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Numerical simulation of strange quark stars (QSs) is challenging due to the strong density discontinuity
at the stellar surface. In this paper, we report successful simulations of rapidly rotating QSs and study their
oscillation modes in full general relativity. Building on top of the numerical relativity code Einstein Toolkit,
we implement a positivity-preserving Riemann solver and a dustlike atmosphere to handle the density
discontinuity at the surface. The robustness of our numerical method is demonstrated by performing stable
evolutions of rotating QSs close to the Keplerian limit and extracting their oscillation modes. We focus on
the quadrupolar l ¼ jmj ¼ 2 f-mode and study whether they can still satisfy the universal relations recently
proposed for rotating neutron stars (NSs). We find that two of the three proposed relations can still be
satisfied by rotating QSs. For the remaining broken relation, we propose a new relation to unify the NS and
QS data by invoking the dimensionless spin parameter j. The onsets of secular instabilities for rotating QSs
are also studied by analyzing the f-mode frequencies. Same as the result found previously for NSs, we find
that QSs become unstable to the Chandrasekhar-Friedman-Schutz instability when the angular velocity of
the star Ω ≈ 3.4σ0 for sequences of constant central energy density, where σ0 is the mode frequency of the
corresponding nonrotating configurations. For the viscosity-driven instability, we find that QSs become
unstable when j ≈ 0.881 for both sequences of constant central energy density and constant baryon mass.
Such a high value of j cannot be achieved by realistic uniformly rotating NSs before reaching the Keplerian
limit. The critical value for the ratio between the rotational kinetic energy and gravitational potential energy
of rotating QSs for the onset of the instability, when considering sequences of constant baryon mass, is
found to agree with an approximate value obtained for homogeneous incompressible bodies in general
relativity to within 4%.
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I. INTRODUCTION

A. Quark stars

Do strange quark stars (QSs) exist in nature? The
question remains unanswered since the hypothesis that
strange quark matter composed of u-, d-, and s-quarks may
be the ground state of baryonic matter was proposed as
early as fifty years ago [1–3]. If strange quark matter is only
metastable, then hybrid stars consisting of quark matter
cores surrounded by nuclear matter in the envelope may
also exist (e.g., [4,5]). More recently, the possibility that
quark matter containing only u- and d-quarks is the true
ground state of baryonic matter for a baryon number larger
than 300 has also been considered [6].
While there is still no evidence for their existence, QSs

have been proposed to explain some compact-object
observations in the past [7]. More recently, the low-mass
(<1M⊙) central object of the supernova remnant HESS

J1731-347 is suggested to be a QS [8–10], as it is not
possible to form such a low mass neutron star (NS) by
conventional core-collapse supernova [11]. In the era of
gravitational wave (GW) astronomy, the event GW190814
[12] has also been suggested to be a black hole-QS system
[13]. Constraints on the equation of state (EOS) of quark
matter have also been considered by assuming that the
events GW170817 [14] and GW190425 [15] were due to
merging QSs instead of NSs [16]. While the observed
kilonova signal associated with GW170817 suggests that
the event was due to a binary NS merger, this event by itself
does not rule out the existence of QSs since NSs and QSs
could coexist according to the two-families scenario
[17,18]. Better constraints on the properties of quark matter
or even direct evidence for QSs might be possible as more
GW events are expected to be observed in the coming
decade.
Numerical relativity simulations are indispensable tools

for studying the GWs emitted from strongly dynamical
spacetimes, such as the mergers of binary compact objects.
While hydrodynamic simulations of NSs in full general
relativity are performed routinely nowadays by different
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research groups (see [19–21] for recent reviews), only a
few relativistic simulations have been obtained for QSs.
The first binary QS simulation was done in 2009 [22]
using the smooth particle hydrodynamics method and the
conformally-flat approximation in general relativity. Fully
general relativistic simulations of single and binary QSs
[23–25] became available only in the past two years.
In this paper, we add a contribution to this line of

research by demonstrating our ability to evolve rapidly
rotating QSs and study their oscillation modes. Our
simulations were performed using the publicly available
code Einstein Toolkit [26–28], with our own implementation of
a positivity-preserving Riemann solver and a dustlike EOS
for the “atmosphere.” Apart from the fact that the study of
oscillation modes of compact stars is important in its own
right (see below), the demonstration of stable evolutions of
rapidly rotating QSs would be an important milestone for
us to achieve before attempting generic nonlinear dynami-
cal situations, such as the gravitational collapse of a rapidly
rotating unstable QS.
The challenge to evolve a bare QS (without a thin nuclear

matter crust), as described by the standard MIT bag-model
EOS in a hydrodynamic simulation, is due to its sharp high-
density surface where the pressure vanishes. The high-
density surface is directly in contact with the numerical
atmosphere, which is introduced to fill up the vacuum space
with the purpose of stabilizing traditional grid-based
hydrodynamic simulations. The low-density atmosphere
is considered to have a negligible impact on the dynamics
of compact stars when the evolution time is relatively short
and comparable to the dynamical timescale, such as in the
case of binary inspiral and merger; however, its small
effects, if not properly handled, would accumulate and
eventually kill a long-time simulation of a single stable star.
The large contact discontinuity at theQS surface due to the

density can be regarded as a special case of shock waves. In
the context of shock-capturing hydrodynamic schemes, it is
well known that low-order Godunov-type schemes [29,30]
that are strongly dissipativewill smear the shock, while high-
order schemes will usually introduce spurious oscillations
that result in the erroneous reconstruction of density near the
surface. The error introduced in NS modeling is typically
small but serious for QSs and can cause significant violations
of mass conservation.
It is essential to preserve the positivity of density (and

pressure) for a QS near its surface. A fine balance could
be achieved by combining the high-resolution shock-
capturing methods together with the so-called positivity-
preserving (PP) Riemann solver, which was first introduced
into the numerical relativity community by Radice et al. in
[31]. The main idea is that one could always build a finite-
volume PP scheme by integrating a high-order solver with a
first-order one under a more restrictive Courant-Friedichs-
Lewy (CFL) condition as shown by Shu et al. [32–35],
since first-order Godunov-type schemes are known to have

the PP property [36]. The PP scheme was originally
designed to treat the low-density atmosphere of NSs.
Better mass conservation and sharper surface density
profiles were obtained. In this study, we applied the idea
to QSs and achieved similar improvements, with a dustlike
EOS designed for the atmosphere. As required by the
continuity conditions, the atmospheric density may no
longer be small but can be in the same order as the surface
density. When we model the atmosphere by nearly pres-
sureless dust particles, large truncation errors on the
densities will not cause noticeable disturbance on pressure
profiles. Our strategy to handle the sharp QS surface is
different from those employed in recent simulations of QSs.
In [24,25], Zhou et al. modified the primitive-variable
recovery procedure together with an addition of a thermal
component to the cold MIT bag model EOS. On the other
hand, Zhu and Rezzolla [23] introduced a thin crust
described by a polytropic EOS at the QS surface.

B. Oscillations of compact stars

Pulsations of compact stars are potential sources of
GWs, and their detection can provide important informa-
tion for the uncertain properties of supranuclear EOS inside
a traditional NS. The detected signals may even provide
evidence for the existence of deconfined quark matter,
which could exist in the core of a hybrid star model or in the
form of a pure strange QS [3,5].
The successful detection of GWs from merger events by

the Laser Interferometer Gravitational Wave Observatory
(LIGO)-Virgo Scientific Collaboration [37–39] has opened
a new era of observational astronomy. Advanced LIGO,
Virgo, Kamioka Gravitational Wave Detector, and the next-
generation detectors such as the Einstein Telescope [40]
would have sufficient sensitivities in the high-frequency
band (∼kHz) to probe the GWs emitted from pulsating
compact stars.
The most important oscillation modes that would have

interests in GW astronomy are the quadrupolar (l ¼ 2)
fundamental f-mode, the first few overtones of the pressure
p-modes, rotational r-mode, and maybe the first spacetime
w-modes [41,42]. The f-mode is particularly relevant to the
GW signals emitted from isolated and binary NS systems.
On the one hand, the f-mode is expected to contribute
strongly to the GWs emitted from a proto-NS [43,44]. For a
binary NS system, the dynamical tidal effects due to the
coupling between the excited f-mode and tidal fields
during the late inspiral phase are important to the dynamics
and emitted GW from the system [45,46].
While the oscillation modes of nonrotating compact stars

can be formulated and computed as eigenvalue problems
(see [41] for a review), the situation for rapidly rotating
stars is more complicated as the effects of rotation cannot
be treated perturbatively. A standard approach to studying
the oscillation modes of a rapidly rotating NS in general
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relativity is to suitably perturb the star and follow its
subsequent evolution using a hydrodynamic code, and the
mode frequencies are then identified from the Fourier
spectra of the fluid variables. Due to the complexity of
general relativity, such simulations are usually performed
under the Cowling approximations [47–50] and the con-
formally flat assumptions [51,52]. An exception is the work
by Zink et al. [53] in 2010 which investigated the f-modes
of uniformly rotating polytropic stars using a nonlinear
hydrodynamics code in full general relativity. More
recently, Krüger and Kokkotas (hereafter KK) in [54,55]
studied the f-modes of rapidly rotating NSs with realistic
EOSs taking into account the spacetime dynamics in a
linearized theory. In this work, we shall study the oscil-
lation modes of rapidly rotating QSs in full general
relativity for the first time.
Focusing on the quadrupolar (l ¼ 2) f-mode, the three

m ¼ 0;�2 modes are degenerate for a nonrotating spheri-
cal star, where m is the azimuthal quantum number. They
will split when the star rotates, similar to the Zeeman
splitting in quantum mechanics, though the splitting does
not increase linearly with the rotation rate due to the high
nonlinearity of the system. The two nonaxisymmetric
(m ≠ 0) modes are usually called bar modes, and they
are subject to various instabilities [56,57]. In this work, we
shall determine the onsets of secular instabilities of rapidly
rotating QSs driven by GW and viscosity dissipations.
For the GW-driven Chandrasekhar-Friedman-Schutz

