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3Physics Department, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece

(Received 5 July 2023; accepted 24 August 2023; published 7 September 2023)

We explore the consistent truncation of conserved charges in quadratic curvature gravity (QCG) with
anti–de Sitter asymptotics to the linear order in the Weyl tensor. The QCG action is given by the most
general curvature-squared corrections to Einstein gravity, and it is suitably rendered finite by the addition of
extrinsic counterterms (Kounterterms). The conserved charges derived from this action are, as a
consequence, nonlinear in the spacetime Riemann tensor. A detailed analysis of the falloff of generic
static solutions leads to a charge proportional to the electric part of the Weyl tensor, without loss of
information on the energy of the system. The procedure followed provides firmer ground to the extension of
the notion of Conformal Mass to higher-curvature gravity, as it appears as associated to a renormalized
action. We observe that criticality condition in QCG poses an obstruction to the charge linearization, in
contrast to previous results in Lovelock gravity, where degeneracy condition plays a key role.

DOI: 10.1103/PhysRevD.108.064012

I. INTRODUCTION

Over the years all theoretical physical theories have been
tested over their observational and experimental validity. In
the case of gravity theories, their validity has to be tested
against the astrophysical observations. Differences between
general relativity (GR) and alternative theories described by
modified gravity theories are expected to occur for strong
gravitational fields, such as the ones created by different
compact objects like neutron stars, strange stars and black
holes. The fðRÞ and Lanczos-Lovelock gravity theories in
higher dimensions have received more attention as they are
the simplest generalization of GR.
To avoid restrictions from the early times cosmological

observations on the gravitational Lagrangian as a linear
function of R, variable-modified theories of gravity were
investigated in the form of quadratic Lagrangians that
contain some of the four possible second-order curvature
invariants. One of the first such models was the Starobinsky
model fðRÞ ¼ Rþ αR2 [1] which was introduced to

explain the inflation behavior of the early universe. In this
model neutron stars were studied [2], in which strong
gravity effects are non-negligible. It was found that, in
these theories, the neutron stars can differ significantly
from their GR counterpart which makes them a very good
candidate to test fðRÞ theories on astrophysical scales [3].
Also, fðRÞ models can give important corrections in the
late universe and they can lead to self-accelerating vacuum
solutions, providing a purely gravitational alternative to
dark energy [4–7].
In fðRÞ gravity theories there are black hole solutions

similar to the known black hole solutions of GR or they
differ considerably from their GR counterparts. Just to
mention some, static spherically symmetric solutions in
fðRÞ gravity were studied in [8–10], and exact spherically
symmetric solutions were discussed in [11] different from
the Schwarzschild-(A)dS solutions.
On the other hand, gravity theories that contain higher

powers of Riemann curvature and still possess second-
order field equations in the metric are known as Lanczos-
Lovelock (LL) gravity [12–14]. In four dimensions, GR is
the unique LL gravity, whereas in five dimensions there is
room for Einstein-Gauss-Bonnet gravity. In higher dimen-
sions, dimensional continuations of the Euler term are
added as LL curvature polynomials. There has been
extensive work on black holes in LL gravity, which appear
as the generalization of the spherically symmetric Einstein-
Gauss-Bonnet black hole solutions [15,16].
The fðRÞ gravity with the addition of quadratic poly-

nomials in the Riemann curvature is also referred to as
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Stelle gravity [17], and it is the most general quadratic in
curvature modification of four-dimensional GR. In general
modified theories of gravity, higher-order curvature terms
have been introduced in an attempt to understand the
cosmological history of the early and late cosmological
evolution in a consistent way to recent observations. On
more theoretical grounds, higher-order corrections to the
Einstein-Hilbert term lead to a renormalizable and thus
quantizable gravitational theory [17]. Also, it was shown in
[18] that QCG, unlike various other higher curvature
theories such as Einstein-Gauss-Bonnet, is free from
causality issues. Therefore, modified theories of gravity
with higher-order corrections provide a deeper understand-
ing of GR.
High derivatives of various fields appear in models,

which are consistent truncations of string/M theories
reduced to four spacetime dimensions. To make these
models tractable [19] constraints should be imposed on
the reduction process. A typical example is the gauge/
gravity duality [20], which is a powerful method of
studying strongly coupled phenomena using dual weakly
coupled gravitational systems (for a review, see [21]). This
duality can be considered one of the most successful
applications of string theory. Higher-derivative coupling
between various fields was considered in [22] in a gauge/
gravity holographic model.
In holographic models described by the gauge/gravity

duality, high-order curvature correction terms appear,
which generate fourth-order field equations enriching the
asymptotic structure of spacetime allowing the appearance
of new holographic sources at the conformal boundary, in
addition to new parameters to build a holographic theory
modifying in this way the dynamics of the strongly coupled
dual theory. In holographic hydrodynamic models, the
addition of R2 terms changes the ratio of shear viscosity
over entropy density [23], violating the universal bound
1=4π proposed in [24]. In [25,26] high-curvature terms in
the form for the Gauss-Bonnet term were considered in the
framework of AdS=CFT correspondence and it was found
that higher curvature corrections make condensation harder
and the presence of these terms violate a universal relation
between the critical temperature of the superconductor and
its energy gap.
In [27,28], a universal definition of energy was provided,

and it was evaluated in appropriate asymptotic geometries,
for theories quadratic (or higher) in curvatures, with or
without Einstein and cosmological components. A formula
for gravitational energy in covariant form was proposed in
[29,30] in an arbitrary theory of gravity including quadratic
curvature terms in even dimensions via the Noether-Wald
method [31]. The basic idea is to add a topological term to
the action such that it renormalizes its variation. From a
finite surface term in the variation of the total action, finite
asymptotic charges are derived. This procedure had already
been consistently applied in second-derivative gravity

theories, such as Einstein-AdS [32] and Einstein-Gauss-
Bonnet-AdS gravity [33].
If a charged particle is moving in an orbit in the presence

of an electromagnetic field it will feel the electric or
magnetic field depending on its charge. Motivated by
electromagnetic field description, the Weyl tensor which
represents a pure gravitational field and it is a measure of
the curvature of spacetime in GR, is decomposed into
electric and magnetic parts. The electric part of the Weyl
tensor contains all information about the tidal forces due to
gravity, while the magnetic part contains all other infor-
mation about the Weyl curvature. The computations in GR
are known to be complicated as the tensors involved are up
to rank four and obtained using second-order partial
derivatives of the metric tensor and their combinations.
In Einstein’s gravity, the Weyl tensor is invariant under

conformal transformations. The conformal mapping
between the physical metric gμν (a given solution of the
Einstein equations) and a conformal one, g̃μν ¼ Ω2gμν,
serves the purpose of defining a regular boundary, as long
as the conformal factor Ω vanishes on the boundary and its
derivative is finite. In doing so, the conformal mass is
encoded in the electric part of the Weyl tensor for g̃μν.
The conformal mass is one of the conserved charges

which depend on the bulk geometry and there are various
ways one can define conserved charges by studying
asymptotic symmetries. Among them, the Ashtekar-
Magnon-Das [34,35] (AMD) method applies Penrose’s
conformal transformation to determine conserved charges
in the asymptotically AdS spaces. A defining feature of this
method is that all information about the conserved charge is
contained in the electric part of the Weyl tensor,

Ei
j ¼

1

d − 2
Wiμ

jνnμn
ν; ð1:1Þ

where nμ is the normal vector to the boundary, whose local
coordinates are xi. Suitable rescaling of tensorial quantities
makes the conserved charge formula expressible in terms of
the Weyl tensor defined in (1.1).
In this work, we study the most general quadratic

curvature gravity (QCG) in dþ 1 dimensions, consisting
of the Ricci-squared, the Ricci scalar-squared and the
Gauss-Bonnet (GB) terms. We first give a detailed descrip-
tion of QCG and we calculate the critically condition under
which the physical propagating modes exist. Then we
calculate the most general form of an asymptotic black hole
in (dþ 1)-dimensional QCG, away from the critical point.
To calculate the conformal mass, we first discuss the
asymptotic form of the Weyl tensor and, to avoid possible
infrared divergences, we give a detailed discussion on
the kounterterm charges in asymptotic AdS QCG. Then we
give the explicit form of the conformal mass in odd and
even dimensions.
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The work is organized as follows. In Sec. II, we describe
the QCG theory, we derive the equations of motion and we
derive the propagating modes and the criticality condition.
In Sec. III, we derive the asymptotic black hole solutions
and the asymptotic form of the Weyl tensor. In Sec. IV, we
discuss the kounterterm charges in the asymptotic AdS
QCG. In Sec. V, we calculate the conformal mass in odd
and even dimensions. In Sec. VI are our conclusions and,
finally, we summarize our conventions in Appendix A, and
derive an asymptotic black hole solution in Appendix B.

