anti-de Sitter/Conformal
Field Theory (AdS/CFT) correspondence [20,51,52], the
derivation of holographic correlators at the conformal
boundary requires the removal of infinities in the variation
of the action, which come from the asymptotic expansion
of the canonical momentum [53,54].

In turn, the definition of the canonical momentum in
gravity is connected to a well-posed Dirichlet problem for
the boundary metric. The appropriate Dirichlet action for
Einstein gravity considers the addition of the Gibbons-
Hawking term

y 1
T=1Igy+-—

dxV-hK,
87G oM *

(4.1)

which is expressed in terms of the trace of the extrinsic
curvature. For a spacetime geometry described by normal
(spatial) coordinates of the form

ds* = N*(z)dz* + h;;(z. x)dx'dx/, (4.2)
the extrinsic curvature adopts a simpler expression respect

to the one for a generic ADM (Arnowitt-Deser-Misner)
metric, that is,

1

Kii =
72N

d.h (4.3)

ij*

This formula allows to write down an arbitrary variation
of the modified action [ as

. 1 )
ST = / G5, + / dx~N/—halish;, (4.4)
M oM 2

where the canonical momentum is
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~ Vhoh; 81G

The conservation of the above tensor is a consequence of
the Einstein equation G. = 0. However, when used as a
Brown-York stress tensor for the theory, this quantity does
not lead to finite conserved charges for AAdS spaces. The
renormalization of the quasilocal stress tensor and, there-
fore, the variation of the action, is achieved by adding local
counterterms at the boundary. In the standard approach,
those counterterms are covariant functions of the intrinsic/
boundary metric as they need to be compatible with the
Dirichlet problem for the metric A;; [55,56].

Within the above framework, a boundary term propor-
tional to the Gibbons-Hawking term with a different overall
factor, or a nonlinear contribution in the extrinsic curvature,
would necessarily produce surface terms which contain
variations of K;;. This situation is analogous to a system in
classical mechanics where the surface term contains var-
iations of the velocity.

It is then surprising that there are cases where the
renormalization of both the AdS gravity action and its
variation is produced by the addition of extrinsic counter-
terms. Indeed, this observation can be illustrated by very
simple examples:

(i) In three spacetime dimensions, the Chern-Simons
formulation of AdS gravity gives rise to the Einstein-
Hilbert Lagrangian with negative cosmological con-
stant plus a half of the Gibbons-Hawking term.
While this surface term is clearly at odds with the
Dirichlet variational principle for A;;, it is important
to notice that it regulates the Euclidean action for
black hole solutions [57]. The correct use of the
asymptotic form of the metric produces the matching
with the standard renormalization prescription [58].

(ii) In four-dimensional AdS gravity, the addition of the
Chern form, which is a boundary term nonlinear in
the extrinsic curvature, also produces a finite Euclid-
ean action for AAdS spaces [59]. The surface term in
this case is locally equivalent to a bulk topological
(Gauss-Bonnet) term. A puzzling feature of this
renormalized action is the fact that the Dirichlet
problem cannot even be defined, as there is no way
of getting rid of the variations of the extrinsic
curvature. The asymptotic expansion of the total
surface term makes possible to reconcile this ex-
trinsic renormalization with the standard one in the
context of gauge/gravity duality [60].

The two examples listed above are the simplest cases of a

renormalization scheme known as Kounterterms [59,61],

(K — hiK).  (4.5)

Iw = It + ¢4 / d'xV/"By(h. K. R).

oM

(4.6)

which considers boundary counterterms given as a poly-
nomial of the extrinsic and intrinsic curvatures, that is, K; j

and R}k ;» respectively. It is simple to verify that this method

correctly reproduces the black hole thermodynamics for
Schwarzschild-AdS black holes and topological extensions
of their cross sections. A less trivial check comes from
Kerr-AdS black holes, whose thermal behavior is also
appropriately accounted for within this procedure.

The metric for any AAdS spacetime can be written as a
power-series expansion in the holographic (radial) coor-
dinate, known as Fefferman-Graham gauge, such that the
line element is

1 A
dSZ = 7d22 + ? (g(())l] + Z29(2)ij =+ - ~)dx’dx/. (47)

Z

As it is manifest from the asymptotic form of the
boundary metric in AAdS gravity,

(4.8)

a proper Dirichlet problem for the metric can be defined
only for g();; at the conformal boundary [62].

