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GW190521 is a short-duration, low-frequency gravitational-wave signal in the LIGO-Virgo catalogue.
The signal is consistent with the ringdown and possibly some of the inspiral-merger of an intermediate-
mass binary black-hole coalescence. We find that previous models of the quasinormal mode spectrum in the
ringdown of GW190521 give remnant mass and spin estimates which are not fully consistent with those of
many inspiral-merger-ringdown waveforms. In our own analysis, we find that ringdown models which
include both the angular l ¼ 2, m ¼ 1 and l ¼ m ¼ 2 fundamental quasinormal modes are in full
agreement with most inspiral-merger-ringdown waveforms, and in particular with the numerical relativity
surrogate NRSur7dq4. We also find some support for including the l ¼ 3,m ¼ 2 fundamental quasinormal
mode in our fits, building on Capano et al.’s findings regarding a higher-frequency subdominant mode. We
propose an interpretation of our GW190521 ringdown model that links precession to the excitation of
l ≠ m quasinormal modes, but we do not rule out eccentricity or other interpretations.
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I. INTRODUCTION

In the theory of general relativity, a perturbed Kerr black-
hole returns to equilibrium by radiating gravitational waves
in a process known as the ringdown [1–8]. The ringdown
emission begins with an initial burst that is quickly
dominated by an infinite spectrum of discrete quasinormal
modes (QNMs), which then themselves decay and give
way to a power-law tail. The ringdown is astrophysically
relevant, as the merger of two black holes is expected to
produce a single perturbed remnant black hole which emits
ringdown radiation. Gravitational waves from these rem-
nants can be observed by detectors like LIGO, Virgo, and
KAGRA [9–11]. The QNM spectrum has been found to
dominate the remnant’s gravitational-wave signal at times
after the peak of the signal’s strain. The individual QNMs
are essentially damped sinusoids; although their amplitudes
and phases are related nontrivially to the initial conditions
of the perturbation, the frequency and damping rate of
every QNM depends solely on the mass and spin of the
remnant black hole. Observation of the QNM spectrum
emitted by a merger remnant allows for the inference of
progenitor properties and validation of the Kerr metric
[12–14], and has recently been the subject of intense data

analysis efforts [15–21] following the dawn of gravita-
tional-wave astronomy [22–24].
GW190521_030229, henceforth GW190521, is one of

the more exceptional gravitational-wave signals observed
so far [25–27]. Due to the signal’s unusual short-duration
and low-frequency morphology, many interpretations of the
source of GW190521 have been proposed [28–33]. Under
the default hypothesis that the source of GW190521 is a
quasicircular binary black-hole (BBH) coalescence, the
remnant is an intermediate-mass black-hole and the ring-
down comprises the majority of the observed signal.
Previous ringdown analyses of GW190521 were per-

formed by the LIGO-Virgo collaboration (LVC) [17,26,27]
and Capano et al. [34,35]. Both used different data analysis
techniques and implemented ringdown models in line
with the existing literature on nonprecessing quasicir-
cular BBH coalescences. As we discuss in Sec. II and
Appendix B, we find that both analyses produce remnant
mass and spin posteriors which are not fully consistent with
the posteriors of many inspiral-merger-ringdown (IMR)
waveforms including the numerical relativity (NR) surro-
gate NRSur7dq4 [36], the preferred waveform in the
GW190521 detection and properties papers [26,27].
Most of the current IMR waveforms are only valid for

quasicircular binaries, and different waveforms parametrize
the merger-ringdown signal differently [36–40]: some rely
on QNM fitting formulas and inspiral-attachment condi-
tions and assume rigid built-in relationships between the
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individual QNMs, while others entirely do away with an
explicit damped sinusoid parametrization. By comparison,
our ringdown analysis is designed to be agnostic about the
amplitude and phase relationships of the QNMs, and is thus
a less-constrained implementation of perturbation theory;
see [41] for more details. Our fits serve as an independent
check of the IMR waveforms and may be able to model
physics that the IMR waveforms do not account for. The
disagreement we find between posteriors of the IMR
waveforms and the previous GW190521 ringdown studies
raises the possibility that either some or all of these
analyses have not modeled essential physics phenomena
in the signal, or alternatively that these analyses may have
technical systematic biases. These issues motivate our
current work.
In this paper, we analyze the ringdown of GW190521 by

fitting both Kerr and non-Kerr spectra of damped sinusoids
to the signal in the time domain, using the RINGDOWN

package [41,42]. In the Kerr case, we only fit QNMs from
first-order perturbation theory. In the non-Kerr case, some
QNMs are allowed to independently deviate their fre-
quency and damping rate away from Kerr values. Our
primary aim is to either find a Kerr model of the QNM
spectrum that gives remnant mass and spin posteriors
consistent with those of IMR waveforms, in particular
NRSur7dq4, or to otherwise show that an IMR-inconsistent
Kerr model is preferred. In Sec. II we reproduce and
comment on key results of the previous GW190521 ring-
down analyses, and then in Sec. III we perform our own fits
with different sets of QNMs.
Ultimately, we find that a model which includes the

angular l ¼ 2, m ¼ 1 fundamental QNM together with the
l ¼ m ¼ 2 fundamental QNM can produce remnant mass
and spin posteriors consistent with NRSur7dq4 over a
range of fitting times. Moreover, we also find that this
model can accommodate a third QNM which is subdomi-
nant to the other two, and that we identify as the l ¼ 3,
m ¼ 2 fundamental mode. We find that statistical good-
ness-of-fit metrics do not definitively prefer any one
ringdown model at times after the strain peaks. Since there
are no strong data-driven model preferences, interpretation
of the ringdown of GW190521 must rely on other aspects
of the QNM fits such as the stability of their inferred
parameters when fit over a range of start times or their
consistency with the physics assumptions of our default
quasicircular BBH hypothesis. When testing general rela-
tivity by fitting non-Kerr spectra, we find a ∼� 20%
constraint at the 90% credible level around zero deviation
from the Kerr frequency of the l ¼ 3 QNM in our model,
and a less stringent constraint on the frequency of one l ¼ 2
QNM. In Sec. IV we propose that the excitation of l ≠ m
QNMs could be related to precession; since NRSur7dq4
prefers large progenitor spins in the orbital plane for
GW190521, this proposal provides a cohesive physics
explanation for our QNM fits. However, we do not rule

out other interpretations, like eccentricity [28,29]. We also
address the implications of our analysis for parameter
estimation of BBH coalescences. We conclude in Sec. V.
In Appendices A–C we discuss technical aspects of both
this analysis and the previous ringdown analyses of
GW190521. The data release for this paper can be found
here [43].
Based on considerations of agreement with IMR analy-

ses, self-consistency of fits over time, theoretical motiva-
tions related to precession, and stability of fits when testing
general relativity, we find the f220; 210; 320g QNMmodel
to provide the most convincing interpretation of the
ringdown of GW190521; see the following section for
our conventions when referring to a given QNM model in
writing.