(CFS) instability [58,59], the onset occurs at a neutral
point, where the counterrotating m ¼ 2 mode frequency σi
observed in the inertial frame passes through zero (i.e.,
σi ¼ 0). In [54], KK found that the onset of CFS instability
for a rotating NS occurs when the angular velocity Ω of the
star Ω ≈ 3.4σ0 for sequences of constant central energy
density, where σ0 is the f-mode frequency of the corre-
sponding nonrotating model. The conclusion is approx-
imately insensitive to the chosen EOSmodels in their study.
We shall see in our work that rapidly rotating QSs also
satisfy this result as well.
The bar modes are also subject to another type of

instability which is driven by viscosity. The instability sets
in when the m ¼ −2 corotating mode frequency σc in the
rotating frame passes through zero (i.e., σc ¼ 0). The
Newtonian analysis of the onset of this instability was
studied by Chandrasekhar [60] for a sequence of uniformly
rotating uniform-density Maclaurin spheroids. It was found
that a new sequence of triaxial Jacobi ellipsoids branches off
the Maclaurin sequence when the Newtonian ratio between
the rotational kinetic energy T and gravitational potential
energy jWj reaches the critical value ðT=jWjÞcrit;Newt ¼
0.1375. Above this critical value, the Maclaurin spheroids
are subjected to the viscosity-driven instability and migrate
towards the Jacobi sequence by dissipating energy while
conserving angular momentum. A Jacobi ellipsoid is par-
ticularly relevant to GW astrophysics, as its time-varying

mass quadrupole moment will continuously emit GW
radiation.
In [61], it is found that general relativity weakens the

Jacobi-like bar-mode instability. Furthermore, a stiff EOS
with an adiabatic index as large as 2.5 is required for a
1.4M⊙ polytropic star to become unstable for Ω lower than
the Keplerian limit [62]. The onset of the instability is thus
expected to be difficult to achieve (if not impossible) by
realistic rotating NSs. On the other hand, rotating QSs
would be the most promising candidates to achieve the
instability as they can generally support higher rotation
rates [63,64] and are stiff enough to be approximated well
by incompressible models [65].
The viscosity-driven instability of rotating QSs was

already studied more than twenty years ago [63,66,67],
and the instability onset was found to occur generally
before the Keplerian limit. However, these studies were not
based on the analysis of the oscillation modes, but by
perturbing the stellar configuration during the iteration
steps of the calculation of an axisymmetric equilibrium
rotating star. If the perturbation grows during the iteration,
then the star is declared to be unstable. In this work, we
study for the first time the onset of the viscosity-driven
instability by observing how the corotating mode frequency
σc in the rotating frame passes through zero as the rotation
rates of sequences of QSs approach the Keplerian limit. It
should be noted, however, that there is no physical viscosity
in our simulations as all stars are modeled by perfect fluids.
While the oscillation modes were identified in our three-
dimensional simulations, the spontaneous breaking of
axisymmetry due to the instability was not observed in
the dynamical timescale.

C. Universal relations

In the last decade, the discoveries of various approximate
EOS-insensitive universal relations of compact stars (see
[68,69] for reviews) are not only of theoretical interest but
also of importance in astrophysical applications, such as
measuring masses and radii with x-ray pulse profile
modeling [70], analyzing GW signals to constrain the
maximum mass of NSs [71], and reducing the number
of parameters in theoretical gravitational waveform models
for binary NS inspirals [72–75].
In contrast to the mass-radius relations of compact stars,

universal relations connecting different physical quantities
are generally insensitive to EOS models to about 1% level.
Many of the investigations done on universal relations only
focus on traditional NSs, though it is known that bare QSs
also satisfy some of the relations established by NSs
[76–79]. Besides searching for newuniversal relations, which
mayprovide astrophysical applications, it is also interesting to
test existing universal relations against different physics
inputs such as thermal effects relevant to hot newborn NSs
[80,81] or superfluid dynamics for cold NSs [82].
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Attempts to find universal relations for the oscillation
modes of compact stars dated back to the seminal work of
Andersson and Kokkotas [83] more than twenty years ago,
which was then followed by Benhar et al. [84] and Tsui and
Leung [85,86]. While these earlier universal relations
depend weakly on the EOS models to a certain accuracy,
they are not as robust as those discovered later. The f-mode
is now known to connect to the moment of inertia [76] and
tidal deformability [79] by robust universal relations which
are insensitive to the EOS models to within about 1% level,
when the relevant physical quantities are suitably scaled
(see, e.g., [87–90] for recent work). However, these studies
were based on nonrotating NSs and QSs only. Recently,
KK [54] found three universal relations for the bar modes
of rapidly rotating NSs using their newly developed code
that takes into account spacetime dynamics in a linearized
theory [55]. In this paper, we shall study whether their
universal relations can also be applied to rapidly rotating
QSs. We find that two of their relations can still be satisfied
by bare QSs very well, but one of them is broken quite
significantly already at moderate rotation rates. In addition
to the f-mode, we also study the first p-mode of rotating
QSs. For the class of QS models studied in this paper, we
report fitting relations for the p-mode frequencies of both
nonrotating and rotating stars.
The plan of the paper is as follows. In Sec. II, we discuss

the formulation and numerical methods employed in this
work. Section III presents the numerical results, including
tests that were performed to validate our simulations.
Finally, we conclude the paper in Sec. IV. Unless otherwise
noted, we adopt the unit convention c ¼ G ¼ M⊙ ¼ 1,
where c is the speed of light,G is the gravitational constant,
and M⊙ is the solar mass.

II. FORMULATION AND NUMERICAL METHODS

Our simulations were performed using the publicly
available code Einstein Toolkit which is built on top of the
Cactus computational infrastructure [91,92]. The spacetime
is evolved using the standard CCZ4 formulation of the
Einstein equations [93,94] implemented in the thorn code
McLachlan [95,96] of Einstein Toolkit. We choose the
parameters of the CCZ4 formulation to be κ2 ¼ 0 and κ3 ¼
0.5 in our simulations. As for κ1, we typically choose it to
be 0.05. Although its optimal value can vary for different
models, physical results are insensitive to these choices as
long as the constraint violation does not grow and invali-
date the simulations. The general relativistic hydrodynam-
ics equations are solved using the thorn code GRHydro

[97,98]. The mesh-refinement driver CARPET [99,100] is
employed to provide an adaptive mesh refinement approach
to increase resolution. The standard gauge conditions
“1þ log” slicing [101] and Gamma-driver shift condition
[102] are adopted, where the damping coefficient which is
introduced to avoid strong oscillations in the shift is chosen
to be 1=M (with M being the gravitational mass).

Furthermore, a numerical dissipation of the Kreiss-Oliger
type [103] is introduced for spacetime variables and gauge
quantities following the suggestion of [104]. The formulation
and numerical setup used in our simulations are quite
standard choices for general relativistic hydrodynamic mod-
elings, such as in the cases of binary neutron star mergers. In
order to simulate rapidly rotating QSs for sufficient duration
in our study, we implemented a positivity-preserving
Riemann solver to the GRHydro thorn which will be discussed
below.

A. Positivity preserving Riemann solver

The fluid-vacuum interface at the surface of a star in
hydrodynamics modeling is subject to perturbations mainly
due to truncation errors. These perturbations could be
significant when the surface has a nonzero finite density,
as in the situation for a bare QS. This is particularly the case
for simulations using Cartesian coordinates, where the grid
points do not match well with the smooth stellar surface.
When a free boundary condition is used, the freely evolved
vacuum would quickly encounter numerical problems as it
may lead to nonphysical negative densities. The problem is
tackled, in general, by introducing an artificial atmosphere
with a floor density ρf in hydrodynamic simulations.
It is therefore necessary and desirable to preserve the

positivity of certain hydrodynamical variables, essentially
the density and the pressure, in a free evolution scheme. For
the Newtonian Euler equation, it has been shown that both
the density and the pressure are guaranteed to be positive by
a well-designed limiter when no source terms are present
[35]. In [34], four types of source terms were tested for the
discontinuous Galerkin schemes. However, in relativistic
hydrodynamics, a rigorous strategy is still lacking for a
generic EOS. Here we discuss the PP Riemann solver
introduced in [31,35], which we implemented and proved
to provide stable evolutions of rapidly rotating QSs in
the study.
Let us first give an outline of the conservative form of the

relativistic hydrodynamics equations to define the variables
for further discussion. The standard 3þ 1 Arnowitt-Deser-
Misner form [105] of spacetime metric is given by

ds2 ¼ gμνdxμdxν ¼ ð−α2 þ βiβ
iÞdt2 þ 2βidtdxi

þ γijdxidxj;

where gμν, α, βi, and γij are the spacetime 4-metric, lapse
function, shift vector, and spatial 3-metric, respectively.
The energy-momentum tensor of the matter inside the star
is assumed to take the perfect fluid form [98]

Tμν ¼ ρhuμuν þ Pgμν; ð1Þ

where ρ is the rest-mass density, uμ is the fluid four-
velocity, P is the pressure, h ¼ 1þ ϵþ P=ρ is the specific
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enthalpy, and ϵ is the specific internal energy. The equa-
tions of motion for the fluid are the conservation law of
baryon number, i.e., Eq. (2a), and the conservation of
energy and momentum, i.e., Eq. (2b),

∇μðρuμÞ ¼ 0; ð2aÞ

∇μTμν ¼ 0; ð2bÞ

which are solved by the Valencia formulation [106,107] in
the conservative form,

∂U
∂t

þ ∂Fi

∂xi
¼ S; ð3Þ

with the conserved variables

U ¼ ½D; Sj; τ� ¼ ffiffiffi
γ

p ½ρW; ρhW2vj; ρhW2 − P − ρW�; ð4Þ

where γ is the determinant of γij, and the three-velocity is
vi ¼ ðui=ut þ βiÞ=α; W ¼ ð1 − viviÞ−1=2 is the Lorentz
factor. For three-vectors like vi and βi, their indices are
raised and lowered by the 3-metric, e.g., vi ¼ γijvj. The
fluxes are

Fi ¼ α½Dṽi; Sjṽi þ ffiffiffi
γ

p
Pδij; τṽ

i þ ffiffiffi
γ

p
Pvi�; ð5Þ

and the source functions are

S ¼ α
ffiffiffi
γ

p ½0; Tμνð∂μgνj − Γλ
μνgλjÞ; αðTμ0

∂μ ln α − TμνΓ0
μνÞ�;

ð6Þ

where ṽi ¼ vi − βi=α and Γλ
μν are the 4-Christoffel

symbols.
To illustrate the idea of the PP scheme, we first consider

a source-free scalar conservation law in one dimension [31]

