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We construct and dynamically evolve dipolar self-interacting scalar boson stars in a model with sextic
(þ quartic) self-interactions. The domain of existence of such dipolar Q-stars has a similar structure to that
of the fundamental monopolar stars of the same model. For the latter it is structured in a Newtonian plus a
relativistic branch, wherein perturbatively stable solutions exist, connected by a middle unstable branch.
Our evolutions support similar dynamical properties of the dipolar Q-stars that: 1) in the Newtonian and
relativistic branches are dynamically robust over time scales longer than those for which dipolar stars
without self-interactions are seen to decay; 2) in the middle branch migrate to either the Newtonian or the
relativistic branch; 3) beyond the relativistic branch decay to black holes. Overall, these results strengthen
the observation, seen in other contexts, that self-interactions can mitigate dynamical instabilities of scalar
boson star models.
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I. INTRODUCTION

As it is by now well understood, Einstein’s gravity
minimally coupled to massive scalar fields gives rise to
macroscopic stable configurations named boson stars
(BSs) [1–6]—see [7,8] for reviews. This class of compact
objects comprises a large group of different models, many
of which prove to be dynamically robust—see [9] for a
review and [10–22] for specific dynamical analyses, also
for the case of the cousin vector BS (also known as
Proca) model.
Among the models of BSs are those comprising a scalar

potential free of self-interactions, namely “mini-BSs”
[23], and those possessing self-interactions, such as
“Q-stars” [24–32]. Due to their dynamical robustness, a
class of those have shown to be good black hole (BH)
mimickers, in the sense, for instance, of being able to
match the predictions made for the merger of two BHs and
used to interpret real gravitational-wave signals [33,34],
as well as mimicking the (effective) shadow of a BH
[35–37]. Their role as BH mimickers in a variety of models
[38], and their appeal as candidates for some of the dark
matter in our Universe [39], in particular, within the fuzzy
dark matter paradigm [40,41], support their astrophysical
interest. Moreover, recent advances in gravitational-
wave astronomy, e.g., the increasing precision of gravita-
tional-wave detectors [42–44], place us on the verge of
discovering new and more accurate results capable of
distinguishing the nature and behavior of these compact
objects, which has led to the effort of building up the first

waveform catalog of signals sourced by exotic compact
objects, namely (vector) BSs [45].
Establishing the dynamical robustness of different mod-

els of BSs forms an essential theoretical basis for their
possible occurrence in nature and therefore for their use in
the analysis of experimental data. In this respect, it has been
recently observed that scalar field self-interactions can
mitigate the instability, or quench it altogether, of some
excited BS solutions, namely rotating [17,46] or radially
excited [20,21]. It is therefore natural to ask whether a
similar strengthening of dynamical robustness can be
observed in other models of excited BSs by virtue of
self-interactions.
A less explored model of excited BSs, in particular,

concerning their dynamics, is the model of multipolar BSs
[47]. These are static (nonrotating) BSs but which have a
multipolar morphology in their energy distribution, like
hydrogen orbitals have a multipolar distribution for their
probability density, with the spherical orbitals being a mere
special case—the Ns orbitals, N ∈N. Similarly, within the
multipolar family, spherical BSs are a mere special case,
containing both the very fundamental stars and also the
radially excited states. The simplest nonspherical multipo-
lar BSs are the dipolar ones [48], akin to p-orbitals. These
are two-center solitons, with a Z2-even metric, defining an
equatorial plane above/below which a scalar lump is found,
but with a Z2-odd scalar field—hence a dipole. They can
also be interpreted as two monopolar BSs in equilibrium,
with their gravitational attraction balanced by their scalar
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repulsion, as a result of the π phase difference between the
north and south hemispheres [11]. Dipolar BSs can also be
made to spin and, in that case, be in equilibrium with
one [49] or two [50] (also balanced) spinning BHs.
A study of the stability of dipolar BSs was reported in

[15], wherein the (few) cases studied were shown to decay
to the spherical fundamental stars. Here, we further explore
the dynamical stability of dipolar stars, via nonlinear
dynamical evolutions, focusing on the effect of adding
self-interactions. Specifically, we construct dipolarQ-stars
in a model with sextic (þ quartic) self-interactions. We
show their domain of existence resembles that seen for the
monopolar stars of the same model. Moreover, we provide
evidence from our numerical evolutions that the self-
interactions can increase the dynamical robustness of the
dipolar stars, as in the case of rotating BSs and radially
excited spherical BSs, and that the stability of the dipolar
solutions bears a resemblance with that observed for the
perturbative stability of monopolar stars of the same model.
This paper is organized as follows. In Sec. II, we discuss

equilibrium BSs, reviewing both fundamental spherical and
excited dipolar BSs. As a novel result, we construct dipolar
Q-stars with sextic (þ quartic) self-interactions, briefly
discussing their main properties and also discussing the
stability of themonopolar stars in the samemodel. In Sec. III,
we cover the mathematical formalism and the computational
framework with which we performed the numerical simu-
lations.We show and discuss our results for the evolutions in
Sec. IV, where we evaluate the dynamical robustness of the
dipolarQ-stars. We closewith a discussion and comments in
Sec. V. We use natural units c ¼ G ¼ 1 throughout.