A. Conventions

Wewill refer to each individual QNMwith a sequence of
three integers corresponding to the indices lmn. We define
a ringdown model as the set of all QNMs included in a
given fit, and we will refer to each model by using a
comma-separated list of each included QNM enclosed
within braces, e.g. f220; 210; 320g. The lm indices denote
angular content, while the n index is related to radial
content. QNMs that share the same lm also share similar
frequencies, while QNMs with the same n share similar
damping rates. The positive and negative values associated
with a given jmj encode the two polarization degrees
of freedom for a given mode [41,44].1 Parity-time sym-
metry of the Kerr metric in general relativity implies that
the complex QNM frequencies obey ω̃lmn ¼ −ω̃�

l−mn. This
means that the temporal evolution of a given þm mode is
indistinguishable from the corresponding −m mode when
viewed from one point in the sky, and thus we will
implicitly only refer to jmj. We assume the QNM param-
eterization described in [41].
QNM decay rates increase with increasing n; n ¼ 0

modes are the longest-lived so-called “fundamental”
modes, whereas n > 0 modes are the shorter-lived “over-
tones.” While QNMs can have a prograde or retrograde
sense, for data-driven reasons we consider only prograde
QNMs here. Since the prograde 220 mode appears to be
found around 70 Hz in GW190521, the retrograde l ¼ 2
modes would be at such low frequencies that they would
likely be out of band given the shape of the LIGO-Virgo
noise power spectral density; as for the retrograde l ¼ 3
modes, at low SNRs they are degenerate in frequency and
damping rate with the prograde l ¼ 2 modes.

1In the ringdown literature, the sign of m is often used to
distinguish retrograde and prograde QNMs—we do not adopt
that convention, and instead restrict m to its native role as an
angular-harmonic index. Note that prograde QNMs are defined
such that sgnðmÞ ¼ sgnðℜω̃Þ. See discussion in [41].
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We will frequently make use of the ringdown evolution
timescale tM ¼ GM=c3, which is defined in units of the
final remnant mass M when natural units are taken such
that G ¼ c ¼ 1. For reference, we will use the median
detector-frame remnant mass M ¼ 258M⊙ inferred by
NRSur7dq4 to set the value of tM to be 1.27 ms, and
we will interchangeably refer to this value as tMNRSur

.
Empirically, it has been found that the peak gravita-

tional wave strain of a BBH coalescence corresponds to
the earliest time at which QNM models may accurately
describe the signal [45–48]. The previous GW190521
analyses and our own work all use slightly different
estimates of the peak strain time. The previous estimates
lie within a standard deviation of our own median
estimate, with one standard deviation being ∼2.5tM;
see Table I, as well as Fig. 10. We will refer to the
time at which a ringdown fit starts by either stating the
GPS time t0, or quoting its relative difference with
respect to the median peak time as Δt0. In figures, we
will refer to the peak times of previous analyses as tLVC
[27] and tCapano [34].

II. PREVIOUS ANALYSES

We begin by reproducing and commenting on previous
analyses of the QNM spectrum of GW190521. These
previous analyses were performed by the LVC [27] and
Capano et al. [34,35].

A. LVC: Analysis overview

The first ringdown analysis of GW190521 was per-
formed by the LVC, using the pyRING code [15,17,49,50]
to fit several distinct models consisting of damped sinus-
oids in the time domain. At their defined peak strain
time, the LVC fit a Kerr f220; 221; 222g model. At Δt0 ¼
12.7 ms≡ 10tM after the peak, the LVC fit a Kerr f220g
model and a model with higher-order angular modes up to
l ¼ 4 and m ¼ ðl; l − 1Þ. The higher-order model uses
amplitudes tuned as functions of the binary parameters
to numerical relativity (NR) simulations of nonprecessing

systems [51]. Lastly, at 6.4, 12.7, and 19.1 ms (5, 10, and
15 tM) after the peak, the LVC fit a model consisting of a
generic single damped sinusoid. In the next two sections we
comment on the Kerr f220g, f220; 221; 222g, and generic
damped sinusoid models; in Appendix B we briefly discuss
the higher-order model and touch on more technical aspects
of agreement between ringdown and IMR posteriors. A
separate pyRING analysis of GW190521 with minor tech-
nical differences appears in [17].

B. LVC: f220g fit

In Fig. 1 we attempt to reproduce the Kerr f220g fit of
the LVC [27], and we recover a similar result. At first
glance, the remnant mass and spin posteriors of the
NRSur7dq4 and f220g fits seem to agree reasonably well.
However, as shown in Fig. 2, it is more evident that the
f220g and NRSur7dq4 fits are in tension when we plot our
measurements in the QNM frequency and damping rate
domain. To compare our results to NRSur7dq4 in this
space, we use samples of remnant mass and spin from
NRSur7dq4 to estimate the frequencies and damping rates
of relevant QNMs. When we fit our own f220g model at
the time used by the LVC, the frequency of the single mode
we measure lies between the 220 and 210 frequencies
inferred from NRSur7dq4. Furthermore, when we perform
f220g fits over a range of fit start times, a discrepancy is
always present and at later times the single mode we
fit actually becomes more consistent with the 210 of
NRSur7dq4. The posteriors of our f220g model do not
fully encompass the 220 frequency and damping rate
inferred from NRSur7dq4 until 20 − 30tM after the peak,
when our fits revert to the prior.
Since we use a flat remnant mass and spin prior which

does not correspond to a flat QNM frequency and damping
rate prior, it is worth considering the extent to which the
trend over time in Fig. 2 is prior-driven. To this end, we
note that the generic single damped sinusoid fits of the LVC
have flat priors in frequency and damping rate, and also
exhibit a similar trend (left plot of Fig. 9 in [27]). One
possible explanation for these trends is that the late-time
GW190521 signal might be better-described by a model
with more than one fundamental QNM.
A single-mode f220g fit is only expected to accu-

rately describe the late-time ringdown signal in the
special case of a nonprecessing quasicircular BBH
coalescence with roughly equal-mass progenitors. For
these systems, the posteriors of late-time f220g ring-
down fits should fully overlap with the 220 mode given
by IMR waveforms. This type of agreement can be seen
in Fig. 5 of [53] for GW150914, a gravitational wave
signal whose source is likely a nonprecessing quasicir-
cular BBH. By contrast, the source of GW190521 could
be precessing, and it has not been shown that the
ringdowns of precessing systems are always dominated
solely by the 220 at late times.

TABLE I. Comparison of peak strain GPS time estimates
(seconds) at the LIGO Hanford (H1) detector for GW190521
analyses. Our own time estimate and sky locations come from a
Monte-Carlo sample corresponding to the median of the peak
time distribution of h2ðtÞ≡P

lm jhlmðtÞj2, obtained with
NRSur7dq4. The distribution of possible sky locations is broad,
but all are consistent with approximately constant arrival times in
the Hanford and Livingston detectors.