∂u
∂t

þ ∂fðuÞ
∂x

¼ 0: ð7Þ

A theory [108,109] states that a high-order temporal
integration scheme such as the Runge-Kutta scheme, which
is a convex combination of forward Euler steps, will
maintain the total variation diminishing (TVD) property
and the positivity of u, provided this is true for the first-
order forward Euler method. Methods of this kind are
known as strong stability-preserving or TVD methods.
Considering a discretization scheme using the forward
Euler method,

unþ1
i − uni
Δt

¼ fi−1=2 − fiþ1=2

Δx
; ð8Þ

we can arrange it in the form

unþ1
i ¼ 1

2
ðuþi þ u−i Þ; ð9Þ

where

uþi ¼ uni þ 2
Δt
Δx

fi−1=2; ð10aÞ

u−i ¼ uni − 2
Δt
Δx

fiþ1=2: ð10bÞ

Sufficiently, when both uþi and u−i are positive, so will be
unþ1
i . It is proven that positivity is guaranteed for the first-

order Lax-Friedrichs (LF) flux [32] with a more restrictive
CFL-like condition Δt=Δx ≤ 1=2c, where c is the largest
speed of sound [35]. However, this low-order scheme is too
dissipative to capture features of shocks. The principle of
the PP solver is to combine it with a high-order (HO)
scheme for optimization,

fPPiþ1=2 ¼ αfHOiþ1=2 þ ð1 − αÞfLFiþ1=2; ð11Þ

where fHOiþ1=2 is the HO flux, fLFiþ1=2 is the LF flux, and
α∈ ½0; 1� is an undetermined coefficient. In our simulations,
we selected the Marquina solver [110,111] as our HO flux.
When α ¼ 1, the PP scheme fully restores to the powerful
HO flux, which is applied for the bulk of a star. On the other
hand, around the fluid-atmosphere interface at the stellar
surface, the PP scheme then searches for the optimal value
of α, compromising accuracy for positivity.
The first component of Eq. (3), i.e., the continuity

equation, is source-free [see Eq. (6)], and the PP scheme
is applicable. Its conserved variable isD ¼ ffiffiffi

γ
p

Wρ, where γ
and W are both definitely positive. Ensuring the positivity
of D will serve our purpose of ensuring the positivity of ρ.
However, the pressure-related term, the conserved energy
density τ, has a complex source term in Eq. (6). While the
authors of [31] suggested enforcing a floor value on τ,
empirically we found it adequate to apply the PP limiter
also on τ. In our three-dimensional Cartesian-grid case, the
CFL-like condition becomes Δt=Δx ≤ 1=6c, and the PP
flux fPPiþ1=2 is calculated component-by-component. This
condition, which requires each interface to be non-negative,
is too restrictive since only the positivity of their sum is
really demanded. It could tolerate a small negative con-
tribution (if any) from the source term.
Let the conserved variable u represent either D or τ. The

value of α is determined as follows. If uþiþ1ðfHOiþ1=2Þ is

positive, then αðuþiþ1Þ ¼ 1, meaning that the original HO
flux is used. Otherwise,

αðuþiþ1Þ ¼
uþiþ1ðfLFiþ1=2Þ

uþiþ1ðfLFiþ1=2Þ − uþiþ1ðfHOiþ1=2Þ
; ð12Þ
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and similarly for αðu−i Þ. The PP property of the LF scheme
ensures that a solution α ≥ 0 always exists. We then have

αðuÞ ¼ minðαðuþiþ1Þ; αðu−i ÞÞ: ð13Þ

This determines the PP flux fPPiþ1=2 of one component. As

there are five components in the flux Fi, different values of
α could be applied to different components. Empirically,
we found that using the smaller value between αðDÞ and
αðτÞ on all five components worked well. Practically, a
smaller Courant factor or a more conservative choice of α
can always be chosen if there is an intolerably large
violation of mass conservation, which indicates a poor
preservation of positivity. The implementation of the PP
solver allows us to set the floor density of the atmosphere to
be ρf ¼ 10−18, which is about 10−15 of the typical central
density. In theory, the PP scheme allows the atmosphere to
evolve freely to be as small as the round-off precision. In
our typical simulations, the violation of the total mass
conservation near t ¼ 2000 ≈ 9.85 ms for a Courant factor
0.16 is of Oð0.1%Þ. More numerical tests are presented in
Sec. III.

B. Equation of state

1. For QSs and NSs

As we are interested in extracting the oscillation modes
of QSs excited by small perturbations, the thermal effects
like shock heating will play a negligible role in the
simulations. We thus assume the stars are described by
zero-temperature EOS models. In order to model bare QSs,
we parametrize the linear approximation of the MIT bag
model EOS [112] by the square of the speed of sound css
and the bag constant B as

P ¼ csse − ð1þ cssÞB; ð14Þ

where P is the pressure for a given energy density e. It will
be convenient to further parametrize it by the ratio κ ≡ ρ=ρS
between the rest-mass density ρ and the surface density at
zero pressure ρS ¼ ð1þ cssÞB=css. The full EOS is then
given by

ρ ¼ ρSκ; ð15aÞ

P ¼ Bðκ1þcss − 1Þ; ð15bÞ

e ¼ B

�
κ1þcss

css
þ 1

�
; ð15cÞ

and κ is closely related to the enthalpy h through the
relation

h ¼ eþ P
ρ

¼ κcss : ð16Þ

In addition to a conventional choice of css ¼ 1=3 and
B ¼ B60 ≡ 60 MeV=fm3, hereafter denoted by “MIT1,”
we also include the following models: “MIT2” for css ¼ 1
and B=B60 ¼ 3, “MIT3” for css ¼ 2=3 and B=B60 ¼ 3=2
and “MIT4” for css ¼ 1=2 and B=B60 ¼ 3=2, to cover a
range of parameter space for QSs as we shall also explore
the robustness of some EOS-insensitive universal relations.
We also include a nuclear-matter EOS model for NSs as

a benchmark for comparison. Instead of using the original
tabular EOS data, we use a piecewise polytropic model
[113] to represent analytically the SFHo [114,115] EOS,
which was not included in the study of the universal
relations of rapidly rotating NSs by KK [54]. In particular,
we construct a five-piece model so that the pressure P and
specific internal energy ϵ are everywhere continuous and
satisfy

PðρÞ ¼ Kiρ
Γi ; ð17aÞ

ϵðρÞ ¼ ai þ
Ki

Γi − 1
ρΓi−1; ð17bÞ

inside the range of rest-mass density ρi−1 ≤ ρ < ρi (i ¼ 1,
2, 3, 4).
The parameters of our EOS models are summarized in

Tables I and II and the corresponding mass-radius relations
for nonrotating QSs and NSs are shown in Fig. 1. The
mass-radius relations of MIT bag models differ qualita-
tively from that of the SFHo EOS due to the well-known
fact that QSs are self-bound objects.

TABLE I. Parameters of the four quark-matter MIT bag EOSs
indicated by MIT1, MIT2, MIT3, and MIT4.

MIT1 MIT2 MIT3 MIT4

css 1=3 1 2=3 1=2
B=B60 1 3 3=2 3=2

TABLE II. Parameters of the piecewise polytropic representa-
tion of the nuclear-matter SFHo EOS. The parameters
ðρi; Ki;Γi; aiÞ are expressed in the code units where
G ¼ c ¼ M⊙ ¼ 1.

i ρi Ki Γi ai

0 0.0 6.0073 × 10−2 1.2524 0.0
1 8.4981 × 10−7 7.4003 × 10−6 0.6084 1.1491 × 10−2

2 4.2591 × 10−6 5.4052 × 10−3 1.1416 2.4695 × 10−3

3 5.3619 × 10−5 2.3751 × 102 2.2288 1.0860 × 10−2

4 4.2591 × 10−4 3.6338 × 104 2.8769 1.5677 × 10−2
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2. For the atmosphere of QSs

The surface of a bareQSmodeled by theMITbagmodel is
identified by the vanishing pressure just like an ordinary NS,
but it has a finite density ρS, which is of the same order as the
central density, and it requires novel treatments in dynamical
modelings. In traditional hydrodynamic simulations for NSs,
a low-density atmosphere is introduced to fill up all vacuum
space outside the stars, such that a fluid element is reset to
become part of the atmosphere when its density evolves to
become smaller than a prescribed value of the atmospheric
density or even negative. This approach works well in highly
dynamical situations such as inspiraling binary stars when
the stars move across the computational grid in a short time
scale, and the effects of the low-density atmosphere become
relatively unimportant. However, in studying the oscillations
of stable stars whose vacuum-fluid interface may move
slowly, excessive oscillations may cause the star to extract
(lose) mass from (to) the atmosphere and violate the
conservation of mass and momentum. As the effects accu-
mulate and amplify, they ultimately destabilize the evolution
[31]. This situation only gets worse for QSs when the
vacuum-fluid density discontinuities are many (ten) orders
of magnitude larger than those in traditional NS cases.
Immediately after starting the simulation, a large violation
of mass conservation would be observed, and it soon rises up
to the order of total mass, completely destroying the
simulation.
Furthermore, during a numerical simulation it can

happen that fluid elements on the surface of a QS may
evolve to a density smaller than the surface density ρS,
which is defined by the vanishing pressure of the MIT bag
model. As their densities (∼ρS) are typically many orders of

magnitude larger than the density of the atmosphere, they
cannot simply be treated as part of the atmosphere. This
then poses a question of how to evolve such fluid elements
and with what type of EOS so that the dynamics near the
surface of a QS can be modeled correctly.
Instead of arbitrarily modifying some atmospheric ele-

ments during evolution, we want to maintain the balance
between inertial and gravitational forces on all fluid
elements and enforce the conservation law around the
vacuum-fluid interface. In other words, a scheme allowing
for a free evolution of the atmosphere is required. To
achieve this purpose, we introduce here a dustlike EOS to
model fluid elements near the surface of a QS, whose rest-
mass density is not necessarily small but whose pressure is
always close to zero. Even though the truncation errors
from finite differencing may cause a large density dis-
location, its disturbance to the pressure profile would be
minimal. The gravitational pull of the star tends to bring a
dislocated fluid element back to its equilibrium position.
In practice, after importing the initial data of a bare QS

into the computational domain, an atmosphere with a floor
rest-mass density ρf is set outside the star. In our simu-
lations, the value of ρf is chosen to be 10−18, about 10−15

times the central rest-mass density of the star. During the
evolution, we set a pressure cutoff or equivalently a density
cutoff slightly larger than the surface density following our
parametrization of the MIT bag model EOS:

ρcutoff ¼ ρSð1þ ξÞ; ð18aÞ

Pcutoff ≈ Bð1þ cssÞξ ≈ cssρcutoffξ; ð18bÞ

where ξ is small. The specific enthalpy and energy are
given by h ¼ ð1þ ξÞcss ≈ 1þ cssξ and ϵ ≈ cssξ2=2, respec-
tively. It should be noted that the effective adiabatic index
diverges near the stellar surface