II. DIPOLAR Q-STARS

The action S for Einstein’s gravity minimally coupled to
a complex (massive) scalar field ϕ reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gab∂aϕ�
∂bϕ −Uðjϕj2Þ

�
: ð1Þ

The corresponding equations of motion are

Rab −
1

2
gabR ¼ 8πTab; ð2Þ

□ϕ ¼ ∂U
∂jϕj2 ϕ; ð3Þ

where the stress-energy tensor reads

Tab ¼ ∇aϕ
�∇bϕþ∇bϕ

�∇aϕ

− gab½∇cϕ
�∇cϕþUðjϕj2Þ�; ð4Þ

and □≡∇a∇a.
The action (1) is invariant under the global Uð1Þ trans-

formation ϕ → eiαϕ, where α is a constant, which implies

the existence of a conserved current, ja¼−iðϕ�
∂
aϕ−

ϕ∂aϕ�Þ, with ∇aja ¼ 0. Therefore, integrating the timelike
component of this 4-current on a spacelike sliceΣ results in a
conserved quantity—the Noether charge:

Q ¼
Z
Σ

jt; ð5Þ

which corresponds to the number of scalar particles (upon
quantization).
Together, Eqs. (2) and (3) compose the Einstein-Klein-

Gordon (EKG) system of equations. One family of sol-
utions of these equations are self-gravitating solitons, or
BSs, of which we now discuss specific members.
BSs in the free-field model,

Uðjϕj2Þ ¼ μ2jϕj2; ð6Þ

are known as mini-BSs. Their fundamental states corre-
spond to (nodeless) spherically-symmetric scalar field
distributions,

ϕðr; tÞ ¼ ϕ0ðrÞe−iωt; ð7Þ

where ω is the oscillation frequency and ϕ0ðrÞ∼
e−r

ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
=r, the real radially asymptotic profile function.

These possess an established formation mechanism [51],
while fulfilling also the criteria of dynamical stability
[23,52] in one branch of the domain of existence, that
connects the Newtonian limit ω=μ → 1 to the maximal
mass solution—see Fig. 1 (top panel).
On the other hand, BSs whose scalar field obeys a sextic

(þ quartic) self-interacting scalar potential are dubbed
Q-stars since for this potential there are flat spacetime
solutions called Q-balls [28]. Here we shall consider a
specific model within this sextic class of potentials, namely,

Uðjϕj2Þ ¼ μ2jϕj2
�
1 −

2

σ20
jϕj2

�
2

; ð8Þ

where the parameter σ20 determines the compactness of the
star. In this model, Q-stars may become very compact and
with an almost step-function decay of the scalar field and the
energy density—cf. Fig. 4. Generically, spherical funda-
mental Q-stars also possess a known formation [53] and
stability [54,55] mechanisms. Their domain of existence is
nowmore involved—Fig. 1 (bottom panel). As σ0 decreases
and self-interactions become stronger, the spiral shape seen
in Fig. 1 (top panel) shifts into the “ducklike” curve seen in
Fig. 1 (bottom panel, inset, and main), possessing 3 extrema
before the minimum frequency is attained. Then, there are
two disconnected stable branches within a perturbative
analysis: a Newtonian stable branch, connecting the maxi-
mum allowed frequency to the first maximum of the
Arnowitt-Deser-Misner (ADM) mass, and a relativistic
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stable branch, connecting a localminimumof themass to the
second (global, for the plotted σ0) maximum of the mass. In
between these branches, one finds amiddle unstable branch,
and beyond (for smaller frequencies) the relativistic branch
one finds (at least) another branch of very compact unstable
solutions. In Fig. 2 we show the result of the corresponding
perturbative analysis, establishing the above conclusion
for σ0 ¼ 0.2.
In both models above, there are also excited BSs, besides

the spherical fundamental ones, which occur in various
guises. Here, we are interested in the static nonspherical
sector, i.e., multipolar BSs, introduced in [47] in the model
without self-interactions. We shall focus our attention on

the dipolar stars—see Fig. 1 (top and bottom panels) for the
domain existence of dipolar mini-BS and dipolar Q-stars,
compared to one of the spherical stars in the same model1