The key observation which allows the addition of
Kounterterms in AdS gravity is the fact that the extrinsic
curvature has a similar asymptotic behavior as the one of
the boundary metric [63], that is,

1 90)ij
Kij=2="72

T (4.9)

In point of fact, the variation of the extrinsic curvature is
also expressed in terms of the variation of the holographic
source g(q);; and, as a consequence, the addition of extrinsic
counterterms are compatible with a holographic description
of AAdS gravity.

Furthermore, the form of the Kounterterms remains the
same irrespective of the inclusion of higher-curvature
terms. In doing so, they provide the renormalization of
the action in Einstein-Gauss-Bonnet [33] and Lovelock
gravity [64] with AdS asymptotics. The information on the
couplings of the different terms of the theory is somehow
encoded in the overall factor c,.

In recent work, this proposal for renormalization of
AAdS gravity has been extended to deal with the inclusion
of quadratic curvature couplings in the action [29,30,65].
The corresponding renormalized action adopts the form

[ren = IQCG + CSCG/ ddxv —th. (410)
oM

In even bulk dimensions (d 4+ 1 = 2n), the Kounterterms
are given by
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Lpelop—1 J2J3

4 .
By 1 =2n A drs]) K <§R —tzK}Qsz) x -

1. . 4 4
. _ m-20n-1 __ 42 grlon-2 grlan-1
X <2 RjZn—ZjZn—l £ KjZn—Z Kj2n1> ’ (4'1 1)

whose coupling

QCG (=)™ 1= (2n—1) (4.12)
-1 = kn(2n —2)! S '

is chosen by the cancellation of the leading-order diver-
gences in the action.

In turn, the Kounterterms in the action (4.10) in odd
spacetime dimensions (d + 1 = 2n + 1) are expressed as

1 u L. .
B,, = 2nV —h/ du/ dssl' K
0 0 1l ~ 1

1 S 2 ..
i [(Lpisia _ 0 gy g i3 iy
X 5]2 2R13/4 u KJ3KJ4 + A2 5]35/4 X

eff

(1
e X f—
2

with a coupling singled out by the vanishing of the variation
of the total action at leading order, that is,

2

. . . . Ky . .

bp-1lop __ 2 prlan-1 oy lopn-1 glon

RjZn—]jZn u KjZn—l K.]2n + fz 5./2n—l 5]211) ’
eff

(4.13)

QCG (—=Ca)""!

n —m(] —21’10)2,1).

(4.14)

B. Conserved quantities

For an arbitrary gravity theory, with a Lagrangian
L = L(g,R), the Noether-Wald procedure leads to a
conserved charge which stems from diffeomorphic invari-
ance of the bulk action, without additional boundary
terms [31,66]. The Noether charge is obtained from the
prepotential

QW = 2(EWXNHrES 4 28VHED), (4.15)

oL
AU

aRrx/i’

integral on a co-dimension 2 surface

in terms of the tensor E;ff = and expressed as an

0ld - [ dx.0". (4.16)

where d%,, = 3d*'x\/o(n,u, —n,u,) is the covariant

v¥u
surface element. The normals n, and u, are spacelike

i H

and timelike unit vectors, respectively, orthogonal to the
transversal cross section.

Boundary terms clearly modify the above definition of
conserved quantities. Indeed, the addition of Kounterterms
renormalizes the prepotential, which acquires the form

fen = Q" + ¢,BVE, (4.17)
where the boundary term can be trivially extended to a bulk
vector as B; = n,B".

Consider a spacetime whose metric is written in
Schwarzschild-like coordinates, x* = (r,x'), given by
the line element

ds* = N2(r)dr* + hj(r, x)dx'dx/, (4.18)
where r is a radial coordinate and £;; is the induced metric

on the boundary, defined at a constant radius. This foliation
is generated by a normal vector n,n* =1, such that
n, = (n,m;) = (N, 0).

On the other hand, Kounterterms are mathematical
structures constructed out from the boundary geometry.
Only in even spacetime dimensions, they can be related to
bulk (topological) invariants, what produces fully covariant
Noether-Wald charges [29,30].