II. QUADRATIC CURVATURE GRAVITY

In this section we will discuss the most general gravi-
tational theory with quadratic corrections in the curvature.
The action in dþ 1 ≥ 4 dimensions is given by

IQCG ¼
Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p

×
�
1

κ
ðR−2Λ0ÞþαRμνRμνþβR2þ γGB

�
: ð2:1Þ

It describes a modification of the standard GR in the
presence of a cosmological term Λ0, thought of as a short-
range interaction. The presence of quadratic curvature
contributions consist of the Ricci-squared, the Ricci sca-
lar-squared, and the GB terms. The GB term is defined
by RμναβRμναβ − 4RμνRμν þ R2.
The equations of motion for the theory are obtained by

performing functional variations of the action (2.1) with
respect to the metric field, gμνðxÞ, which produces

Eμν ¼
1

κ
Gμν þ γHμν þ Pμν ¼ 0; ð2:2Þ

where the first term is the Einstein tensor

Gμν ¼ Rμν −
1

2
gμνRþ Λ0gμν: ð2:3Þ

The Gauss-Bonnet part of the action gives rise to the
Lanczos tensor, Hμν,

Hμν ¼ −
1

2
gμνðR2 − 4RαβRαβ þ RαβλσRαβλσÞ

þ 2ðRRμν − 2RμλRλ
ν − 2RμανβRαβ þ RμλαβRν

λαβÞ:
ð2:4Þ

Finally, the symmetric tensor Pμν contains higher-derivative
contributions to the field equations, which come from the
Ricci-squared and the Ricci scalar-squared terms in the
action (2.1), that is,

Pμν ¼ 2βR

�
Rμν −

1

4
gμνR

�
þ ðαþ 2βÞðgμν□ −∇μ∇νÞR

þ α□Gμν þ 2α

�
Rμσνλ −

1

4
gμνRσλ

�
Rσλ: ð2:5Þ

It is clear that, when Pμν ≠ 0, the equations of motion of
QCG are of fourth order in derivatives.

A. Effective cosmological constant
and degeneracy condition

In the action (2.1), the parameters α, β and γ are
introducing length scales in the theory and therefore these
scales should redefine the bare cosmological constant Λ0

setting an effective cosmological constant Λeff . On the
other hand, those couplings are such that they allow the
existence of maximally symmetric vacuum states present in
the action, which satisfy

Rμν
αβ −

2Λeff

dðd − 1Þ δ
μν
αβ ¼ 0: ð2:6Þ

By plugging in the condition (2.6) into the expressions
(2.3), (2.4), and (2.5), respectively,

Gμν ¼ ðΛ0 −ΛeffÞgμν; Hμν ¼ −
2ðd− 2Þðd− 3Þ

dðd− 1Þ Λ2
effgμν;

Pμν ¼ −
2ðd− 3Þ
ðd− 1Þ2 ðαþ ðdþ 1ÞβÞΛ2

effgμν; ð2:7Þ

it is possible to make explicit the relation between the
effective cosmological constant with the bare one, by virtue
of Eq. (2.2),

Λ0

2κΛ2
eff

−
1

2κΛeff
¼ ðd−3Þ
ðd−1Þ2 ðαþðdþ1ÞβÞþγ

ðd−2Þðd−3Þ
dðd−1Þ :

ð2:8Þ

The above expression implies the existence of two branches
of the theory

1

Λ�
eff

¼ 1

2Λ0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8κΛ0

d−3

d−1

�
αþðdþ1Þβ

d−1
þγ

d−2

d

�s �
:

ð2:9Þ

The Einstein’s branch Λþ
eff describes a correction contin-

uously connected to Einstein’s theory, while the stringy
branch Λ−

eff contains solutions which do not reduce to the
ones of Einstein gravity in the weak field limit [15].
This equation has real roots for the effective cosmologi-

cal constant, as long as the couplings satisfy the inequality
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1þ 8κΛ0

d − 3

d − 1

�
αþ ðdþ 1Þβ

d − 1
þ γ

d − 2

d

�
≥ 0: ð2:10Þ

The saturation of the above bound sets a point in the
parameter space fκ;Λ0; α; β; γg such that there is a single,
degenerate vacuum state, Λþ

eff ¼ Λ−
eff ¼ 2Λ0. This relation

is referred to as degeneracy condition for QCG, and
produces a class of solutions whose metric is inequivalent
respect to the ones in the Einstein branch, regarding their
asymptotic behavior.
The focus of the present study are asymptotically AdS

spaces in QCG, with the effective cosmological constant
given by

Λeff ¼ −
dðd − 1Þ
2l2

eff

; ð2:11Þ

in terms of the effective AdS radius leff , which is a solution
of the equation

1

l2
0

¼ 1

l2
eff

−
κdðd−3Þ

l4
eff

�
αþðdþ1Þβ

d−1
þ γ

d−2

d

�
: ð2:12Þ

In order to understand better the special points in the
parameter space in higher-curvature gravities, in particular
in QCG, it is useful to introduce a parameter that character-
izes the degeneracy of the gravitational vacuum state,
including its multiplicity.
In general, for a Lagrangian of the form LðRμν

αβÞ, with
Eαβ
μν ¼ ∂L=∂Rμν

αβ, the effective AdS radius is obtained from
the equation

�
1 − dþ 2l−2

eff
d

dl−2
eff

�
Eαβ
αβjAdS ¼ 0: ð2:13Þ

When the Lagrangian contains the Einstein’s term
R ¼ 1

2
δαβμνR

μν
αβ, such that L ¼ κ

2
δαβμνR

μν
αβ þ � � �, it is convenient

to define the polynomial proportional to Eq. (2.13), and
normalized as

Θd≡−
2κ

ðdþ 1Þdðd− 1Þ
�
1−dþ 2y

d
dy

�
Eαβ
αβjAdS; ð2:14Þ

which has the same degree in y ¼ l−2
eff as a degree of L is in

the Riemann curvature. Then the solution yk corresponds to
a degenerate vacuum that has the multiplicity k if the first

nonvanishing derivative of Θd in k is ΘðkÞ
d ≡ dkΘd

dyk
j
yk
. In

particular, in Lovelock gravity,Θð1Þ
d ¼ 0 is an obstruction to

linearize a theory and also to define the conformal mass,

because the coefficient Θð1Þ
d appears as an overall factor in

the electric part of the Weyl tensor [36,37].
For QCG theory, the double trace of the auxiliary

tensor is

Eαβ
αβjAdS
¼ðdþ1Þd

�
1

2κ
−

1

l2
eff

ðαdþβðdþ1Þdþγðd−1Þðd−2ÞÞ
�
;

ð2:15Þ

such that the polynomial Θd is quadratic in l−2
eff ,

Θd ¼ −
1

l2
0

þ 1

l2
eff

−
κ

l4
eff

dðd − 3Þ
d − 1

×

�
αþ ðdþ 1Þβ þ γ

ðd − 1Þðd − 2Þ
d

�
: ð2:16Þ

Then, the degeneracy of the AdS vacuum is determined by
the coefficient

Θð1Þ
d ¼ 1 −

dðd − 3Þ
d − 1

ωd; ð2:17Þ

where the shorthand

ωd ¼
2κ

l2
eff

�
αþ ðdþ 1Þβ þ γ

ðd − 1Þðd − 2Þ
d

�
; ð2:18Þ

is introduced as it will be often used below.
It is straightforward to check that, when Θð1Þ

d ¼ 0, the
coupling constants are not independent and the effective
AdS radii coincide at the value leff ¼ l0=

ffiffiffi
2

p
.

B. Propagating modes and criticality condition

In order to identify the propagating degrees of freedom
of the theory, the linearized field equations for QCG are
analyzed in this section. In general, quadratic-curvature
corrections in the action (2.1), produce a massive tensorial
mode, namely a massive graviton.1 The corresponding
mass of this graviton will give rise to the notion of
criticality in the theory [39,40], which will also impact
in the definition of conformal mass in the theory.
When small perturbations of the spacetime metric, gμν,

around a maximally symmetric background, g̃μν, are
considered, that is,

gμν ¼ g̃μν þ hμν þOðh2Þ; ð2:19Þ

the linearized version of the EOM can be obtained
following the procedure shown in Ref. [40]. The result
is an expansion in different orders in the metric fluctuation,

Eμν ¼ Ẽμν þ Eð1Þ
μν þOðh2Þ ¼ 0; ð2:20Þ

1For more information on the propagating modes in quadratic
gravity, see Ref. [38].
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where Ẽμν ¼ 0 is satisfied identically in the vacuum, what
leaves the linear contribution in the form

Eð1Þ
μν ¼ a

κ
Gð1Þ

μν þ ðαþ 2βÞ
�
g̃μν□̃ − ∇̃μ∇̃ν −

d
l2
eff

g̃μν

�
Rð1Þ

þ α

�
□̃Gð1Þ

μν þ d − 1

l2
eff

g̃μνRð1Þ
�

¼ 0: ð2:21Þ

Here, all differential operators with tilde are defined
with respect to the background metric and the constant
a is given by

a ¼ 1 − dωd þ
2κ

l2
eff

�
α − 2ðd − 2Þγ

�
: ð2:22Þ

Taking the trace of the linearized equation of motion (2.21),
and upon the gauge choice ∇̃μhμν ¼ ∇̃νh, a wave equation
is obtained for h ¼ g̃μνhμν
�
ððdþ1Þαþ4dβÞ□̃þ1−dþdðd−3Þωd

κ

�
h¼ 0: ð2:23Þ

The trace of the perturbation, h, becomes a propagating
mode, which corresponds to a scalar field whose dynamics
is governed by Eq. (2.23) and which, in general, has a
nonzero mass with respect to the background. This massive
scalar mode can be eliminated by imposing constraint on
the parameters given by ðdþ 1Þαþ 4dβ ¼ 0, resulting in
h ¼ 0. This condition implies that a gauge choice reduces
to the transverse one, ∇̃μhμν ¼ 0, such that the linearized
equation (2.21) becomes [40,41]

α

�
□̃þ 2

l2
eff

−M2

��
□̃þ 2

l2
eff

�
hμν ¼ 0; ð2:24Þ

where the constant M takes the value

M2 ¼ 2

l2
eff

−
a
ακ

: ð2:25Þ

The Eq. (2.24) describes a massless spin-2 particle, hðmÞ
μν ,

which satisfies

�
□̃þ 2

l2
eff

�
hðmÞ
μν ¼ 0; ð2:26Þ

and a massive spin-2 propagating mode, hðMÞ
μν ,

�
□̃þ 2

l2
eff

−M2

�
hðMÞ
μν ¼ 0: ð2:27Þ

Both modes are transverse and traceless (hðmÞ ¼ hðMÞ ¼ 0).
For an AdS background, the stability of the massive spin-2
mode requires that M2 ≥ 0, as shown, e.g., in [42].

