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In this work, we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as
a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability
of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and we probe the influence of the scalar
field mass and self-interaction strength on the total mass and tidal properties of the combined system. We
find that dark matter corelike configurations lead to more compact objects with smaller tidal deformability,
and dark matter cloudlike configurations lead to larger tidal deformability. Electromagnetic observations of
certain cloudlike configurations would appear to violate the Buchdahl limit. The self-interaction strength is
found to have a significant effect on both mass and tidal deformability. We discuss observational constraints
and the connection to anomalous detections. We also investigate how this model compares to those with an
effective bosonic equation of state and find the interaction strength where they converge sufficiently.
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I. INTRODUCTION

Neutron stars are highly compact remnants of massive
stars. Due to the high densities inside of neutron stars, they
allow us to probe nuclear matter at high densities, a region
that is not readily accessible with analytic techniques.
The equation of state (EOS) describes the interplay

between density and pressure, which is needed to close the
Tolman-Oppenheimer-Volkoff (TOV) equations [1,2] that
describe the density profile of a spherically symmetric star
and the curvature of spacetime that is produced self-
consistently. A significant constraint on the EOS is the
mass value of the most massive known compact star. If an
EOS is not able to generate a star of this mass, it cannot
describe reality. There are multiple pulsars with masses at
or above 2M⊙ [3–7]. Recently, even a 2.35� 0.17M⊙
neutron star was reported by Romani et al. [8]. There is
also some speculation that the lighter companion of the
GW190814 gravitational wave event [9] was the most
massive neutron star ever observed, with a mass of about
2.6M⊙. However, there is some evidence that the object
should be considered the lightest observed black hole
instead [10–15]. Such high masses require stiff EOSs,
where the energy density strongly rises with increasing

pressure. This constraint is supported by the NICER
measurements of the pulsars J0030þ 0451 [16–18] and
J0740þ 6620 [19–21], which report quite large radii. The
contrary is true for the neutron star merger event
GW170817 detected by LIGO/Virgo [22–24], which favors
more compact configurations generated by soft EOSs.
It is additionally possible that neutron stars accumulate

dark matter (DM) in a sufficient abundance to modify their
observables, such as the mass, radius, and tidal deform-
ability. These quantities have been measured in recent
observations made by, e.g., NICER [16–21] and the
LIGO/Virgo/Kagra (LVK) Collaborations, which thus allow
us to constrain the properties of DM. DM is an integral part
of the ΛCDM model, which is the concordant model of
cosmology [25]. Despite decades of searches, its nature and
properties are still largely unknown [26,27]. A possible
contender is DM being made up of an additional scalar field
in the Universe [28,29]. The connection between neutron
stars—where the highest densities of matter are expected—
and DM has also been explored in numerous publications
and is an active area of research [30–50]. DM as a scalar
field could be around neutron stars as a cloud or inside
neutron stars as a core. Neutron stars with DM cores could
form (i) from a DM “seed” through accretion of baryonic
matter [51], (ii) through mergers of neutron stars and boson
stars, (iii) through accretion and subsequent accumulation
of DM inside the neutron star [30–32,34,36,46,47], or
(iv) through the decay of standard model particles inside
the neutron star into DM [43–45,48,49]. The presence of
DM clouds and cores in and around neutron stars will
affect the observable properties of the neutron stars, thus
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making them indirect laboratories for DM properties. It
was previously shown that even large dark matter fractions
of up to 20% are not excluded from current observations
[52]. Present and future gravitational wave detectors have
the potential to detect the possible presence of DM in
merging neutron stars and to constrain the properties of
DM, such as its mass and its self-interaction strength
[30,41,51,53–59,59–68].
In this work, we model DM as a minimally coupled

complex scalar field that only interacts with the standard
model (SM) via gravity and study its impact on the neutron
star observables. To this end, we construct equilibrium
solutions and their first-order perturbations and solve the
coupled Einstein-Hilbert-Klein-Gordon (EHKG) system
of equations. Such systems, termed fermion-boson stars
(FBSs), were first introduced by Henriques et al. [69] and
subsequently analytically studied in terms of stability under
radial perturbations [70]. In Ref. [71], they were connected
to current constraints on the mass and radii of NSs, and their
dynamical properties were explored in Refs. [72–75]. In all
of these cases, these systems were investigated using a
perfect fluid for the nuclear matter and a classical scalar field
for the bosonic DM, which is an approach that we will also
follow in this work. The described system is closely related
to boson stars [76–78], as it can be seen as a boson star that
coexists with a neutron star at the same location in space.
The tidal deformability of such systems was first inves-

tigated in Ref. [53], where the authors considered scalar
bosonic DM with masses in the MeV to GeV range, which
is gauged by a U(1) vector boson and focused on the
parameter space that results in the formation of a dark halo.
They further constructed an EOS for the bosonic sector by
using mean field theory. In order to obtain solutions for
their system, they thus extended the TOV equations to
account for two fluids at the same time. This model was
subsequently further investigated, first in Ref. [52] in terms
of detectability prospects, and in Ref. [79], where the
resulting tidal deformability was presented for a wider
range of parameters that also includes scenarios in which
the DM forms a core. Similarly, in Refs. [57,80], scalar DM
that self-interacts via a quartic coupling was considered.
Here, the authors used an effective EOS that was first
derived in Ref. [78] and then also used the two-fluid
approach. The utilized EOS is, however, only valid if the
self-interactions are sufficiently strong.
Our method is also applicable to scalar fields with weak

to no self-interactions. First, we review the equilibrium
solutions and show the effects of the ultralight scalar field on
the mass-radius relations. Then, we derive the relevant
equations for the tidal deformability and show the results of
our numerical investigation. We find two classes of sol-
utions: DM cores inside the neutron star, and DM clouds
enveloping the neutron star matter. Core solutions have
higher compactness and lower tidal deformabilities, while
cloud solutions can have large tidal deformabilities and

lower the compactness of the overall object. For large DM
fractions, a neutron star inside these clouds could appear to
violate the Buchdahl limit, if the bosonic component is not
observed, as for example in NICER observations. The large
tidal deformabilities of the cloud solutions would be
observable in LVK observations even for small DM frac-
tions, while DM core solutions only have small effects on
the tidal deformability, which would be difficult to discern
from EOS effects.
This paper is structured as follows: In Sec. II, we present

the construction of equilibrium solutions, and we further
extend these equations in Sec. III to also include the first-
order perturbations. In Sec. IV, we present the resulting
tidal deformability and compare it to observational con-
straints. In Sec. V, we compare the EHKG solutions to the
two-fluid model. Finally, in Sec. VI, we summarize our
findings. Throughout this work, we use units in which
G ¼ M⊙ ¼ c ¼ 1. See also Appendix A for information on
the unit conversion.