(see [60] for an early discussion of dipolar BSs). Dipolar
stars are described by an axisymmetric scalar field,

ϕðt; r; θÞ ¼ ϕ0ðr; θÞe−iωt; ð9Þ

which is odd parity, i.e., ϕ0ðr; θÞ ¼ −ϕ0ðr; π − θÞ. To
construct the odd-parity static BSs with the potential (8),
which were not discussed previously in the literature, the
dipolarQ-stars, we use a line-element with two commuting
Killing vector fields, ξ and η, with ξ ¼ ∂t η ¼ ∂φ in a
system of adapted coordinates. We consider the generic
axisymmetric ansatz,

ds2 ¼ −e2F0ðr;θÞdt2 þ e2F1ðr;θÞðdr2 þ r2dθ2Þ
þ e2F2ðr;θÞr2sin2 θdφ2; ð10Þ

in terms of the three metric functions F0;1;2. The equilib-
rium dipolar solutions are constructed by solving numeri-
cally the EKG equations, following [48]—see also [61] for
details—with specified boundary conditions that we now
describe.
At the origin, spatial infinity and on the axis, the metric

functions and the scalar field profile obey

∂rF0;1;2jr¼0 ¼ ∂rϕ0jr¼0 ¼ 0;

F0;1;2jr¼∞ ¼ ϕ0jr¼∞ ¼ 0;

∂θF0;1;2jθ¼0;π ¼ ∂θϕ0jθ¼0;π ¼ 0:

FIG. 2. Spherical perturbations with frequency Ω of the
spherical Q-stars in Fig. 1 (bottom, inset). Ω2 changes sign
precisely at the extremes of the mass. Solid (dashed) curves
correspond to Ω2 > 0 (Ω2 < 0), wherein the stars are perturba-
tively stable (unstable) against such spherical perturbations. The
setup and a detailed description of these perturbations will be
presented elsewhere [56].

 0

 0.3

 0.6

 0.9

 0.8  0.9  1

M
�

�/�

spherical

dipolar

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

M
�

�/�

mini-Boson Stars

 0

 0.5

 1

 1.5

 2

 0.4  0.6  0.8  1

M
�

�/�

Q-Stars

�0=0.1

spherical

dipolar

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

M
�

�/�

spherical

dipolar

�0=0.2

 0

 0.25

 0.5

 0.75

 0.6  0.8  1
 0

 0.05

 0.1

 0.15

 0.2

 0.25

M
�

/

spherical

dipolar

FIG. 1. Mini-BSs (top panel) and Q-stars (bottom panel, for
σ0 ¼ 0.1, 0.2) for both spherical and dipolar BSs. Spherical mini-
BSs are perturbatively stable between the maximal frequency
ω=μ¼ 1 and the maximal mass at ðω=μ; Mμ; ϕ0ð0ÞÞ¼ ð0.853;
0.633;0.192Þ. SphericalQ-stars are perturbatively stable between
the maximal frequency ω=μ ¼ 1 and the local maximum of the
mass at (for σ0 ¼ 0.2) ðω=μ;Mμ;ϕ0ð0ÞÞ ¼ ð0.923; 0.426; 0.031Þ
(Newtonian stable branch) and between the local minimum
of the mass at ðω=μ;Mμ;ϕ0ð0ÞÞ ¼ ð0.802; 0.388; 0.096Þ and
the global maximum of the mass at ðω=μ;Mμ;ϕ0ð0ÞÞ ¼
ð0.63; 0.435; 0.159Þ (relativistic stable branch). The color bar
gives ϕ0ð0Þ for spherical BSs.

1Axisymmetric “chains” (with more than two centers) of BSs
have also been considered in the literature, with [57,58] or
without self-interactions [59].

SELF-INTERACTING DIPOLAR BOSON STARS AND THEIR … PHYS. REV. D 108, 064011 (2023)

064011-3



Additionally, in accordance to the parity discussed above,
the metric functions are invariant with respect to a reflec-
tion along the equatorial plane, θ ¼ π=2, while the scalar
field changes sign. This implies the equatorial boundary
conditions

∂θF0;1;2jθ¼π=2 ¼ ϕ0jθ¼π=2 ¼ 0:

The dipolar BSs are static, globally regular, and without
an event horizon or conical singularities, and asymptoti-
cally flat. They possess two global charges. The first one is
the ADM mass M, which can be obtained from the
respective Komar expression [62],