Analysis
H1 peak time

−1242442967.0 s
Sky location
(ra, dec)

LVC [27] 0.4306 (0.10, −1.14)
Capano et al. [34] 0.4259 (3.50, 0.73)
Siegel et al. 0.4278� 0.0029 (5.75, −0.42)
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C. LVC: f220;221;222g fit

In Fig. 3 we attempt to reproduce the LVC {220, 221,
222} remnant mass and spin posterior at the time of peak
strain. Although we can recover a similar posterior, we find
that this is contingent on the choice of QNM amplitude
priors. The LVC analysis reports using a flat prior on the
amplitudes of the individual left and right circular polar-
izations of the signal. This can be seen in Eq. (7) of [17],
which shows the template for the QNM model of the
analysis. Since this template separately adds up the
amplitudes of each �m angular index and both of these
polarizations are combined in our observational models
(see Sec. I A), the resulting prior on the full amplitude of
each damped sinusoid in the fits of the LVC is triangular
instead of uniform; see Fig. 12 of [44] for further details.
The triangular prior prevents any mode included in the fit
from having zero amplitude, forcing every mode to
significantly contribute to the fit. If we instead use priors
which do allow the mode amplitudes to go to zero as in the
right panel of Fig. 3, the resulting posteriors for fits with
overtones then contain the f220g posterior and are in
greater tension with NRSur7dq4. This suggests that, while
forcing overtones to contribute to fits of this signal can lead

to improved qualitative IMR agreement, the overtones in
these models are not required to get better fits to this data.
Defining “good agreement” between IMR and ringdown

posteriors raises rather subtle issues. We explore these
issues further in Appendix B and contend that even partial

FIG. 1. We attempt to reproduce the Kerr f220g LVC remnant
mass (abscissa) and spin (ordinate) posterior from Fig. 9 of [27],
fitting 12.7 ms after the peak strain time reported by the LVC, and
we plot 90% credible contours. The LVC posterior is in dashed
gray, and our own posterior is in red. The NRSur7dq4 fit (solid
black) is from the LVC data release. Here we have implemented
our own noise model but are otherwise performing similar data
conditioning to that of the LVC, i.e., low- and high-pass filtering
at the same frequencies, using the same duration of data segment
and the same sample rate; we also use a comparable QNM
amplitude prior.

FIG. 2. We use remnantmass and spin samples fromNRSur7dq4
along with the QNM package [52] to infer the frequencies and
damping rates of relevant QNMs (filled contours), andwe compare
these to the posteriors of our QNM fits (unfilled contours). We
show 90% credible contours, with frequency and damping-rate as
abscissa and ordinate respectively. In comparison with Fig. 1, here
it is more evident that there is tension between the f220g and
NRSur7dq4 fits. Top: our f220g fit at the LVC’s reported time 10
tM after the peak has a frequency between the 220 and 210
frequencies of NRSur7dq4. Bottom: we do not find a fit start time
where our f220g fit fully agrees with the 220 of NRSur7dq4. At
later times we actually find that our single-mode fit becomes
consistent with the 210 of NRSur7dq4. At times past 20 tM, our fit
reverts to the prior. The LVC finds similar trends in their single-
mode fits over time, as shown in the left plot of Fig. 9 in [27],
although they interpret this behavior differently.
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overlaps like the one exhibited between the LVC
f220; 221; 222g and NRSur7dq4 posteriors may not con-
stitute good agreement.

D. Capano et al.: f220;330g fit

Capano et al. claim evidence of a higher-frequency
subdominant QNM in GW190521. They report that this
mode has a frequency of roughly 100 Hz and an amplitude
around one order of magnitude smaller than that of the 220.
Capano et al. propose that this subdominantQNM is the 330,
and observe the largest Bayes factor in favor of a f220; 330g
model compared to a f220g or {220, 221} model when
fitting 6.0 ms after what they identify to be the time of peak
strain (see Table I). Their analysis implements gating and in-
painting [54] and performs fits in the frequency domain.
Amplitude and phase tests of theCapano et al. posteriors [55]
show consistency with predictions from NR.
In Fig. 4 we reproduce the f220; 330g fit of Capano et al.

6.0 ms after their reported peak time, and we find good
agreement between our respective analyses when using this
model. Notably, we confirm that the remnant mass and spin
posterior of the f220; 330gmodel when fit at this time does
not fully agree with NRSur7dq4.
The 330 mode could plausibly be excited to the extent

reported by Capano et al. if the progenitors of GW190521

have an unequal mass ratio. The mass ratio posteriors given
by most IMR waveforms tend to prefer an equal mass-ratio
for GW190521, but there are also varying levels of support
for unequal mass-ratio solutions depending on the wave-
form in question and the priors used [32,33,56].
Capano et al. do find that the f220; 330g remnant mass

and spin posterior overlaps with a region of parameter
space where one IMR waveform, IMRPhenomTPHM [38],
supports a ∼4∶1 mass ratio. However, the mass ratio and
remnantmass posteriors obtained by IMRPhenomTPHMfor
GW190521 behave differently from the posteriors of most
other IMRwaveforms.NRSur7dq4 and IMRPhenomXPHM
[37] both find the same detector-frame remnant mass of
roughly 250M⊙, largely independent of their mass ratio
estimates. By contrast, IMRPhenomTPHM produces corre-
lated estimates of the mass ratio and remnant mass such that
at equal mass ratios the posterior prefers the remnant mass to
be ∼250M⊙, but at higher mass ratios the remnant mass
increases to 300 − 350M⊙, as shown in Fig. 2 of [35]. These
correlations may be evidence of waveform systematics.
In Fig. 5, we plot the QNM frequency and damping rate

posteriors of our f220; 330g fits. At the fit start time for
which Capano et al. find the highest Bayes factor in favor
of the f220; 330gmodel, two aspects of the posteriors stand
out: the frequency of the 220 fit lies between the 210 and
220 distributions inferred from NRSur7dq4, and the 330 fit

FIG. 3. We attempt to reproduce the LVC f220; 221; 222g remnant mass and spin posterior at their reported peak strain time. Fits with
fewer overtones are shown for reference. (Left) We use a Gaussian prior on each individual QNM amplitude. This prior is similar to the
triangular amplitude prior used by the LVC—crucially, neither prior has support at zero. We plot 90% credible contours (red shades) and
recover the original LVC result, up to small technical differences. (Right) We re-do the analysis, but now use a flat amplitude prior.
Unlike the Gaussian prior, the flat prior supports zero amplitude. This allows for the overtone models to reduce to the f220g model,
which increases the tension with NRSur7dq4. The nesting of these models’ posteriors indicates that the overtones in these models are not
strictly required for better fits to the data.
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has a frequency that is more consistent with that of the 320
mode of NRSur7dq4. Note that the 220 frequency and
damping rate in this model behave in a similar way to the
single-mode fits in Fig. 2; the remnant mass and spin
posteriors of the f220; 330g and f220g fits are nearly the
same, which might be expected given the low amplitude of
the 330.

E. Summary of previous results

We find that we can largely reproduce the results of both
the LVC Kerr f220g and f220; 221; 222g models and the
Capano et al. f220; 330g model for GW190521. We also
find that all of these analyses produce mass and spin
posteriors which are not fully consistent with NRSur7dq4,

over a large range of fit start times. In the case of f220g fits,
we find that at later times the QNM frequency and damping
rate become consistent with the 210 frequency and damp-
ing rate inferred from the NRSur7dq4 IMR fit. For
f220; 221; 222g fits, the choice of QNM amplitude prior
has a significant effect on the remnant mass and spin
estimate; a fit that allows the overtone amplitudes to go to

FIG. 4. Top: we attempt to reproduce the Capano et al. remnant
mass and spin posterior shown in Fig. 3 of [34] (dashed gray),
using the same f220; 330gmodel (gold) starting 6.0 ms after their
reported peak strain time. This start time is where Capano et al.
find that the Bayes factor for the f220; 330g model over the
f220g or f220; 221g is maximized. We plot 90% credible
contours and find we can largely reproduce the posteriors of
Capano et al., up to small differences owing to choices like their
imposition of equatorial symmetry and QNM amplitude priors.
We show IMR distributions from NRSur7dq4 (black) and
IMRPhenomTPHM (teal, from data release of [32]) for com-
parison. Bottom: we also reproduce the amplitude ratio of the 330
and 220 modes.