Γ ¼ d lnP
d ln ρ

¼ ð1þ cssÞκ1þcss

κ1þcss − 1
≈
1

ξ
; ð19Þ

meaning the surface is theoretically infinitely stiff. If the
rest-mass density is above the cutoff density ρcutoff, then we
will use Eq. (15). Otherwise, we switch to the following
EOS for the fluid element:

PðρÞ ¼ cssξρ; ð20aÞ

eðρÞ ¼
�
1þ css

2
ξ2
�
ρ: ð20bÞ

When ρ < ρcutoff , the transition of the EOS from the MIT
bag model to dust does not mean a physical phase
transition. The dust atmosphere can be considered as being
motivated by the physical picture that when self-bound
quark matter droplets, each with density≈ρcutoff, are ejected

FIG. 1. Gravitational mass is plotted against radius for non-
rotating NSs modeled by the SFHo EOS and QSs modeled by
four MIT bag models. Points labeled by “Seqs” correspond to the
nonrotating configurations in the sequences of constant baryon
mass or constant central density we used in the study of
rotating stars.
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from the stellar surface in dynamical evolution, they form a
thin layer of atmosphere. In a finite-volume cell, the
number of droplets is not large enough to form a fluid,
but instead well described by a system of pressureless dust.
Both the specific energy and enthalpy are enforced to be
continuous across the surface discontinuity. The first law of
thermodynamics, which requires de=dρ ¼ h, is violated to
the order of OðξÞ. By choosing a small ξ, we expect our
model to capture the dynamics near the surface of a bare
QS, and eventually the error is dominated only by the finite-
differencing error. We used ξ ¼ 10−12 in our simulations.
The cutoff pressure is then also about 10−12 of the central
pressure, and the surface specific internal energy ϵ ∝ ξ2 is
below the roundoff precision of the double precision
floating point numbers. As we shall see in the following,
the introduction of this dustlike EOS near the surface of a
QS enables us to determine the radial oscillation modes of
QSs accurately.

C. Other numerical issues

In addition to the Riemann solver (see Sec. II A), which
determines the numerical flux at the cell interfaces, one also
needs a reconstruction method to interpolate the fluid
variables. In our simulations, we implemented the classic
piecewise parabolic method (PPM) reconstruction method
[116]. It should be pointed out that the original PPM
scheme applies a steepening procedure for density dis-
continuity only if the following condition is satisfied [see
Eq. (3.2) in [116]]:

ΓK0

jρjþ1 − ρj−1j
minðρjþ1; ρj−1Þ

≥
jPjþ1 − Pj−1j

minðPjþ1; Pj−1Þ
; ð21Þ

where K0 is a constant parameter. This condition deter-
mines whether the jth zone can be treated as being inside a
discontinuity. However, this criterion does not work prop-
erly for QSs due to the divergence of the effective adiabatic
indices Γ ≈ 1=ξ of QSs near the surface. As a result, any
pair of constants Γ and K0 in the PPM scheme would not
properly detect discontinuities near the surface of a QS. In
our simulations, we simply turned off this condition and
always allowed the steepening procedure for QS models.
This adjustment can sharpen surface density profiles and
prolong our simulations. We have also tested the fifth-order
monotonicity preservation scheme (MP5) [117,118] and
found no advantage regarding mass conservation, as we
shall discuss in Sec. III A.
In this study, we do not attempt to extract the gravita-

tional wave signals emitted from oscillating stars using the
Newman-Penrose formalism, which is routinely employed
in binary neutron star simulations. The outer boundary of
the computational domain in our simulations can then be
set closer to the stellar surface. Nevertheless, we found that
the quality of the hydrodynamic modeling of a rapidly
rotating QS, such as mass conservation, can be affected

strongly if the outer boundary is too close to the stellar
surface. In our simulations, we employ three refinement
levels with a 2∶1 refinement ratio for successive levels
provided by the mesh refinement driver CARPET in order to
maintain enough grid resolution inside the star, while the
outer boundary can be put far away from the stellar surface
to reduce its effects. The first refinement boundary is at a
radius of 1.2req, the second at 2.4req, and the outer
boundary at 4.8req, where req is the equatorial coordinate
radius. In Sec. III A, numerical results of three spatial
resolutionsΔx ¼ 0.12 ð≈177 mÞ, 0.16 ð≈236 mÞ, and 0.24
ð≈354 mÞ, in the case of a nonrotating QS are compared,
whereΔx is the grid size for the finest level. Since we could
already extract the frequencies of radial oscillation modes
of QSs up to the fifth overtone using Δx ¼ 0.24, we
produced our results with the default resolution Δx ¼ 0.16.
For a typical slowly rotating star, its radius will cover about
50 computational grids. Fast rotation can cause a large
deformation of the star, and the ratio between the polar and
equatorial radii can be below 0.5 for some extreme models.
For these cases, there are about 30 and 60 cells along the
polar and equatorial radii, respectively.
To save computational resources, reflection symmetry

about the equatorial plane is assumed and interesting
modes (l ¼ jmj ¼ 2) will not be affected by this choice.
Octant symmetry is applied when bar modes are not
concerned. In short summary, our main numerical results
in this work are obtained by using the PP Riemann solver
with the PPM reconstruction method. The time update is
performed using the standard RK4 integrator.

D. Initial data and perturbations

We use the numerical code ROTSTAR in the LORENE [119]
library to construct uniformly rotating NS and QS models
for our study. The code uses a multidomain spectral method
[120,121] and has been used for calculating rapidly rotating
QSs [63,64,66,67]. Sequences of constant baryon mass and
constant central energy density are produced, whose
corresponding nonrotating configurations are labeled by
“Seqs” data points in Fig. 1.
An important dimensionless parameter to characterize a

rotating compact star is its spin parameter j ¼ J=M2, where
J andM are the angular momentum and gravitational mass
of the star, respectively. In Fig. 2, the spin parameters of our
constant baryon mass sequences are plotted against the
angular velocity Ω, normalized by the corresponding
maximal rotation limit Ωmax. There is a gap separating
the band of QS models from the two NS sequences in the
figure. For the same baryon mass, the spin parameters of
QSs are significantly larger than the NS counterparts,
especially when Ω=Ωmax approaches unity. It should be
pointed out that, in contrast to the situation for rotating
NSs, the maximum angular velocity Ωmax of a sequence of
QSs with a given baryon mass is generally higher than the
Keplerian limit ΩK by about 2%, a characteristic feature of
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self-bound objects that a QS can further gain angular
momentum by slightly slowing down its rotation but
increasing its oblateness (i.e., the moment of inertia) before
reaching the Keplerian limit [66]. While the two NS
sequences with a 10% difference in baryon mass match
each other very well, the QS sequences for a given EOS
model are seen to depend more sensitively on the mass. In
particular, the spin parameter for QSs increases as the
baryon mass decreases. As pointed out in [64], the spin
parameter of QSs can even be larger than the Kerr bound
j ¼ 1 for rotating black holes. We study two such models in
the MIT1 2M⊙ sequence, which are also degenerate models
in terms of the rotational frequency, as shown in the inset of
Fig. 2. Clearly, the maximal rotational frequency is a
turning point. On the other hand, there is an upper bound
of j ∼ 0.7 for uniformly rotating NSs, the value of which is
relatively insensitive to EOS models [64,122,123].
Similarly, the sequences of constant central energy

density are plotted in Fig. 3. In the figure, we plot j
against the ratioΩ=σ0, where σ0 is the f-mode frequency of
the corresponding nonrotating star for each sequence. In
contrast to Fig. 2, there is now no qualitative difference
between the NS and QS, except that the latter can reach
higher values of j and Ω=σ0. The reason to normalize Ω by
σ0 is due to the fact that the f-mode frequencies of NSs for
these sequences establish a universal relation with Ω=σ0
[54]. On the other hand, for the sequences of constant

baryon mass, the f-mode frequencies of NSs observed in
the rotating frame are connected to Ω=ΩK by another
universal relation. We shall study whether the f-modes of
rotating QSs for these two types of sequences still satisfy
the universal relations found for NSs.
Every data point in Figs. 2 and 3 represents a rotating star

model we perturbed and evolved dynamically to t ¼ 2000
ð≈9.85 msÞ, and their oscillation modes were then
extracted for further analysis. To excite the quadrupolar
nonaxisymmetric (l ¼ jmj ¼ 2) oscillation modes of rotat-
ing stars, we add initial velocity perturbations following the
suggestion of [51]. After importing the initial data for an
equilibrium rotating star to the evolution code, we perturb
the star by adding the velocity perturbations

vθ ¼ vr sin 2θðcos 2ϕþ sin 2ϕÞ; ð22aÞ

vϕ ¼ −2vr sin θðsin 2ϕ − cos 2ϕÞ; ð22bÞ

where the radial component vr controls the perturbation
strength, which we set to be v0 sin½πr=2rsðθÞ� for some
small values of v0, and rsðθÞ is the estimated coordinate
radius along the θ direction. A typical choice for v0 used in
our simulations is 0.005, which contributes negligibly to
the initial Hamiltonian constraint violation comparing to
the numerical error from importing and interpolating the
LORENE initial data to the Cactus Cartesian grids. Although
these perturbation functions are not the exact eigenmodes
of rapidly rotating stars, they can effectively excite the
fundamental f-modes and also the first pressure p-modes.

FIG. 3. The spin parameter j is plotted against the angular
velocity Ω normalized by the f-mode frequency σ0 of the
corresponding nonrotating stars for constant central energy
density sequences. In the figure legend, each sequence is labeled
by the EOS model and the baryon mass of the nonrotating star in
the sequence. The data set contains 52 models, including 6 SFHo
models and 37 MIT1 and 9 MIT4 QS models.