II. EQUILIBRIUM SOLUTIONS

In this section, we review the construction of equilibrium
solutions of FBSs, which was first presented in Ref. [69].
We model dark matter as a massive and complex scalar
field that only interacts with the SM via gravity, such that
the action of the combined system is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−∇αΦ̄∇αΦ − VðΦ̄ΦÞ þ Lm

�
; ð1Þ

where Lm is the Lagrangian describing nuclear matter and
VðΦ̄ΦÞ is the scalar field’s potential. The scalar field is
invariant under a global U(1) symmetry that gives rise to a
conserved Noether current

jμ ¼ iðΦ̄∇μΦ −Φ∇μΦ̄Þ; ð2Þ

which allows us to generally define the total number of
bosons in the system as

Nb ≡
Z

d3x
ffiffiffiffiffiffi
−g

p
g0μjμ: ð3Þ

The energy-momentum tensor for the scalar part is
given by

TðΦÞ
μν ¼ −gμνð∂αΦ̄∂

αΦþ VðΦ̄ΦÞÞ
þ ∂μΦ̄∂νΦþ ∂μΦ∂νΦ̄: ð4Þ

Varying the action with respect to the scalar field results
in the Klein-Gordon equation,

∇μ∇μΦ ¼ ΦV 0ðΦ̄ΦÞ; with V 0ðΦ̄ΦÞ ≔ dV
djΦj2 : ð5Þ
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This equation directly implies that the energy-momentum
tensor of the scalar field is separately conserved from
the perfect fluid energy-momentum tensor.
The energy-momentum tensor for nuclear matter is assumed
to be of the perfect fluid form:

TðNSÞ
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð6Þ

where ρ is the rest-mass energy density and ϵ is the internal
energy density, such that ρð1þ ϵÞ describes the total energy
density e. Requiring that the Noether current be conserved
—i.e., ∇μðρuμÞ ¼ 0—allows us to define the total number
of baryons in the system generally as

Nf ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
g0μρuμ: ð7Þ

We consider the system (for now) to be in spherical
symmetric equilibrium, such that the metric can be
written as

gμν ¼ diag
�
−evðrÞ; euðrÞ; r2; r2sin2θ

�
: ð8Þ

We further consider a static perfect fluid, such that
uμ ¼ ðev=2; 0; 0; 0Þ, and write the scalar field as

Φðt; rÞ ¼ ϕ0ðrÞe−iωt: ð9Þ

Using the spherical symmetric ansatz together with the
Klein-Gordon equation results in an equation describing
the radial dependence of the bosonic field:

ϕ00
0 ¼ euðV 0ðϕ2

0Þ − ω2e−vÞϕ0 þ
�
u0 − v0

2
−
2

r

�
ϕ0
0: ð10Þ

Additionally, the Einstein equations simplify to the
following two equations regarding the metric functions
uðrÞ and vðrÞ:

u0 ¼ 8πreu
h
ω2ϕ2

0e
−v þ Vðϕϕ̄Þ þ e−uϕ0

02 þ ρð1þ ϵÞ
i

−
eu − 1

r
; ð11Þ

v0 ¼ 8πreu
h
ω2ϕ2

0e
−v − Vðϕϕ̄Þ þ e−uϕ02

0 þ P
i
þ eu − 1

r
:

ð12Þ

Also, the conservation of the energy-momentum tensor of
nuclear matter ∇μTμνðNSÞ ¼ 0 provides a differential equa-
tion for P:

P0 ¼ −½ρð1þ ϵÞ þ P� v
0

2
: ð13Þ

This system of equations is closed by providing an EOS
Pðρ; ϵÞ [or PðeÞ] for the nuclear matter part.
Further, for the considered system, the expressions for

the total number of fermions (nuclear matter) and bosons
(dark matter) simplify to

Nb ¼ 8π

Z
∞

0

drr2eðu−vÞ=2ωϕ2
0; ð14Þ

Nf ¼ 4π

Z
Rf

0

drr2eu=2ρ; ð15Þ

where Rf denotes the fermionic radius, which is determined
by the radial position at which the fermionic pressure
P vanishes. The total gravitational mass of the system is
given by

Mtot ¼ lim
r→∞

r
2

�
1 − e−uðrÞ

�
: ð16Þ

In order to integrate these equations, it is still necessary to
provide suitable initial conditions. We do this by enforcing
asymptotic flatness and regularity at the origin—i.e.,

lim
r→∞

vðrÞ ¼ 0; vð0Þ ¼ vc;

lim
r→∞

uðrÞ ¼ 0; uð0Þ ¼ 0;

lim
r→∞

ϕ0ðrÞ ¼ 0; ϕ0ð0Þ ¼ ϕc;

ϕ0
0ð0Þ ¼ 0; ρð0Þ ¼ ρc: ð17Þ

Asymptotic flatness generally requires fine-tuning vc to
some nonzero value. However, as was also discussed in
Ref. [69], it is possible to absorb a constant shift in vðrÞ
(e.g., v → v0 ¼ v − vc) by rescaling the above set of
equations by ω → ω0 ¼ ωe−vc=2. This rescaling leaves
the set of equations invariant and has the advantage that
we automatically have vc ¼ 0. After integrating to obtain a
solution, we can retrieve the physical values of ω and v by
doing the inverse transformation using the asymptotic
value of vðrÞ.
For given ρc, ϕc, it is necessary to find the value ofω such

that the boundary conditions at infinity [Eq. (17)] are
fulfilled—i.e., the eigenvalues. There are infinitely many
eigenvalues, which are characterized by how many nodes
[i.e., radial positions with ϕðrÞ ¼ 0] are present in the scalar
field profile. We find the lowest eigenvalue, such that there
are no nodes. The bosonic ODE system is such that it will
always diverge at finite radii, due to finite numerical
precision. We employ this in order to efficiently find
solutions. We use the fact that the scalar field profile
diverges toward either þ∞ or −∞ and changes its direction
of divergence when ω passes an eigenvalue. This provides
us with a binary criterion and thus allows us to implement a
bisection for ω which converges exponentially fast.
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Once a sufficiently accurate ω is found, we modify
the integration, such that ϕ0 is set to zero at a finite radius
r�B. This radius r�B is found by the condition ϕ0ðr�BÞ=
ϕc < 10−4. This is necessary because otherwise, the
numerical integration diverges at finite radii. Since we
have the additional neutron matter component, in some
part of the parameter space, the integration would diverge
before P has converged to 0. For example, in compact dark
matter core configurations, the integration could diverge
while still inside the neutron star component. Therefore,
we artificially set ϕ0 ¼ 0 for r > r�B, which allows us to
circumvent the divergence and accurately resolve the rest
of the neutron star component. The condition was chosen
such that the remaining contribution of the scalar field to
the other quantities (i.e., the metric components) would be
minimized. We have checked for lower thresholds, and the
extracted results are the same.
We integrate the system until a radius is reached at which