FIG. 5. Top: at the fit start time that Capano et al. claim
produces the highest Bayes factor for the f220; 330g model over
f220g or f220; 221g models, two features stand out when
plotting QNM frequency and damping-rate: the frequency of
our 220 fit lies between the 210 and 220 frequencies of
NRSur7dq4, and the frequency of our 330 fit is more consistent
with that of the NRSur7dq4 320. The same 220 behavior is
present in Fig. 2. Bottom: the f220; 330g model and NRSur7dq4
are in tension until at least 20 tM after the peak, at which time the
SNR has decreased substantially and uncertainties are large. All
plots show 90% credible contours.
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zero will produce posteriors in greater tension with
NRSur7dq4. Finally, the frequency we measure for the
330 in our f220; 330g fits is more consistent with the 320
of NRSur7dq4.
In Figs. 1, 3, 4, and the top panel of Fig. 5, we have used

similar data conditioning as was implemented by the LVC
and Capano et al., to demonstrate that we can faithfully
reproduce their results. Our own fits shown in other figures
throughout this paper use our own data conditioning
choices unless otherwise indicated; see Appendix A for
further details.

III. RESULTS: SIEGEL ET AL.

In this section we explore ringdown models beyond
those proposed by the LVC and Capano et al., in an effort to
find a ringdown solution fully consistent with NRSur7dq4.
Using the differences between the previous analyses’ fits
and the posteriors of NRSur7dq4 as motivation, we are first
led to including the 210 mode in our fits. We find that
f220; 210g ringdown fits for GW190521 give remnant
mass and spin estimates in full agreement with those of
most IMR waveforms, including NRSur7dq4, and these
fits produce posteriors which are self-consistent over a
range of fit start times. We then find that there is also some
motivation for including a subdominant 320 mode in
addition to the 210 mode.
Our peak strain time estimate is slightly different from

those of the LVC and Capano et al., see Table I. We
implement flat priors on each QNM amplitude, a flat prior

on the remnant mass from 0.5 to 2 times the median
NRSur7dq4 estimate, and a flat prior from 0 to 1 on the
remnant spin. For further technical details, see Appendix A.

A. Siegel et al.: f220;210g fit

As argued above and shown in Figs. 2 and 5, previous
analyses’ fits of the 220 QNM are not fully consistent with
NRSur7dq4. We find that these inconsistencies are resolved
by including the 210 QNM in our models.
In Fig. 6, we show that remnant mass and spin posteriors

from f220; 210g fits fully encompass those of NRSur7dq4
over a broad range of times. The posteriors of the f220; 210g
fits at later times expand with increased uncertainty around
themeasurements from early-time fits, as opposed to shifting
in parameter space over time, indicating that they are a robust
description of the signal as it decays.
However, our fits starting around the peak strain do

contain degenerate solutions which disagree with the
NRSurd7q4 parameters. These degeneracies can be seen
more clearly in the QNM frequency and damping-rate plot
of Fig. 6, where the 220 posterior has a long excursion
extending diagonally to the lower right, corresponding to
higher frequencies and lower damping rates: this excursion
places one of the fit modes at a frequency consistent with
that of the 320 mode of NRSur7dq4 and places the other
fit mode in between the 220 and 210 frequencies of
NRSur7dq4.
In Fig. 7 we focus on the remnant mass and spin

distributions of the degenerate solutions around the peak

FIG. 6. Left: the f220; 210gmodel produces remnant mass and spin posteriors whose 90% credible contours fully agree with those of
NRSur7dq4 over a broad range of times. Right: the same fits are shown in QNM frequency and damping-rate space. At early times, our
fits of the 220 and 210 are in very close agreement with the distributions of the 220 and 210 given by NRSur7dq4. This early agreement
may be related to the unusual lack of a prominent inspiral signal in GW190521, or the large peak strain timing uncertainty. At times near
the peak strain, there are degenerate fit solutions: one solution agrees with NRSur7dq4, while the other solution places the 220 at higher
frequencies and smaller damping rates. The higher frequency 220 fit corresponds to the location where the f220; 330g model places the
330 mode, once again consistent with the 320 frequency of NRSur7dq4. By 20 tM, the posteriors begin reverting to the prior.
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time. Given that Capano et al. interpret the higher-
frequency content in the signal as corresponding to the
unequal mass-ratio part of the IMRPhenomTPHM pos-
terior, we show that waveform’s posterior for reference.
By imposing a frequency cut at 75 Hz to select only the
lower-frequency f220; 210g solution, we demonstrate
that this solution has simultaneous agreement with both
IMRPhenomTPHM and NRSur7dq4. This level of simul-
taneous agreement is not achieved by f220g or f220; 330g
fits. We will implement this 75 Hz frequency cut for the
remainder of this section. However, the higher frequency
solution is still of interest as it indicates that there may be
signal content at frequencies around 95 Hz, a prospect that
we will explore further in the next section.
The {220,210} remnant mass and spin posteriors closely

overlap with those of NRSur7dq4 at early fit start times.
The uncertainty of our peak time estimate is ∼� 2.5tM.
The remnant mass and spin posteriors almost fully agree
even when fitting at Δt0 ¼ −5tM, meaning that the
f220; 210g model gives consistent estimates of remnant
mass and spin ∼2σ before the median estimate of the peak

strain time. Going further back than Δt0 ¼ −10tM, the
ringdown posterior drifts away from the NRSur7dq4
distribution. The early-time agreement of our fits may be
related to the lack of a prominent inspiral in GW190521, or
the large peak time uncertainty for this signal.
Capano et al. find results similar to our early-time

f220; 210g fits, although they attribute the observed
behavior to noise. In Fig. S.6 of [34], for a non-Kerr
f220; 221g fit that starts 7.0 ms before the reported peak
time of this analysis, the overtone in the fit gets pulled by
the free deviation parameters of the model toward the
frequencies and damping rates of the 220 and 210 QNMs
inferred by NRSur7dq4. Here the prior on the perturbed
mode prevents its frequency from going below 55 Hz and
thus cuts off a small portion of the 210 distribution.
In Fig. 8 we show the evolution of the f220; 210g QNM

amplitudes over time, restricting the posteriors to the low-
frequency solution. The inferred amplitude of the 210 is
comparable to, if not slightly larger than, that of the 220.
This large 210 amplitude might explain the late-time trends
shown in Fig. 2, as it would imply that the 210 could
conceivably be the only QNM detectable above the noise at
late times, given that both the 220 and 210 modes have
similar damping rates.
Our flat amplitude prior allows each QNM’s amplitude

to go to zero; we find that imposing very strict frequency
cuts such that the 220 and 210 can only have frequencies
within the narrow ranges found by NRSur7dq4 results in
amplitude distributions that are better constrained to be
nonzero, for many fit start times. This suggests that the

FIG. 7. Capano et al. claim that the IMRPhenomTPHM
remnant mass and spin posterior is consistent with the
f220; 330g model [35], although the f220; 330g posteriors are
inconsistent with most other IMR waveforms. Here we show that
the f220; 210g model when fit at the peak of the strain agrees
with both NRSur7dq4 (black) and IMRPhenomTPHM (teal).
We plot 90% credible contours for two versions of the f220; 210g
fit: the solid purple contour makes no QNM frequency cuts,
whereas the shaded region contains only the degenerate low-
frequency solution shown in Fig. 6. The low-frequency solution
simultaneously agrees with both IMRPhenomTPHM and
NRSur7dq4 (see Appendix B). This level of agreement is not
achieved by the f220g or f220; 330g models.