It is important to stress that the existence of the massive
graviton depends mainly on the Ricci-squared term in the
action (2.1). By combining Eqs. (2.22) and (2.25), it is
shown that the mass of the graviton takes the form

M2 ¼ −
1

ακ
Ξd; ð2:28Þ

where the new constant Ξd is defined as

Ξd ¼ 1−
2κd
l2
eff

�
αþðdþ1Þβþ γ

ðd−2Þðd−3Þ
d

�
; ð2:29Þ

which, in turn, can be rewritten in terms of Eq. (2.18) as

Ξd ¼ 1 − dωd þ
4ðd − 2Þ

l2
eff

κγ: ð2:30Þ

When set to zero, the criticality condition Ξd ¼ 0 imposes a
constraint on the parameters of the theory, such that the
massive graviton turns massless with respect to the vacuum.
When the above condition is met, the linearized equation of
motion (2.24) reduces to

�
□̃þ 2

l2
eff

�
2

hμν ¼ 0; ð2:31Þ

which is a sort of Klein-Gordon-squared equation. As
discussed in [43], it corresponds to a fourth-order differ-
ential equation, which exhibits degenerate solutions and,
therefore, logarithmic modes which appear naturally.
To conclude, the functions of the couplings which are

relevant in QCG are the ones that defines the degeneracy
condition, Θð1Þ

d , and the criticality condition, Ξd. In the next
sections we will discuss their role in the definition of
conserved charges.

III. ASYMPTOTIC FORM OF THE
BLACK HOLE METRIC

In this section, we will discuss generic black hole
solutions in QCG. In that respect, static, Schwarzschild-
like, black hole solutions in quadratic curvature gravity,
with and without cosmological constant, have been a
subject of study during the last few decades (see, e.g.,
[44–47]). In the context of asymptotically AdS gravity,
topological black hole solutions generalize the geometry of
the transversal section from a sphere to planar or hyperbolic
surfaces [48,49].
A static black hole ansatz in the local coordinates

xμ ¼ ðt; r;φmÞ, is described by the metric

ds2¼−f2ðrÞdt2þ dr2

f2ðrÞþr2γmnðφÞdφmdφn; φm∈Γd−1;

ð3:1Þ
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where γmnðφÞ is the metric of a (d − 1)-dimensional
Riemann space Γd−1 with constant curvature k,

Rmn
pq ðγÞ ¼ kδmn

pq ; ð3:2Þ

with the parameter k ¼ þ1, 0 and −1 that locally describes
a spherical, flat and hyperbolic transversal topology,
respectively. The spacetime between the horizon and
infinity is foliated by a radial coordinate adapted to the
topology of the transversal section and, in particular, the
one of the horizon r ¼ rþ.
In order to find the asymptotic form of a static black hole

(3.1) in QCG, the first integral of the equations of motion
(2.2) should be found. In the ansatz (3.1), there is only one
independent component of the field equations, and that is
why one may analyze Et

t ¼ 0, which consists of

2rd−1

d − 1
Gt

t ¼
�
rd−2ðf2 − kÞ − rd

l2
0

�0
; ð3:3Þ

2rd−1

d − 1
Ht

t ¼
�
−ðd − 2Þðd − 3Þrd−4ðf2 − kÞ2

�0
; ð3:4Þ

where the prime denotes a radial derivative. Similarly, the
evaluation of the higher-order term Pt

t produces

2rd−1

d−1
Pt
t¼

2rd−1

d−1
2βR

�
Gt

tjΛ0¼0þ
1

4
R

�
þ
�
α

2
þ2β

�
2rd−1

d−1
□R

þα
2rd−1

d−1
□Rt

tþ2α
2rd−1

d−1

�
Rtσ
tλ−

1

4
Rσ
λ

�
Rλ
σ

≡ ½ΨðrÞ�0; ð3:5Þ

where ΨðrÞ is a function to be determined and the Einstein
tensor without cosmological constant contributes with

2rd−1

d − 1
Gt

tjΛ0¼0 ¼ ½rd−2ðf2 − kÞ�0: ð3:6Þ

Putting together the expressions (3.3)–(3.5), the Et
t

component of the equation of motion (2.2) can be written
as a total derivative

2rd−1

d − 1
Et
t ¼

�
1

κ
rd−2ðf2 − kÞ − rd

κl2
0

− γðd − 2Þðd − 3Þrd−4ðf2 − kÞ2 þΨ
�0

¼ 0; ð3:7Þ

such that its first integral gives rise to the mass parameter, μ,
as an integration constant

1

κ
ðf2−kÞ− r2

κl2
0

− γðd−2Þðd−3Þðf
2−kÞ2
r2

þ Ψ
rd−2

¼−
μ

rd−2
:

ð3:8Þ

In a gravity theory with arbitrary quadratic-curvature
couplings, it is difficult to find the exact form of the
function ΨðrÞ. Therefore, only an asymptotic analysis of
the equations of motion can be performed.

A. Degeneracy vs criticality

In order to illustrate the effect of curvature-squared terms
in the action over the behavior of the metric function, one
may consider topological black holes in Einstein-Gauss-
Bonnet AdS gravity (QCG with α ¼ β ¼ 0). The exact
solution corresponds to the Boulware-Deser black hole
whose metric function, in the Einstein’s branch of theory, is
given by [15]

f2EGB ¼ kþ r2

2κγðd − 2Þðd − 3Þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4κγðd − 2Þðd − 3Þ

�
1

l2
0

−
κμ

rd

�s �
: ð3:9Þ

The above function, when expanded for r → ∞, adopts the
form

f2EGB ¼ kþ r2

l2
eff

−
μκ

Ξdrd−2
þ μ2κ3γðd − 2Þðd − 3Þ

Ξ3
dr

2d−2

þO
�

1

r3d−2

�
; ð3:10Þ

where the falloff of the mass term is dictated by the constant

Ξd ¼ 1 −
2κγðd − 3Þðd − 2Þ

l2
eff

; ð3:11Þ

which corresponds to the criticality condition defined in
Eq. (2.30), but for α ¼ β ¼ 0. Remarkably enough, in EGB
gravity, the notion of criticality coincides with the concept

of degeneracy, i.e., Ξd ¼ Θð1Þ
d . Therefore, either condition

poses an obstruction to a Schwarzschild-like asymptotic
behavior in Eq. (3.10). The role of degeneracy in EGBAdS
gravity has been properly emphasized in the linearization of
the conserved charges in [36]: conformal mass cannot be
defined in the case both effective AdS radii coalesce.
A similar feature is made manifest by the general falloff
of the metric function in Lovelock AdS gravity, as
discussed in [37].
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It is reasonable then to expect that there exists a
class of solutions with an expansion as for asymptotic
Schwarzschild-Tangherlini-AdS black holes

f2 ¼ kþ r2

l2
eff

−
m
rd−2

þ p
r2d−2

þO
�

1

r2d−1

�
; ð3:12Þ

wherem and p are real constants yet to be determined. This
argument excludes the existence of logarithmic terms in a
relaxed asymptotically AdS behavior on critical points of
the theory [43].

Assuming the expansion (3.12), the asymptotic resolu-
tion of the field equations for QCG leads to the function
ΨðrÞ, which is2

Ψ¼Ψ0−
dðd−3Þðαþðdþ1ÞβÞ

ðd−1Þl4
eff

rd

þ2dðð5d−1Þαþ3ðd−1ÞβÞp
l2
effr

d þO
�

1

rdþ1

�
: ð3:14Þ

Notice that the term coming from the derivatives in the
curvature appears as sub-leading contributions with respect
to the ones responsible for the mass. The first integral in
Eq. (3.8) can be expanded as

−
μ

rd−2
¼

�
1

κ

�
1

l2
eff

−
1

l2
0

�
−
γðd − 2Þðd − 3Þ

l4
eff

−
dðd − 3Þðαþ ðdþ 1ÞβÞ

ðd − 1Þl4
eff

�
r2

−
�
1 −

2κdðd − 3Þ
l2
eff

�
l2
effΨ0

2dðd − 3Þmþ γðd − 2Þ
d

��
m

κrd−2
−
m2γðd − 2Þðd − 3Þ

r2d−2

þ
�
1 −

2κdðd − 3Þ
l2
eff

�
−
ð5d − 1Þαþ 3ðd − 1Þβ

d − 3
þ γðd − 2Þ

d

��
p

κr2d−2
þ � � � :

As expected, the first line is eliminated by recalling the
definition of the effective AdS radius leff , (2.12). As for the
subleading orderOð1=rd−2Þ, it determines the mass param-
eter in terms of the integration constant,

μ ¼
�
1 −

2κd
l2
eff

�
αþ ðdþ 1Þβ þ γðd − 2Þðd − 3Þ

d

��
m
κ

¼ Ξd

κ
m; ð3:15Þ

using the corresponding value in Eq. (3.13). Finally, the
order Oð1=r2d−2Þ leads to

�
Ξd þ

2κdð5dαþ 2ð2d − 1ÞβÞ
l2
eff

�
p
κ
¼ m2γðd − 2Þðd − 3Þ;

ð3:16Þ

such that

p ¼ m2κγðd − 2Þðd − 3Þ
Ξd þ 2κd

l2eff
ð5dαþ 2ð2d − 1ÞβÞ : ð3:17Þ

Summing up the above results, the expansion of the
metric function in a generic QCG theory is

f2 ¼ kþ r2

l2
eff

−
μκ

Ξdrd−2

þ μ2κ3γðd − 2Þðd − 3Þ
Ξ2
dðΞd þ 2κd

l2eff
ð5dαþ 2ð2d − 1ÞβÞÞr2d−2

þO
�

1

r2d−1

�
: ð3:18Þ

We conclude that, in QCG, the criticality parameter
(Ξd ≠ Θð1Þ

d ) is the one that determines the asymptotic
behavior of the mass term in static black holes.