both the scalar field ϕ0 and the fermionic component
parametrized by P have converged to zero. There, we can
extract the properties of interest, such as the total massMtot
and number densities Nf , Nb.
For some configurations, due to numerical precision

limits, the scalar field convergence condition cannot be
fulfilled. This generally happens for small initial field values
ϕc ≲ 10−4, where the bosonic cloud extends far outside
the neutron star. In these cases, we extract the mass Mtot
at the point where its derivative has a global minimum.
When the scalar field diverges, the metric components do as
well, and with them the calculated mass of the system. By

taking the point where the derivative of the mass has a global
minimum, which roughly corresponds to where the scalar
field and its derivative is closest to zero, we get the best
estimate of the mass of the system before the divergence.
Once we have a fermion-boson star solution for given ρc,

ϕc, the stability of the physical system is of importance. To
this end, we need to calculate a whole family of solutions
and use the stability criterion derived in Ref. [70], which is
a generalization of the stability criterion for neutron stars.
The idea is to find extrema in the total number of particles
for fixed mass, depending on the central values ρc, ϕc. At
these lines must be the transition between stable and
unstable configurations:

dNf

dσ
¼ dNb

dσ
¼ 0; ð18Þ

where d=dσ denotes the derivative in the direction of
constant total mass—i.e., up to a normalization factor

dNf

dσ
∝ −

∂Mtot

∂ρc

∂Nf

∂ϕc
þ ∂Mtot

∂ϕc

∂Nf

∂ρc
: ð19Þ

Figure 1 shows what configurations are stable depending
on the central value of the rest-mass density and the central
value of the scalar field, according to the above condition
for the case of a massive scalar field with no self-
interactions and the mass set to m ¼ 1.34 × 10−10 eV.
Additionally, the resulting mass and radii for the stable
configurations are displayed.

FIG. 1. Left panel: Density plot that displays the total gravitational mass as a function of the central rest-mass density (ρc) and central
value of the scalar field (ϕc). Additionally, it displays the stability curve as the solid black line calculated using Eq. (18)—i.e., all
configurations that lie within the bottom-left parameter region that is bordered by the black line are stable against radial perturbations.
Right panel:Mass-radius diagram displaying the fermionic radius (the radius of the fermionic component) vs the total gravitational mass
for configurations that are within the stable region displayed in the left panel. Each point corresponds to a single configuration and is
color-coded according to the rest-mass fraction of the dark matter component. The solid black line shows the mass-radius curve for pure
fermionic matter. For both plots, a massive scalar field with no self-interactions and the mass set tom ¼ 1.3 × 10−10 eV was considered
in addition to the DD2 EOS.
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III. TIDAL DEFORMABILITY

In order to obtain the tidal deformability, we will follow
the same procedure that was used in Ref. [81] to obtain the
tidal deformability of pure neutron stars and subsequently
also applied to pure boson stars in Refs. [82,83]: We are
expanding the matter and gravitational field around a static,
spherically symmetric configuration, and then we insert
this expansion into the linearized Einstein equations to
obtain a system of differential equations that allows solving
for the linear perturbations, from which we then extract the
tidal deformability.
Applying an external quadrupolar tidal field Eij to a

spherically symmetric star results in it developing a quad-
rupolar moment Qij as a response. At linear order, this
response is proportional to the applied tidal field, such that
Qij ¼ −λtidalEij, where λtidal is the tidal deformability.
The induced quadrupolar moment modifies the gtt metric
component, such that at leading order in the asymptotic rest
frame at large radii [84],

gtt ¼ −1þ 2Mtot

r
− Eijxixj

�
1þ 3λtidal

r5

�
; ð20Þ

where xi defines a Cartesian coordinate system with
r2 ¼ δijxixj.
We now turn to explicitly deriving the equations gov-

erning the linear perturbations from the linearized Einstein

equations. We focus on static, even-parity, and quadrupolar
(l ¼ 2) metric perturbations, which we denote by hμν.
Further, we choose to work in the Regge-Wheeler gauge,
in which hμν takes the form

hμν ¼ Y20ðθ;φÞdiag
�
−evðrÞH0ðrÞ; euðrÞH2ðrÞ;

× r2KðrÞ; r2KðrÞsin2θ
�
; ð21Þ

where H0, H2, and K describe the radial dependence of
each perturbed metric component and Y20 is the ðl; mÞ ¼
ð2; 0Þ spherical harmonic. At the same time, we expand the
scalar field. We denote the first-order perturbation as δΦ
and use the same ansatz as Ref. [83], such that

δΦðt; r; θ;φÞ ¼ ϕ1ðrÞ
e−iωt

r
Y20ðθ;φÞ; ð22Þ

where the same time dependence is chosen for the
perturbations in order to ensure that the energy-momentum
tensor remains static. We can obtain a set of differential
equations that relate the perturbations to the background
solutions by expanding the Einstein equations to first order
in hμν and ϕ1.
Inserting this expansion into the Klein-Gordon equation

[Eq. (5)] and only keeping terms linear in the perturbations
results in

ϕ00
1 ¼

u0 − v0

2
ϕ0
1 þ

�
−2ϕ0

0 − rϕ00
0 þ

v0 þ u0

2
rϕ0

0 þ ω2rϕ0eu−v
�
H0

þ
�
6eu

r2
þ v0 − u0

2r
þ 16πϕ02

0 þ eu
�
V 0ðϕ2

0Þ þ 2ϕ2
0V

00ðϕ2
0Þ − ω2e−v

��
ϕ1: ð23Þ

Similarly, we expand the Einstein equations—i.e., we look at δGμν ¼ 8πδTμν. The perturbed energy-momentum tensor

of the fermionic part is written as δTμðNSÞ
ν ¼ diagð−δP=c2s ; δP; δP; δPÞ, where we use δe ¼ δP∂e=∂P ¼ δP=c2s , with cs

being the sound speed. The perturbed energy-momentum tensor of the scalar field is computed by expanding Eq. (4).
Subtracting the θθ from the ϕϕ component of the perturbed Einstein equations reveals H2ðrÞ ¼ −H0ðrÞ. Adding the θθ
component to the ϕϕ component allows us to obtain an expression for δP, which can be substituted into the ttminus the rr
component to obtain a differential equation for H0:

