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Constant-curvature solutions lie at the very core of gravitational physics, with Schwarzschild and (anti-)
de Sitter being two of the most paradigmatic examples. Although such a kind of solutions are very well-
known in general relativity, that is not the case for theories of gravity beyond the Einsteinian paradigm. In
this article, we provide a systematic overview on fðRÞmodels allowing for constant-curvature solutions, as
well as of the constant-curvature solutions themselves. We conclude that the vast majority of these fðRÞ
models suffer, in general, from several shortcomings rendering their viability extremely limited, when not
ruled out by physical evidence. Among these deficiencies are instabilities (including previously unforeseen
strong-coupling problems) and issues limiting the predictive power of the models. Furthermore, we will
also show that most fðRÞ-exclusive constant-curvature solutions also exhibit a variety of unphysical
properties.
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I. INTRODUCTION

When modeling physical systems, it is often necessary to
resort to simplifying assumptions, either to make the
equations describing the problem more tractable or to gain
further insight on the relevant physics. It seems obvious
that such assumptions should be physically well-motivated
and consistent with both experiments and the theoretical
framework being employed. For example, within the
general relativity (GR) framework, the explanation of a
variety of cosmological observations relies on the crucial
assumption that the Universe is approximately homo-
geneous and isotropic at sufficiently large scales.
However, despite its success in describing most gravi-

tational phenomena, GR still suffers from several short-
comings, such as its inability to describe dark energy
without introducing a new, ad hoc fluid in the theory. This
and other weaknesses can be solved by generalizing GR,
for instance by postulating that the gravitational Lagrangian
is given by a function fðRÞ of the Ricci scalar R, instead of
just R (as in Einsteinian gravity). Though simple, the fðRÞ
ansatz turns out to comply with the basic consistency
requirements outlined above in most circumstances.
Except in some pathological examples, fðRÞ models are

mathematically consistent, can be reduced to standard GR
in the appropriate limit, and yield predictions which are in
accordance with observations. Indeed, appropriate choices
of function f lead to a correct description of both early- and
late-universe physics, such as inflation and the aforemen-
tioned dark-energy-dominated epoch. fðRÞ models have
also found applications in stellar physics, with some of
them being compatible with neutron-star and gravitational-
wave observations [1–7].
Nonetheless, outside of the highly symmetric cosmo-

logical scenarios, it is often very complicated to solve the
fourth-order equations of metric fðRÞ gravity without
making further simplifying assumptions. Currently, one
of the most popular choices is to find solutions with
constant scalar curvature R. Indeed, some of the most
well-known solutions of GR have constant curvature,
such as the Schwarzschild or Vaidya spacetimes, their
generalizations including a cosmological constant, or the
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time sourced by radiation. It has been known for a long
time that many fðRÞ gravity models host only the same
vacuum constant-curvature solutions as GR [8]. However,
as will be further detailed in Sec. II, there is a particular set
of fðRÞ models satisfying some additional assumptions
[9,10] for which any metric with a given constant Ricci
scalar is a solution of said fðRÞ model. Because of this, in
what follows we shall refer to these special fðRÞ models
admitting all spacetimes with R ¼ R0 ¼ const as R0-
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degenerate fðRÞ models. In order to find new constant-
curvature solutions of R0-degenerate fðRÞ models which
are not present in GR, one merely needs to solve equation
R ¼ R0 ¼ const for some particular metric ansatz and
initial conditions.
For these reasons, it is almost immediate to obtain novel,

fðRÞ-exclusive constant-curvature solutions that provide an
answer to virtually every open problem in gravitational
physics. For example, fðRÞ-exclusive constant-curvature
solutions describing wormholes made out of pure vacuum
(and thus complying with the standard energy conditions),
exotic black holes, or even spacetimes giving rise to the
observed rotation curves of galaxies without introducing
dark matter have been reported in the literature [10–13].
The approach has furthermore been generalized to other
modified gravity theories, such as fðQÞ, where a similar
situation occurs [14].
In the presentwork, we shall show that the vast majority of

R0-degenerate fðRÞ models, as well as their constant-
curvature solutions themselves, are most often pathological
in nature, and thus not physically viable. In particular, wewill
prove that this special class of fðRÞmodels only propagates
one scalar degree of freedom at linear level [in contrast with
generic fðRÞmodels and GR], thus being incompatible with
gravitational-wave observations. Furthermore, as we shall
discuss,R0-degenerate fðRÞmodels apparently lack predict-
ability, because of the aforementioned infinite degeneracy of
their constant-curvature solutions. Finally, to make matters
worse, we will also show that most of the novel constant-
curvature solutions are unstable and host a number of
unphysical properties, such as regions in which the metric
signature changes abruptly, naked curvature singularities,
and more.
We remark that the instabilities we present in this

communication are different in nature from the well-known
matter instability displayed by some fðRÞ models in the
presence of matter [15]. In particular, we have discovered
that fðRÞ-exclusive constant-curvature vacuum solutions
can be unstable, and that the all important Minkowski
background (being a constant-curvature vacuum solution
itself) is strongly coupled in the fðRÞ models we denote as
ðR0 ¼ 0Þ-degenerate.
The contents of this work will be organized as follows.