In order to present a unified discussion for even and odd
dimensions, we consider the projection of the Noether
prepotential

n, Q" = q&, (4.19)
such that the charge density tensor qj- is introduced. This

definition casts the Noether charge in a closer form respect
to the one obtained by quasilocal methods [56]

0[¢] :de_lx au,-quj. (4.20)

The above formula assumes a topology of the boundary
oM = R x X, such that the induced metric can be written
in an ADM coordinate frame

hijdx'dx) = —=N?di* + 6, (dy™ + N™dt)(dy" + N"dt),
(4.21)

where 6,,, is the metric on T and x' = (¢,y™) are local
coordinates on the boundary. The unit vector u;u’ = —1,
normal to the surface X is given by u; = (u,, u,,) = (=N, 6)
For AAdS spacetimes in even-dimensional QCG, con-
served quantities are measured by the charge density
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) 1
q; = W J1J2 Jan-1

Iol3 3

5l - K.’]:' ncgncg (2n—2)

!Rj2j3 . Rjz,,-z.iZn—|

iri3 2420241

1213 I4ls 2p—212n-1

+ <— 2D+ aRIS2D + 2R +2y(2n - 2)(2n — 3)R’.2.’3> e 5/.2"-2!2"-1]
K

—2N[a(V'R; = VR; + V'R8 + V'R[8,) + 2V'RS] — aN (V¥R 5, — VIR}) + 2aK'R;.

(4.22)

By an abuse of notation, the extrinsic curvature in Schwarzschild-like coordinates (4.18) is defined by K;; =

The presence of covariant derivatives in the curvature is a consequence of the higher-derivative nature of QCG theory.
Therefore, it generalizes the notion of energy via Kounterterms beyond the restriction imposed by Lovelock theorem [13].
In the odd-dimensional case, the corresponding charge density tensor appears modified as ¢] + qjo)l., due to the existence
of the vacuum energy Qo) [¢]. The mass of the gravitational solutions, Q[¢], is then given by the first term, with a charge

tensor [65]

1

i 6ii|'~-i%n7| Kkéj] [nC%CG/ldu <R12]3 +
0

4j :2”_2 kjyjona1” 770 2]

Iol3

2 2
J2J3 ) L. J2n-2J2n-1 J2n-2J2n-1
22 6i2i3 ) <Rlznzlzn1 + 22 512;17212”71 >
eff eff

iri3 iyls I2n—2i2n-1

1 1 .. . . N o
SRS - (E S0+ aRISE + 2BRSES 1 2(2n — 1)(2n - 2)ny.2/3) 5. .azznmw}

(2n-1)!

- Na {2 (er;l — VIR; 4+ V'R/S, + VkR;(S;‘.) + VFR} 8} - viR;} + 2aK}RY — 4NSV'RS:, (4.23)
while the vacuum energy is produced by the tensor
) T 1 . 1 o T
CG giiy iy, 3 3 3
dloy = eSSy i, [ auaiio) + K30 (GRED — e KEKD + oot )
eff
1 RjZn—ZjZn—l 2Kj2n72Kj2nfl u’ 5jz,x725]'2n71 4.24
Ko X 5 igaing W R, R + fof Ion—n lop-1 ) ” ( : )
€

Notice that, as it evident from the appearance of the
coupling c;gncc; as an overall factor in the last expression,
the vacuum energy is an effect of the addition of regulating
counterterms. No further analysis on the properties of the
vacuum energy tensor (4.24) will be performed here, since
the focus is on the black hole mass and its link to the
electric part of the Weyl tensor.

V. CONFORMAL MASS IN QCG

In asymptotically AdS spaces, the form of the extrinsic
curvature at large distances is generically given by

1 . 1
O+ 0=,
et /+ (rz)

such that the Ricci tensor, for static black holes (see
Appendix B), behaves as

d 1

eff

Ki=- (5.1)

(5.2)

In this section, the aim is to prove that, without loss of
information on the conserved quantities, the charge tensors

|

in Egs. (4.22) and (4.23) can be consistently truncated as the
electric part of the Weyl tensor. To this end, the strategy
adopted is as follows: The use of this asymptotic falloff in the
curvature allows to simplify the expression in the charge
tensor. Indeed, the covariant derivatives acting on curvature
tensors can be dropped from (4.22) and (4.23). The
Kounterterms—and the charges derived from them—adopt
a quite different form in the even and odd-dimensional cases.
Despite this fact, it can be shown that the charge density is
expressed in terms of the AdS curvature as