H00
0 þ

�
v0 − u0

2
þ 2

r

�
H0

0 þ
�
−8π

1þ 3c2s
c2s

ϕ02
0 þ 8πω2eu−v

c2s − 1

c2s
ϕ2
0 −

u0v0 þ v02

2
þ v00 þ 3u0 þ 7v0

2r
þ u0 þ v0

2rc2s
−
6

r
eu
�
H0

¼
�
−
16π

r
1þ 3c2s

c2s
ϕ00
0 þ

8π

r

�
3u0 þ v0 þ u0 − v0

c2s
−
4

r
1þ 3c2s

c2s

�
ϕ0
0 þ

16π

r
eu
�
V 0ðϕ2

0Þ
c2s þ 1

c2s
þ ω2e−v

c2s − 1

c2s

�
ϕ0

�
ϕ1: ð24Þ

Here, primes denote derivatives with respect to the coordinate radius r. The above equation contains a term depending on
v00, which is explicitly given by

v00 ¼ 8πeuðrPu0 þ rP0 þ PÞ þ 16πrϕ0
0ϕ

00
0 þ 8πϕ02

0 þ 16πreuð−V 0ðϕ2
0Þ þ ω2e−vÞϕ0ϕ

0
0

− 8πeuVðϕ2
0Þðru0 þ 1Þ þ 8πω2eu½rðu0 − v0Þe−v þ e−v�ϕ2

0 þ eu
ru0 − 1

r2
þ 1

r2
: ð25Þ
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As mentioned in Ref. [83], for radii larger than the
typical size of the combined system, the differential
equation for H0 reduces to

H00
0 þ

�
2

r
þ eu

2M
r2

�
H0

0 −
�
6eu

r2
þ e2u

4M2

r4

�
H0 ¼ 0; ð26Þ

which has a solution in terms of associate Legendre
functions:

H0 ≈ c1Q2
2

�
r
M

− 1

�
þ c2P2

2

�
r
M

− 1

�
: ð27Þ

Expanding this equation in r=M and matching to
Eq. (20) results in

λtidal ¼
16

15
M5ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

× f3ð1 − CÞ2½2 − yþ 2Cðy − 1Þ� logð1 − 2CÞ
þ 2C½6 − 3yþ 3Cð5y − 8Þ� þ 4C3½13 − 11y

þ Cð3y − 2Þ þ 2C2ð1þ yÞ�g−1; ð28Þ

where y≡ rextH0
0ðrextÞ=H0ðrextÞ, C≡Mext=rext, and rext

denotes the radial position at which λtidal is calculated. The
dimensionless tidal deformability is defined as Λtidal ≔
λtidal=M5

tot.
In order to determine the behavior of ϕ1 and H0 at the

origin (and thus determine the initial conditions we have to
impose), we expand all quantities around the origin as

ϕ1ðrÞ ¼
X
i

ϕ1;iri; ð29Þ

where ϕ1;i are the expansion coefficients that do not have
any dependency on the radius. Similarly, we also expand
H0 with H0;i as the coefficients. After plugging this
expansion into Eqs. (23) and (24) and solving the resulting
polynomial equations order by order results in

ϕ1ðrÞ ¼ ϕ1;3r3 þOðr5Þ;
H0ðrÞ ¼ H0;2r2 þOðr4Þ: ð30Þ

We additionally impose the boundary conditions

lim
r→∞

ϕ1 ¼ 0: ð31Þ

Now, we can use the fact that Eq. (24) is invariant under a
simultaneous rescaling of ϕ1 and H0. Due to this, we can
rescale the equations to automatically have H0;2 ¼ 1.
Similarly to the procedure for ω, we use a bisection
algorithm to then find the initial ϕ1;3 such that the above
conditions are fulfilled. ϕ1 converges to 0 just as ϕ0, so we
also set ϕ1ðrÞ ¼ 0 for r > r�B. This allows us to circumvent

the divergence of the perturbations, while having no effect
on the tidal deformability, since the equations for ϕ1, H0

decouple with ϕ0 ≡ 0. Then, the tidal deformability is
constant for any r > r�B and can easily be extracted.
In case the convergence condition cannot be fulfilled, we

follow the procedure in Ref. [83] and extract y at rext such
that it is a local maximum. Since there are two components
in the neutron star at play, there can be multiple local
maxima, of which we choose the one at the largest radius.
The code is publicly available, along with examples and

the procedures to obtain the results.1

IV. RESULTS

We now specialize to a potential that is quartic in the
field:

VðΦ̄ΦÞ ¼ m2Φ̄Φþ λ

2
ðΦ̄ΦÞ2; ð32Þ

where m is the particle mass and λ is the self-interaction
parameter. To allow for easy comparison with previous
works, we use the effective interaction parameter Λint ¼
λ=ð8πm2Þ. This was originally introduced in Ref. [78] to
quantify the self-interaction strength—i.e., for Λint ≪ 1, the
total gravitational mass of a pure boson star scales as
M ∝ 1=m, while for Λint ≫ 1 we have M ∝ 1=m2. Also, in
this regime the stress-energy tensor becomes approximately
isotropic, meaning that an EOS might be used to model this
case (see Sec. V below). It is important to keep in mind that
Λint was introduced in the context of pure boson stars, and
thus the scaling relations of the total mass are not generally
valid for the mixed system—i.e., FBSs. Nonetheless, we
still find it convenient to use it as a general measure to
compare different choices of the mass and self-interaction
strength.
We investigate nine different models with m¼

f0.1;1;10g ·1.34×10−10 eV and Λint ¼ f0; 10; 100g. This
mass range is chosen such that the Compton wavelength of
the bosonic field is half the Schwarzschild radius of the
Sun; see the explanation in Appendix A. The range of self-
interaction is well within bullet cluster constraints for dark
matter, since [85,86]

πΛ2
intm ¼ λ2

64πm3
¼ σ

m
< 1

cm2

g

⇔ Λint < 1050

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.34 × 10−10 eV

m

r
; ð33Þ

where σ=m is the effective cross section.
For the fermionic component, we employ the DD2 EOS

(with electrons) from the CompOSE database [87,88]. The

1github.com/DMGW-Goethe/FBS-Solver.
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DD2 EOS is based on a relativistic mean-field model with
density-dependent coupling constants which has been fitted
to the properties of nuclei and results from Brueckner-
Hartree-Fock calculations for dense nuclear matter. Thereby,
the EOS describes also the EOS of pure neutron matter from
chiral effective field theory; see Ref. [89]. For the purpose of
our investigations, the particular choice of the nuclear
equation of state is not of importance and does not change
our conclusions.