M ¼ 1

4π

Z
Σ
RabnaξbdV; ð11Þ

where na is unit normal to Σ, and dV is the natural volume
element on Σ. The ADMmass can also be read off from the
asymptotic subleading behavior of the metric function gtt,

gtt ¼ −e2F0 ¼ −1þ 2M
r

þ…: ð12Þ

There is also a conserved Noether charge, computed from
(5) as

Q ¼ 4π

Z
∞

0

dr
Z

π

0

dθr2 sin θ eF0þ2F1þF2ωϕ2: ð13Þ

The energy and Noether charge densities of the differ-
ent solutions are localized in two distinct components,
named poles, located symmetrically on the z axis and at

r ¼ rc. The proper distance between these components is
defined as,

L ¼ 2

Z
rc

0

dr eF1ðr;0Þ: ð14Þ

We now, and for the remainder of this paper, focus on
dipolarQ-stars with σ0 ¼ 0.05, an even smaller value than
those in Fig. 1, making the stars even more compact. In
Fig. 3 we give an overview of their domain of existence
(left panel), showing both the ADM mass and the Noether
charge vs the scalar field frequency. One observes a
similar structure as in other self-interacting BS models,
including the monopolar Q-stars described above (e.g.,
[46,63–65]). Starting from the Newtonian limit, ω=μ → 1,
wherein BSs typically become very dilute and thus
Newtonian, a first (local) maximum of the mass occurs
at ω=μ ¼ 0.994. The solutions between these two frequen-
cies are the Newtonian branch. Then the mass decreases to
a local minimum at ω=μ ¼ 0.907, whence it starts increas-
ing again, reaching a global maximum at ω=μ ¼ 0.1522.
Within these two frequencies is the relativistic branch and
within the Newtonian and relativistic branch we have the
middle branch. The minimum frequency attained, which is
below that delimiting the relativistic branch, occurs for
ω=μ ¼ 0.1520. The right panel of Fig. 3 shows how the
proper distance between the two centers varies along the
domain of existence.
Within the domain of existence we have selected 12

solutions, highlighted in Fig. 3, with their physical proper-
ties detailed in Table I, that shall be considered in the
dynamical evolutions below. The horizontal lines in the
table separate the different branches defined above. To gain
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FIG. 3. Dipolar Q-stars domain of existence. Left panel: ADM mass (M)/Noether charge (Q) vs scalar field frequency (ω) diagram.
The inset shows the behavior for the region close to the maximal frequency. Regions where the Mμ > Qμ2 are expected to be
energetically unstable against fission. This occurs near the local minimum of the mass. Right panel: proper distance L between the two
components, or poles, of each star as a function of the scalar field frequency ω. Notice the (nonmonotonic) trend that the stars become
closer when moving from the Newtonian to the relativistic branch. The 12 highlighted points represent the solutions dynamically
evolved below. Solution 12 is higher up on the right panel, outside the plot range.
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some insight into these solutions, Fig. 4 shows the
morphology of two illustrative dipolar Q-stars. One can
appreciate how compact the centers become in the
relativistic branch, as opposed to the Newtonian branch.
The scalar field profiles along the z axis are also shown
for seven of the chosen solutions in Fig. 5. Of the 12
selected solutions, those with smaller frequencies,
ω=μ ¼ f0.1522; 0.16; 0.19; 0.25; 0.27g, comprise highly
compact and localized distributions of the scalar field.
However, as we increase the scalar field frequency, the
solutions become less compact and more dispersed across
space, with each pole acquiring a similar shape to monop-
olar mini-BSs [1]. The latter trend is quite natural; as
ω=μ → 1, the scalar field amplitude decreases and even-
tually vanishes. In the scalar potential (8), higher power
terms of ϕ0 decrease faster with ω=μ → 1, meaning that

TABLE I. Selected dipolar Q-stars.

Solutions ω=μ ϕ0ðr ¼ rcÞ μM μ2Q μL

1 (2nd) 0.1900 0.0442 4.149 12.910 2.261
2 0.1522 0.0376 6.363 26.272 5.277
3 0.1600 0.0369 6.249 25.555 6.873
4 0.1900 0.0365 4.889 17.774 8.624
5 0.2500 0.0364 2.799 7.996 8.795
6 0.2700 0.0365 2.333 6.226 8.550
7 0.7000 0.0372 0.161 0.178 5.554
8 0.8500 0.0319 0.099 0.097 6.449
9 0.8900 0.0286 0.094 0.090 7.108
10 0.9800 0.0097 0.153 0.152 13.741
11 0.9900 0.0038 0.223 0.221 20.731
12 0.9970 0.0008 0.185 0.185 42.463

FIG. 4. Two illustrative dipolar Q-stars (solution 6 (top) and 12 (bottom) in Table I). Left panels: two-dimensional slice of the scalar
field density jϕj2 on the y ¼ 0 plane. Right panel: scalar field amplitude ϕ0 along the z axis. For the top solution, one observes the almost
step-function profile, in contrast with mini-BSs, which have a less sharp spatial decay, which is approached here in the Newtonian
branch, as illustrated by the bottom solution. These equilibrium solutions are the initial data for the dynamical evolutions in this paper.
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they are suppressed in the Newtonian limit, makingQ-stars
similar to mini-BSs in that limit.