L]i< _ adéi'l'g“'l’d' Klejzjzj/4"‘{'zl(F)

J Jujajad T iy Y iyl

(5.3)

irrespective of the spacetime dimension. Here, a; is cou-
pling-dependent constant, which also depends on the effec-
tive AdS radius, and J(F) is a polynomial of the AdS
curvature, whose leading order is O(1). Since the AdS
curvature vanishes for global AdS space (F z; = 0), and the
factthat 7 (0) is finite, the Noether charge is identically zero,
as expected for the vacuum state of the theory.

Working out the asymptotic behavior of the different
tensors in the charge formula (4.20), one may notice that
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U, =—\/=Gy = O(r) and /o = O(r"""). As a conse-
quence, a finite contribution in the charge only appears
if q‘] is that of order O(r~?). This also justifies the fact that
the extrinsic curvature can be truncated as the leading order
in Eq. (5.1), i.e., Kj = —1/¢g. Then, the AdS curvature
can be consistently traded off by the Weyl tensor since
F =W+ O(r ) as pointed out in Sec. IIIB. The
previous analysis implies that the charge density tensor
(5.3) can be written as

. ag  iiri i i
i _ la - SIVEJ2J3 lar]d
q; = Lot 5]1/2"'jd5j lels "714""d (F)
e

(5.4)

Another key ingredient in the derivation is the asymp-
totic form of the polynomial 7 (F). It can be shown that
only the finite part of polynomial plays a role in the
evaluation of the conserved quantities. This leading-order
term is dictated by the asymptotic form of the curvature,
what makes no difference between global AdS and black
hole spacetimes. Therefore, one may approximate the
charge by setting F = 0, resulting in

q} _ _ﬂal}; d. SWR giaia (0) + (9(@), (5.5)

ot Jujaja T iy Y iyl
e

without loss of information about the energy of the system.
|

1

213

In what follows, the extensive use of the fall-off of the
fields involved, and yet another power-counting argument,
would lead to a charge density proportional to the electric
part of the Weyl tensor. In this way, the AMD definition of
asymptotic charges can be extended to QCG.

As a last step, using the definition of the electric part of
the Weyl tensor (1.1), we obtain that the final result of the
leading-order term of the charge density tensor in QCG, in
terms of the electric part of the Weyl tensor, is

l. 2By 1
qj:_ie 5}‘*O<ﬁ>'

K

(5.6)

Finally, the conserved charge in the case of QCG corre-
sponds to

_ 2By

K

Qocald] = /E e Jou . (57)

A. Even dimensions

In the even-dimensional case, upon imposing the con-
dition on the curvature for AAdS spaces (5.2) in the charge
density (4.22), it takes the form

12n-212n-1

i 51‘1‘2--41'2,{_1 Kj“ |:nC2QnC—Ci (211 _ 2) ijzh . R.on—zjzn—l

q.l = (2I’l _ 2)!2n—2 J1J2 Jan-1

. (1 2(2n—1)
__a —_—
K fgff fezsz

1
ER)

In this respect, it is particularly convenient to define the
following constants,

213 " l4ls

A 1 20(2n—1) 4np(2n—1)

K O £t ’
2v(2n—-2)2n -3
C = 7( n 2)( n )’ (5'9)
l’ﬂeff

such that the coupling of the boundary term (4.12) becomes

_fz‘ n—1
8 = A C=a),

n(2n —2)! (5.10)

Equipped with these redefinitions of constants, the charge
can be recast as

ﬁ4l’l (27’1 - 1)) S gids || glm-2iom-1 + 27/(2” _ 2) (2]1 _ 3)R12/3 S§l4ds ... §lm-2tmn

