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In contrast to energy and angular momentum, electric charge is conserved in mergers of charged black
holes. This opens up the possibility for the remnant to have Kerr-Newman parameter χ2 þ λ2 greater than 1
(with χ and λ being the black hole dimensionless spin and dimensionless charge, respectively), which is
forbidden by the cosmic censorship conjecture. In this paper, we investigate whether a naked singularity
can form in quasicircular mergers of charged binary black holes. We extend a theoretical model to estimate
the final properties of the remnant left by quasicircular mergers of binary black holes to the charged case.
We validate the model with numerical-relativity simulations, finding agreement at the percent level. We
then use our theoretical model to argue that while naked singularities cannot form following quasicircular
mergers of nonspinning charged binary black holes, it is possible to produce remnants that are arbitrarily
close to the extremal limit.
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I. INTRODUCTION

This paper is concerned with quasicircular mergers of
electrically charged black holes. To set the stage of our
work, it is convenient to first consider the more familiar
case without charge. In 2006, it was observed that the latest
stages of the inspiral of two highly spinning black holes
are significantly different compared to the nonspinning
counterpart [1]. The main difference is that inspiral of
spinning black holes takes substantially longer than the
nonspinning case—an effect that is referred to as the orbital
hang-up. One way to understand why this happens involves
conservation of angular momentum and the cosmic censor-
ship conjecture. If all the angular momentum available in
the system (orbitalþ spins) were to end up in the remnant,
the object would be over-extremal, i.e. its dimensionless
spin χ would be larger than 1. Such a black hole is not
possible in general relativity, and Kerr spacetimes with
χ > 1 are not black holes, but naked singularities (see,
e.g. [2]). Given that the formation of naked singularities
is forbidden by the cosmic censorship conjecture,1 the
binary has to radiate away all the excess angular momen-
tum to be able to merge. To do so, the black holes inspiral

for longer so that the gravitational waves can carry away the
excess angular momentum.
Now, consider mergers of charged black holes. While

energy and angular momentum can be radiated away,
electric charge is always conserved. For this reason, a
natural question to ask is whether it is possible to start
from charged black holes with individual charge-to-mass
ratio λ < 1 and form an extremal remnant.2 If this does
not happen, how is the formation of a naked singularity
avoided? Is there a charge-induced orbital hang-up? Does
the system inspiral or does it outspiral after sufficient
energy has been radiated away? This paper aims to answer
these questions by extending the method described in [5,6]
to charged black hole binaries. We are going to refer to
this method as “BKL” (Buonanno-Kidder-Lehner)3 from
the initials of the original authors [5].4 The approach is
based on conservation arguments and analogy with point
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1Note, however that the formation of naked singularities in

fine-tuned dynamical scenarios is possible [3].

2In [4], we investigated a similar question checking whether
ultra-relativistic head-on collisions of black holes can lead to
extremal configurations. We found that there is no indication that
this can happen. In that case, the formation of a naked singularity
was avoided by the large kinetic energy in the system.

3Not to be confused with the BKL singularity studied by
Belinski-Khalatnikov-Lifshitz.

4The contribution of [6] is to include the loss of energy due to
gravitational wave. As we will discuss later, this is needed to
match the to reach percent-level agreement with the numerical
relativity simulations.
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particles. Previous studies have shown that this simple
argument is surprisingly effective at capturing the remnant
properties to within a percent [6]. We validate our extended
model via numerical relativity simulations of quasicircular
mergers of nonspinning, charged binary black holes, and
use it to argue that quasicircular inspirals of charged binary
black holes cannot form naked singularities. We focus on
configurations in which the black holes have charge with
the same sign so that the total charge is greater than the
individual black hole charges, which give the remnant
black hole the possibility to maximize the Kerr-Newman
parameter through its charge.
The goal of our paper is to explore and understand better

cosmic censorship in the nonlinear regime and see if it
introduces novel effects. Several linear arguments argued
that black holes cannot be overcharged [7], but the question
is still open for the nonlinear case. Moreover, while this
paper focuses on fundamental physics implications, the
analytic model predicting the remnant properties that is
developed here has direct astrophysical applications.
Charge in the astrophysical context of binary mergers has
recently received some attention as “charge” can acquire
different meanings from magnetic monopoles to modified
gravity (see, e.g., Introduction in [8]). Additionally, rem-
nant properties can be useful when studying populations of
magnetically charged primordial black holes (see, e.g., [9])
and in gravitational-wave astronomy, where they are the
starting point to study the ringdown signal (see, e.g. [10]).
The analytic model described in this paper is computa-
tionally efficient, which makes it optimally suited for quick
estimates.
This paper is structured as follows. In Sec. II, we

describe the formalism we developed for predicting the
properties of the remnant of charged binary black holes. In
Sec. III, we show and discuss our results. We conclude with
Sec. IV. We work in geometrized and gaussian units with
G ¼ c ¼ ð4πε0Þ−1 ¼ 1, with G being Newton’s constant,
c the speed of light in vacuum, and ε0 the permittivity of
vacuum.