FIG. 8. Here we show 90% credible contours of f220; 210g
amplitudes over fit start time (green shades). Degenerate high-
frequency solutions have been removed. The 210 amplitude
(ordinate) is generally larger than the 220 amplitude (abscissa).
This may explain the trends in Fig. 2: we find that late-time
single-mode fits tend toward the NRSur7dq4 210 parameters,
which might be expected if the 210 has a larger amplitude than
the 220 and is the last QNM to be obscured by noise.
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ringdown solution implied by NRSur7dq4 has significant
contributions from both of these fundamental modes. See
Appendix C for further technical discussion on the detect-
ability of the 220 and 210.
Our findings regarding the 210 may be consistent with

[57], which claims that GW190521 exhibits significant
precessional power in the 21 spherical harmonic mode even
more so than the 33 spherical harmonic mode.

B. Siegel et al.: f220;210;320g fit

Degeneracies in the fits of the last section suggest that
there may be additional higher-frequency content in the
data. Assuming that the high-frequency content is signal,
we are guided by NRSur7dq4 to incorporate this content
into our models as the 320 QNM.
In the top panel of Fig. 9 we show f220; 210; 320g fits in

QNM frequency and damping rate space over a range of
times. At early times, the inferred QNM frequencies and
damping rates agree almost completely with NRSur7dq4.
Moving forward in time, the posteriors broaden while fully
encompassing the NRSur7dq4 distributions. However, in
addition to these IMR-consistent fits, two other degenerate
fits also appear at later times.
One of the degenerate solutions for the f220; 210; 320g

model shifts all of the QNM frequencies downwards: the
320 is moved toward the 220 frequency of NRSur7dq4; the
220 is fit closer to the NRSur7qd4 210 frequency; and
the amplitude of the 210 in our fits is zeroed out. This
behavior is likely exacerbated by the fact that our uniform
remnant mass and spin prior is so wide; in frequency and
damping rate space, the prior that this imposes on the 320
QNM is peaked at frequencies below 75 Hz.
The second degenerate solution for the f220; 210; 320g

model is similar to that seen in Fig. 6, where the 220 is fit to
higher frequency content around 95 Hz. If the signal of
GW190521 had a much higher SNR, or our priors were
more physically motivated in a way that enforced amplitude
hierarchies for the modes in our fits, all of the degenerate
solutions we have discussed might be avoided.
We impose frequency cuts to remove the degenerate

solutions and select only those fits that are consistent with
NRSur7dq4, and we then plot the inferred amplitudes of the
320 and 210 modes over time in the bottom panel of Fig. 9.
We find that the l ¼ 3 mode is subdominant to the l ¼ 2
modes in our model, in agreement with Capano et al. We
also find that the amplitudes of both l ¼ 2 modes in this
model are essentially the same as what is shown in Fig. 8.
Since the f220; 210; 320g fits that agree with NRSur7dq4
do not have amplitudes consistent with zero for any of the
three QNMs, we include all three modes in our non-Kerr
analysis in Sec. III D.

C. Quantifying goodness of fit

Our primary aim in this paper is to find Kerr ringdown
solutions that agree with NRSur7dq4. However, there is no

guarantee that the data itself is best-described by an IMR-
consistent ringdown model, especially if the IMR wave-
forms are not accurate. Here we assess whether there are
data-driven ringdown model preferences, independent of
physics interpretations. Of the models discussed so far, we
only consider those whose inferred QNM amplitudes are

FIG. 9. Top: QNM frequency and damping-rate of
f220; 210; 320g fits over a range of fit start times. The posteriors
of this model always contain a solution that fully agrees with
NRSur7dq4. However, at later times two other degenerate
solutions can be seen that are in disagreement with NRSur7dq4:
one solution moves the 320 fit to the frequencies of the
NRSur7dq4 l ¼ 2 QNMs, and another solution moves the 220
fit to the NRSur7dq4 l ¼ 3 frequencies as in Fig. 6. Bottom:
amplitudes of the 210 (ordinate) and 320 (abscissa) QNMs from
f220; 210; 320g fits. Frequency cuts are applied to eliminate
label-switching from degenerate solutions, and to only consider
solutions consistent with NRSur7dq4. The 320 amplitude is
much smaller than those of the l ¼ 2 modes: note, this figure’s
axes are not scaled equally. The 210 and 220 amplitudes of this
model are similar to what is shown in Fig. 8, and the correlations
of the 320 and 220 are similar to what is shown here. 90%
credible contours shown.
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most consistent with being nonzero, and we thus
exclude f220; 221; 222g.
To start, a simple way to compare models is by

computing their recovered matched filter SNRs. We show
in the middle plot of Fig. 10 that the SNRs of the models
we have considered are all very similar. The SNR of the
ringdown signal in GW190521, while among the highest
observed so far, is still relatively low. Thus it is not

surprising that many QNM combinations can capture most
of the signal’s power, especially since our models of
damped sinusoids are fairly unconstrained and flexible.
Interestingly, the SNR appears to begin consistently
decaying around −5tM. At this time, we find that our
models with the 210 QNM produce remnant mass and spin
posteriors that overlap closely with those of NRSur7dq4.
For statistical model comparison, we implement the

leave-one-out cross-validation (LOO) [60,61]. Although
Bayes factors [62,63] are more commonly used for model
selection in gravitational-wave data analysis, we have
chosen to instead implement the LOO because it is in
principle less sensitive to prior regions without posterior
support than the Bayes factor is. In brief, the LOO estimates
the expected log pointwise predictive density from some
observed data points y1;…; yn modeled as independent
given model parameters θ:

elpdLOO ¼
Xn
i¼1

logpðyijy−iÞ; ð1Þ

where

pðyijy−iÞ ¼
Z

pðyijθÞpðθjy−iÞdθ ð2Þ

and y−i denotes the dataset in question with the ith element
removed. This quantity gives a measure of how well a fit
would predict any single data point in a signal given
the other data points. We compute the LOO from the
whitened residuals of our QNM fits: higher LOO values
correspond to whitened residuals which are more consistent
with being white Gaussian-distributed noise. For further
discussion and extensions of this method, see [61,64,65]
respectively.
In the bottom plot of Fig. 10 we show LOO values for

different ringdownmodels as a function of fit start time. It is
reasonable to expect both from the lack of distinction in
SNRs and from the degeneracies in our QNM posteriors
that there will be no strong statistical preference for any
one model, and this is essentially what we find when
comparing LOO values. We use the compare method in
the ARVIZ package [59] to estimate the significance of LOO
differences.2 This method indicates ∼1σ preferences both
for f220; 210; 320g at −5tM and for f220; 330g at 0 tM
respectively, and ∼1–2σ preferences for all models over
f220g at the same early times. After the peak, we find no
strong preferences for any model.