B. Asymptotic form of Weyl tensor
and AdS curvature in QCG

It is a well-known fact that, in general relativity, the Weyl
tensor adequately packs the components of the Riemann
tensor which are not fixed by the Einstein equations. On the
other hand, the addition to the Riemann tensor of a precise
combination of the Ricci tensor and Ricci scalar acts as a
compensator field for conformal transformations of the
metric, such that

2The integration constant Ψ0 may be fixed only by nonlocal
considerations. Indeed, the value

Ψ0 ¼
2dðαþ ðdþ 1ÞβÞm

l2
eff

; ð3:13Þ

appears as coming from a detailed discussion on (global)
conserved charges in later sections.
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Wμν
αβ ¼ Rμν

αβ −
1

d − 1
δ½μ½αR

ν�
β� þ

R
dðd − 1Þ δ

μν
αβ; ð3:19Þ

is a conformally covariant object. Here, the notation
X½μYν� ¼ XμYν − XνYμ was used. The electric part of the
Weyl tensor, defined in Eq. (1.1) carries information on
gravitational waves propagating in vacuum, tidal forces
[50] and, in asymptotically AdS gravity, conserved charges
[35]. Besides, in AdS gravity, there is a tensor which
measures the deviation of the spacetimes with respect to a
maximally symmetric background (global AdS), known as
AdS curvature

Fμν
αβ ¼ Rμν

αβ þ
1

l2
0

δμναβ: ð3:20Þ

In a Riemannian manifold, the AdS curvature is the only
nonvanishing part of the field strength associated to the
AdS group. For Einstein-AdS spaces, the Weyl tensor
coincides with the AdS curvature, namely

Fμν
αβ ¼ Wμν

ðEÞαβ: ð3:21Þ

In presence of higher-curvature terms, the relation between
the on-shell Weyl tensor and the effective AdS tensor

Fμν
αβ ¼ Rμν

αβ þ
1

l2
eff

δμναβ; ð3:22Þ

is no longer valid. One may consider the difference
between these two notions of curvature

Xμν
αβ ¼ Wμν

αβ − Fμν
αβ; ð3:23Þ

which, by employing the corresponding definitions, can be
evaluated asymptotically for solutions of QCG theory.
By direct use of the definition of the Weyl tensor (3.19)

and the AdS curvature (3.22), this difference is expressed as

Xμν
αβ ¼ −

1

d − 1
δ½μ½αR

ν�
β� þ

R
dðd − 1Þ δ

μν
αβ −

1

l2
eff

δμναβ: ð3:24Þ

The radial expansion of the relevant components of the
curvature (see Appendix B) implies the asymptotic form

Xtr
tr ¼

ð2d − 1Þp
r2d

þO
�

1

r2dþ1

�
;

Xtm
tn ¼ Xrm

rn ¼ ðd2 − 3dþ 1Þp
ðd − 1Þr2d δmn þO

�
1

r2dþ1

�
;

Xmn
kl ¼ ð3d − 1Þp

ðd − 1Þr2d δ
mn
kl þO

�
1

r2dþ1

�
: ð3:25Þ

In sum, the tensor Xμν
αβ behaves asymptotically as

Xμν
αβ ¼ O

�
1

r2d

�
: ð3:26Þ

for the generic metric (3.12) describing a static black hole
in quadratic curvature gravity. As a result, in many
asymptotic computations of physical interest, one may
trade off the AdS curvature by the Weyl tensor, without loss
of gravitational information.

IV. KOUNTERTERM CHARGES IN AAdS
QUADRATIC CURVATURE GRAVITY

A. Extrinsic counterterms in asymptotically
AdS gravity

The on-shell action of pure Einstein-AdS gravity is
proportional to the volume of the spacetime, which is
infinite. Therefore, computations which use this bulk
functional to define physical quantities for asymptotically
AdS black holes (e.g., mass, angular momentum, free
energy, etc.) are expected to be plagued with infrared
divergences. In the context of anti-de Sitter/Conformal
Field Theory (AdS=CFT) correspondence [20,51,52], the
derivation of holographic correlators at the conformal
boundary requires the removal of infinities in the variation
of the action, which come from the asymptotic expansion
of the canonical momentum [53,54].
In turn, the definition of the canonical momentum in

gravity is connected to a well-posed Dirichlet problem for
the boundary metric. The appropriate Dirichlet action for
Einstein gravity considers the addition of the Gibbons-
Hawking term

Ĩ ¼ IEH þ 1

8πG

Z
∂M

ddx
ffiffiffiffiffiffi
−h

p
K; ð4:1Þ

which is expressed in terms of the trace of the extrinsic
curvature. For a spacetime geometry described by normal
(spatial) coordinates of the form

ds2 ¼ N2ðzÞdz2 þ hijðz; xÞdxidxj; ð4:2Þ

the extrinsic curvature adopts a simpler expression respect
to the one for a generic ADM (Arnowitt-Deser-Misner)
metric, that is,

Kij ¼
1

2N
∂zhij: ð4:3Þ

This formula allows to write down an arbitrary variation
of the modified action Ĩ as

δĨ ¼
Z
M
Gμνδgμν þ

Z
∂M

ddx
1

2

ffiffiffiffiffiffi
−h

p
πijδhij; ð4:4Þ

where the canonical momentum is
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πij ¼ 2ffiffiffiffiffiffi
−h

p δĨ
δhij

¼ 1

8πG
ðKij − hijKÞ: ð4:5Þ

The conservation of the above tensor is a consequence of
the Einstein equation Gi

z ¼ 0. However, when used as a
Brown-York stress tensor for the theory, this quantity does
not lead to finite conserved charges for AAdS spaces. The
renormalization of the quasilocal stress tensor and, there-
fore, the variation of the action, is achieved by adding local
counterterms at the boundary. In the standard approach,
those counterterms are covariant functions of the intrinsic/
boundary metric as they need to be compatible with the
Dirichlet problem for the metric hij [55,56].
Within the above framework, a boundary term propor-

tional to the Gibbons-Hawking term with a different overall
factor, or a nonlinear contribution in the extrinsic curvature,
would necessarily produce surface terms which contain
variations of Kij. This situation is analogous to a system in
classical mechanics where the surface term contains var-
iations of the velocity.
It is then surprising that there are cases where the

renormalization of both the AdS gravity action and its
variation is produced by the addition of extrinsic counter-
terms. Indeed, this observation can be illustrated by very
simple examples:

(i) In three spacetime dimensions, the Chern-Simons
formulation of AdS gravity gives rise to the Einstein-
Hilbert Lagrangian with negative cosmological con-
stant plus a half of the Gibbons-Hawking term.
While this surface term is clearly at odds with the
Dirichlet variational principle for hij, it is important
to notice that it regulates the Euclidean action for
black hole solutions [57]. The correct use of the
asymptotic form of the metric produces the matching
with the standard renormalization prescription [58].

(ii) In four-dimensional AdS gravity, the addition of the
Chern form, which is a boundary term nonlinear in
the extrinsic curvature, also produces a finite Euclid-
ean action for AAdS spaces [59]. The surface term in
this case is locally equivalent to a bulk topological
(Gauss-Bonnet) term. A puzzling feature of this
renormalized action is the fact that the Dirichlet
problem cannot even be defined, as there is no way
of getting rid of the variations of the extrinsic
curvature. The asymptotic expansion of the total
surface term makes possible to reconcile this ex-
trinsic renormalization with the standard one in the
context of gauge/gravity duality [60].