A. Mass-radius relations and tidal deformability

First, the mass-radius relations are plotted in Figs. 2
and 3.
We use a grid of ρc;ϕc to populate the plots, selecting

only the stable configurations, as explained in Sec. II. Each
point is colored by the resulting DM mass fraction
NB=ðNB þ NFÞ. Instead of a mass-radius curve, this gives
a mass-radius region for the FBSs with different fermionic
and bosonic content. Important to note is that in Fig. 2 we
plot the fermionic radius, the radius where the fermionic
component vanishes. The bosonic radius can be orders of
magnitudes larger or smaller, depending on the mass and
self-interaction parameter. To better understand these
objects, we also plot the effective gravitational radius—
the radius at which 99% of the rest mass is contained—in
Fig. 3. Here, the compactness of the FBS can be inferred.
For pure neutron stars with the DD2, the crust has
comparatively low density, which makes this effective
gravitational radius smaller than the fermionic one.
Which radius is more relevant for a given problem depends
on the observation—e.g., the fermionic radius would be
crucial for electromagnetic signatures, such as those
observed by the NICER telescope. The effective gravita-
tional radius would be more relevant for the inspiral in
binary mergers and enters through the compactness and the
tidal deformability.
Some general trends can be seen in the figures. Stars

dominated by the fermionic part are close to the pure DD2
solution, as expected. For stars dominated by the bosonic
component, the pure boson star solutions are recovered. For
m ¼ f1; 10g · 1.34 × 10−10 eV, the regions in Fig. 2 extend
to lower masses with similar apparent compactness. These
results are consistent with the lines shown in Ref. [75]. A
look at Fig. 3 reveals the behavior of these solutions. For
m ¼ 1.34 × 10−9 eV, the bosonic component is predomi-
nantly inside the fermionic one as a DM core. For
m ¼ 1.34 × 10−10 eV, the bosonic and fermionic distribu-
tions have a similar extent—for a low DMmass fraction, the
compactness is increased, while for a higher DM mass
fraction, the compactness decreases as the DM forms a
cloud. This is similar to the behavior seen in Ref. [90] for a
different mass range, where increasing the DMmass fraction
leads to cloud formation. For m ¼ 1.34 × 10−11 eV, the
bosonic component completely envelops the fermionic one
in a cloud and can significantly decrease the compactness of

the object (notice the different scales on the x axis). The
apparent compactness of the fermionic part increases, on the
other hand. Here, only observing the fermionic radius as in
Fig. 2 would seem like a violation of GR, as the apparent
compactness exceeds the Buchdahl limit of 4=9.
The relation between tidal deformability and total

gravitational mass is plotted in Fig. 4. Here, we show
the dimensionless tidal deformability Λtidal ¼ λtidal=M5. In
blue-bordered lines, the tidal deformability of the DD2
EOS is shown, while the tidal deformability of a pure boson
star is shown in yellow-bordered lines. The latter agrees
with the trend lines shown in Ref. [83].
For m ¼ 1.34 × 10−9 eV, the DM is mostly confined to

the inner part of the neutron star as a core and therefore
does not affect the tidal deformability significantly. Only
for stars completely dominated by DM are the results close
to the pure boson star solutions. For larger interactions
Λint ≈ 100, the tidal deformability is decreased.
For m ¼ 1.34 × 10−11 eV, on the other hand, where the

bosonic component forms a cloud, there is a significant
effect on the tidal deformability. The tidal deformability of
boson stars is much higher than that of purely fermionic
ones, so even small amounts of DM can significantly
increase the tidal deformability of the FBS. For constant ρc,
the tidal deformability increases by orders of magnitude as
ϕc increases. Then, there is a turning point, where the tidal
deformability decreases while total gravitational mass
increases and converges to the purely bosonic solutions.
Overall, this opens up a vast new parameter space, even for
small DM mass fractions. While the presence of these
bosonic clouds in small quantities would barely be observ-
able in the mass-radius plane, it would clearly affect the
tidal deformability even in small quantities, as visible
in Fig. 5.
For m ¼ 1.34 × 10−10 eV, the behavior is more depen-

dent on the interaction strength Λint. For weaker inter-
actions, the tidal deformability stays roughly in the same
order of magnitude for constant ρc, while slowly converg-
ing to the pure bosonic solution for increasing ϕc. For
stronger interactions, the tidal deformability actually
increases as it converges to the bosonic solution, as the
bosonic component starts to form a cloud. This behavior is
consistent with the observations of Ref. [57], where an
effective EOS was used for modeling the bosonic
component.

B. Comparison to observational constraints

There are measurements of the (fermionic) radius of
neutron stars by the NICER telescope, tracking hot spots
on their surface with x-ray observations. For the milli-
second pulsar PSR J0030þ 0451, they derive the con-
straints on the mass M ¼ 1.34þ0.15

−0.16M⊙ (68%) and radius
R ¼ 12.71þ1.14

−1.19 (68%) [17]. A second, heavier millisecond
pulsar PSR J0740þ 6620 has been measured at
M ¼ 2.07þ0.07

−0.07M⊙ (68%) with radius R ¼ 12.39þ1.30
−0.98 km
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(68%) [20]. These measurements constitute only two
single points on the mass-radius curve (in the neutron
star case) or region (in the FBS case), but they can show
which curves/regions would support the existence of
such stars.

We plot the posterior distributions of these measure-
ments in Fig. 5, which should be compared to the regions in
Fig. 2, where the fermionic radius is plotted.
The FBS solutions with a core become more compact,

depending on the DM fraction. For higher DM fractions,

FIG. 2. The relation between total gravitational mass M and the fermionic radius Rf for the FBSs with different DD2 form mass
fractions. The rows correspond to three different bosonic masses m ¼ f1; 10; 0.1g · 1.34 × 10−10 eV, while the columns correspond to
three different Λint ¼ f0; 10; 100g. The EOS we employ for the fermionic part is the DD2. Notice the different scale of the bottom plots.
Observing only the fermionic radius of these systems would appear to violate the Buchdahl limit, even though the whole FBS does not.
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FIG. 3. The relation between total gravitational massM and the effective gravitational radius Rg for the FBSs with different DD2 form
mass fractions. The effective gravitational radius is the radius at which 99% of the rest mass is contained. The rows correspond to three
different bosonic masses m ¼ f1; 10; 0.1g · 1.34 × 10−10 eV, while the columns correspond to three different Λint ¼ f0; 10; 100g. The
EOS we employ for the fermionic part is the DD2. In the case of pure neutron stars, the crust has comparatively low density, which
makes this effective gravitational radius significantly smaller than the fermionic one. Notice the different scales of the bottom plots. For
low masses, the bosonic component forms a core, and the total compactness of the object increases. For higher masses, the bosonic
component forms a cloud and can significantly decrease the compactness of the object.
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they are not able to produce the maximummass required by
the PSR measurements. DM cloud solutions, on the other
hand, can easily reach higher maximum masses. This is in
accordance with Ref. [90], who modeled the FBS with an
effective EOS and also included the changing photon

geodesics due to the DM cloud, and Ref. [52], who
performed a Bayesian analysis with the effective EOS.
Another measurement comes from the supernova remnant