2n-212n-1

1213 "l4ls p-212n-1

|
1

i iy ++iny—1

4; = (zn _ 2)!271—2 Ji2+Jan—1

% K§] [(_fgff)n—l (C _A)Rjzj3 . _R.on—Z._/‘Zn—l

Ipl3 2p-212p-1

AP L glmadmer Cfoijzj3 §l4ds ... lm=2dan-1
e

1213 “l4ls 2p-212n-1 1213 “l4ls 12p-212n-1

1
In order to streamline the discussion, the following short-
hand notation is introduced

(5.11)

5{11.4.-'1',, N 5[1,]’ Rtz _, R,

1y il
| . .

a0~ A KoK (5.12)
eff
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such that contracted indices are omitted. With the use
of this notation, the expression (5.11) can be further
simplified as

C]i~ — (_fgff)n_l 5i[2n—l]K' A (_A)n—l — Rn-1
J (21’1 — 2)!2n—2 J

+CR <Rn—2 - (-A)Hﬂ . (5.13)

The above formula is such that one can apply the identity
(A3), with b = R and a = —A. A proper factorization of
this charge produces an expression proportional to the AdS
curvature F = R + A, which can be written as

i (_l)n—lbﬂng—Z 5ii2'-'izn_1 Kthh jjzt“"]én—] (F)

9 :m kjorjan-i iriy & iginyy (5'14)

Here, the tensor J° {:{f’i’_‘]‘ (F) = J(F) is a totally antisym-
metric tensor in upper (lower) indices, constructed as the
product of curvatures and Kronecker deltas of rank 2,

that is,

1
J(F) :/ du[C(n —2)(F — A)(uF — A)"3

0
—A(n—1)(uF - A)"2]. (5.15)

As argued previously, the only relevant contribution
from the tensor (5.15) is its finite part, which is equivalent
to evaluating the above expression for F = 0. Then, the
integration in the parameter u can be trivially performed,
to get

Tt
_ -2 JaJ Jan—2J2n-
= (_1)" C(n—-2)- A(” -1) Ai:i: T Ai;,zzi;n,llv
B o (n=1) 02 on
= (=1)"28y,, Wéi:i: Ry (5.16)

where the criticality function is given by Eq. (2.30),

, 1 . . 1 -
i iy +ioy-1 gk si QCG J2J3
95 = 3072 Oy K505 | €3 | | Riyiy +

1 I 4n 4n(2n+1)
+(%—U!(x‘“féf O
2(2n-1)(2n -2)

(2n—1)!

iris Oliyis

RI2J3 5[4/5 . .5j2n2j2111:| + O(%) .
7

Ip—2 iZn—]

4(2n —4)

Epe1 =1-— (21’1 - 1)602;1—1 + 22
eff

ky.  (5.17)

As a consequence, the charge density can be consistently
truncated as an expression linear in the Weyl tensor, as the
fall-off of the AdS curvature is prescribed by the discussion
in Sec. III B. Then, the relevant tensor reduces to the
equation

4 effEZn—l

i

L 1
g = - Sil2is i 4 O(—r4n_2>, (5.18)

m Jiadz " i
what can be reexpressed as

i 2B i 1
L= ——— W ol —— 1, 5.19
9 k(2n —3) it pAn=2 ( )

due to the fact the double subtrace (on the boundary
indices) of the bulk Weyl tensor is zero. The tracelessness
of the Weyl tensor also implies

(5.20)

it _ _Wir — _ vyiiH
ij— er— n,n Wj,,,

such that the charge density can be cast in the form

—_ 2feff

i _m _ “rett iy
q/ — T —2n-1 K(2n _ 3) nynDij‘

(5.21)

Finally, as anticipated in Eq. (5.7), the notion of conformal
mass in QCG theory is obtained as the surface integral

2¢ eff

Hacolé] = =B /Zdzn—zx Guigjfj- (5.22)

B. Odd dimensions

In the central aspects, the derivation of conformal mass
in odd-dimensional QCG does not differ much respect to
the one in even dimensions. As a matter of fact, the
asymptotic form of the curvature (5.2) plugged in the
general expression (4.23) leads to a charge density tensor

2. o 2o
J2J3 ) L. J2n-2J2n-1 J2n-2J2n-1
fZ 51213 Rlzn—zlzn—l + I/ﬂ2 512::—212»1—1
eff eff

J2J3 Sjads .. sim-2Jan-1
Oy Oiil - O

2p-212n-1

(5.23)