III. NUMERICAL FRAMEWORK

To perform numerical evolutions we employ the standard
3þ 1 decomposition [66,67]. The metric line element is
written in the form

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð15Þ

where α is the lapse function, βi is the shift vector, and γij is
the induced metric in each spatial foliation. We also
introduce the extrinsic curvature

Kij ¼ −
1

2α
ð∂t − LβÞγij; ð16Þ

and, analogously, the “canonical momentum” of the com-
plex scalar field ϕ,

Kϕ ¼ −
1

2α
ð∂t − LβÞϕ; ð17Þ

where L is the Lie derivative. In this form, the full EKG
system of equations reads

∂tγij ¼ −2αKij þ Lβγij; ð18Þ

∂tKij ¼ −Di∂jαþ αðRij − 2KikKk
j þ KKijÞ

þ LβKij þ 4πα½ðS − ρÞγij − 2Sij�; ð19Þ

∂tϕ ¼ −2αKϕ þ Lβϕ; ð20Þ

∂tKϕ¼ α

�
KKϕ−

1

2
γijDi∂jϕþ1

2
μ2ϕ

�
1−8

jϕj2
σ20

þ12
jϕj4
σ40

��

−
1

2
γij∂iα∂jϕþLβKϕ: ð21Þ

This system of equations is subjected to the set of
constraints

H≡ Rþ K2 − KijKij ¼ 16πρ; ð22Þ

Mi ≡DiK −DjKij ¼ −8πji; ð23Þ

where Di denotes the covariant derivative with respect to
the 3-metric γij. The source terms are given by

ρ≡ Tabnanb;

ji ≡ −γai Tabnb;

Sij ≡ γaiγ
b
jTab;

S≡ γijSij;

where ρ, ji, Sij, and S denote the energy density, momen-
tum density, stress, and the trace of the stress as observed
by a normal observer (moving along the normal vector na),
respectively.
For numerical evolutions, the equations above are rewrit-

ten in the strongly hyperbolic Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) scheme [68,69] and numerically evolved
using the EINSTEINTOOLKIT [70,71] infrastructure.
Our numerical implementation uses the BSSN evolution
system as detailed in Ref. [72]. The spacetime metric and
scalar field variables are evolved in time using the
LEANBSSNMOL and SCALAREVOLVE CACTUS thorns [73].
We use the CARPET [74] library for mesh refinement
capabilities and AHFINDERDIRECT [75,76] for finding ap-
parent horizons.

IV. RESULTS

With the framework outlined in the previous section, we
evolve the dipolar Q-stars using the equilibrium solutions
described in Sec. II as initial data. The numerical evolutions
are performed in units where μσ0

ffiffiffiffiffiffi
8π

p ¼ 1. For the sol-
utions considered herein, we have fixed σ0 ¼ 0.05. All
solutions were evolved numerically in a grid with three
refinement levels—see Fig. 6 for a typical configuration.
The grid has a rectangular shape on the two innermost
levels and an overall size of xμ; yμ∈ ½0;þ128� and
zμ∈ ½−128;þ128�. We impose symmetry on the x and y
axis given that the solutions are axisymmetric, and the
dipole is oriented along the z axis. For all but solution 12,
the innermost level has a grid spacing of hμ ¼ 0.25. For
solution 12, given its large radius and our numerical
limitations, we increased the grid spacing in the innermost
level to hμ ¼ 0.5.
In order to verify the agreement between the numerical

and the analytical evolutions [i.e., for a star in equilibrium,
the phase evolution is dictated by Eq. (9)], we have
compared the numerical output of the oscillation of the
real part of the scalar field, ϕR, with its analytical

FIG. 5. z profile of illustrative dipolar Q-stars. Real part of the
scalar field along the z axis, for solutions 1, 6, 8, 10, 11, and 12.
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counterpart—ϕ0ðrexÞ cosðωtÞ, where rex is the distance
from the origin (along the axis) at which the numerical
output is extracted. We have observed complete agreement
between the numerical and the analytical data for all 12
solutions. We illustrate this analysis for solution 6 in Fig. 7.