II. SETUP

We approach the problem of quasicircular mergers of
charged black holes with an analytical model that we
validated with numerical relativity simulations. In Sec. II A,
we discuss the analytical method, and in Sec. II B we
present our framework for the full nonlinear calculations.

A. Analytical model

To estimate the properties of the remnant left by the
merger of two charged black holes, we follow Ref. [6],
which extended the approach outlined of Ref. [5]. This
method is based on conservation principles and an effective
one-body treatment. The core assumption of the model is
that energy and angular momentum lost can be determined

by looking at the properties of the innermost stable circular
orbit (ISCO) of a properly computed effective background
spacetime [5,6,11]. This is because the system loses the
vast majority of its initial energy and angular momentum
during the inspiral, and when it reaches the ISCO, the
plunge is so rapid that there is no significant loss of energy
and angular momentum (i.e., the emission is small com-
pared to the rest of the inspiral). In a nutshell, the method
consists of finding a suitable background spacetime and
computing the properties of its innermost-stable circu-
lar orbit.

1. The effective one-body problem

BKL [5] propose to treat the general relativistic two body
problem as if it was in the limit of extreme mass ratio,
where the system is equivalent to a test mass in a back-
ground spacetime. Strictly speaking, this approach is
invalid for comparable masses, but previous work found
that the agreement with the full nonlinear solution is
excellent [5,6]. Hence, we adopt the same basic idea and
extend it to include the charge in black hole spacetimes.
Consider two black holes that are separated by a distance

that is large enough so that we can give them a well-defined
mass and charge m1, m2, and q1, q2, with total mass and
charge M ¼ m1 þm2, Q ¼ q1 þ q2. The equivalent one-
body problem has a test-mass with massmred, charge qred in
a Kerr-Newman spacetime with mass M, charge Q, and
angular momentum J. Here, mred and qred are the reduced
mass and charge, defined as

mred ¼
m1m2

M
; ð1aÞ

qred ¼
q1q2
Q

: ð1bÞ

As we will see later, it is more convenient to work
with dimensionless charge λ ¼ Q=M, q ¼ qred=mred, and
dimensionless spin χ ¼ J=M2.
In the BKL framework, the energy (angular momentum)

radiated by gravitational waves is the orbital energy
(angular momentum) of the test particle up to the inner-
most-stable circular orbit.5 We make the same assumption
and compute final mass, spin, and charge for a binary
merger by studying the ISCO. If εqISCOðλ; χÞ is the specific
energy at the ISCO for a particle with reduced charge q in a
Kerr-Newman spacetime with charge-to-mass ratio λfinal
and dimensionless spin χfinal (note, ε is independent of the
mass M), the energy radiated is

EGW ¼ mred −mredε
q
ISCOðλfinal; χfinalÞ; ð2Þ

5Note that there are two ISCOs, prograde and retrograde with
respect to the rotation of the black hole. In this paper, we only
consider prograde ones.
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where λfinal and χfinal have yet to be determined.
Conservation of energy implies that

Mfinal ¼M −Erad ¼Mð1− νð1− εqISCOðχfinal; λfinalÞÞÞ; ð3Þ

where Erad is the total energy emitted in gravitational and
electromagnetic waves, and ν ¼ mred=M is the symmetric
mass ratio. Similarly, all the angular momentum is radiated
away except for the amount available at the ISCO, which is
JISCO ¼ mredMlqðλfinal; χfinalÞ, where l is the dimensionless
angular momentum at the ISCO of a Kerr-Newman space-
time with charge λfinal and spin χfinal.