The two examples listed above are the simplest cases of a
renormalization scheme known as Kounterterms [59,61],

Iren ¼ IEH þ cd

Z
∂M

ddx
ffiffiffiffiffiffi
−h

p
Bdðh;K;RÞ; ð4:6Þ

which considers boundary counterterms given as a poly-
nomial of the extrinsic and intrinsic curvatures, that is, Kij

andRi
jkl, respectively. It is simple to verify that this method

correctly reproduces the black hole thermodynamics for
Schwarzschild-AdS black holes and topological extensions
of their cross sections. A less trivial check comes from
Kerr-AdS black holes, whose thermal behavior is also
appropriately accounted for within this procedure.
The metric for any AAdS spacetime can be written as a

power-series expansion in the holographic (radial) coor-
dinate, known as Fefferman-Graham gauge, such that the
line element is

ds2 ¼ l2

z2
dz2 þ 1

z2
ðgð0Þij þ z2gð2Þij þ � � �Þdxidxj: ð4:7Þ

As it is manifest from the asymptotic form of the
boundary metric in AAdS gravity,

hij ¼
gð0Þij
z2

þ � � � ; ð4:8Þ

a proper Dirichlet problem for the metric can be defined
only for gð0Þij at the conformal boundary [62].
The key observation which allows the addition of

Kounterterms in AdS gravity is the fact that the extrinsic
curvature has a similar asymptotic behavior as the one of
the boundary metric [63], that is,

Kij ¼
1

l

gð0Þij
z2

þ � � � : ð4:9Þ

In point of fact, the variation of the extrinsic curvature is
also expressed in terms of the variation of the holographic
source gð0Þij and, as a consequence, the addition of extrinsic
counterterms are compatible with a holographic description
of AAdS gravity.
Furthermore, the form of the Kounterterms remains the

same irrespective of the inclusion of higher-curvature
terms. In doing so, they provide the renormalization of
the action in Einstein-Gauss-Bonnet [33] and Lovelock
gravity [64] with AdS asymptotics. The information on the
couplings of the different terms of the theory is somehow
encoded in the overall factor cd.
In recent work, this proposal for renormalization of

AAdS gravity has been extended to deal with the inclusion
of quadratic curvature couplings in the action [29,30,65].
The corresponding renormalized action adopts the form

Iren ¼ IQCG þ cQCGd

Z
∂M

ddx
ffiffiffiffiffiffi
−h

p
Bd: ð4:10Þ

In even bulk dimensions (dþ 1 ¼ 2n), the Kounterterms
are given by
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B2n−1 ¼ 2n
Z

1

0

dtδj1���j2n−1i1���i2n−1 K
i1
j1

�
1

2
Ri2i3

j2j3
− t2Ki2

j2
Ki3

j3

�
× � � �

� � � ×
�
1

2
Ri2n−2i2n−1

j2n−2j2n−1
− t2Ki2n−2

j2n−2
Ki2n−1

j2n−1

�
; ð4:11Þ

whose coupling

cQCG2n−1 ¼ −
ð−l2

effÞn−1
κnð2n − 2Þ!

�
1 − ð2n − 1Þω2n−1

�
; ð4:12Þ

is chosen by the cancellation of the leading-order diver-
gences in the action.
In turn, the Kounterterms in the action (4.10) in odd

spacetime dimensions (dþ 1 ¼ 2nþ 1) are expressed as

B2n ¼ 2n
ffiffiffiffiffiffi
−h

p Z
1

0

du
Z

u

0

dsδj1���j2ni1���i2n K
i1
j1

× δi2j2

�
1

2
Ri3i4

j3j4
− u2Ki3

j3
Ki4

j4
þ s2

l2
eff

δi3j3δ
i4
j4

�
× � � �

� � � ×
�
1

2
Ri2n−1i2n

j2n−1j2n
− u2Ki2n−1

j2n−1
Ki2n

j2n
þ s2

l2
eff

δi2n−1j2n−1
δi2nj2n

�
;

ð4:13Þ

with a coupling singled out by the vanishing of the variation
of the total action at leading order, that is,

cQCG2n ¼ ð−l2
effÞn−1

22n−2κnðn − 1Þ!2 ð1 − 2nω2nÞ: ð4:14Þ

B. Conserved quantities

For an arbitrary gravity theory, with a Lagrangian
L ¼ Lðg; RÞ, the Noether-Wald procedure leads to a
conserved charge which stems from diffeomorphic invari-
ance of the bulk action, without additional boundary
terms [31,66]. The Noether charge is obtained from the
prepotential

Qμν ¼ 2ðEαβ
μσ∇μξσ þ 2ξσ∇μEαβ

μσÞ; ð4:15Þ

in terms of the tensor Eαβ
μν ¼ ∂L

∂Rμν
αβ
, and expressed as an

integral on a co-dimension 2 surface Σ

Q½ξ� ¼
Z
Σ
dΣμνQμν; ð4:16Þ

where dΣμν ¼ 1
2
dd−1x

ffiffiffi
σ

p ðnμuν − nνuμÞ is the covariant
surface element. The normals nμ and uμ are spacelike

and timelike unit vectors, respectively, orthogonal to the
transversal cross section.
Boundary terms clearly modify the above definition of

conserved quantities. Indeed, the addition of Kounterterms
renormalizes the prepotential, which acquires the form

Qμν
ren ¼ Qμν þ cdB½μξν�; ð4:17Þ

where the boundary term can be trivially extended to a bulk
vector as Bd ¼ nμBμ.
Consider a spacetime whose metric is written in

Schwarzschild-like coordinates, xμ ¼ ðr; xiÞ, given by
the line element

ds2 ¼ N 2ðrÞdr2 þ hijðr; xÞdxidxj; ð4:18Þ

where r is a radial coordinate and hij is the induced metric
on the boundary, defined at a constant radius. This foliation
is generated by a normal vector nμnμ ¼ 1, such that

nμ ¼ ðnr; niÞ ¼ ðN ; 0⃗Þ.
On the other hand, Kounterterms are mathematical

structures constructed out from the boundary geometry.
Only in even spacetime dimensions, they can be related to
bulk (topological) invariants, what produces fully covariant
Noether-Wald charges [29,30].
In order to present a unified discussion for even and odd

dimensions, we consider the projection of the Noether
prepotential

nνQiν ¼ qijξ
j; ð4:19Þ

such that the charge density tensor qij is introduced. This
definition casts the Noether charge in a closer form respect
to the one obtained by quasilocal methods [56]

Q½ξ� ¼
Z
Σ
dd−1x

ffiffiffi
σ

p
uiqijξ

j: ð4:20Þ

The above formula assumes a topology of the boundary
∂M ¼ R × Σ, such that the induced metric can be written
in an ADM coordinate frame

hijdxidxj ¼ −Ñ2dt2 þ σmnðdym þ NmdtÞðdyn þ NndtÞ;
ð4:21Þ

where σnm is the metric on Σ and xi ¼ ðt; ymÞ are local
coordinates on the boundary. The unit vector uiui ¼ −1,
normal to the surfaceΣ is given by ui ¼ ðut; umÞ ¼ ð−Ñ; 0⃗Þ.
For AAdS spacetimes in even-dimensional QCG, con-

served quantities are measured by the charge density
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qij ¼
1

ð2n − 2Þ!2n−2 δ
ii2���i2n−1
j1j2���j2n−1K

j1
j

�
ncQCG2n−1ð2n − 2Þ!Rj2j3

i2i3
� � �Rj2n−2j2n−1

i2n−2i2n−1

þ
�
1

κ
δj2j3i2i3

þ αRr
rδ

j2j3
i2i3

þ 2βRδj2j3i2i3
þ 2γð2n − 2Þð2n − 3ÞRj2j3

i2i3

�
δj4j4i4i5

� � � δj2n−2j2n−1i2n−2i2n−1

�

− 2N½αð∇rRi
j −∇iRr

j þ∇rRr
rδ

i
j þ∇lRr

lδ
i
jÞ þ 2β∇rRδij� − αNð∇kRr

kδ
i
j −∇iRr

jÞ þ 2αKl
jR

i
l: ð4:22Þ

By an abuse of notation, the extrinsic curvature in Schwarzschild-like coordinates (4.18) is defined by Kij ¼
−ð1=2N Þ∂rhij.
The presence of covariant derivatives in the curvature is a consequence of the higher-derivative nature of QCG theory.

Therefore, it generalizes the notion of energy via Kounterterms beyond the restriction imposed by Lovelock theorem [13].
In the odd-dimensional case, the corresponding charge density tensor appears modified as qji þ qjð0Þi, due to the existence

of the vacuum energy Qð0Þ½ξ�. The mass of the gravitational solutions, Q½ξ�, is then given by the first term, with a charge
tensor [65]

qij ¼
1

2n−2
δii1���i2n−1kj1���j2n−1K

k
jδ

j1
i1

�
ncQCG2n

Z
1

0

du

�
Rj2j3
i2i3

þ u2

l2
eff

δj2j3i2i3

�
� � �

�
Rj2n−2j2n−1
i2n−2i2n−1

þ u2

l2
eff

δj2n−2j2n−1i2n−2i2n−1

�

þ 1

ð2n − 1Þ!
�
1

κ
δj2j3i2i3

þ αRr
rδ

j2j3
i2i3

þ 2βRδj2j3i2i3
þ 2ð2n − 1Þð2n − 2ÞγRj2j3

i2i3

�
δj4j5i4i5

� � � δj2n−2j2n−1i2n−2i2n−1

�

− Nα

�
2

�
∇rRi

j −∇iRr
j þ∇rRr

rδ
i
j þ∇kRr

kδ
i
j

�
þ∇kRr

kδ
i
j −∇iRr

j

�
þ 2αKi

kR
k
j − 4Nβ∇rRδij; ð4:23Þ

while the vacuum energy is produced by the tensor

qið0Þj ¼ ncQCG2n δii1���i2n−1kj1���j2n−1

Z
1

0

duuðKk
jδ

j1
i1
þ Kk

i1
δj1j Þ

�
1

2
Rj2j3

i2i3
− u2Kj2

i2
Kj3

i3
þ u2

l2
eff

δj2i2 δ
j3
i3

�

× � � � ×
�
1

2
Rj2n−2j2n−1

i2n−2i2n−1
− u2Kj2n−2

i2n−2
Kj2n−1

i2n−1
þ u2

l2
eff

δj2n−2i2n−2
δj2n−1i2n−1

�
: ð4:24Þ

Notice that, as it evident from the appearance of the
coupling cQCG2n as an overall factor in the last expression,
the vacuum energy is an effect of the addition of regulating
counterterms. No further analysis on the properties of the
vacuum energy tensor (4.24) will be performed here, since
the focus is on the black hole mass and its link to the
electric part of the Weyl tensor.