A. Collapsing dipoles beyond the relativistic branch

Let us start with the most compact dipoles, in the sense
of the right panel of Fig. 3. We observe that solutions 1 and
2, placed to the left and on the absolute maximum of
the mass, respectively—see Fig. 3 (left panel)—undergo
gravitational collapse shortly after the beginning of the

simulation. This can be seen in Fig. 8, where both the
maximum of the scalar field and the minimum of the lapse
function are plotted as functions of time. Typically, the
“collapse of the lapse” (where the lapse function, respon-
sible for quantifying the proper time between each space-
like slice, falls exponentially to zero) signals the formation
of an apparent horizon. In Fig. 8 we can indeed see that
when the lapse function drops abruptly, so does the
maximum of the scalar field, indicating that matter is
being swallowed by the newly formed BH. This result is in
accordance with what would occur in the corresponding
region of the domain of existence for the fundamental
monopolar Q-stars of the model. Solution 1 is beyond the
relativistic branch and solution 2 sits on its edge. The
instabilities of solutions beyond the relativistic branch have
been observed in other models of self-interacting bosonic
stars and appear to be a general feature—see, e.g., [46].

FIG. 6. Grid for dipolar Q-star evolutions. The grid is enlarged
so that the three refinement levels, with resolutions of, from the
innermost to the outermost, hμ ¼ f0.25; 0.50; 1.00g, can be
clearly viewed. Here X ≡ xμ and Z≡ zμ.

FIG. 7. Dipolar Q-star solution 6 with ω=μ ¼ 0.27. Evolution
of the real part of ϕ0 at rexμ ¼ 10. The analytical expected
value—0.0365 cos ð0.27tÞ—is illustrated as the red line while the
numerical evolution is shown by the blue points.

FIG. 8. Collapsing dipolar Q-stars, solutions 1 and 2. Top
panel: time evolution of the maximum value of the scalar field. It
remains approximately constant up until the instant of collapse.
The dashed lines represent the scalar field at the center of the
poles (the region of maximum density) of each solution at t ¼ 0.
The collapse to a more compact object is signaled by the slight
increase in the scalar field density followed by its drop to zero,
hinting at scalar matter crossing the BH horizon. Bottom panel:
time evolution of the minimum value of lapse function. It remains
approximately constant up until the instant of collapse, after
which its value decreases exponentially to zero.
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B. Robust dipoles in relativistic and
Newtonian branches

Next, we consider simultaneously the solutions both in
the relativistic branch (3–9) and in the Newtonian branch
(12). These solutions showed no evidence of unstable
behavior during their simulation time, a minimum of
tμ ∼ 3500. To illustrate this lack of change, we present
in Fig. 9 the time evolution of both the maximum value of
the scalar field and the L2 norm of the violation of the
Hamiltonian constraint, respectively, for all seven solutions
in the relativistic branch. As can be seen, the scalar field
density of each star remains approximately constant during

the simulation time, without dramatic changes. Note that
the simulation time is much larger than the one where
collapse is observed for solutions 1–2—cf. Fig. 8.

C. Unstable dipoles in middle branch

Now we consider the two illustrative solutions in the
middle branch, within the relativistic and Newtonian
branches (10–11). These solutions present an unstable
behavior, but with two qualitatively different evolutions,
that were followed up to tμ ∼ 10000. These are exhibited
in Fig. 10, where the qualitative distinction can be
appreciated.

FIG. 9. Dynamically robust dipolar Q-stars sitting in the relativistic stable branch, solutions 3–9 in Table I. Left panel: time evolution
of the maximum value of the scalar field’s density. Right panel: time evolution of the L2 norm of the Hamiltonian constraint.

FIG. 10. Evolution of unstable dipolar Q-stars. Snapshots of the scalar field density on the y ¼ 0 plane, for solution 10 (top row) and
11 (bottom row). The horizontal axis of each panel has the same spatial scale as its vertical axis, and the color scalar in the bottom row is
the same for all snapshots.
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1. Development of the instability

Consider first solution 10. It exhibits a noticeable change
at a fairly short time scale of tμ ∼ 100. The two individual
centers become more compact, accompanied by the ejec-
tion of part of the scalar field. The corresponding newly
formed dipole is, however, off balance, resulting in a
dynamical dipole. The scalar field repulsion between the
poles ceases to be able to hold the gravitational pull after
the initial readjustment, and the poles begin to move
towards each other. Eventually, these collide inelastically
and rebound back to close (but not quite) their initial
positions, which we define as the rebound distance,
whence they fall back into each other again, repeating this
process a number of times over the duration of the
simulation, with the rebound distance trending towards a
decrease after each collision—Fig. 11 (top panel). This
decrease can be explained by the loss of linear momentum
via gravitational-waves emission, as shown in Fig. 11

(bottom panel). For solution 10, this process results in 12
collisions for a simulation time of tμ ∼ 12500, but a larger
number of collisionswas observed in the simulations of other
dipolar Q-star solutions near solution 10 (not shown here).
The overall evolution after the dipole becomes dynamical,
with sequences of collisions, is reminiscent of the head-on
collisions of (monopolar) BSs in this model [13].
Solution 11 presents a somewhat opposite behavior to

that of solution 10. The key difference is that the individual
centers become less compact: there is a clear, but slow,
expansion of the scalar field distribution of each pole that is
halted at tμ ∼ 5700. The solution then contracts again,
returning to a configuration similar to that of its initial data
before expanding again—Fig. 10 (lower panel).