FIG. 2. The spin parameter j is plotted against the angular
velocity Ω normalized by the corresponding maximum rotation
limit Ωmax for constant baryon mass sequences. In the figure
legend, each sequence is labeled by the EOS model and the
(fixed) value of the baryon mass of the sequence. For NSs, the
maximal rotational frequency is its Keplerian limit, ΩK ¼ Ωmax;
but for QSs, Ωmax is larger than ΩK by about 2% [66] typically.
The inset enlarges the two pairs of degenerate models of the
MIT1 2M⊙ sequence in the sense that each pair has the same
rotational frequency. The data set contains 115 models, including
21 SFHo models and 41 MIT1, 10 MIT2, 18 MIT3, and 25 MIT4
QS models.
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III. NUMERICAL RESULTS

A. Nonrotating QSs

Before studying the oscillation modes of rotating QSs,
let us first present various tests for nonrotating models to
demonstrate that our numerical method is capable to
provide a stable and accurate evolution for a bare QS. In
particular, we focus on a nonrotating QS with a gravita-
tional mass 1.71M⊙ and a radius 11.1 km described by the
MIT1 EOS. This star corresponds to the nonrotating
configuration of a constant baryon mass (2M⊙) sequence
in our study of rotating QSs.
As discussed before, we choose the PP Riemann solver

with PPM reconstruction method (hereafter PPþ PPM) as
our default hydrodynamic scheme.Herewe first compare the
performance of the PPþ PPM scheme with other standard
Riemann solvers, the Harten-Lax-van Leer-Einfeldt (HLLE)
[30,124] and Marquina [110,111] schemes, and the MP5
[117,118] reconstruction method. In Fig. 4, we plot the
percentage changes of total baryon mass against time for the
simulations using different combinations of the Riemann
solvers and reconstruction methods. The simulations were
performed with the same grid resolution Δx ¼ 0.16 at the
finest refinement level. It is seen that the Marquinaþ PPM
scheme loses a large percentage of mass immediately at the
beginning of the evolution. Similarly, the HLLEþMP5
scheme also has a large decrease in mass initially and the
mass loss increases to 5% by about 1.3 ms. Replacing the
MP5 method with a lower order (third-order) PPM method
can improve the mass conservation as can be seen by
comparing the HLLE+MP5 and HLLEþ PPM schemes
in the figure. The HLLEþ PPM scheme gradually loses

3% of total mass by about 10 ms. In fact, we noticed that a
higher-order reconstruction method actually causes more
spurious oscillations near the sharp surface discontinuity. By
comparison, it is seen clearly that our implemented PP solver,
whether using the MP5 or PPM reconstruction method,
performsmuch better than the other solvers and can conserve
the totalmass towithin 1%up to 10ms.While the PPþMP5
run still suffers an initial drop inmass, the PPþ PPMscheme
is nearly a flat line. The numerical results presented in this
paper are obtained by the PPþ PPM scheme hereafter.
An important quantity to monitor the quality of a

numerical-relativity simulation is the Hamiltonian con-
straint. A small constraint violation is required for any
trustworthy simulation. In Fig. 5, we plot the L2 norm of
the Hamiltonian constraint against time for the evolution of
the nonrotating QS using three different resolutions Δx ¼
0.24 (low), 0.16 (medium), and 0.12 (high). Thanks to the
constraint damping and propagation properties of the CCZ4
formulation, the Hamiltonian constraint violation quickly
drops to a steady plateau ofOð10−6Þ, 2 orders of magnitude
smaller than the initial Hamiltonian constraint violation,
even in the low-resolution run. The figure shows that the
violation decreases with increasing resolution. The inset of
Fig. 5 plots the stable plateau values kHks of the constraint
violation against Δx and demonstrates a linear-order
convergence for kHks.
After checking the stability and accuracy of the evolu-

tion, we now turn to the oscillations of the nonrotating QS
model. While the star is a static equilibrium configuration
initially, finite-differencing errors can trigger the radial
oscillation modes during the evolution. The frequencies of
the oscillation modes can then be obtained by performing
Fourier transforms (FT) of physical quantities such as the
density and velocity. For nonrotating stars, the oscillation

FIG. 4. Evolutions of the percentage changes of the total baryon
mass of a nonrotating QS for five different combinations of the
Riemann solvers and reconstruction methods using a medium
grid resolution Δx ¼ 0.16 ð≈236 mÞ at the finest refinement
level. The default scheme PPþ PPM employed in this study can
preserve the mass conservation to high accuracy, about 0.034%
at t ≈ 9.85 ms.

FIG. 5. L2-norm of the Hamiltonian constraint violation kHk in
the evolutions of a nonrotating QS for three different grid
resolutions. The inset plots the stable plateau values kHks of
the constraint violation and demonstrates linear-order conver-
gence for kHks.
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mode frequencies can alternatively be computed using a
perturbative eigenmode analysis. For radial oscillation
modes, we followed [125]; for nonradial quadrupolar
modes, we followed [76,126,127]. Comparing the mode
frequencies obtained from the simulation with the known
eigenmode frequencies is an important test of the hydro-
dynamic simulation.
For a general rotating star, we use the LINEOUT module

in the open source visualization and data analysis software
VisIt [128] to extract the physical quantities inside the star at
data points along the line at polar angle θ ¼ π=4 on the x–z
plane, where z is the rotation axis. The Fourier transforms
of the rest-mass density ρ at different data points are added
up and the absolute value of their sum defines our final
Fourier spectrum of ρ. Similarly, we also consider the
Fourier spectra of the velocity components defined by
vr ¼ ðvx þ vzÞ= ffiffiffi

2
p

, vθ ¼ ðvx − vzÞ= ffiffiffi
2

p
, and vϕ ¼ vy,

where ðvx; vy; vzÞ are the velocity components obtained
in our Cartesian grid simulations. In practice, we found that
the Fourier spectrum of a physical quantity obtained from
the superposition of multidata points could improve the
quality of the spectrum and was helpful in the mode
identification.
Let us first study the radial oscillation modes of the

nonrotating QS model discussed above in Fig. 5 as a test for
our simulations. In Fig. 6, we show the Fourier spectra of
density FTðρÞ obtained from the evolutions using three
different grid resolutions. The vertical dashed lines in the
figure stand for the frequencies of the radial oscillation
modes, ranging from the fundamental mode F0 to the tenth
overtone F10, determined by the perturbative method as in

[125]. It is seen that our simulation results can produce
Fourier peaks matching the dashed lines very well. The
amplitudes of the spectra are dominated by the fundamental
mode F0 as expected. Higher overtones with much smaller
amplitudes are still identifiable in the spectra. The
Cartesian grid cannot match the stellar surface exactly,
and hence many overtones can be excited due to numerical
perturbations near the surface. Being able to identify the
high-frequency overtones would be a good criterion for a
proper simulation of a stable QS.
In order to show clearly the Fourier peaks of the high

overtones, we enlarge the frequency range from the F3 to
F10 overtones in the inset of Fig. 6. The high-resolution
result (black curve) aligns very well with all overtones up to
the ninth overtone with frequency F9 ¼ 43808 Hz. Near
the tenth overtone with frequency F10 ¼ 48215 Hz, a small
bump still exists at the correct position. It is seen that
the peaks of the medium-resolution result (red curve) can
also match up to the ninth overtone. However, the low-
resolution result (blue curve) can only recover up to the
fifth overtone with frequency F5 ¼ 26138 Hz as the run
suffers from more numerical dissipation.
Let us end this subsection by discussing how we

determined the mode frequencies from the Fourier spectra
quantitatively. Obtaining accurate mode frequencies from a
Fourier spectrum is important to our study of the universal
relations of rotating QSs. In Fig. 6, the QS is evolved to
t ≈ 9.85 ms for each resolution run and the resolution in the
frequency of the Fourier spectrum is inversely proportional
to this evolution time, meaning that the frequency

FIG. 6. Fourier spectra of the rest-mass density for the
evolutions of a nonrotating QS using three different grid
resolutions. The vertical dashed lines indicate the frequencies
of the radial oscillation modes, from the fundamental F0 mode to
the tenth overtone F10, determined by the perturbative normal-
mode analysis. The inset enlarges the region between F3 and F10.

FIG. 7. Spectra around the first peak in Fig. 6. The smooth
black curve (without data points) represents the slope of a
quadratic curve fit to the high-resolution result (Δx ¼ 0.12).
The fundamental mode frequency 2745 Hz obtained by the
position at which the slope passes through zero agrees to the
known normal-mode value (indicated by the vertical dashed line
at F0 ¼ 2778 Hz) to about 1.2%.
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resolution is 101.5 Hz. Figure 7 is the same plot of FTðρÞ as
Fig. 6, but focuses around the fundamental F0 mode. It is
seen that the width of the peak decreases as the resolution
increases, and the medium (red line) and high (black line)
resolution results agree very well. To extract the mode
frequency from the high-resolution result, we fit a quadratic
curve around the peak, and the mode frequency is approxi-
mated by the position at which the slope of the curve passes
through zero as illustrated by the smooth solid line in
Fig. 7. We obtain the fundamental mode frequency 2745 Hz
from the high-resolution run using this method, which
differs from the known normal-mode value F0 ¼ 2778 Hz
by about 1.2%.
In general, the radial oscillation modes are sensitive to

the stellar profile, and the capability of our simulations to
recover the correct mode frequencies to high overtones
accurately suggests that we have modeled the sharp surface
of the QS properly.

B. Stability of rotating QSs

To demonstrate that we can perform stable and accurate
simulations of rapidly rotating QSs, we first show in Fig. 8
the L2-norm of the Hamiltonian constraint violations for a
sequence of 2M⊙ baryon mass MIT1 QSs with rotational
frequencies ranging from 300 to 1200 Hz, where the
maximal rotation limit is near 1228 Hz. The runs were
performed with the same grid resolution Δx ¼ 0.16, which
is the default resolution we used for obtaining the oscil-
lation modes of rotating stars. Similar to what we have seen
for nonrotating QSs, the constraint violations quickly drop
to stable plateau levels at the beginning of the simulations

and remain flat until t ≈ 9.85 ms for all models, including
the most rapidly rotating one. Although the stable plateau
values of the constraint violation get larger for faster
rotation, it still maintains a relatively small value below
10−5, an order of magnitude smaller than the initial
Hamiltonian constraint violation, and does not grow notice-
ably even for the 1200 Hz model, which is close to the
maximal rotation limit of the sequence.
One important challenge for us is to demonstrate our