In what follows, it is convenient to rewrite the coupling constant (4.14) using the parametric integration in Eq. (AS5), such

that it adopts the form
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QCG 4 Zéfn o : 2 i

o= —m(l —2nw,,) [/0 du(u®—1) } .
(5.24)

The integral representation of the coupling C%CG for the

Kounterterms in this case leads to an integral form for the
charge (5.24), that is,

QCG
i NC5,

i2n—1 1
J n=2 5k[ ]Kf/ d”Q(’L F), (525)

0

with the corresponding polynomial given by

e e ()]

22n—-1)(2n-2
_ ( n )g n )KyF(u2_1)n—lAn—2’
feff

(5.26)

using the shorthand notation defined in the previous
subsection and the AdS curvature F' = R + A.

The latter expression can be recast into a more conven-
ient form, employing yet another parametric integral. In
order to do so, the integral identity (A3) can be applied on
the first line of Eq. (5.26), with a continuous parameter s
instead of u, the power p = n — 1, and the corresponding
factors b =F + (u*> —1)A and a= (u*> —1)A, what
results in

(F + (2 = A= = ((u? = 1)A)™!

= (n- I)FAIds(sF—l-(uz— DAY=2, (5.27)

Making explicit the integration in s has the clear advantage
that the curvature F' can be readily factorized from the Q
tensor, such that (5.23) becomes

_ (_l)nfczztzlf_z 5ii2"'i2n Kijzjsjj4"'jz,1 (F)
q; = 23"_4K(n— 1)!2 kjoejonJ 7 a3 Y iy, ’

(5.28)

with a polynomial 7 (F) in the same fashion as in the even-
dimensional case,

) =(n=1) [ duf(1 =200

0
I
x / ds(sF + (u* — 1)A)"2
0

4(2n —1
_ 40—k . Ikt W2 —1)=1Aam2 | (5.29)

l’ﬂeff
Because of a series of arguments given above, the physical
information on the energy of the system is encoded in the
AdS curvature F, what renders irrelevant the subleading

contributions in both the extrinsic curvature and the
polynomial J(F). Therefore, it suffices to evaluate the
polynomial for F' = 0, what leaves its finite value

J(0) = (n—1) /1 du [(1 — 2na,,) (u? = 1)"2

0
— 4(27’1 — I)K}/ (M2 _ ])n—lj| An—2‘

(5.30)
l’ﬂgff

The identity (A4) is of particular use to leave this
expression in the form

8(n—1) 2n—1
_ An—2
fesz Ky) 2

1
x/ du(u® — 1)1,
0

J0) = <2na)2n -1
(5.31)

where the parametric integration can be trivially performed,
such that

(—1)”22';(” —2)1') P (522,
n— !

(5.32)

as a consequence of the relation that follows from
Eq. (2.30),

8(n—1)

K= —E,. (5.33)
eff

2nw,, — 1 —

This reasoning, added to the corresponding falloff of the
fields and the relation between the AdS curvature and the
Weyl tensor in Sec. III B, leads to a charge density tensor

; CettBon iy yyrins 1
%= " ean—2) s Wi + O ) (534)

where the extrinsic curvature has been replaced by its
leading order in Eq. (5.1). From this point, the final part of
the derivation of AMD charges is analog to the one of the
even-dimensional case. The formula is then proportional to
the criticality condition, also in odd-dimensional QCG
theory, that is,

2feff

Haocglé] = —Ean p

/2 > 'x\Jou, £ (5.35)

C. Mass for static black holes in QCG

In order to test the expression for the conformal mass in
QCG (5.7), the computation of the energy of a static black
hole (3.1) can be performed. This solution has an obvious
isometry that corresponds to the time translation, given in
terms of a Killing vector & = §.
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The formula for the conserved quantities requires a unit
vector u; = —f6} and the determinant of the metric in the
codimension-2 surface %, that is, \/o = rd‘l\/f

From the above considerations, it follows that, in order to
obtain the mass of the solution, only the £/ component of
the electrical part of the Weyl tensor is needed

1 1 1
5f—mWfr—mF§r+O<ﬁ>,

(d=1)m 1
Y +0 724 )

As a direct consequence, the evaluation of the charge (5.7)
can be readily performed as

(5.36)

26
Qacolo) = 2= [ vty vt g,
z
d—1
_g, 4=y, (5.37)

K

where Vol(I') = [-d“"'x,/7 is the volume of the trans-
versal section. In particular, the above expression matches
the mass of the topological black hole in QCG obtained by
linearized methods in [40,67,68].