FIG. 10. Top: Our peak strain time estimate (gray) in the LIGO
Hanford detector, compared to reference times used by the LVC
[27] (red) and Capano et al. [34] (gold). Also see Table I. Timing
uncertainties are shaded in the other two panels. Middle: network
matched filter SNRs as a function of fit start time, 90% credible
intervals. We implement frequency cuts to avoid degenerate
solutions (see Secs. III A and III B). The SNR of all models
starts to decay similarly after −5tM. The SNR of the full IMR
NRSur7dq4 fit is 14.6� 0.4 [58]. Bottom: we use the leave-one-
out cross-validation (LOO) to quantify data-driven goodness of
fit for model comparison. Higher LOO values indicate better fits.
We rescale the LOO such that its lowest absolute value over all
times is zero. The trend of absolute LOO values over fit start time
is only weakly informative, due to statistical uncertainty from the
evolution of noise in each data segment. Still, the trends of LOO
and SNR are strikingly similar. Using the compare method in
the ARVIZ package [59] to estimate the significance of LOO
differences, we find ∼1σ preferences for f220; 210; 320g at −5tM
and for f220; 330g at 0 tM, and ∼1–2σ preferences for all models
over f220g at the same early times. After the peak, there are no
strong preferences.

2For technical reasons, unless imposed during Monte Carlo
sampling (see Appendix A) we do not use frequency cuts to
remove degenerate solutions when computing the statistical
significance of LOO differences. The absolute values of the
LOO are not significantly affected by any frequency cuts we
make after sampling.
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D. Non-Kerr fits: Test of general relativity

We have found the f220; 210; 320g Kerr model to give
good agreement with NRSur7dq4. We can test the stability
of fits with this model by introducing perturbations δf

and δτ to the frequencies and damping times of all
but one QNM, such that f ¼ fGRðM; χÞ expðδfÞ and
τ ¼ τGRðM; χÞ expðδτÞ. Nonzero values of δf or δτ may
signal a non-Kerr effect or model systematics. We choose to

FIG. 11. Non-Kerr fits of the {220, 210, 320} model at the peak strain time. Deviations are simultaneously allowed for the frequencies
and damping times of the 220 and 320 QNMs. (a) We constrain δf320 (abscissa) to within �20% at the 90% highest-density credible
level when fitting at 0 tM. The lower end of this constraint is influenced by our prior. The constraint improves at −5tM, coming closer to
�10% (not shown). (b) Our measurement of δf220 (abscissa) is uninformative at 0 tM. However, δf220 is weakly peaked around 0 at
−5tM (not shown). As for δτ220 (ordinate), at first glance it seems to skew toward nonzero values, but this is the result of correlations with
χ. (c) Here we show that the skew of δτ220 (ordinate) is correlated with χ (abscissa). The correlations conspire to keep τ220 constant, as
can be seen in the inset figure.
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perturb the lowest-amplitude modes in our fits, the 220
and 320.
The prior placed on the perturbations needs to be chosen

carefully to avoid mode switching and ensuing degener-
acies [66]. To this end, we implement uniform priors on the
perturbations which are not necessarily symmetric about
zero, in order to allow for the largest possible perturbations
without label-switching.
The degeneracies that already exist within our Kerr fits

further complicate the QNM label-switching issues, espe-
cially since some degenerate solutions zero out some QNM
amplitudes. Any measured deviations from the Kerr QNM
frequencies and damping times are only meaningful for
modes with nonvanishing amplitudes. Thus, in addition to
imposing a frequency cut at 75 Hz, we also put a Gaussian
amplitude prior on the 320 QNM to enforce a hierarchy of
amplitudes in our non-Kerr fits, with the 320 tending to be
subdominant, in order to keep every QNM near the portion
of parameter space where every amplitude is most con-
sistent with being nonzero; see Appendix A and our data
release [43].
In Fig. 11 we show the posteriors of Kerr-deviation

parameters for fits at the peak of the strain. We recover a
constraint of�20% on δf320 around zero at the 90% highest-
density credible level, which is similar to the constraint that
Capano et al. report in their own subdominantmode analysis.
We find that this constraint is further tightenedwhen fitting at
−5tM (not shown). Our constraint on δf220 is less inform-
ative, although once again it is more peaked around 0 when
fitting at−5tM (not shown). At first glance it looks like δτ220
is skewed toward large values. However, this is the result of
correlations between χ and δτ220 that conspire to keep τ220
constant. This seems to be a generic feature of this beyond-
Kerr parameterization; the same effect appears in Fig. S.5 of
[34] and Fig. 4 of [15], and also occurs when perturbing
f220; 210g models for GW190521. The astrophysical pop-
ulation of parameters like χ may need to be jointly modeled
alongside the non-Kerr deviations to avoid erroneously
finding deviations from general relativity when analyzing
catalogues of ringdown signals [67].

E. Further GW190521 ringdown explorations

We have fit several other Kerr ringdown models to
GW190521 beyond those shown above, and we briefly
discuss these additional models here. We do not find
evidence that would lead us to prefer any of these fits.
For both f220; 210; 200g and f220; 200g fits, we find

that the solutions that agree with NRSur7dq4 have 200
amplitudes consistent with zero. The noise level at the
frequencies where NRSur7dq4 places the 200 is several
times larger than it is at the 220 frequencies, and thus even a
200 excitation as large as those of the other l ¼ 2 QNMs
might be undetectable: in going from 55 to 40 Hz, the PSD
rises by a factor of ∼5 in all interferometers, and there are
larger peaks at 50 Hz in Hanford and Virgo.

We also investigated overtone fits via f220; 210; 221g
and f220; 210; 211g models, and did not find a preference
for nonzero overtone amplitudes. This is consistent with
our findings regarding f220; 221; 222g fits in Sec. II C.
Lastly, we considered several fits with l > 2 modes. We

tried f220; 210; 310g and f220; 210; 330g fits, and found
that they either moved the 210 and 220 frequencies away
from the NRSur7dq4 values or otherwise did not support
nonzero amplitudes for the l ¼ 3 modes. We also tried
f220; 320g fits and found that their frequencies could either
be similar to our f220; 330g fits or our f220; 210g fits, but
regardless were not fully consistent with NRSur7dq4.
Finally, we performed f220; 210; 320; 440g fits and found
no preference for nonzero 440 amplitudes.
Throughout this paper, we confined ourselves mostly to

three-mode fits due to the computational expense of models
with more modes. New features have since been added to
the RINGDOWN package to address this expense. We do not
entirely rule out all possible fits with more than three
modes, but given the SNR of the signal it seems unlikely
that more modes could be fit convincingly.

IV. DISCUSSION

A. Imprints of precession and eccentricity on
quasinormal mode spectra

Our results presented in Sec. III indicate that GW190521
ringdown fits which include the 210 mode are consistent
with the remnant mass and spin distributions of NRSur7dq4;
we also find some support for the inclusion of a subdominant
320 mode in our fits. The amplitudes of the 210 and 220
QNMs in our fits appear to be comparable in magnitude, as
shown in Fig. 8. The 210 is not expected to be excited to this
extent in the ringdownsofnonprecessingquasicircularBBHs.
However, we propose that a large 210 amplitude could be
excited in the ringdowns of precessing BBH coalescences.
In precessing systems, the spin orientations of the

progenitors allow for misalignment of the binary’s orbital
angular momentum vector L and the remnant’s spin vector
χ . Since the angular content of the remnant perturbations is
carried over from the inspiral [68,69] and is oriented with
respect to L, the projection of these perturbations onto the
frame aligned with χ (where the QNMs are defined) will
involve a rotation when there is remnant spin misalignment.
Rotations of spherical harmonic strain are performed using
Wigner D-matrices [46,70–72], which mix the amplitudes
of harmonics that share the same l:

h0lm0 ¼
X
m

Dl
m0mðRÞhlm; ð3Þ

whereDl
m0mðRÞ is the D-matrix for a rotationR, and hlm is

the strain. Also, note that for both nonprecessing and
precessing quasicircular binaries, post-Newtonian (PN)
approximations [73–75] indicate that the dominant modes
in the inspiral when observed in the co-orbital frame are
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generally the quadrupolar ð2;�2Þ modes [74]. Taken
together, these facts suggest that the precession-induced
misalignment of L and χ could affect the ringdown by
rotating the perturbations themselves with respect to the
remnant, in such a way that the dominant l ¼ jmj ¼ 2
perturbations in the frame aligned with L are spread to
l ≠ jmj perturbations in the frame aligned with χ and thus
excite l ≠ jmj QNMs. In support of this hypothesis,
preliminary studies of BBHs in the SXS waveform cata-
logue [76] indicate that there are large correlations between
l ≠ jmj QNM amplitudes and the angle of spin misalign-
ment of the remnant [77], with the 210 and 220 amplitudes
even being comparable in the most highly misaligned
systems. Note that this argument is not related to changes
in viewing angle of the remnant.
Multiple analyses find support for the source of

GW190521 being a precessing BBH [26,27,33,78]. In
particular, NRSur7dq4 prefers large in-plane progenitor
spins. By contrast, the ringdown models of the LVC and
Capano et al. are more likely compatible with nonprecessing
quasicircular BBHs, which could explain why their fits are
not fully consistent with NRSur7dq4. As argued above, our
IMR-consistent ringdown models have a reasonable inter-
pretation in the context of precession; nevertheless,we donot
have sufficient evidence to fully rule out other interpretations
of GW190521 such as those invoking eccentricity [28,29],
because it is unclear if the QNMs in our models could be
equally excited in alternative dynamical scenarios. Most
theoretical studies of QNM amplitudes from the ringdowns
of BBH coalescences have been limited to nonprecessing
binaries with equal or unequal mass ratios [47,51,69,79–83].
Preliminary progress has been made toward understan-
ding the effects of spin misalignment on the ringdown
[46,68,77,84,85], but general models have yet to be devel-
oped for astrophysical ringdowns.
As we broaden our theoretical understanding of astro-

physical QNM spectra, it may become possible to make
both eccentricity and precession measurements by analyz-
ing the ringdown alone. For example, large 200 amplitudes
should be tied to high eccentricity near the time of merger
in nonspinning systems, since head-on collisions (the limit
of maximal eccentricity) of nonspinning equal-mass black
holes are dominated by the 200 [82]. Even nondetection of
any QNMs associated with eccentricity or precession could
be used to place an upper bound on their amplitudes, which
in turn could set constraints on different dynamical scenar-
ios. This type of ringdown-only inference would improve
upon traditional methods in the literature for measuring
eccentricity and precession, as it is often assumed that such
measurements are only possible if several cycles of the
premerger strain are observed [56,86].

V. CONCLUSION

Based on considerations of agreement with inspiral-
merger-ringdown analyses, self-consistency of fits over

time, theoretical motivations related to precession, and
stability of fits when testing general relativity, we find a
f220; 210; 320g quasinormal mode model to provide the
most convincing interpretation of the ringdown of
GW190521.
We find that when we include both the 210 and 220

quasinormal modes in our ringdownmodels of GW190521,
we achieve agreement between the remnant mass and spin
posteriors of our ringdown fits and the full inspiral-merger-
ringdown fits of NRSur7dq4 over a broad range of ring-
down fit start times. The inferred parameters of the 220
and 210 modes are stable over time; the posteriors at later
times expand around those of earlier times. We find that
such inspiral-merger-ringdown waveform agreement and
self-consistency over time is not achieved by previous
GW190521 ringdown analyses, which were performed by
the LVC and Capano et al.
When we perform analyses with flat priors on the

amplitudes of each quasinormal mode, we find that the
amplitude of the 210 mode is comparable to, if not slightly
larger than, that of the 220. While this is not expected in
nonprecessing systems, we propose that such a large 210
excitation could be produced in the ringdown of a pre-
cessing system [77]. This adds to a growing body of
research which suggests that substantial information about
binary progenitors may be encoded in quasinormal mode
spectra [47,68,69,85].
At fitting times near the peak strain, a degenerate

solution can be found in our f220; 210g posteriors that
seems to fit content in the data at frequencies of ∼95 Hz.
This is the same frequency range where Capano et al. claim
to find a 330 quasinormal mode. Guided by agreement with
NRSur7dq4, we interpret this mode to be the 320. We
recover amplitude posteriors that are not consistent with
zero for the 320 quasinormal mode when fitting it alongside
the 220 and 210, and including this l ¼ 3 mode in our fits
does not significantly change our remnant mass and spin
estimates. We do not find support for the significant
presence of any other quasinormal modes in this signal
for fits that are consistent with NRSur7dq4.
For models that include the 210, our fits closely agree

with NRSur7dq4 even when fitting at times before our
median peak strain time estimate. There may be technical
reasons for this, related to the unusual lack of a prominent
inspiral signal in GW190521 or the large peak strain timing
uncertainty. We plan to further explore this early fit
behavior in future work.
When perturbing the Kerr quasinormal mode frequencies

and damping times of our f220; 210; 320g fit at the peak
strain time, we find a ∼� 20% constraint with 90%
credibility around zero deviation for the 320 frequency.
We do not find as tight of a constraint on the 220 frequency
deviation. There is a moderate skew toward positive
damping-time deviations for the 220, but this is the result
of correlations with χ. These correlations seem to be a
generic feature of this beyond-Kerr parameterization, and
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indicate that the astrophysical population of parameters like
χ will need to be modeled jointly with non-Kerr deviations
to avoid biases in tests of general relativity at the population
level [67].
In order for ringdown analyses to provide viable tests of

general relativity in the strong field regime, it is important
that we fully understand the astrophysical quasinormal
mode spectra we should expect to see in the LIGO-Virgo-
KAGRA catalogue. Mismodeling of these spectra may lead
to erroneous measurements of deviations from general
relativity. Even if the correct subset of Kerr quasinormal
modes is chosen for a fit, without physically-motivated
prior constraints there can still be many degeneracies in the
posteriors of these models. It may be advantageous for
future ringdown analyses to move away from current
models made up of small subsets of unconstrained quasi-
normal modes, and toward models that include as many
modes as possible and tune physics priors to determine
which modes are likely to be dominant.
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APPENDIX A: ANALYSIS TECHNICAL CHOICES

We analyze 0.4 second segments of data containing the
ringdown signal from version 2 of the released strain [58],
at a sample rate of 4096 Hz. We use a median Welch
estimate for our noise model, computed from 256 s of data
around the event. We high-pass filter at 10 Hz, and employ
a digital anti-aliasing filter to zero out frequencies above
the Nyquist frequency while avoiding the extended high-
frequency corruption imposed by the roll-on of commonly
used filters (e.g., Butterworth). We also artificially inflate
the value of the PSD below 10 Hz to censor those
frequencies in our likelihood calculations.
We estimate the peak time of the strain using an invariant

sum of all lm modes and samples from NRSur7dq4, as
detailed in Table I. We use a flat prior on remnant mass and
spin, and generally use flat priors on QNM amplitudes
unless otherwise specified. We do not assume equatorial
symmetry of the QNM excitations. When performing
Hamiltonian Markov-Chain Monte Carlo (MCMC) sam-
pling of our likelihood for models that have an l ¼ 3mode,
we employ a frequency constraint such that the higher-
order mode frequencies cannot go below 75 Hz. This is to
prevent our sampler from getting stuck in regions where the
l ¼ 3 mode is fit to signal that is labeled as l ¼ 2 by
NRSur7dq4. We also find that the degenerate solutions that
our sampler gets stuck on often have lower likelihoods,
which is further motivation for the frequency constraints.
See our data release for more details [43]. Other frequency