ability to simulate the sharp surface of rapidly rotating QSs
for a long duration. Figure 9 compares the snapshots of
density profiles at t ≈ 9.78 ms for the 300 Hz and 1200 Hz
rotating QSs considered in Fig. 8. The top panels in the
figure show the rest-mass densities of the stars in the first
quadrant of the x–z plane, where the z axis is the rotation
axis. The large color contrast from the large density
gradient and the imperfect matching of the Cartesian grids
to the star surfaces result in visible serrate edges at the
surfaces. While the slowly rotating 300 Hz model (left
panel) still maintains a spherical shape very well, the
1200 Hz model (right panel) is flattened at the pole and
develops an oblate shape due to rapid rotation. It can be
seen that some tiny amount of matter is ejected from the
surface under the influence of centrifugal force near the
equatorial plane. Nevertheless, the baryon mass of this
rapidly rotating model remains very well conserved to
within 0.1% error by the end of the simulation at
t ≈ 9.85 ms, which is equivalent to about 12 rotation
periods. This mass-shedding effect would unavoidably
occur for rapidly rotating models close to the Keplerian
limit. The effect would dampen the stellar pulsations and
the amplitudes of the oscillation modes would gradually
decrease for rapidly rotating stars [48]. It also affects the
sharpness of the surface discontinuity near the equator. The
dislocation of mass elements from their balance positions
caused by the truncation brings constant disturbances to the
stars and excites many oscillation modes.
To clearly demonstrate the sharpness of the stellar

surface, the middle and bottom panels in Fig. 9 show
the density profiles of the two models along the x axis at
t ¼ 0 and t ≈ 9.78 ms on the equatorial plane in linear
(middle panels) and logarithmic (bottom panels) scales,
respectively. The MIT1 EOS has a surface density ρS ≈
6.93 × 10−4 in the code units, which drops to the floor
density ρf ¼ 10−18 in the slowly rotating model over one
cell, but only drops 3 orders of magnitude for the rapidly
rotating model due to the mass-shedding effect. Along
other directions, the surface density would drop to the floor
density over one or two cells.
To check the stability of the rotational velocity profile,

we plotted vy along the θ ¼ π=4 direction on the x–z plane
(ϕ ¼ 0) in Fig. 10 for the 1200 Hz rapidly rotating model.
The profiles at t ¼ 0, 4.93 ms, and 9.85 ms overall agree
very well, though small oscillations of the star surface
across four grid cells can be seen. Figures 9 and 10 clearly

FIG. 8. L2-norms of the Hamiltonian constraint violations kHk
for a sequence of 2M⊙ baryon mass MIT1 QSs are plotted against
time. The rotational frequencies of the chosen models span from
300 to 1200 Hz, where the maximal rotation limit of the sequence
is near 1228 Hz. The results are obtained using the same
resolution Δx ¼ 0.16.
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demonstrate the stability of the density and velocity profiles
of rapidly rotating QSs in our simulations. In particular, the
sharp density jump at the stellar surface can also be
maintained very well.

C. Oscillation modes of rotating QSs

In this section, we will focus on a sequence of MIT1 QS
models with the same constant baryon mass 2M⊙, but
different rotational frequencies. The sequence can be
considered as a quasiequilibrium evolution of a rapidly
rotating QS being slowed down to lower rotational frequen-
cies if angular momentum is effectively transported away.
By studying the Fourier spectra of the fluid variables of
these stars, such as the rest-mass density ρ and three-
velocity components vr, vθ, and vϕ, we can extract their
oscillation mode frequencies.

1. Fourier spectra and mode selectivity

In perturbation theory as in [127], when expanded in
spherical harmonics Ylm, each oscillation mode is associ-
ated to a pair of indices ðl; mÞ. For a spherical nonrotating
star, the different orders of m are degenerate for a given l,
and it is enough to consider the m ¼ 0 mode. For the l ¼ 2
quadrupolar modes that we focus on in this work, the
degeneracy is broken by rotation and the bar modes
(m ¼ �2) split from the axisymmetric (m ¼ 0) mode,
similar to the Zeeman effect in quantum mechanics. This
phenomenon is clearly observed in Fig. 11 which shows the

FIG. 9. Snapshots of the rest-mass density in the first quadrant of the x–z plane for two MIT1 QS models with rotational frequencies
300 Hz (top left) and 1200 Hz (top right). The density profiles of the two models along the x axis are plotted in linear (middle panels) and
logarithmic (bottom panels) scales.

FIG. 10. Plot of the velocity profile vy along the direction θ ¼
π=4 for the 1200 Hz rotating model studied in Fig. 9 at t ¼ 0,
4.93 ms, and 9.85 ms on the x–z plane.
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Fourier spectra of density FTðρÞ and velocity components
FTðvrÞ, FTðvθÞ, and FTðvϕÞ for QS models with rotational
frequencies 300 Hz (first row), 450 Hz (middle row), and
600 Hz (bottom row) of the chosen sequence. The positions
of the f-mode (f0 ¼ 1897 Hz), the first pressure mode
(p0 ¼ 7868 Hz), and the fundamental radial mode
(F0 ¼ 2778 Hz) for the nonrotating configuration of the
sequence are labeled by the gray dashed lines. In each
panel, the f0 and p0 gray lines are each sandwiched by two
sharp Fourier peaks labeled by the red and blue dashed
lines, respectively. The separation between the red (blue)
lines decreases and converges to the f0 (p0) gray line as the
rotation rate decreases towards zero. These peaks are the
nonaxisymmetric m ¼ �2 modes split from the f0 and p0

modes. The peak labeled by the left red line (and similarly
for the left blue line) is the counterrotating m ¼ 2 mode,
while the right red line is the corotatingm ¼ −2mode. Our
initial velocity perturbation is chosen to excite the m ¼ �2
modes strongly, but not the axisymmetric m ¼ 0 modes.
However, as the rotation rate increases, small peaks
corresponding to the m ¼ 0 modes near the positions of
f0 and p0 start to appear.
The fundamental quasiradial mode is also strongly

excited in our simulations as can be seen by the peaks
near the F0 lines. It is not so surprising as radial oscillation
modes can be easily excited due to finite-differencing errors
as we have already seen for nonrotating QSs. The fre-
quency of the quasiradial mode increases slightly with the

rotation rate as can be seen from the spectra of ρ and vr.
Nevertheless, it is still well approximated by its nonrotating
counterpart F0 even for the model rotating at 600 Hz, as the
ratio between the polar and equatorial radii of this star is
about 0.92 and the rotation effect is relatively small.
Another interesting feature of the spectra shown in

Fig. 11 is a selective effect of the appearance of different
modes and their amplitudes in different spectra. For
instance, the fundamental quasiradial mode establishes
strong peaks in the spectra of ρ and vr, but not for vθ

and vϕ, which may already be expected. Similarly, the
peaks associated to the m ¼ 0 p-mode can be observed in
the spectra of vθ for the 450 Hz and 600 Hz models, while
the corresponding peaks in the other spectra have much
smaller amplitudes.

2. Onsets of secular instabilities

As the rotation rate increases, the peaks of the interesting
m ¼ �2 bar modes become less distinct, and their ampli-
tudes can even be smaller than them ¼ 0modes in some of
the Fourier spectra. Figure 12 plots the Fourier spectra of
the same sequence as in Fig. 11, but for four models with
higher rotational frequencies up to 1225 Hz, which is very
close to the maximum rotational frequency (1228 Hz) of
this sequence. In each panel, the red (blue) lines still track
the m ¼ �2 f-mode (p-mode), though the gray lines for
f0, F0, and p0 are not shown. The green line tracks the

FIG. 11. Fourier spectra of fluid variables ρ, vr, vθ, and vϕ of the sequence of MIT1 QSs with constant baryon mass 2M⊙ rotating at
(300, 450, 600) Hz. The gray dashed lines label the quadrupole fundamental mode f0 ¼ 1897 Hz, the first pressure mode
p0 ¼ 7868 Hz, and the fundamental quasiradial mode F0 ¼ 2778 Hz of the corresponding nonrotating model. In each panel, two
red (blue) dashed lines track the m ¼ �2 f-modes (p-modes).
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position of twice the rotation frequency of the star, and its
role will be explained below.
It is clear that the Fourier spectra in Fig. 12 shows some

qualitative differences comparing to those for the slower
rotating models considered in Fig. 11. First of all, starting
from the 1100 Hz model, the fundamental quasiradial mode
now has large amplitudes not only in the spectra of ρ and
vr, but also those of vθ as can be seen from the large peaks
between the red and blue dashed lines in these spectra. As
the rotation rate and oblateness of the star increase, the
quasiradial modes couple vθ and vr, however, this coupling
only becomes strong when the rotation rate is above
1000 Hz, which is close to the maximal rotation rate
1228 Hz of this sequence. In addition, the axisymmetric
m ¼ 0 f- and p-modes are also excited to relatively large
amplitudes comparing to the case for slower rotating
models. By tracking the mode positions and comparing
the amplitudes in different spectra, the m ¼ �2 modes can
still be identified. In contrast to Fig. 11, them ¼ 0 p-mode,
which is identified to be the peak between the two blue
lines in each panel, establishes larger amplitudes than the
m ¼ �2 counterparts (blue lines) in the ρ, vr, and vθ

spectra when the rotation frequency is above 1000 Hz.

However, the frequencies of the m ¼ 0 modes are not
sensitive to the rotation rate.
Let us now focus on the m ¼ �2 f-mode (red dashed

lines) and see how the onsets of secular instabilities for
them are identified. As already been seen in Fig. 11, the
frequency of the counterrotating m ¼ 2 mode, which is
tracked by the left red line in each panel, decreases as the
rotation rate increases. However, further increasing the
rotation rate from 900 Hz as illustrated in Fig. 12 will push
the mode to cross zero and become negative. Since the
Fourier spectrum has even symmetry, the counterrotating
mode appears to be “reflected” by the zero point and then
shifts towards the right. The reflection occurs when the
rotation frequency is at about 1000 Hz, which stands for the
onset of the CFS instability (see Sec. I) for this sequence.
For them ¼ −2 corotating mode, which is tracked by the

right red line in each panel, its frequency increases initially
along the sequence and then starts to decrease when the
rotation rate increases above 900 Hz. We find that this
sequence passes the viscosity-driven instability point (see
Sec. I) when the rotation rate is about 1200 Hz. This
instability sets in when the frequency σc of the corotating
mode in the rotating frame goes through zero. Since σc is

FIG. 12. Fourier spectra of fluid variables ρ, vr, vθ, and vϕ of the sequence of MIT1 QSs with constant baryon mass 2M⊙ rotating at
(900, 1100, 1200, 1225) Hz. Similar to Fig. 11, the red and blue dashed lines track them ¼ �2 f- and p-modes. The green dotted line in
each panel tracks the position of twice the rotation frequency of the star. The maximal rotation rate of this sequence is about 1228 Hz.
See text for the identification of the onsets of CFS and viscosity-driven instabilities from the spectra.
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related to the inertial-frame mode frequency σi and the
angular velocity Ω of the star by σc ¼ σi þmΩ=2π, the
instability sets in when σi ¼ 2Ω=ð2πÞ (for m ¼ −2). In
Fig. 12, the quantity 2Ω=ð2πÞ is tracked by the green line in
each panel, and hence the instability sets in when the right
red line crosses the green line, as illustrated in the 1200 Hz
model in the figure. As pointed out in Sec. I, the viscosity-
driven instability of rotating QSs was studied before by
perturbing the stellar configuration during the iteration
steps in the construction of an axisymmetric equilibrium
rotating star [63,66,67]. Our study represents the first
investigation based on the analysis of the oscillation modes.