V. CONFORMAL MASS IN QCG

In asymptotically AdS spaces, the form of the extrinsic
curvature at large distances is generically given by

Ki
j ¼ −

1

leff
δij þO

�
1

r2

�
; ð5:1Þ

such that the Ricci tensor, for static black holes (see
Appendix B), behaves as

Rμ
ν ¼ −

d
l2
eff

δμν þO
�

1

r2d

�
: ð5:2Þ

In this section, the aim is to prove that, without loss of
information on the conserved quantities, the charge tensors

in Eqs. (4.22) and (4.23) can be consistently truncated as the
electric part of the Weyl tensor. To this end, the strategy
adopted is as follows: The use of this asymptotic falloff in the
curvature allows to simplify the expression in the charge
tensor. Indeed, the covariant derivatives acting on curvature
tensors can be dropped from (4.22) and (4.23). The
Kounterterms—and the charges derived from them—adopt
a quite different form in the even and odd-dimensional cases.
Despite this fact, it can be shown that the charge density is
expressed in terms of the AdS curvature as

qij ¼ adδ
ii2���id
j1j2���jdK

j1
j F

j2j3
i2i3

J j4���jd
i4���id ðFÞ; ð5:3Þ

irrespective of the spacetime dimension. Here, ad is cou-
pling-dependent constant, which also depends on the effec-
tive AdS radius, and J ðFÞ is a polynomial of the AdS
curvature, whose leading order is Oð1Þ. Since the AdS
curvature vanishes for global AdS space (Fμν

αβ ¼ 0), and the
fact thatJ ð0Þ is finite, the Noether charge is identically zero,
as expected for the vacuum state of the theory.
Working out the asymptotic behavior of the different

tensors in the charge formula (4.20), one may notice that
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ut ¼ − ffiffiffiffiffiffiffiffi−gtt
p ¼ OðrÞ and

ffiffiffi
σ

p ¼ Oðrd−1Þ. As a conse-
quence, a finite contribution in the charge only appears
if qij is that of order Oðr−dÞ. This also justifies the fact that
the extrinsic curvature can be truncated as the leading order
in Eq. (5.1), i.e., Ki

j ¼ −1=leff . Then, the AdS curvature
can be consistently traded off by the Weyl tensor since
F ¼ W þOðr−2dÞ as pointed out in Sec. III B. The
previous analysis implies that the charge density tensor
(5.3) can be written as

qij ¼ −
ad
leff

δii2���idj1j2���jdδ
j1
j W

j2j3
i2i3

J j4���jd
i4���id ðFÞ: ð5:4Þ

Another key ingredient in the derivation is the asymp-
totic form of the polynomial J ðFÞ. It can be shown that
only the finite part of polynomial plays a role in the
evaluation of the conserved quantities. This leading-order
term is dictated by the asymptotic form of the curvature,
what makes no difference between global AdS and black
hole spacetimes. Therefore, one may approximate the
charge by setting F ¼ 0, resulting in

qij ¼ −
ad
leff

δii2���idj1j2���jdδ
j1
j W

j2j3
i2i3

J j4���jd
i4���id ð0Þ þO

�
1

r2d

�
; ð5:5Þ

without loss of information about the energy of the system.

In what follows, the extensive use of the fall-off of the
fields involved, and yet another power-counting argument,
would lead to a charge density proportional to the electric
part of the Weyl tensor. In this way, the AMD definition of
asymptotic charges can be extended to QCG.
As a last step, using the definition of the electric part of

the Weyl tensor (1.1), we obtain that the final result of the
leading-order term of the charge density tensor in QCG, in
terms of the electric part of the Weyl tensor, is

qij ¼ −
2leffΞd

κ
Ei
j þO

�
1

r2d

�
: ð5:6Þ

Finally, the conserved charge in the case of QCG corre-
sponds to

QQCG½ξ� ¼ −
2leffΞd

κ

Z
Σ
dd−1x

ffiffiffi
σ

p
uiEi

jξ
j: ð5:7Þ

A. Even dimensions

In the even-dimensional case, upon imposing the con-
dition on the curvature for AAdS spaces (5.2) in the charge
density (4.22), it takes the form

qij ¼
1

ð2n − 2Þ!2n−2 δ
ii2���i2n−1
j1j2���j2n−1K

j1
j

�
ncQCG2n−1ð2n − 2Þ!Rj2j3

i2i3
� � �Rj2n−2j2n−1

i2n−2i2n−1

þ
�
1

κ
− α

2ð2n − 1Þ
l2
eff

− β
4nð2n − 1Þ

l2
eff

�
δj2j3i2i3

δj4j5i4i5
� � � δj2n−2j2n−1i2n−2i2n−1

þ 2γð2n − 2Þð2n − 3ÞRj2j3
i2i3

δj4j5i4i5
� � � δj2n−2j2n−1i2n−2i2n−1

�

þO
�

1

r4n−2

�
: ð5:8Þ

In this respect, it is particularly convenient to define the
following constants,

A ¼ 1

κ
−
2αð2n − 1Þ

l2
eff

−
4nβð2n − 1Þ

l2
eff

;

C ¼ 2γð2n − 2Þð2n − 3Þ
l2
eff

; ð5:9Þ

such that the coupling of the boundary term (4.12) becomes

cQCG2n−1 ¼
ð−l2

effÞn−1
nð2n − 2Þ! ðC − AÞ: ð5:10Þ

Equipped with these redefinitions of constants, the charge
can be recast as

qij ¼
1

ð2n− 2Þ!2n−2 δ
ii2���i2n−1
j1j2���j2n−1

×Kj1
j

�
ð−l2

effÞn−1ðC−AÞRj2j3
i2i3

� � �Rj2n−2j2n−1
i2n−2i2n−1

þAδj2j3i2i3
δj4j5i4i5

� � �δj2n−2j2n−1i2n−2i2n−1
þCl2

effR
j2j3
i2i3

δj4j5i4i5
� � �δj2n−2j2n−1i2n−2i2n−1

�

þO
�

1

r4n−2

�
: ð5:11Þ

In order to streamline the discussion, the following short-
hand notation is introduced

δ
j1���jp
i1���ip → δ½p�; Rj1j2

i1i2
→ R;

1

l2
eff

δj1j2i1i2
→ Δ; Ki

j → K; ð5:12Þ
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such that contracted indices are omitted. With the use
of this notation, the expression (5.11) can be further
simplified as

qij ¼
ð−l2

effÞn−1
ð2n − 2Þ!2n−2 δ

i½2n−1�Kj

�
A

�
ð−ΔÞn−1 − Rn−1

�

þ CR
�
Rn−2 − ð−ΔÞn−2

��
: ð5:13Þ

The above formula is such that one can apply the identity
(A3), with b ¼ R and a ¼ −Δ. A proper factorization of
this charge produces an expression proportional to the AdS
curvature F ¼ Rþ Δ, which can be written as

qij ¼
ð−1Þn−1l2n−2

eff

2n−2ð2n − 2Þ! δ
ii2���i2n−1
kj2���j2n−1K

k
jF

j2j3
i2i3

J j4���j2n−1
i4���i2n−1 ðFÞ: ð5:14Þ

Here, the tensor J j4���j2n−1
i4���i2n−1 ðFÞ≡ J ðFÞ is a totally antisym-

metric tensor in upper (lower) indices, constructed as the
product of curvatures and Kronecker deltas of rank 2,
that is,

J ðFÞ ¼
Z

1

0

du½Cðn − 2ÞðF − ΔÞðuF − ΔÞn−3

− Aðn − 1ÞðuF − ΔÞn−2�: ð5:15Þ

As argued previously, the only relevant contribution
from the tensor (5.15) is its finite part, which is equivalent
to evaluating the above expression for F ¼ 0. Then, the
integration in the parameter u can be trivially performed,
to get

J j4���j2n−1
i4���i2n−1 ð0Þ

¼ ð−1Þn−2
�
Cðn − 2Þ − Aðn − 1Þ

�
Δj4j5

i4i5
� � �Δj2n−2j2n−1

i2n−2i2n−1
;

¼ ð−1Þn−2Ξ2n−1
ðn − 1Þ
κðl2

effÞn−2
δj4j5i4i5

� � � δj2n−2j2n−1i2n−2i2n−1
; ð5:16Þ

where the criticality function is given by Eq. (2.30),

Ξ2n−1 ¼ 1 − ð2n − 1Þω2n−1 þ
4ð2n − 4Þ

l2
eff

κγ: ð5:17Þ

As a consequence, the charge density can be consistently
truncated as an expression linear in the Weyl tensor, as the
fall-off of the AdS curvature is prescribed by the discussion
in Sec. III B. Then, the relevant tensor reduces to the
equation

qij ¼ −
leffΞ2n−1

2κð2n − 3Þ δ
ii2i3
jj2j3

Wj2j3
i2i3

þO
�

1

r4n−2

�
; ð5:18Þ

what can be reexpressed as

qij ¼
2leffΞ2n−1

κð2n − 3Þ W
il
jl þO

�
1

r4n−2

�
; ð5:19Þ

due to the fact the double subtrace (on the boundary
indices) of the bulk Weyl tensor is zero. The tracelessness
of the Weyl tensor also implies