VI. CONCLUSIONS

In this work we have studied the dynamics of the most
general Quadratic Curvature Gravity (QCG) in general
d + 1 dimensions. The bare cosmological constant gives
rise to an effective cosmological constant in AdS space-
time, which is a functions of the couplings of the Ricci-
squared, the Ricci scalar-squared and the Gauss-Bonnet
terms. This effective cosmological constant introduces a
new length scale in the theory which changes the asymp-
totics of the theory. We review the analysis of propagating
modes of this theory and the conditions for their existence.
We then find the most general asymptotic black hole
solution in (d + 1)-dimensional QCG away from the
critical point, which is a generalization of the near-
boundary form of Schwarzschild-Tangherlini-AdS black
hole. The corresponding expansion clearly breaks down in
the critical points, E; = 0.

To calculate the conformal mass in QCG, we first
evaluate the Weyl tensor on-shell. It is known that, to
define physical quantities for asymptotically AdS black
holes like mass, angular momentum, or free energy, we
have to eliminate possible infrared divergences. To avoid
such possible large-distance infinities, we give a detailed
discussion on the kounterterm charges in QCG with AdS
asymptotics. Then we give the explicit form of the
conformal mass in odd and even dimensions as a consistent
truncation of the kounterterm charges.

In particular, we find that the result (5.7) matches the one
found by Pang in [69] (as a correction of the one in [70]).3 It
also coincides with the conformal mass in the case of
Einstein-Gauss-Bonnet AdS gravity obtained in [36] for
a = f =0 and x = 162G, and for Einstein-AdS gravity in
[71] fora=p=y =0.

It would be interesting to extent this work to the case of
matter coupled to QCG. In this context, in four dimensions,
the found metric (3.18) is reduced to the Schwarzschild-
AdS black hole. This is because, in four dimensions, the
curvature terms appearing in the action (2.1) are such that
the field equations always admit an Einstein space as a
solution. However, if a scalar field is coupled to curvature
terms and backreacts to the Schwarzschild-AdS metric, a
hairy black hole is generated (it scalarized the background
metric) [72,73]. In the case of QCG in five dimensions, the
metric (3.18) is not a trivial function but it contains the
information of the curvature terms. In case a backreacting
solution of the scalar field to the metric (3.18) exists in five
dimensions, the scalarized solution will have the informa-
tion of high curvature terms plus the scalar hair.
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APPENDIX A: USEFUL IDENTITIES

1. Totally anti-symmetric Kronecker delta of rank p

Throughout the text, it is often used the totally anti-
symmetric Kronecker delta of order p,
Soiviny? = det[8 -+ 8] (A1)

When considering the contraction of k indices, it follows
the relation

(N -P+ k)!(sﬂkﬂ"'/‘p
W—p)r

where k < p and N is the range of the indices.

BBy oy Vi
So i S Sk =

(A2)

2. Useful integrals

The following integral identities are useful in some
derivations

1
bP—aP:p(b—a)A dulu(b—a)+alP~t, p>1, (A3)

3Conformal mass as defined in [69] may be written in our
conventions by the substitutions 162G =, £ = o, n = d + 1,
a — Ky, y = ka, and f§ — kf.
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1 n—1 [1
du(i? — 1)"2 = — du(i> — 1)1 (A4
[ ante =1y =220 a1y (a9

The above formula defines a recursion relation, such that

1 . _(_l)n—lzzn—Z(n_l)!z
Adu(uz_l) = 2n—1)!

APPENDIX B: ASYMPTOTIC FORM
OF SCHWARZSCHILD-TANGHERLINI-ADS
BLACK HOLE

(AS)

1. Exact relations

Consider the topological black hole ansatz

2 ==20)

((p)dwmdwn’ (pm EFZ_I,

dr?
f2(r)

(B1)
where T'{"! is the transversal section, labeled by the
topological parameter k.