D. Universal relations of f -modes

1. Comparison to the universal relations for NSs

KK [54] recently proposed three universal relations for
the l ¼ jmj ¼ 2 f-modes of rapidly rotating NSs. Here we
shall study whether rapidly rotating QSs also satisfies these
relations. We first compare our extracted mode frequencies
from a total of 161 rotating NS and QS models with their
relation given by Eq. (6) in [54], which relates the scaled
mode frequency σ̂i ≡ M̄σi=kHz in the inertial frame to the
scaled angular velocity Ω̂≡ M̄Ω=kHz and the effective
compactness η45 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄3=I45

p
by

σ̂i ¼ ðc1 þ c2Ω̂þ c3Ω̂2Þ þ ðd1 þ d3Ω̂2Þη45; ð23Þ

where M ≡M=M⊙ and I45 ≡ I=ð1045 g · cm2Þ are the
star’s scaled gravitational mass and moment of inertia.
The fitting coefficients ci and di are given by ðc1; c2; c3Þ ¼
ð−2.14;−0.201;−7.68 × 10−3Þ and ðd1; d2; d3Þ ¼ ð3.42; 0;
1.75 × 10−3Þ for the counterrotating branch. For the corotat-
ing branch, ðc1; c2; c3Þ ¼ ð−2.14; 0.220;−14.6 × 10−3Þ
and ðd1; d2; d3Þ ¼ ð3.42; 0; 6.86 × 10−3Þ. As each branch
of data lies on a surface in the three dimensional η45-σ̂-Ω̂
parameter space, to have a clear visualization of the data, we
define

Σ̂i ≡ σ̂i − c1 − ðd1 þ d3Ω̂2Þη45; ð24Þ

and plot it against Ω̂ in Fig. 13. In the figure, the lower (upper)
branch of data consists of the counterrotating (corotating)
modes. The predictions from Eq. (23), which is Eq. (6) in
[54], are labeled by the gray lines. It is noted that the nuclear
matter SFHo EOS was not used in [54], and hence our NS
data can serve as an independent check for the universal
relation. It is seen that the f-modes of rapidly rotating QSs
can also be described by this relation very well. The root-
mean-square of the residuals is 0.111 for the counterrotating
branch and 0.0897 for the corotating branch.
We next examine another universal relation for the mode

frequency σi observed in the inertial frame for sequences of
constant central energy density, given by Eq. (4) in [54],

σi
σ0

¼ 1þ a1

�
Ω
σ0

�
þ a2

�
Ω
σ0

�
2

; ð25Þ

where ða1; a2Þ ¼ ð−0.193;−0.0294Þ for the counterrotat-
ing branch and ða1; a2Þ ¼ ð0.220;−0.0170Þ for the coro-
tating branch, and the angular velocity Ω is normalized by
the f-mode frequency σ0 of the corresponding nonrotating
star. Our extracted mode frequencies also match closely to
Eq. (25) as shown in Fig. 14. The root-mean-square of the

FIG. 13. Plot of Σ̂i [see Eq. (24)] against the scaled angular
velocity Ω̂ for a total of 167 star models, including 27 SFHo NSs,
and 78 MIT1, 10 MIT2, 18 MIT3, and 34 MIT4 QSs. The
predictions from Eq. (23) [see also Eq. (6) in [54]] for the
counterrotating and corotating f-modes are given by the lower
and upper gray lines, respectively.

FIG. 14. Plot of the scaled mode frequencies σi=σ0 observed in
the inertial frame for sequences of constant central energy
density. Data points contain the same models as in Fig. 3. The
predictions from Eq. (25) [see also Eq. (4) in [54]] for the
counterrotating and corotating f-modes are given by the lower
and upper gray lines, respectively. The purple horizontal dashed
line represents the zero-frequency line, on which the counter-
rotating mode becomes unstable to the CFS instability.
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residuals is 0.0341 for the counterrotating branch and
0.0794 for the corotating branch. It is noted that the data
points for the corotating branch (i.e., the upper branch in
Fig. 14) have larger deviations from Eq. (25) for high
rotation rates close to the Keplerian limit, the region where
Eq. (25) does not fit well even for NS data as can be seen
from Fig. 1 in [54]. The purple horizontal dashed line
represents the zero-frequency line, on which the counter-
rotating mode becomes unstable to the CFS instability. We
find that QSs become unstable when the rotation rate
Ω ≈ 3.4σ0, which agrees with the finding for NSs [54].
Finally, we consider the universal relation for the f-mode

frequency σc observed in the rotating frame for sequences
of constant baryon mass, given by Eq. (5) in [54],

σc
σ0

¼ 1þ b1

�
Ω

Ωmax

�
þ b2

�
Ω

Ωmax

�
2

; ð26Þ

where ðb1; b2Þ ¼ ð0.517;−0.542Þ for the counterrotating
branch and ðb1; b2Þ ¼ ð−0.235;−0.491Þ for the corotating
branch. In contrast to [54], we normalize the angular velocity
Ω by its maximum rotation limit Ωmax instead of the
Keplerian limit ΩK , since Ωmax can be larger than ΩK by
about 2% for QSs as we have discussed. The ambiguity
between the two values does not arise in [54] as Ωmax ¼ ΩK
for NSs. Figure 15 plots σc=σ0 against Ω=Ωmax for 109 NS
and QS models from various sequences of constant baryon
mass. Let us recall that the mode frequencies observed in the
rotating and inertial frames are related by σc ¼ σi þmΩ=2π.
Contrary to Figs. 13 and 14, the corotating modes are now

represented by the lower branch of data in Fig. 15. Our SFHo
NS data still satisfy Eq. (26) very well, but the QS data
deviate a lot from the fitting relations. However, it should be
pointed out that the spread of the data around the upper gray
line at high rotation rates is similar to that of the original NS
data used in [54] to produce the fitting curve [see Fig. 2
in [54]].
For the corotating modes (lower branch), the QS data

deviate significantly from Eq. (26). While realistic NS
models generally cannot rotate fast enough to reach the
onset of viscosity-driven instability, marked by the purple
horizontal line where σc ¼ 0 in the figure, Fig. 15 shows
that the QS data cross the purple line shortly before
reaching the maximum rotation rate. In retrospect, the
deviation between the NS and QS data at high rotation rates
may be associated with the fact that there is an upper bound
of the spin parameter j ∼ 0.7 for realistic NSs when Ω ≈
Ωmax [64], while there is no such bound for QSs (see also
Fig. 2). As Eq. (26) was originally proposed to fit realistic
NSs only [54], the equation would not be able to cover QS
models with j≳ 0.7. We shall show below that a better
universal relation for the corotating modes satisfied by NSs
and QSs can be obtained by invoking the spin parameter
directly.

2. Critical values of the spin parameter,
energy ratio, and eccentricity

We now investigate further the onset of the viscosity-
driven instability for rotating QSs. As it is expected to be
difficult for realistic NSs to rotate fast enough to achieve
this instability before reaching the Keplerian limit, the
onset of this instability is a special (if not unique)
phenomenon for rapidly rotating QSs among stellar objects.
To determine the onset of the instability, which is close to
the maximal rotation rate where physical quantities become
sensitive to the angular frequency, we first propose a fitting
relation which relates the corotating mode frequency σc in
the rotating frame to the spin parameter j with relatively
small variance.
We first define (in the code units) a scaled frequency for

the corotating mode

Σ̃c ¼
2πMσc

−0.0047þ 0.133ηþ 0.575η2
; ð27Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffi
M3=I

p
is the effective compactness originally

introduced in [76] for nonrotating stars, but here it is
generalized to rotating stars. The denominator on the right-
hand side of Eq. (27) is motivated by the universal relation
between η and the scaled f-mode angular frequency 2πMσ0
for nonrotating NSs and QSs [76]. Note that we have
corrected a typographical error in the coefficient of η2 in
Eq. (6) of [76]. In Fig. 16, we plot Σ̃c against the spin
parameter j for both constant central energy density and
constant baryon mass sequences. Comparing to the

FIG. 15. Plot of the scaled mode frequencies σc=σ0 observed in
the rotating frame for sequences of constant baryon mass. Data
points contain the same models as in Fig. 2. The predictions from
Eq. (26) [see also Eq. (5) in [54]] for the counterrotating and
corotating f-modes are given by the upper and lower gray lines,
respectively. The purple horizontal dashed line represents the
zero-frequency line, on which the corotating mode becomes
unstable to the viscosity-driven instability.
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corotating modes plotted in Fig. 15, the NS and QS data are
now “unified” and can be fit by

Σ̃c ¼ −0.477j2 − 0.714jþ 1: ð28Þ

The root-mean-square of the residuals is 0.0251. The
rapidly rotating QS data with j≳ 0.7 behave as if they
are merely an extension of NS data to higher spin
parameters. Our fitting curve crosses the zero-frequency
point at j ≈ 0.881, which represents the onset of the
viscosity-driven instability for both sequences of constant
central energy density and constant baryon mass.
Traditionally, the onset of the instability is characterized

by the critical value of the ratio between the rotational
kinetic energy and gravitational potential energy T=jWj and
the eccentricity ζ ¼ ð1 − ðrp=reqÞ2Þ1=2, where rp and req are
the polar and equatorial coordinate radii, respectively. As
discussed in Sec. I, the Newtonian limit ðT=jWjÞcrit;Newt ¼
0.1375 was obtained for Maclaurin sequences [60], while
general relativity weakens the instability by increasing the
critical energy ratio [61]. An approximate relation for the
critical energy ratio was obtained in [61] for constant
baryon mass sequences of homogeneous incompressible
bodies in general relativity,

ðT=jWjÞcrit ¼ ðT=jWjÞcrit;Newt þ 0.126χð1þ χÞ; ð29Þ

where χ ¼ M=R, M, and R are the compactness, gravita-
tional mass, and radius of the corresponding nonrotating
model, respectively. The difference between the relativistic
and Newtonian critical values of T=jWj is about 20% for
compactness χ ≈ 0.2.