2. Endpoint of the instability

The behavior indicated for solutions 10 and 11 suggests
a migration to other solutions with a different scalar field
frequency ω=μ and scalar field amplitude ϕ0. One way to
probe this migration and attempt to unveil the endpoint is
by analyzing the evolution of these quantities, an analysis
we now describe.
We begin by analyzing the scalar field frequency

and its amplitude. A Fourier analysis [77] is performed
on the real part of the scalar field, as is shown for the two
solutions in Figs. 12 and 13. Within the range of validity,

FIG. 11. Evolution of solution 10. Top panel: the distance to the
origin, along the z axis, of one of the poles of solution 10, as a
function of time. The maximum distance reached after each
bounce decreases with time due to energy loss via gravitational
radiation. For a simulation time of tμ ∼ 12500, solution 10 per-
formed 12 collisions, oscillating roughly within a distance [4.5,
13.5] from the origin. Bottom panel: the real part of the ðl; mÞ ¼
ð2; 0Þ mode of the Newman-Penrose scalar Ψ4, describing the
gravitational-wave emission of solution 10 extracted at
Rexμ ¼ 100, as a function of time.

FIG. 12. Tracking the evolution endpoint for solution 10. Top
left panel: the normalized real component of the scalar field as a
function of time for the first Δtμ ∼ 95 (initial period) of the
evolution. Top right panel: the normalized real component of the
scalar field as a function of time for the last Δtμ ∼ 7979 (final
period) of the evolution. Bottom panel: a clear transition is seen
from the initial to the final period, from a higher to a lower and
more dispersed value of the scalar field frequency. Their values
are ω=μ ¼ 0.9844 for the initial period and ω=μ ∼ 0.7945 for the
final period.
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ω=μ∈ ½0.1522; 1�, we find that solution 11 acquires higher
oscillation frequencies, within the range of the Newtonian
branch, wherein solution 12 is located, which was seen as
dynamically robust in our analysis. In contrast, despite
displaying several peaks for the oscillation frequency,
which might indicate different frequencies acquired during
its migration, solution 10 acquires an average frequency
well below its initial one and within the range of the
relativistic branch, close to solution number 7, proven
stable. An overview of this state of affairs is exhibited in
Fig. 14, where the frequency ω of each solution is plotted
against its scalar field amplitude ϕ0 at the center of one of
its poles, at t ¼ 0 (“initial state”) for all solutions, and at the
end of the numerical evolution (“migration”) for solutions
number 10 and 11.
This evidence points towards the migration of unstable

solutions to either the relativistic or the Newtonian
branches, wherein solutions show a higher degree of
dynamical robustness. The initial and final states of every
solution in our analysis are summarized in Table II.

V. CONCLUSIONS

In this paper, we have constructed dipolar BSs with
sextic (þ quartic) self-interactions, according to the poten-
tial (8), named dipolar Q-stars, and analyzed their dynam-
ics via fully nonlinear numerical relativity simulations.

FIG. 14. Domain of existence of dipolar Q-stars. Maximum scalar field amplitude ðϕ0Þ vs scalar field frequency (ω=μ) diagram. The
solutions presented correspond to the final states of all 12 solutions. Migrating solutions 10 and 11 are depicted both in their initial state
(orange circles) and in their provisional final state (blue circles). The inset shows the behavior for the region close to the maximal
frequency. The error bars for solutions 10 and 11 illustrate the oscillations in the scalar field amplitude due to their still evolving state and
the standard deviation in the frequency domain due to the detection of a range of frequencies when applying a Fast Fourier transform to
the signal.

FIG. 13. Tracking the evolution endpoint for solution 11. Top
left panel: the normalized real component of the scalar field as a
function of time for the first Δtμ ∼ 398 (initial period) of the
evolution. Top right panel: the normalized real component of the
scalar field as a function of time for the last Δtμ ∼ 5805 (final
period) of the evolution. Bottom panel: a clear transition is seen
from the initial to the final period, from a lower to a higher and
less dispersed value of the scalar field frequency. Their values are
ω=μ ¼ 0.9922 for the initial period and ω=μ ∼ 0.9957 for the
final period.
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Our motivation was twofold. Firstly, dipolar BSs con-
structed in the scalar model without self-interactions have
exhibited an instability that develops in a timescale tμ ≲
2000 for the models studied in [15]. Secondly, since such
dipolar stars can be seen as a type of excited state (as
p-orbitals in hydrogen)—with higher mass than the cor-
responding spherical stars with the same frequency
(cf. Fig. 1), given the potential scalar self-interactions have
already shown to mitigate dynamical instabilities of excited
models, namely with rotation [16] and radially excited
[20,21] (which are akin to Ns-orbitals with N > 1 in
hydrogen), it becomes interesting to probe the impact of
self-interactions on the stability of the dipolar Q-stars.
Our construction of the equilibrium solutions, presented