6 Therefore, we have
that

χfinal ¼
JISCO
Mfinal

2
¼ νlISCOðχfinal; λfinalÞ

½1 − νð1 − εISCOðχfinal; λfinalÞÞ�2
: ð4Þ

Charge is conserved, so Qfinal ¼ Q ¼ q1 þ q2, and

λfinal ¼
Q

Mfinal
¼ λ

1 − νð1 − εISCOðχfinal; λfinalÞÞ
: ð5Þ

Finally, we have the coupled system of nonlinear algebraic
equations

χfinal ¼
νlq

ISCOðχfinal; λfinalÞ
½1 − νð1 − εqISCOðχfinal; λfinalÞÞ�2

; ð6aÞ

λfinal ¼
λ

1 − νð1 − εqISCOðχfinal; λfinalÞÞ
: ð6bÞ

The unknowns in these equations are χISCO and λISCO, that
we find numerically with the Levenberg-Marquardt algo-
rithm [12,13] as implemented in the root function in
scipy.optimize [14].

2. ISCO for a charged particle in a Kerr-Newman
spacetime

To solve the system defined by Eq. (6), we need to
compute the dimensionless energy ε and angular momen-
tum l for particles with charge-to-mass ratio q on the ISCO
of Kerr-Newman spacetimes. If we focus on the equatorial
plane and work in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ,
these quantities can be calculated using an effective
potential VeffðrÞ. For Kerr-Newman black holes with unit
mass,7 charge λ, and spin χ, Veff is given by [15–17]
(see, Sec. IVA. in [17])

VeffðrÞ ¼
1

r4
½−ΔðrÞ þ ðΔðrÞ − χ2Þl̃2ðrÞ

− 2χðr2 þ χ2 − ΔðrÞÞl̃ðrÞε̃ðrÞ
þ ððr2 þ χ2Þ2 − ΔðrÞχ2Þε2ðrÞ�; ð7Þ

with

ΔðrÞ ¼ r2 − 2rþ χ2 þ λ2; ð8aÞ

l̃ðrÞ ¼ lðrÞ þ q
λ

r
χ; ð8bÞ

ε̃ðrÞ ¼ εðrÞ þ q
λ

r
; ð8cÞ

where εðrÞ and lðrÞ are the specific energy and dimension-
less angular momentum (l ¼ a=mred) for circular orbits of
radius r. The properties of the ISCO are found solving the
following equations simultaneously

VeffðrISCOÞ ¼ 0; ð9aÞ

dVeff

dr
ðrISCOÞ ¼ 0; ð9bÞ

d2Veff

dr2
ðrISCOÞ ¼ 0; ð9cÞ

for rISCO, εISCO ¼ εðrISCOÞ and lISCO ¼ lðrISCOÞ.
Equations (9a) and (9b) impose circularity of the orbit,
Eq. (9c) the condition of being innermost stable.
These equations can be solved analytically, but it is

simpler and faster to solve them numerically. In practice,
we use SymPy [18] to derive symbolically VeffðrÞ and
Eq. (9). Then, we solve this system numerically using
the root function in scipy.optimize [14]. This gives
us εqISCOðλ; χÞ and lqISCOðλ; χÞ for a particle of charge-to-
mass ratio q in a Kerr-Newman spacetime with dimension-
less charge and spin λ and χ. This is what we need in
order to solve Eq. (6). The Python code that implements
the entire scheme is provided in the Supplemental
Material [19].

B. Numerical simulations

We validate the model described in the previous section
using two sets of numerical relativity simulations. First, we
use the simulations of the quasicircular inspiral and merger
of unequal-mass (mass ratio of 29=36) charged black holes
we presented in [4,17,20,21]. Second, we perform new
simulations with higher resolution and charge. The second
set consists of eleven simulations with charge-to-mass ratio
up to λ ¼ 0.6 (like sign charge) and equal mass. Systems
with higher λ take a significantly longer time to merge and
require higher resolution and larger numerical grid. Given
that our current set of simulations already took months to

6Ml is the specific angular momentum, so mredMl is the
actual angular momentum.

7Note, ε and l are independent of the mass.
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complete, the computational cost for calculations with
larger change-to-mass ratio is currently prohibitive.
Our numerical relativity simulations solve the coupled

Einstein-Maxwell equations in a 3þ 1 decomposition of the
spacetime (for more details, see, [22–24]) and use the
Einstein Toolkit [25–28] for the numerical integration.
We generate initial data with TwoChargedPunctures [8]
for systems of two black holes with fixed charge-to-mass
ratio λ. We use sixth-order finite-difference methods to evolve
the spacetime with the Lean code [29], which implements
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [30,31] and the electro-
magnetic fields are evolved with the massless version of
the ProcaEvolve [32] code, part of Canuda suite
[33,34]. We locate apparent horizons with AHFinder-
Direct [35,36], and their physical properties are mea-
sured with QuasiLocalMeasuresEM, a version of
QuasiLocalMeasures [37] updated to implement
the isolated horizon formalism in full Einstein-Maxwell
theory (see Sec. II C in [8]).
We work with Cartesian grids with Berger-Oliger adap-