HESS J1731 − 347. Modeling the x-ray spectrum with
accurate distance information from GAIA, they report a

FIG. 4. The relation between dimensionless tidal deformability Λtidal ¼ λtidal=M5 and total gravitational mass M for the FBSs with
different DM mass fractions. The rows correspond to three different bosonic masses m ¼ f1; 10; 0.1g · 1.34 × 10−10 eV, while the
columns correspond to three different interaction strengths Λint ¼ f0; 10; 100g. For the fermionic part, we employ the DD2 EOS.
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mass of M ¼ 0.77þ0.20
−0.17M⊙ (68%) with radius R ¼

10.4þ0.86
−0.78 km (68%) [91]. This is an unusually light neutron

star, which standard star evolution theory struggles to
explain; see, e.g., Ref. [93]. The authors of Ref. [91]
propose it to be a strange star, but looking at Fig. 2, this
region is also well populated by DM core solutions. Of
course, one would have to repeat their analysis with an
actual bosonic component to get accurate constraints, which
we leave for future work.
Lastly, there is the observation of GW170817, a binary

neutron star merger. Reference [24] has derived constraints
with minimal assumptions on the nature of the compact
objects. They use a mass-weighted linear combination of the
individual tidal deformabilities and cite an upper limit of
630. Alternatively, assuming neutron stars with the same
EOS, Ref. [23] has derived constraints on the tidal deform-
ability with the help of universal relations [94,95]. These
constraints are not perfectly applicable to our case, as the
I-Love-Q relations are not necessarily applicable (although
they might be [59]—we leave this for future work), and our
two FBS stars might have the same EOS but different DM
mass fractions. Nevertheless, we can make some initial
guesses. It can be seen that the measurements generally
favor lower tidal deformabilities. Extrapolating this to
Fig. 4, this would mean that the DM cloud scenarios with
larger tidal deformability are disfavored. Favored, on the
other hand, are DM core situations, which can lower the
tidal deformability. A more thorough analysis might place
quantitative constraints on these models, which we leave for
future work.
Previous studies using an effective EOS description for

the bosonic component reach similar conclusions and have

placed initial constraints on different mass ranges, such as
Refs. [57,79,96].
Overall, the different measurements seem complemen-

tary, and combining them in a proper analysis might
significantly constrain the parameter space. DM cloud
solutions can have large tidal deformabilities, even for
small DM fractions; these would most likely be observable
in LVK measurements. DM core effects on the tidal
deformability, on the other hand, can hide inside neutron
stars and only slightly change the properties, even for
larger DM fractions. But core solutions can explain the
HESS measurement, and assuming different DM fractions
for different stars, they are not ruled out by the maximum
mass measurement. Of course, these effects are somewhat
degenerate with the neutron star EOS. Breaking these
degeneracies requires other methods, such as looking at
correlations in the galactic DM distribution with the
neutron star (FBS) mass distribution [79,96].

V. COMPARISON WITH AN EFFECTIVE EOS

Due to the significant numerical effort associated with
solving the full system of equations [Eqs. (10)–(13)] self-
consistently, earlier studies [78,80] have used an effective
EOS PðeÞ for the scalar field, treating it like a perfect fluid
with pressure P and total energy density e. The effective
EOS was originally derived in Ref. [78] for the cases where
Λint ¼ λ=8πm2 > 0 is large (strong self-interactions). It
models exclusively the ground state of the scalar field
and assumes an isotropic energy-momentum tensor (which
is only valid in the given limit). The EOS has the advantage
that the scalar field must not be solved for directly, and the

FIG. 5. Left panel: Resulting mass and radii of a FBS for the two cases of m ¼ 1.34 × 10−10 eV and m ¼ 1.34 × 10−11 eV, shown
together with constraints from HESS J1731 − 347 [91], PSR J0030þ 0451 [17], PSR J0740þ 6620 [20], PSR J1311 − 3430 [92], and
J0952 − 0607 [8]. In both cases, the self-interaction was set to zero, and the percentage number denotes the DM mass fraction. For the
NICER and HESS measurements, dashed lines display the 1σ, while straight lines show the 2σ regions. Right panel:Dimensionless tidal
deformability for the same set of parameters, shown together with the constraint coming from the GW170817 event [24].
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evolution equations simplify to the default TOV equations.
The effective EOS is given by

P ¼ 4

9
ρ0

��
1þ 3

4

e
ρ0

�
1=2

− 1

�
2

; ð34Þ

where ρ0 ¼ m4=2λ. Note that our expressions for ρ0 and
Λint deviate from Refs. [78,80] by a factor of 2 due to the
different normalization of the scalar field Φ and the self-
interaction parameter λ in the potential [Eq. (32)]. The
authors of Ref. [80] used the effective EOS in a two-fluid
system of perfect fluids, which interact only gravitationally,
to compute the tidal deformability of the FBS. In the
following, we compare the results obtained from integrating
the two-fluid model (see Ref. [80] for details) and from
solving the full system [Eqs. (10)–(13)]. In addition, the
tidal deformability is computed as one would for a single-
fluid system (details in Ref. [80]) for the two-fluid model,
and as described in Sec. III for the full system.
For the initial conditions of the two-fluid model, we

choose the same conditions as in Ref. [80]. For better
comparability between the full system and the effective
EOS, we first want to find an expression relating the scalar
field ϕ to the energy density eeff of the effective fluid. To
derive this relation, we set the Ttt component of Eq. (4)
equal to the Ttt component of a perfect fluid (therefore,

TðΦÞ
tt ¼! eeff · ev), and we use the approximations used in

Ref. [78] (i.e., neglecting spatial derivatives). We obtain an
expression that depends only on the scalar field value ϕ [see
Eq. (17)], the scalar field mass m, and the self-interaction
parameter λ:

eeffðϕÞ ¼ 2m2ϕ2 þ 3

2
λϕ4; ð35Þ

where e−vω2 ¼ m2 þ λϕ2 was substituted using the Klein-
Gordon equation (10). Equation (35) holds for all radii
(under the approximations stated above). To get the initial
conditions for eeff;c, one simply plugs in the corresponding
central value of the scalar field ϕc.
Figure 6 shows the relative error ϵrel for the quantities