FIG. 12. The LVC performed late-time fits using a higher-order
angular mode model which is tuned to nonprecessing quasicir-
cular NR systems. The 90% credible contour of this higher-order
model’s remnant mass and spin posterior (dashed) is inconsistent
with that of NRSur7dq4 (solid), which may indicate that
GW190521 is not well described by nonprecessing models.
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cuts made throughout this paper are implemented after
MCMC sampling.
Fundamental aspects of our analysis are described in

[41]. A future companion paper [97] will discuss further
theoretical aspects of time-domain ringdown analysis and
motivate the data conditioning choices adopted here.

APPENDIX B: FURTHER DISCUSSION
ON PREVIOUS GW190521 RINGDOWN
ANALYSES AND IMR CONSISTENCY

Here we discuss the level of agreement that should be
expected between remnant parameter posteriors of IMR
and ringdown analyses. It is reasonable to assume that
completely disjoint ringdown and IMR posteriors are in
disagreement and that completely overlapping posteriors
agree, but it is harder to define an acceptable amount of
partial overlap of these posteriors. This problem is subtle:
we contend that even partial overlaps such as those
observed in Figs. 3 and 12 may be insufficient.
For an accurate IMR waveform, we would generally

expect a ringdown model consistent with that IMR wave-
form to make similarly accurate but less precise parameter
estimates. This means that the ringdown posteriors should
fully encompass the IMR posteriors. Insufficient overlap
of the ringdown and IMR posteriors can imply tension
between the inspiral-merger portion of the waveform and
the ringdown model in question. To demonstrate this point,
assume that if one were to perform separate analyses of the
inspiral-merger (IM) and ringdown (R) portions of a signal,
they would produce two statistically independent measure-
ments of the remnant mass and spin. That is, assume the
likelihood functions forM and χ can be multiplied to give a
joint likelihood over the inspiral and ringdown phases of
the signal:

pðdIM; dRjM; χ; IMRÞ ¼ pðdIMjM; χ; IMÞpðdRjM; χ;RÞ
ðB1Þ

This assumption is, in practice, violated by the colored
noise in current gravitational wave detectors: the likelihood
for the inspiral is not independent of that for the ringdown.
Nevertheless, the implications of this assumption are
instructive, and we expect the correlations introduced by
noise to be relatively small.
Given Eq. (B1), partial overlap of remnant mass and spin

posteriors obtained by separately analyzing the ringdown
and IMR signals consequently necessitates partial overlap
of posteriors obtained from the inspiral-merger and IMR
signals. This can result in a significant lack of overlap
between the posteriors from the inspiral-merger and ring-
down, as shown in Fig. 13. Inconsistencies like this are not
expected if general relativity correctly describes the signals
we observe, and thus lack of overlap of the IMR and

ringdown analyses may indicate that at least one suffers
from systematic inaccuracies.
Visually determining when sufficient overlap has been

achieved is further complicated by nuances related to the
spaces in which we plot our posteriors. The Jacobian used
when transforming between remnant mass and spin space
and QNM frequency and damping-rate space can alter the
level of apparent disagreement between posteriors, making
it harder in one of the spaces than the other to judge by eye
the overlap of Gaussian kernel density estimates. For this
paper, the QNM frequency and damping-rate emerged as
more useful for qualitative assessments, both because they
correspond more directly to observables in the data and also
because trends like those in Fig. 2 may not be obvious
without making comparisons to the individual modes given
by IMR waveforms.

APPENDIX C: DETECTABILITY OF TWO
FUNDAMENTAL MODES WITH NEARLY

EQUAL FREQUENCIES

The 220 and 210 modes considered in this paper are
quite close to each other in frequency and nearly identical
in damping time. The separation in angular frequency is
δω ≃ 10 Hz × 2π, which is comparable to their damping

FIG. 13. Using the assumption of Eq. (B1), we demonstrate that
seemingly small biases between ringdown (red) and IMR (black)
posteriors may indicate mismodeling in at least one of the
analyses. We plot 90% credible contours and show that if one
were to assume that the two-overtone ringdown model shown
here was consistent with the ringdown model preferred by
NRSur7dq4, this would imply that remnant mass and spin
estimates given separately by the inspiral-merger (blue dashed)
of NRSur7dq4 and the two-overtone ringdown model are in
disagreement.
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rate γ ≃ 60 Hz. It is reasonable to ask whether such modes
are even detectable in principle, given the SNR of
GW190521. Consider a simplified model, where there
are two (complex) modes with small angular frequency
separation δω and equal damping rates γ in a signal,

hðtÞ ¼
ffiffiffiffiffi
2γ

p
ðA1eiðωþiγÞt þ A2eiðωþδωþiγÞtÞ; ðC1Þ

which is embedded in white noise with unit variance for
0 < t < ∞. The SNR of any signal h in this situation is

ρ2h ≡
Z

∞

0

dtjhðtÞj2; ðC2Þ

the normalization above is chosen so that A1 is the SNR of
mode 1 and A2 the SNR of mode 2. Assuming that the
frequencies and damping rates of the modes are known
perfectly, the Fisher matrix for the amplitudes is given by

Fij ≡
Z

∞

0

dt
∂h�ðtÞ
∂Ai

∂hðtÞ
∂Aj

: ðC3Þ

In a measurement of mode amplitudes, the covariance
matrix will be the inverse of this Fisher matrix:

Σ≡ F−1 ¼
�

1þ 4ξ2 −2ξðiþ 2ξÞ
2ξði − 2ξÞ 1þ 4ξ2

�
; ðC4Þ

where

ξ ¼ γ

δω
ðC5Þ

is the dimensionless ratio of the damping rate to the
“dephasing rate,” or angular frequency separation.
There are three interesting regimes. When ξ ≪ 1 then the

modes are long-lived compared to their frequency separa-
tion, and the Fisher matrix approaches the identity, indicat-
ing that the amplitudes are measured with unit uncertainty
(as expected for the measurement of an SNR) without
correlation. When ξ ≫ 1 the modes damp rapidly com-
pared to the rate at which they dephase, and the Fisher
matrix becomes degenerate; the amplitude measurements
are perfectly correlated, and this large degeneracy produces
large uncertainty in the amplitude.
Finally, when ξ ≃ 1 the modes are measurable, but with

larger uncertainty, and the amplitude measurements are
correlated with each other. For GW190521, the 220 and
210 modes have ξ ≃ 1.1, which implies an uncertainty

σA ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ2

p
≃ 2.4, or a significance of detection for a

mode given by the mode’s SNR divided by 2.4. The
correlation coefficient between the mode amplitudes is
∼0.9. Both of these features are observed in the posteriors
we recover on the amplitudes of the 220 and 210 modes,
shown in Fig. 8.
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