Wil
jl ¼ −Wir

jr ¼ −nμnνW
iμ
jν; ð5:20Þ

such that the charge density can be cast in the form

qij ¼ −Ξ2n−1
2leff

κð2n − 3Þ nμn
νWiμ

jν: ð5:21Þ

Finally, as anticipated in Eq. (5.7), the notion of conformal
mass in QCG theory is obtained as the surface integral

HQCG½ξ� ¼ −Ξ2n−1
2leff

κ

Z
Σ
d2n−2x

ffiffiffi
σ

p
uiEi

jξ
j: ð5:22Þ

B. Odd dimensions

In the central aspects, the derivation of conformal mass
in odd-dimensional QCG does not differ much respect to
the one in even dimensions. As a matter of fact, the
asymptotic form of the curvature (5.2) plugged in the
general expression (4.23) leads to a charge density tensor

qij ¼
1

2n−2
δii1���i2n−1kj1���j2n−1K

k
jδ

i1
j1

�
ncQCG2n

Z
1

0

du

�
Rj2j3
i2i3

þ u2

l2
eff

δj2j3i2i3

�
� � �

�
Rj2n−2j2n−1
i2n−2i2n−1

þ u2

l2
eff

δj2n−2j2n−1i2n−2i2n−1

�

þ 1

ð2n − 1Þ!
�
1

κ
− α

4n
l2
eff

− β
4nð2nþ 1Þ

l2
eff

�
δj2j3i2i3

δj4j5i4i5
� � � δj2n−2j2n−1i2n−2i2n−1

þ γ
2ð2n − 1Þð2n − 2Þ

ð2n − 1Þ! Rj2j3
i2i3

δj4j5i4i5
� � � δj2n−2j2n−1i2n−2i2n−1

�
þO

�
1

r4n

�
: ð5:23Þ

In what follows, it is convenient to rewrite the coupling constant (4.14) using the parametric integration in Eq. (A5), such
that it adopts the form
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cQCG2n ¼ −
l2ðn−1Þ
eff

nκð2n − 1Þ! ð1 − 2nω2nÞ
�Z

1

0

duðu2 − 1Þn−1
�
−1
;

ð5:24Þ

The integral representation of the coupling cQCG2n for the
Kounterterms in this case leads to an integral form for the
charge (5.24), that is,

qij ¼
ncQCG2n

2n−2
δi½2n−1�k Kk

j

Z
1

0

duQðu; FÞ; ð5:25Þ

with the corresponding polynomial given by

Qðu;FÞ¼
��

Fþðu2−1ÞΔ
�

n−1
−
�
ðu2−1ÞΔ

�
n−1

�

−
2ð2n−1Þð2n−2Þκγ

l2
eff

Fðu2−1Þn−1Δn−2; ð5:26Þ

using the shorthand notation defined in the previous
subsection and the AdS curvature F ¼ Rþ Δ.
The latter expression can be recast into a more conven-

ient form, employing yet another parametric integral. In
order to do so, the integral identity (A3) can be applied on
the first line of Eq. (5.26), with a continuous parameter s
instead of u, the power p ¼ n − 1, and the corresponding
factors b ¼ F þ ðu2 − 1ÞΔ and a ¼ ðu2 − 1ÞΔ, what
results in

ðF þ ðu2 − 1ÞΔÞn−1 − ððu2 − 1ÞΔÞn−1

¼ ðn − 1ÞF
Z

1

0

dsðsF þ ðu2 − 1ÞΔÞn−2: ð5:27Þ

Making explicit the integration in s has the clear advantage
that the curvature F can be readily factorized from the Q
tensor, such that (5.23) becomes

qij ¼
ð−1Þnl2n−2

eff

23n−4κðn − 1Þ!2 δ
ii2���i2n
kj2���j2nK

k
jF

j2j3
i2i3

J j4���j2n
i4���i2n ðFÞ; ð5:28Þ

with a polynomial J ðFÞ in the same fashion as in the even-
dimensional case,

J ðFÞ ¼ ðn − 1Þ
Z

1

0

du

�
ð1 − 2nω2nÞ

×
Z

1

0

dsðsF þ ðu2 − 1ÞΔÞn−2

−
4ð2n − 1Þκγ

l2
eff

ðu2 − 1Þn−1Δn−2
�
: ð5:29Þ

Because of a series of arguments given above, the physical
information on the energy of the system is encoded in the
AdS curvature F, what renders irrelevant the subleading

contributions in both the extrinsic curvature and the
polynomial J ðFÞ. Therefore, it suffices to evaluate the
polynomial for F ¼ 0, what leaves its finite value

J ð0Þ ¼ ðn − 1Þ
Z

1

0

du

�
ð1 − 2nω2nÞðu2 − 1Þn−2

−
4ð2n − 1Þκγ

l2
eff

ðu2 − 1Þn−1
�
Δn−2: ð5:30Þ

The identity (A4) is of particular use to leave this
expression in the form

J ð0Þ ¼
�
2nω2n − 1 −

8ðn − 1Þ
l2
eff

κγ

�
2n − 1

2
Δn−2

×
Z

1

0

duðu2 − 1Þn−1; ð5:31Þ

where the parametric integration can be trivially performed,
such that

J ð0Þ ¼ Ξ2n
ð−1Þn22n−3ðn − 1Þ!2l2n−4

eff

ð2n − 2Þ! ðδ½2�Þn−2; ð5:32Þ

as a consequence of the relation that follows from
Eq. (2.30),

2nω2n − 1 −
8ðn − 1Þ

l2
eff

κγ ¼ −Ξ2n: ð5:33Þ

This reasoning, added to the corresponding falloff of the
fields and the relation between the AdS curvature and the
Weyl tensor in Sec. III B, leads to a charge density tensor

qij ¼ −
leffΞ2n

2κð2n − 2Þ δ
ii2i3
jj2j3

Wj2j3
i2i3

þO
�

1

r4n

�
; ð5:34Þ

where the extrinsic curvature has been replaced by its
leading order in Eq. (5.1). From this point, the final part of
the derivation of AMD charges is analog to the one of the
even-dimensional case. The formula is then proportional to
the criticality condition, also in odd-dimensional QCG
theory, that is,

HQCG½ξ� ¼ −Ξ2n
2leff

κ

Z
Σ
d2n−1x

ffiffiffi
σ

p
uiEi

jξ
j: ð5:35Þ

C. Mass for static black holes in QCG

In order to test the expression for the conformal mass in
QCG (5.7), the computation of the energy of a static black
hole (3.1) can be performed. This solution has an obvious
isometry that corresponds to the time translation, given in
terms of a Killing vector ξi ¼ δit.
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The formula for the conserved quantities requires a unit
vector ui ¼ −fδti and the determinant of the metric in the
codimension-2 surface Σ, that is,

ffiffiffi
σ

p ¼ rd−1
ffiffiffi
γ

p
.

From the above considerations, it follows that, in order to
obtain the mass of the solution, only the Et

t component of
the electrical part of the Weyl tensor is needed

Et
t ¼

1

d − 2
Wtr

tr ¼
1

d − 2
Ftr
tr þO

�
1

r2d

�
;

¼ ðd − 1Þm
2rd

þO
�

1

r2d

�
: ð5:36Þ

As a direct consequence, the evaluation of the charge (5.7)
can be readily performed as

QQCG½∂t� ¼
2leffΞd

κ

Z
Σ
dd−1x

ffiffiffi
γ

p
rd−1fEt

t;

¼ Ξd
ðd − 1Þm

κ
VolðΓÞ; ð5:37Þ

where VolðΓÞ ¼ R
Γ d

d−1x
ffiffiffi
γ

p
is the volume of the trans-

versal section. In particular, the above expression matches
the mass of the topological black hole in QCG obtained by
linearized methods in [40,67,68].

VI. CONCLUSIONS

In this work we have studied the dynamics of the most
general Quadratic Curvature Gravity (QCG) in general
dþ 1 dimensions. The bare cosmological constant gives
rise to an effective cosmological constant in AdS space-
time, which is a functions of the couplings of the Ricci-
squared, the Ricci scalar-squared and the Gauss-Bonnet
terms. This effective cosmological constant introduces a
new length scale in the theory which changes the asymp-
totics of the theory. We review the analysis of propagating
modes of this theory and the conditions for their existence.
We then find the most general asymptotic black hole
solution in (dþ 1)-dimensional QCG away from the
critical point, which is a generalization of the near-
boundary form of Schwarzschild-Tangherlini-AdS black
hole. The corresponding expansion clearly breaks down in
the critical points, Ξd ¼ 0.
To calculate the conformal mass in QCG, we first

evaluate the Weyl tensor on-shell. It is known that, to
define physical quantities for asymptotically AdS black
holes like mass, angular momentum, or free energy, we
have to eliminate possible infrared divergences. To avoid
such possible large-distance infinities, we give a detailed
discussion on the kounterterm charges in QCG with AdS
asymptotics. Then we give the explicit form of the
conformal mass in odd and even dimensions as a consistent
truncation of the kounterterm charges.