tive mesh refinement as provided by Carpet [38]. The
simulations use between nine and thirteen refinement levels
centered on and tracking the centroid of the black hole
apparent horizons. The initial separation is 12.1M, where
M is the total ADMmass of the system. Eccentricity is kept
below 0.01 with the method described in [17]. For the
higher values of charge, we also had to manually adjust the
initial momenta to meet the target eccentricity. We did so
through trial and error. The resolution of our unequal-mass
simulations isM=65 for the unequal mass case, whereas out
set of equal-mass simulations has charge-dependent reso-
lution as follows: the finest grid spacing set to Δxfinest ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
=320M,8 which ensures that the horizons are

resolved with more than 80 grid points. The damping
parameters η and κ in the evolution equations of the shift
vector and the electric field were set to 1.5M and 10M. We
refer the reader to [4,17,20] for a detailed complete
discussion of the methods and tools we employ.
In addition to the convergence studies described in

[4,17,20], we performed more simulations at higher reso-
lution to estimate errors an convergence properties. In all
cases, we find that the quasilocal properties of the black
hole (mass, spin, charge) are exceptionally well-behaved
and we estimate the numerical error due to finite resolution
to be at the level of 0.1%.

III. RESULTS

In Fig. 1, we show the predictions of themodel formergers
of black holes with the same mass and charge-to-mass ratio

and we plot the result from the numerical-relativity simu-
lations (squares).
We measure the total error as

RMS Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χmodel − χsim

χmodel

�
2

þ
�
λmodel − λsim

λmodel

�
2

s

;

ð10Þ

and find that the error is about 1.5% independently of the
value of λ (bottom panel). By comparing the two terms in
Eq. (10), we find that most of the error comes from the
charge-to-mass ratio as opposed to the spin. We also find
the same error level and behavior in the unequal-mass cases
we consider here. Therefore, we conclude that the method
described in the previous sections is effective at predicting
the properties of the remnant left by the merger of two
charged black holes with mass ratios close to unity, and
equal charge-to-mass ratio. Considering the complex and
nonlinear system under consideration, this is a remarkable
agreement.
Our numerical relativity simulations verified that the

method described in Sec. II A can correctly capture the
properties of the remnant left by the merger of charged
black holes. With this, we can now look at what happens
when we consider the case with λ → 1. In this, we are
interested in checking whether the remnant left by the
merger would be over-extremal, i.e., λ2 þ χ2 > 1. Kerr-
Newman spacetimes are the most general axisymmetric and

FIG. 1. Top two panels: Physical properties of the remnants left
by the merger of two equal-mass, equal-charge black holes for
the numerical-relativity simulations (squares) and the analytical
predictions (solid lines). Bottom panel: Total relative error,
measured as in Eq. (10). The error is consistently around 1.5%.
The case with mass ratio 29=36 is similar.

8In isotropic coordinates, the horizon radius for a Reissner-
Nordström black hole with mass M1 ¼ 0.5M and charge Q1 ¼
λM1 is

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
=4M.
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stationary four-dimensional electrovacuum spacetimes, and
when λ2 þ χ2 > 1 they describe naked singularities. So, a
merger of charge black holes such that the remnant has
λ2 þ χ2 > 1 would be a good candidate to violate cosmic
censorship.
At this point, it is useful to recall what happens in the

case of the merger of two uncharged black holes with spin
χ0 → 1. If we assumed that all the angular momentum and
mass end up in the remnant black hole, we would find that
the Kerr remnant has spin (for identical black holes with
prograde dimensionless spin χ0) 2χ0 þ χorbital > 1, hinting
to a violation of the cosmic censorship conjecture. This
does not happen because the vast majority of the total
angular momentum is radiated away through emission of
gravitational waves. In particular, the system orbits for
longer than the nonspinning case to radiate all the excess
angular momentum and ensure that the remnant is a black
hole and not a naked singularity. We can construct a similar
thought experiment for the case of charge, with the
difference that charge is conserved. Therefore, if we start
with charge-to-mass ratio λ0, the remnant must have
λ > 2λ0 (because there is emission of energy), and its spin
must be greater than 0. So, it appears that there could be
conditions that favor λ2 þ χ2 > 1. Given charge conserva-
tion, Nature has to find a new way to avoid the formation of
a naked singularity, if cosmic censorship is not violated.
In Fig. 2, we plot the prediction for 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ χ2