in Sec. II, showed a domain of existence akin to that of the
monopolar stars in the same model–see Fig. 1 (bottom
panel). In the case of the fundamental monopolar stars,
such domain of existence includes a Newtonian and a
relativistic branch wherein (spherical) Q-stars are stable,
separated by a middle branch wherein stars are unstable—
see Fig. 2. Moreover, beyond (to lower frequencies) the
relativistic stable branch, Q-stars become too compact and
unstable, forming BHs.
Here, we have studied the dynamical robustness of

dipolar Q-stars by presenting a sample of evolutions of
12 illustrative solutions, covering different branches—see
Fig. 3 and Table I. Our evolutions provide evidence of
similar dynamical properties for the dipolar Q-stars as the
ones observed from the perturbative analysis of their
spherical Q-star counterparts, namely: (i) in the
Newtonian and relativistic branches they are dynamically
robust over time scales longer than those for which dipolar
stars without self-interactions are seen to decay, which were
mentioned above; (ii) in the middle branch the dipolar
Q-stars appear to migrate to either the Newtonian or the
relativistic branch; (iii) beyond the relativistic branch, they
decay to BHs.

There are, however, some caveats, in particular, con-
cerning the unstable states in the middle branch that we
should comment on. Solutions 10 and 11 showed evidence
of a possible migration mechanism that allows the migra-
tion to different, dynamically more robust, solutions.
However, at the end of our simulations, the solutions
remain dynamical. We have no clear evidence for any
dramatic effect altering the evolution, but we cannot rule it
out either. Moreover, for very long time evolutions it
becomes challenging to disentangle physical effects from
numerical artifacts, sourced by accumulated errors. As
such, the final state still requires further investigation.
It may be that all these dipolar Q-stars are mere transient

states. In fact, solutions 8 and 9, for which no instability
was seen, have a slight energy excess, suggesting an
energetic instability. This is reminiscent of an energetic
instability seen for rotating BSs with self-interactions [46],
occurring in the putative relativistic stable branch, but
where fragmentation into a binary of nonrotating stars
becomes dynamically favorable. Still, in our simulations,
this possible energetic instability did not manifest itself and
had no impact on the dynamics in the timescales probed.
On the other hand, what our analysis could establish is

that solutions within the relativistic stable branch and those
in the Newtonian branch present stability time scales well
above those of dipolar BSs without self-interactions.
Moreover, the unstable solutions in the middle branch
remain dipolar, but dynamical ones, when readjusting their
distance and compactness towards a more favorable con-
figuration. From another perspective, these become inter-
esting head-on collisions of Q-stars, with initial data
obeying all constraints, in fact, resembling previously
studied head-on collisions in this model [13].
It would be interesting to extend this analysis to spinning

dipolar mini-BSs and Q-stars, in particular, due to their
capacity to harbor one [49] or two [50] BHs in equilibrium
with this scalar environment.

TABLE II. Fate of the dipolar Q-star solutions with different values of the scalar field oscillation frequency ω.

Solutions Initial branch Initial frequency Simulation duration Dynamical status Final frequency Final branch

1 Beyond relativistic 0.1900 400 Gravitational collapse � � � � � �
2 Boundary relativistic 0.1522 600 Gravitational collapse � � � � � �
3 Relativistic 0.1600 5300 Stable 0.1600 Relativistic
4 Relativistic 0.1900 5400 Stable 0.1900 Relativistic
5 Relativistic 0.2500 6500 Stable 0.2500 Relativistic
6 Relativistic 0.2700 5800 Stable 0.2700 Relativistic
7 Relativistic 0.7000 4500 Stable 0.7000 Relativistic
8 Relativistic 0.8500 9000 Stable 0.8500 Relativistic
9 Relativistic 0.8900 7000 Stable 0.8900 Relativistic
10 Middle 0.9800 11000 Migration 0.7983 Relativistica

11 Middle 0.9900 11400 Migration 0.9957 Newtonian
12 Newtonian 0.9970 4500 Stable 0.9970 Newtonian

aAt the boundary between the relativistic branch ω=μ < 0.907 and the middle branch 0.907 < ω=μ < 0.9924.
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