QSs described by the MIT bag model can be approxi-
mated very well by homogeneous incompressible bodies
[67]. To check whether our QS data can also be approxi-
mated by Eq. (29), we plot the scaled corotating mode
frequency σc=σ0 in the rotating frame against the normal-
ized energy ratio λ≡ ðT=jWjÞ=ðT=jWjÞcrit for constant
baryon mass sequences in Fig. 17. The trend of the
numerical data can be fitted by

σc
σ0

¼ 1þ 0.130ðe−27.3λ − 1Þ − 1.10λþ 0.256λ2: ð30Þ

The root-mean-square of the residuals is 0.0233. In
addition to a quadratic fitting, an exponential function is
included to take into account the fast initial decrease. The
fitting curve crosses the zero point at λ ≈ 1.04, meaning that
the critical value for our QS models is only 4% higher than
the approximate value of homogeneous incompressible
bodies predicted by Eq. (29).
On the other hand, the critical value of eccentricity

depends weakly on the compactness, it should thus be close
to the Newtonian critical value ζcrit;Newt ¼ 0.8127 [61,67].
In Fig. 18, we plot the scaled mode frequency σc=σ0 against
the eccentricity ζ. Its fitting curve is

σc
σ0

¼ 1 − 0.622ζ − 0.799ζ3; ð31Þ

with the root-mean-square of the residuals being 0.0207.
The fit predicts the onset of the instability at ζ ≈ 0.842,
which is about 3.6% higher than the Newtonian value.

FIG. 16. Normalized frequency Σ̃c [Eq. (27)] is plotted against
the spin parameter j in the rotating frame. It contains both
constant central density and constant baryon mass sequences,
including 167 models as in Fig. 13. The quadratic fitting curve
[Eq. (28)] crosses the zero-frequency point at j ≈ 0.881.

FIG. 17. Plot of the scaled corotating mode frequency σc=σ0 in
the rotating frame against the normalized energy ratio λ ¼
ðT=jWjÞ=ðT=jWjÞcrit for constant baryon mass sequences. The
data set contains 94 QS models used in Fig. 15. The fitting curve
[Eq. (30)] crosses the zero-frequency line at λ ≈ 1.04.
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E. Fitting relations of p-modes

We end this section by also providing fitting relations for
the first p-modes of rotating QSs which were strongly
excited in our simulations. As it is well known that p-modes
are more EOS sensitive [129] and dependent strongly on the
density and pressure profiles, universal relations are not
expected to exist for them. Since our generalized MIT bag
model EOS contains only two parameters, namely the bag
constant B and the square of the speed of sound css, it is
possible to find fitting relations for the p-modes by invoking
these parameters. Furthermore, it is found that dimensionless
frequencies like Mp (with p being the p-mode frequency)
are independent of the bag constant in the MIT bag model
[130] as it is just a scaling factor, and hence only css will be
relevant to our fitting relations.
This can be illustrated by considering the p-mode

frequency p0 of nonrotating QSs. We found that the scaled
frequency Mp0 of our nonrotating QS models can be fitted
well by

Mp0 ¼ ða1css þ a2Þχ2 þ ða3c2ss þ a4css þ a5

þ a6=cssÞχ þ a7c2ss; ð32Þ

where M and χ ¼ M=R are the gravitational mass and
compactness, respectively. The seven fitting parameters are
a1 ¼ −2.700, a2 ¼ −0.5845, a3 ¼ 0.2183, a4 ¼ 1.202,
a5 ¼ 0.2664, a6 ¼ −0.006893, and a7 ¼ −0.09141. This
relation is obtained by fitting to nonrotating QS data with
M ≥ 1.4M⊙ and different values of css ranging from 1=10
to 1 as shown in Fig. 19. The root-mean-square of the
residuals is 0.000450.
For the l ¼ 2 p-modes of rotating QSs, we use the

following ansatz for the m ¼ 2 (m ¼ −2) p-mode

frequencies pþ
i (p−

i ) observed in the inertial frame for
constant baryon mass sequences:

p̂�
i ¼ 1 ∓ Fðχ; css; Ω̄ÞΩ̄þGðχ; cssÞΩ̄2; ð33Þ

where p̂�
i ¼ p�

i =p0, Ω̄ ¼ Ω=ð2πp0Þ, and p0 is the p-mode
frequency of the corresponding nonrotating star with
gravitational mass M and compactness χ. The two func-
tions Fðχ; css; Ω̄Þ and Gðχ; cssÞ are given by

Fðχ; css; Ω̄Þ ¼ b1

ffiffiffiffiffiffi
χ

css

r
þ b2

χ

css
Ω̄; ð34Þ

and

Gðχ; cssÞ ¼ ðb3c2ss þ b4Þχ þ ðb5c2ss þ b6Þ; ð35Þ

where the fitting parameters are b1 ¼ 2.22, b2 ¼ −2.24,
b3 ¼ 82.1, b4 ¼ 44.6, b5 ¼ −28.8, and b6 ¼ −11.4. To
illustrate the fitting relation, we plot p̂�

i − GΩ̄2 againstffiffiffiffiffiffiffiffiffiffiffi
χ=css

p
Ω̄ in Fig. 20. The numerical data can be fitted well

by Eq. (33) with the root-mean-square of residues being
0.00741 for the upper branch and 0.00701 for the lower
branch. It should be noted that the above fitting parameters
are obtained by excluding those rapidly rotating degenerate
models close to the maximum rotation limit illustrated
in Fig. 2.
In reality, it is not expected to be able to detect the p-

modes of compact stars from their emitted GW signals
anytime soon, even with the next generation of detectors.
However, it might still be interesting to consider how one
could (in principle) make use of these fitting relations. As
an illustration, let us first ignore the rotational effects and
assume that the f-mode frequency (and its damping time)
and the p-mode frequency of a nonrotating compact star are

FIG. 18. Plot of the scaled corotating mode frequency σc=σ0 in
the rotating frame against the eccentricity ζ for constant baryon
mass sequences. The data set contains 94 QS models used in
Fig. 15. The fitting curve [Eq. (31)] crosses the zero-frequency
line at ζ ≈ 0.842.

FIG. 19. Plot of scaled frequency Mp0 of nonrotating models
against compactness χ ¼ M=R for the class of MIT bag EOSs
with the square of the speed of sound css ranging from 1=10 to 1.
The gray fitting curves are based on Eq. (32).
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observed. Applying the universal relations for the f-mode
of nonrotating stars in [76], which are valid for both NSs
and QSs, the mass M and radius R, and hence the
compactness χ of the star, can then be inferred approx-
imately. Equation (32) can then be solved for the single
variable css and one can check whether the observation data
is consistent to our generalized MIT bag model. For
instance, an inferred value of css ¼ 1=3 would mean that
the star is consistent with a QS described by the canonical
MIT bag model. On the other hand, an inferred value of css,
which is far away from our fitting range of Eq. (32), would
serve as strong evidence against our QS models.
Similarly, if the angular velocity Ω and the two frequen-

cies p�
i are observed for a rotating compact star, then

Eq. (33) can be used to relate the three parameters p0, css,
and χ. If the star is slowly rotating so that its compactness
can be approximated by the value of the nonrotating
counterpart, then one can solve for p0 and css. We can
then compare the inferred value of p0 to the observed
frequency of the m ¼ 0 axisymmetric p-mode (if it is
available), which is well approximated by p0 for a slowly
rotating star, and determine whether the observed compact
star is consistent with our QS models.

IV. CONCLUSION

The sharp high-density surface of a bare QS presents a
great challenge for grid-based hydrodynamical modeling of
the star. In this paper, building on top of the numerical
relativity code Einstein Toolkit, we have implemented a
numerical method based on a positivity-preserving
Riemann solver and a dustlike EOS for the atmosphere
to perform stable evolutions of rapidly rotating QSs in
general relativity. Our work represents a new addition to the

list of just a few fully general relativistic simulations of QSs
available up to today [23–25].
The fidelity of our method has been tested and confirmed

by comparing the oscillation mode frequencies of
nonrotating QSs extracted from simulations with the results
obtained from perturbative calculations. The f-mode of
rapidly rotating QSs are investigated in details. In particu-
lar, we find that two of the universal relations for the
l ¼ jmj ¼ 2 nonaxisymmetric modes proposed originally
for rotating NSs [54] are still valid for QSs (see Figs. 13
and 14). However, the QS data deviate significantly from
another universal relation for the corotating modes
observed in the rotating frame (see Fig. 15). In addition
to the f-modes, we have also studied the first p-modes of
rotating QSs. For QSs described by our generalized MIT
bag model, we report fitting relations for the p-mode
frequencies of both nonrotating and rotating stars.
We also find that, when considering sequences of constant

central energy density, the onset of the CFS instability for
QSs occurs when the angular velocity Ω ≈ 3.4σ0, which
agrees with the finding for NSs [54]. In addition to the CFS
instability, we have also studied the viscosity-driven insta-
bility of QSs. We find that the onset of the instability for
rotating QSs occurs when the spin parameter j ≈ 0.881 for
both sequences of constant central energy density and
constant baryon mass. For QS sequences of constant baryon
mass, we also find that the critical value of the ratio between
the rotational kinetic energy and gravitational potential
energy T=jWj for the onset of the instability agrees with
the value predicted for homogeneous incompressible bodies
in general relativity towithin 4%, and the critical value of the
eccentricity ζ is only 3.6% larger than the Newtonian value
[61]. Realistic NSs are generally not expected to be able to
rotate fast enough to trigger this instability before reaching
the Keplerian limit. This can be seen from Fig. 15 that the NS
data for the frequencies of the corotating modes σc observed
in the rotating frame do not cross zero before the Keplerian
limit. The universal relation between the spin parameter and
Σ̃c, which is just a rescaled σc, proposed by us in Eq. (28) can
unify the NS and QS data and also predict the onset of the
instability to occur at j ≈ 0.881 as shown in Fig. 16. The fact
that realistic NSs cannot trigger the instability can be
associated to the existence of an upper bound j ∼ 0.7 for
uniformly rotating NSs [64].
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FIG. 20. Plot of p̂�
i − GΩ̄2 against

ffiffiffiffiffiffiffiffiffiffiffi
χ=css

p
Ω̄ for constant

baryon mass sequences of rotating QSs. The fitting relations
[Eq. (33)] for the m ¼ �2 p-mode frequencies p�

i observed in
the inertial frame are given by the solid lines.
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