p
for

the remnant left by the merger of two equal mass, equal
charge binaries according to the analytical model described
earlier. Cosmic censorship demands that 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ χ2

p
> 0

(M2 > Q2 þ a2). The plot shows that it is possible to
have a remnant that is arbitrary close to extremality (with
λ2 þ χ2 → 1), but it is not possible to pass this limit. This
means that the quasicircular mergers of charged black holes
should not be expected to lead to naked singularities. The
reason for this is different from the case of purely spinning

black holes, where is the emission of angular momentum
that prevents the over-extremality, and more similar to the
results found in [39] for head-on collisions. We find is that
with higher charge, the binary is less and less bound, and
the orbital acceleration is smaller and smaller. With smaller
acceleration, there is weaker emission of gravitational and
electromagnetic waves. In the limit of λ → 1, the binary
takes an infinite amount of time to merge, emitting a
vanishing amount of energy. For λ identically equal to 1, the
system is in equilibrium with gravitational and electrostatic
forces canceling out (this is the Majumdar-Papapetrou
solution [8,40,41]). In our simulations we find that a binary
with λ ¼ 0.6 orbits twice as many times as uncharged
binary before merger. Moreover, with increasing λ, the
orbital angular momentum decreases (it roughly goes asffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
), so that the spin of the remnant becomes

arbitrarily small (as seen in the top panel of Fig. 1).

IV. CONCLUSIONS

In this paper, we presented an analytical and computa-
tionally cheap method to estimate the properties of the
remnant left by the merger of two charged black holes.
The method is an extension of the technique developed in
Refs. [5,6] which uses an effective-one-body treatment
and the properties of the innermost-stable circular orbit
in an equivalent Kerr-Newman spacetime. We performed
numerical relativity simulations and verified that the
method is accurate at the percent level. This shows that
the simple argument is remarkably effective at quantitative
predictions for the properties of the remnant.
While the results presented here are only for quasicir-

cular mergers, we expect them to hold for eccentric as well,
because these orbits are bound, too. The analytical method
presented here essentially compares the energy at infinity
and the energy at the ISCO, so it does not matter how one
reaches the ISCO (as in the case without charge [42]). The
only exception is that for highly eccentric mergers one
would need to consider the ISCO for these orbits. The
analytic model we presented works for arbitrary mass, spin,
and charge configurations, but our validation only involved
quasicircular mergers with nonspinning black holes of
comparable mass and charge-to-mass ratio values up to 0.6.
When more numerical-relativity simulations of charged
inspirals will be available, the validation can be extended.
This is one of the possible limitations of the argument that
overextremal black holes cannot form in quasicircular
mergers of charged black holes.
Our second goal was to learn more about quasicircular

mergers of highly charged black holes in the context of
the cosmic censorship conjecture. Charge is conserved
quantity, whereas energy and angular momentum are not.
When two identical black holes with charge-to-mass ratio
λ0 merge, the remnant has to have λ > 2λ0 because of
emission of energy. Moreover, the dimensionless spin χ of
the remnant has to be larger than 0. This opens up the

FIG. 2. Kerr-Newman parameter as a function of the initial
charge-to-mass ratio for quasicircular mergers of equal-mass,
equal-charge binaries, as predicted with the method described in
this paper. The inset shows that even with λ → 1, we have that the
Kerr-Newman parameter is larger than 0.
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possibility that some initial configurations might lead to a
remnant with λ2 þ χ2 > 1. Given that the only axisym-
metric and stationary spacetime is the Kerr-Newman one
and that λ2 þ χ2 > 1 would mean that there is no horizon,
finding such a configuration would hint to a possible way
of forming naked singularities. In the case of spin, this is
avoided via emission of angular momentum and the orbital
hang-up. Our study shows that in the charged black hole
case increasing the initial black hole charge makes the
system less and less dynamical. With λ0 → 1, the system
asymptotically takes an infinite amount of time to merge
and radiate a vanishing amount of gravitational and
electromagnetic waves. Moreover, when λ0 → 1 the orbital
angular momentum also vanishes. Therefore, we conclude
that while it is possible to produce remnants that are
arbitrarily close to extremality, it is not possible to break
the limit.
One of the reasons why it is not possible to form naked

singularities is that the system is bound, which sets a limit
on the available orbital angular momentum. In future
studies, we will test the limits of our model by considering
the case of unlike charges (which increase the angular

momentum). We will also treat the case of unbound orbits,
such as the hyperbolic encounters [43].
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