Mtot and the tidal deformability Λtidal, computed using the
full system and the effective two-fluid system, with respect
to Λint. It can be seen that the errors (the shaded regions)
generally decrease for increasing Λint. This is consistent
with the assumption that the effective EOS [Eq. (34)]
becomes exact only in the limit of strong self-interactions.
For small Λint, the relative error reaches 100% for the total
mass and diverges for the tidal deformability. This is to be
expected, since the total mass converges to zero for pure
boson stars when using the effective EOS in the limitΛint →
0 (see Fig. 2 in Ref. [78]), while it reaches a constant value
when computing the mass using the full system. Likewise,
due to the definition of the tidal deformability (see above), a
diverging error is to be expected. For Λint ≈ 100, the

maximal error of the total mass (tidal deformability) is
on the order of 88% (> 104%), whereas the lower 95th
percentiles of errors are noticeably smaller at around< 47%
(< 240%). This means that only 5% of the computed
configurations have relative errors higher than 47%
(250%). The median error, denoted by the solid blue line,
is around 1% (2%). At Λint ¼ 300, the maximal error
reaches 85% (> 104%), and the median error reaches
0.4% (0.8%). Asymptotically, the error is constrained by
floating-point precision and the inherent error of the
effective EOS as compared to the full system.
To gain a better understanding how the effective EOS

and the full system compare, we compute the tidal
deformability Λtidal using both systems. The left panel
of Fig. 7 shows the tidal deformability of pure boson
stars calculated for different self-interaction strengths
Λint ¼ f10; 100; 200; 400g. The solid lines show the sol-
utions using the full system, and the dashed lines are the
values obtained using the effective EOS. The effective

FIG. 6. Distribution of the relative error (e.g., jΛtidal;full−
Λtidal;eff j=Λtidal;full) of the dimensionless tidal deformability
Λtidal (upper panel) and total massMtot (lower panel) as a function
of Λint. For example, the straight line shows the boundary below
which half of the FBS configurations lie, meaning that half of
them have a relative error of less than the shown value for a given
Λint. Subscripts of full and eff denote quantities obtained from the
full system and from the effective EOS, respectively. Only stable
FBSs were considered for the relative error at a given Λint, and
computations were performed for m ¼ 6.7 × 10−11 eV. The
agreement between the full system and the effective EOS becomes
generally better for large Λint; however, at some point, numerical
inaccuracies in the full system dominate the relative error, which
starts to be problematic for Λint ≳ 400.
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EOS can qualitatively reproduce the solution of the full
system, even for small Λint. With increasing lambda, the
agreement between full and effective system becomes
better. At around Λint ¼ 400, the quantitative agreement
reaches a few-percent relative difference.
Next, we consider the case for mixed configurations with

nonzero scalar field and central density. The right panel of
Fig. 7 shows the tidal deformability with respect to the FBS
mass. Several curves of constant central scalar field ϕc were
calculated at different Λint ¼ f10; 100; 200; 400g. The
choice of constant ϕc is per se arbitrary but was made
for the sake of simpler comparability with future works.
The solid lines show the solutions obtained using the full
system, and the dashed lines were computed with the
effective EOS (all other values being equal). With increas-
ing Λint, the solutions using the effective EOS agree with
the full system with increasing accuracy. Even though at
lower Λint < 200, the deviations are quite large, the
qualitative trend is correctly recovered. At Λint ¼ 400,
both systems produce reasonably similar results (within
a few percent of relative difference). This supports the
usage of the effective EOS for large Λint ≳ 400 also for the
computation of the tidal deformability Λ.
A few notes on the usefulness of the effective EOS

[Eq. (34)] and the two-fluid system: We were able to verify
the general notion, that the effective EOS becomes asymp-
totically more accurate, for most configurations. However, a
significant percentage of FBS configurations with high
relative errors remain, especially when considering the tidal
deformability, where the relative error surpasses 200% for
roughly 5% of all configurations. This is due to the different

low-mass limits and the definition of the dimensionless tidal
deformability. Nevertheless, we conclude that the usage of
the effective EOS is justified in the cases where Λint ≳ 400,
as the errors are acceptable for most (massive) configura-
tions. Of course, solving the full system [Eqs. (10)–(13)]
will always yield the exact results in theory. In practice, it
can be numerically difficult to integrate the full system at
high Λint ≳ 400, because (i) the frequency ω must be tuned
up to higher accuracy than what is possible using 64-bit
floating-point numbers, and (ii) increasingly small step sizes
are needed to solve the equations correctly. During our tests,
we could determine that the more relevant constraining
factor is the high needed accuracy for ω, rather than the step
size. Smaller initial ϕc values lead to larger bosonic radii
≫ 10 km, for which the numerical integration becomes
problematic. This concerns 5% of the considered configu-
rations. In contrast, the two-fluid system together with the
effective bosonic EOS is numerically robust and does not
require numerical root-finding for ω, and can manage well
with larger numerical step-sizes. With equal step sizes and
initial conditions, the two-fluid system takes around 2
orders of magnitude less computation time than solving
the full system. The speed-up can be increased further when
considering that the two-fluid system also tolerates larger
step sizes while staying numerically accurate.

VI. CONCLUSIONS

In this work, we considered the impact of a complex
scalar field on the mass and tidal deformability of neutron
stars. The scalar field was assumed to be massive and

FIG. 7. Left panel: Tidal deformability Λtidal plotted against the total gravitational mass Mtot for pure BSs and various self-
interaction strengths Λint. The boson mass is m ¼ 6.7 × 10−11 eV in all cases. The solid lines are the values obtained using the full
system [Eqs. (10)–(13)], and the dashed lines are the corresponding solutions using the effective bosonic EOS [Eq. (34)]. Right panel:
Tidal deformability Λtidal with respect to the total gravitational mass M of different FBSs for different self-interaction strengths Λint.
The boson mass is m ¼ 6.7 × 10−11 eV in all cases. All lines have a constant central value of the scalar field ϕc ¼ 0.02, but different
central densities ρc. Only stars within the stability region are shown. The solid lines are the values obtained using the full system
[Eqs. (10)–(13)], and the dashed lines are the corresponding solutions using the effective bosonic EOS [Eq. (34)].
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self-interacting, but to only interact gravitationally with the
fermionic neutron star matter. We derived the equations
describing the linear perturbations of the combined FBS
system induced by the presence of an external gravitational
tidal field and numerically solved them to obtain the tidal
deformability of the combined system. We found that the
scalar field masses m and self-interaction strengths λ which
result in the corelike configurations of the dark matter lead
to objects with higher compactness and reduced tidal
deformability. This is the case for masses m≳ 1.34×
10−10 eV. However, large self-interactions λ allow for
higher FBS masses or can, in some cases, result in cloudlike
configurations. In some of these cases, observing only the
fermionic radius would appear to violate the Buchdahl limit.
When comparing the results to available observational