In particular, we find that the result (5.7) matches the one
found by Pang in [69] (as a correction of the one in [70]).3 It
also coincides with the conformal mass in the case of
Einstein-Gauss-Bonnet AdS gravity obtained in [36] for
α ¼ β ¼ 0 and κ ¼ 16πG, and for Einstein-AdS gravity in
[71] for α ¼ β ¼ γ ¼ 0.
It would be interesting to extent this work to the case of

matter coupled to QCG. In this context, in four dimensions,
the found metric (3.18) is reduced to the Schwarzschild-
AdS black hole. This is because, in four dimensions, the
curvature terms appearing in the action (2.1) are such that
the field equations always admit an Einstein space as a
solution. However, if a scalar field is coupled to curvature
terms and backreacts to the Schwarzschild-AdS metric, a
hairy black hole is generated (it scalarized the background
metric) [72,73]. In the case of QCG in five dimensions, the
metric (3.18) is not a trivial function but it contains the
information of the curvature terms. In case a backreacting
solution of the scalar field to the metric (3.18) exists in five
dimensions, the scalarized solution will have the informa-
tion of high curvature terms plus the scalar hair.
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APPENDIX A: USEFUL IDENTITIES

1. Totally anti-symmetric Kronecker delta of rank p

Throughout the text, it is often used the totally anti-
symmetric Kronecker delta of order p,

δ
μ1μ2���μp
ν1ν2���νp ¼ det½δμ1ν1 � � � δμpνp �: ðA1Þ

When considering the contraction of k indices, it follows
the relation

δ
μ1���μk���μp
ν1���νk���νp δ

ν1
μ1 � � � δνkμk ¼

ðN − pþ kÞ!
ðN − pÞ! δ

μkþ1���μp
νkþ1���νp ; ðA2Þ

where k ≤ p and N is the range of the indices.

2. Useful integrals

The following integral identities are useful in some
derivations

bp−ap¼pðb−aÞ
Z

1

0

du½uðb−aÞþa�p−1; p≥1; ðA3Þ

3Conformal mass as defined in [69] may be written in our
conventions by the substitutions 16πG→κ, l → leff , n → dþ 1,
α → κγ, γ → κα, and β → κβ.
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Z
1

0

duðu2 − 1Þn−2 ¼ −
2n − 1

2n − 2

Z
1

0

duðu2 − 1Þn−1: ðA4Þ

The above formula defines a recursion relation, such that

Z
1

0

duðu2 − 1Þn−1 ¼ ð−1Þn−122n−2ðn − 1Þ!2
ð2n − 1Þ! : ðA5Þ

APPENDIX B: ASYMPTOTIC FORM
OF SCHWARZSCHILD-TANGHERLINI-ADS

BLACK HOLE

1. Exact relations

Consider the topological black hole ansatz

ds2¼−f2ðrÞdt2þ dr2

f2ðrÞþr2γmnðφÞdφmdφn; φm∈Γd−1
k ;

ðB1Þ
where Γd−1

k is the transversal section, labeled by the
topological parameter k.
The different components of the Christoffel connection

are given by

Γt
tr ¼

ðf2Þ0
2f2

; Γr
tt ¼

1

2
f2ðf2Þ0; Γr

rr ¼ −
ðf2Þ0
2f2

;

Γr
mn ¼ −rf2γmn; Γn

rm ¼ 1

r
δnm; Γk

mn ¼ Γk
mnðγÞ: ðB2Þ

This allows the computation of the components of the
Riemann tensor

Rtr
tr ¼ −

1

2
ðf2Þ00; Rmn

kl ¼ −
f2 − k
r2

δmn
kl ;

Rtn
tm ¼ Rrn

rm ¼ −
ðf2Þ0
2r

δnm; ðB3Þ

the Ricci tensor

Rt
t ¼ Rr

r ¼ −
1

2r2
½r2ðf2Þ00 þ ðd − 1Þrðf2Þ0�;

Rn
m ¼ −

1

r2
δnm½rðf2Þ0 þ ðd − 2Þðf2 − kÞ�; ðB4Þ

and the Ricci scalar

R¼−
1

r2
½r2ðf2Þ00 þ2ðd−1Þrðf2Þ0 þðd−1Þðd−2Þðf2−kÞ�:

ðB5Þ

2. Asymptotic expressions

The asymptotic form of the metric function is such that it
matches the one of Schwarzschild-AdS black holes.
Indeed, as dictated by Eq. (3.12),

f2 ¼ kþ r2

l2
eff

−
m
rd−2

þ p
r2d−2

þO
�

1

r2d−1

�
: ðB6Þ

In order to evaluate the different components of the
curvature tensors, it is useful to write the following
expansions of the metric function and its derivatives

ðf2 − kÞ2
r2

¼ r2

l4
eff

−
2m

l2
effr

d−2 þ
�
m2 þ 2p

l2
eff

�
1

r2d−2

þO
�

1

r2d−1

�
;

rðf2Þ0 ¼ 2r2

l2
eff

þ ðd − 2Þm
rd−2

−
2ðd − 1Þp

r2d−2
þO

�
1

r2d−1

�
;

r2ðf2Þ00 ¼ 2r2

l2
eff

−
ðd − 1Þðd − 2Þm

rd−2
þ 2ðd − 1Þð2d − 1Þp

r2d−2

þO
�

1

r2d−1

�
: ðB7Þ

It is then straightforward to find the asymptotic form of the
Riemann curvature tensor

Rtr
tr ¼ −

1

l2
eff

þ ðd − 1Þðd − 2Þm
2rd

−
ðd − 1Þð2d − 1Þp

r2d

þO
�

1

r2dþ1

�
;

Rtn
tm ¼ Rrn

rm

¼
�
−

1

l2
eff

−
ðd − 2Þm

2rd
þ ðd − 1Þp

r2d
þO

�
1

r2dþ1

��
δnm;

Rmn
kl ¼

�
−

1

l2
eff

þ m
rd

−
p
r2d

þO
�

1

r2dþ1

��
δmn
kl ; ðB8Þ

as well as for the Ricci tensor

Rt
t ¼ Rr

r ¼ −
d
l2
eff

−
dðd − 1Þp

r2d
þO

�
1

r2dþ1

�
;

Rn
m ¼ δnm

�
−

d
l2
eff

þ dp
r2d

þO
�

1

r2dþ1

��
; ðB9Þ

and the Ricci scalar

R ¼ −
dðdþ 1Þ

l2
eff

−
dðd − 1Þp

r2d
þO

�
1

r2dþ1

�
: ðB10Þ

On the other hand, in the component of the tensor Pt
t in

Eq. (3.5) there are contributions of quadratic order in the
curvature and of fourth order in derivatives. In particular,
from Eq. (3.6), one may render explicit the expression
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2rd−1

d− 1
2RGt

tjΛ0¼0 ¼ 2R

�
rd−2ðf2 − kÞ

�0

¼
�
−
2dðdþ 1Þ

l4
eff

rd −
4dp
l2
effr

d þO
�

1

rdþ1

��0
:

ðB11Þ

In turn, the quadratic term of the Ricci scalar accepts the
expansion

rd−1

d− 1
R2 ¼ dðdþ 1Þ

ðd− 1Þl2
eff

�
dþ 1

l2
eff

rd −
2ðd−1Þp

rd
þO

�
1

rdþ1

��0
:

ðB12Þ

The corresponding contraction between the Riemann and
the Ricci tensors are

4rd−1

d−1
Rtσ
tλR

λ
σ ¼

4rd−1

d−1
ðRtr

trRr
rþRtm

tn Rn
mÞ

¼ 4d
l2
eff

�
rd

ðd−1Þl2
eff

−
p
rd
þO

�
1

rdþ1

��0
; ðB13Þ

and the Ricci-squared term

−
rd−1

d − 1
Rσ
λR

λ
σ ¼ −

rd−1

d − 1
½2ðRt

tÞ2 þ Rm
n Rn

m�

¼ −
d
l2
eff

�
dþ 1

ðd − 1Þl2
eff

rd −
2p
rd

þO
�

1

rdþ1

��0
:

ðB14Þ

The derivative terms contribute in the following way,

2rd−1

d − 1
□R ¼

�
2rd−1

d − 1
f2R0

�0

¼
�
4d2p
l2
effr

d þO
�

1

rdþ1

��0
; ðB15Þ

and similarly for the Ricci tensor

2rd−1

d − 1
□Rt

t ¼
2rd−1

d − 1

�
f2ðRt

tÞ00 þ
1

2
ðf2Þ0ðRt

tÞ0
�

¼
�
8d2p
l2
effr

d þO
�

1

rdþ1

��0
: ðB16Þ

Finally, the Einstein’s tensor takes the form

2rd−1

d − 1
Gt

t ¼
�
l0 − l2

eff

l2
0l

2
eff

rd −mþ p
r2

þO
�

1

rdþ1

��0
; ðB17Þ

whereas the Lanczos tensor reads

2rd−1

d − 1
Ht

t ¼ −ðd − 2Þðd − 3Þ
�
rd

l4
eff

−
2m
l2
eff

þ
�
m2 þ 2p

l2
eff

�
1

rd

þO
�

1

rdþ1

��0
: ðB18Þ
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