The different components of the Christoffel connection
are given by

(> N R ; (2
M=% Ta=yfUY. Th=-%a
1
1—‘;nn = —I‘fZ}/mn, F?m = _5nm7 I_‘];fnn = Fﬁm (7) <B2)
r

This allows the computation of the components of the
Riemann tensor

r 1 mn f2 - k mn
Ri; = —E(fz)”» Ry = _75kz ;
(12

2r

m _ prn _
Rtm_er__

S (B3)

the Ricci tensor

Ri= R =~ 5 [P(P) + (d= Dr()],
Ri= =3l +[@-2(P-K). (B4
and the Ricci scalar
RZ—%[VZ(J‘Z)”H(d—l) (f*) +(d=1)(d=2)(f*=k)].
(B5)

2. Asymptotic expressions

The asymptotic form of the metric function is such that it
matches the one of Schwarzschild-AdS black holes.
Indeed, as dictated by Eq. (3.12),

2 m 1
2= k+bﬂ2ﬁ = B v 2d—2 +O< 2d— 1) (B6)
€

In order to evaluate the different components of the
curvature tensors, it is useful to write the following
expansions of the metric function and its derivatives

=t (M ) 5
2 7 2 d-—2 2 2d—2
r Cep Lol Cete

1
+O< 2d- 1)

(k2 2m ( 217) 1

252 d-2 2(d -1 1
(fz)/ = fTrff ( rd—z)m - (rzd—z)p + O<r2d—1>’
272 d—1)(d-2 2(d—1)(2d -1
(f 2> fsz - ( 3.(5—2 )m + ( r)zgz—z )p
1
- O<r2d‘l> (B7)

It is then straightforward to find the asymptotic form of the
Riemann curvature tensor
1 (d=-1)d-2)m (d-1)2d-1)p
Rip=——+ d - 2d
o 2r r

1 (d=2)m (d-1)p 1
= —_—— 51’1
|: fgff 2 I‘d + r2d O 2d +1 m»>

mn 1 m p mn
Ry = [ Lﬂsz + 4 2d + O<r2d+l>:|5kl ’ (B8)
€
as well as for the Ricci tensor
d dd-1)p 1
Ri—Rr=——— 2\ VP, ,
R TN
; dp < ; )]
R}, =0}, {— + O (B9)
fgtf r2d 2d+1

and the Ricci scalar

d(d+1)

R=-
o

_ d(drzll) 0( zjﬂ) (B10)

On the other hand, in the component of the tensor P! in
Eq. (3.5) there are contributions of quadratic order in the
curvature and of fourth order in derivatives. In particular,
from Eq. (3.6), one may render explicit the expression
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2pd-1
d—1

!
2RG§|A0:0 — ZR |:rd_2(f2 - k):|

2d(d+1) , 4dp ( 1 )]’
= |- rt— +0 .
{ ¢ gff 4 gffr ¢ !

(B11)

In turn, the quadratic term of the Ricci scalar accepts the
expansion

rd=1 dld+1) [d+1 , 2(d=1)p 1V
R?>= rd — O .
d—1 (d_l)fefr Lﬂsz r! - ("dH)]

(B12)

The corresponding contraction between the Riemann and
the Ricci tensors are

4rd_1R"’R’I 4pd-1
d—1"" d—1

4d rd p LA
==+ O0(—=])|., (BI3
fgff |:(d_1)l’ﬂc2>ff ’"d+ <Vd+]>] (B13)

and the Ricci-squared term

(Ri7 R} + RiR;)

pd=1 i -1 ,
RIR; = 2(R! R"R"
d 1 d_l[( I) + n m]
d[d—s—l d2p (1)}
S + O .
l’ﬂgff (d—l)fgff r? <
(B14)

The derivative terms contribute in the following way,
2 d—1 2 d—1 l
COR = < r f2R>

d— d-
20(an)] @19

[4d2p

Lot
and similarly for the Ricci tensor

2 -t r__ 2rd_] 1AV 1 /! AV
S OR = ey Py @y

8d’p 1\
[feff’" +O<W>]'

Finally, the Einstein’s tensor takes the form

2rtt [l = p 1\

(B16)

whereas the Lanczos tensor reads

~=2- 3= 2+ (m

1
+22) 5
Cow € gff Co) 1

1 /
o)

(B18)
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