data of pulsars, it becomes clear that their uncertainties are
currently too large (apart from the pulsar mass measure-
ments) to derive quantitative constraints on the dark matter
component. The degeneracy of the effects of DM in the
FBS with the EOS poses an additional challenge. As certain
DM masses can increase the total mass of the system while
leaving the fermionic radius roughly constant, this makes
a previously excluded EOS possible again, if they appear in
a mixed configuration of NS matter and DM. Likewise, the
unusually light neutron star HESS J1731 − 347 is difficult
to reconcile with known high-mass pulsar measurements,
using a regular EOS.
The relatively weak constraint from GW170817 on the

tidal deformability (Λtidal ≤ 800 at Mtot ≈ 1.4M⊙) is cur-
rently also not strong enough to significantly narrow down
the dark matter properties. With the upcoming joint run of
LIGO, Virgo, and KAGRA, we expect more observational
data, which will enable us to derive quantitative constraints.
We plan to investigate how to constrain dark matter
properties using these observations in the future.
In addition to solving for the scalar field explicitly, we

also utilized an effective EOS to describe its contribution to
the stress-energy tensor and reduce the complexity of this
model to a two-fluid system. This approach was recently
used by Ref. [80] to compute the tidal deformability. In this
work, we compared the result of using the effective EOS to
that of solving the full system of equations. We found that
for m ¼ 6.7 × 10−11 eV and interaction strengths Λint >
300–400 with Λint ¼ λ=ð8πm2Þ, the usage of the effective
EOS is typically justified. We do not expect this conclusion
to be dependent on the value of the mass m, but rather only
on Λint. Still, even for large values of Λint, we find a
significant number of configurations with relative errors
of > Oð102Þ.
Finally, it would be interesting to study the exact impact

the additional scalar field has on binary merger dynamics. In
Ref. [97], this was initially studied for a non-self-interacting
scalar field. In general, it will be necessary to extend this
study to also account for self-interactions, as this can
drastically modify the FBS properties and thus impact

the observed gravitational wave signal. We will study this
in detail in the future.
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APPENDIX A: UNITS

In this work, we considered units in which c ¼
G ¼ M⊙ ¼ 1. As a direct consequence, distances are
measured in units of ≈1.48 km, ℏ ≈ 1.2 × 10−76 ≠ 1, and
mplanck ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
≈ 1.1 × 10−38.

We describe the boson star using the Klein-Gordon
equation, which in SI units and flat spacetime reads as
ð□ − ðmc=ℏÞ2Þϕ ¼ 0. The term mc=ℏ is the inverse of the
reduced Compton wavelength λc ¼ ℏ=mc, which sets the
typical length scale for the system even in the self-
gravitating case. Setting it equal to the gravitational radius
GM=c2, which in the case of mass scales of ∼M⊙ is
approximately 1.48 km, leads to m ¼ ℏ=cλc, which cor-
responds to 1.34 × 10−10 eV, which then also automati-
cally results in boson stars with masses ∼1M⊙. Previous
works such as, e.g., Ref. [71] therefore specify the mass of
the scalar particle in units of 1.34 × 10−10 eV.

APPENDIX B: ALTERNATIVE CONVENTIONS

There is an alternative convention for the metric used in
some publications, e.g., Ref. [71], where the spherically
symmetric, stationary metric is described by

ds2 ¼−αðrÞ2dt2þaðrÞ2dr2þ r2ðdθ2þ sin2 θdϕ2Þ: ðB1Þ

The ODEs for the equilibrium solution Eqs. (10)–(13) are
then given by

ϕ00
0 ¼

�
−
ω2a2

α2
þ a2V 0

�
ϕ0 þ

�
a0

a
−
α0

α
−
2

r

�
ϕ0
0; ðB2Þ

a0 ¼ a
2

�
1 − a2

r
þ 8πra2

�
ω2ϕ2

α2
þ V þ ϕ02

0

a2
þ ρð1þ ϵÞ

��
;

ðB3Þ

α0 ¼ α

2

�
a2 − 1

r
þ 8πra2

�
ω2ϕ2

α2
− V þ ϕ02

0

a2
þ P

��
; ðB4Þ

P0 ¼ −½ρð1þ ϵÞ þ P� α
0

α
; ðB5Þ

where V ¼ Vðϕϕ̄Þ. Plugging in the quartic potential
Eq. (32), this would give the same equations as in
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Ref. [71], except for a different normalization of the field ϕ0, which differs by a factor of
ffiffiffi
2

p
.

Making an ansatz for the perturbations as in Eq. (21),

hμν ¼ Y20ðθ;φÞdiagð−αðrÞ2H0ðrÞ; aðrÞ2H2ðrÞ; r2KðrÞ; r2KðrÞsin2θÞ; ðB6Þ

and performing the same steps leads to the perturbation equations for H0;ϕ1 gives

H00
0 −

�
a0

a
−
α0

α
−
2

r

�
H0

0 −
�
8πω2ϕ2

0

a2

α2
1 − c2s
c2s

þ 8πϕ02
0

1þ 3c2s
c2s

− 2
α00

α
þ 2

α0a0

αa
þ 4

α02

α2
−
a0

ra
1þ 3c2s

c2s
−
α0

rα
1þ 7c2s

c2s
þ 6

a2

r2

�
H0

¼ 16π

�
ω2ϕ0

a2

rα2
c2s − 1

c2s
þ ϕ0V 0 a

2

r
1þ c2s
c2s

−
ϕ00
0

r
1þ 3c2s

c2s
þ ϕ0

0

a0

ra
1þ 3c2s

c2s
þ ϕ0

0

α0

rα
c2s − 1

c2s
− 2

ϕ0
0

r2
1þ 3c2s

c2s

�
ϕ1; ðB7Þ

ϕ00
1 ¼

�
a0

a
−
α0

α

�
ϕ0
1 þ

�
−ω2

a2

α2
þ 32πϕ02

0 þ 2ϕ2
0a

2V 00 þ a2V 0 −
a0

ra
þ α0

rα
þ 6

a2

r2

�
ϕ1

þ
�
ω2rϕ0

a2

α2
− rϕ00

0 þ
�
r
a0

a
þ r

α0

α
− 2

�
ϕ0
0

�
H0; ðB8Þ

which needs to be complemented with the explicit description for α00:

α00 ¼ 4πω2½2rϕ2
0aa

0 þ 2rϕ0a2ϕ0
0 þ ϕ2

0a
2� 1
α
þ
�
4πra2

�
−
ω2ϕ2

0

α2
þ P − V þ ϕ02

0

a2

�
þ a2 − 1

2r

�
α0

þ
�
4πrð2Paa0 − 2Vaa0 − 2ϕ0a2ϕ0

0V
0 þ a2P0 þ 2ϕ0

0ϕ
00
0Þ þ 4πa2ðP − VÞ þ 4πϕ02

0 þ aa0

r
þ 1 − a2

2r2

�
α: ðB9Þ

We have implemented both conventions into our code and checked that they give the same results.
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