First, in Sec. II, we shall briefly review the conditions fðRÞ
models must satisfy so as to harbor any metric with a given
constant Ricci scalar. Second, the pathological character of
the fðRÞmodels within this special class will be discussed in
Sec. III. More precisely, the fact that the linearized spectrum
of saidmodels contains atmost onemassless scalar field only
will be proven therein. Next, in Sec. IV, we shall assess the
stability of fðRÞ-exclusive constant-curvature solutions
under small perturbations of their Ricci scalar. Finally,
Sec. Vwill be devoted to a characterization of several classes
of novel constant-curvature solutions, some of which have
not yet been reported in the literature, as far as we are

concerned. We shall then conclude that most of the solutions
analyzed in the latter section display a variety of unphysical
properties. Supplementary discussions and examples are
provided in the appendixes. Appendix A shall be devoted
to clarifying the subtleties appearing when one analyzes R0-
degenerate constant-curvature solutions using the Einstein
frame representation of the theory (as done in Sec. IV). Next,
in Appendix B, we show that the representation of the novel
constant-curvature solutions on the Brans-Dicke (scalar-
tensor) representation of R0-degenerate fðRÞ models is
trivial. Subsequently, so as to better illustrate the condi-
tions under which an fðRÞ model is R0-degenerate, in
Appendix C, we consider a particularly simple fðRÞ model
which is R0-degenerate for one particular value of the
Ricci scalar, but which also hosts nondegenerate constant-
curvature solutions for a different value of R. Finally, in
Appendix D, we collect all the mathematical definitions and
conventions which are employed in the analysis performed
in Sec. II.
The busy reader is encouraged to focus on Sec. II,

containing our precise definitions of constant-curvature
solutions and R0-degenerate fðRÞ models; Results 1 and 2,
containing our most relevant findings regarding the exist-
ence of strong-coupling instabilities in R0-degenerate fðRÞ
models; Results 3 and 4, concerning the stability of
constant-curvature solutions within R0-degenerate fðRÞ
models; Table I, summarizing all the pathological traits
displayed by the fðRÞ-exclusive solutions discussed herein;
and, finally, the conclusions and final discussions collected
in Sec. VI.
Before proceeding with the results of our investigations,

let us enumerate, for the sake of clarity, the various
notational conventions to be followed hereafter. Our sign
choice shall be the one denoted as ð−;−;−Þ by Misner
et al. [17]: the metric signature will be ðþ;−;−;−Þ, the
Riemann and Ricci tensors are defined as Rρ

σμν ≡
−2ð∂½μjΓρ

σjν� þ Γρ
λ½μjΓλ

σjν�Þ and Rμν ≡ Rρ
μρν, respectively,

and the Einstein field equations read Gμν ¼ −κTμν, with
κ ≡ 8πG (c ¼ 1) and Tμν ≡þð2= ffiffiffiffiffiffi−gp ÞδSmatter=δgμν,
where Smatter is the matter action sourcing the gravitational
sector. Moreover, as widely known, the total action of
metric fðRÞ gravity coupled to matter reads

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatter; ð1Þ

whose associated equations of motion are

f0ðRÞRμν −
fðRÞ
2

gμν þDμνf0ðRÞ ¼ −κTμν; ð2Þ

where Dμν ≡∇μ∇ν − gμν□ and n primes right after any
function denote the nth derivative of said function with
respect to its argument. For instance, f0ðRÞ≡ dfðRÞ=dR
and A00ðrÞ≡ d2AðrÞ=dr2.
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TABLE I. Overview of the constant-curvature solutions considered in this work and their pathological characteristics.

Type
Parameters
(dimensions) Subclass

Line
element Issues and oddities

Class 1 C ≠ 0 (L) C > 0 (46) (i) Protected Królak-strong and Tipler-strong curvature singularity
at the origin r ¼ 0 (i.e. it cannot be reachedby causal observers in
finite proper time).

(ii) Can be smoothly matched with an interior Minkowski
spacetime at any given radius for every C [16].

C < 0 (52) (i) Protected Królak-strong and Tipler-strong curvature singularity
at r ¼ 0.

(ii) Accessible Królak-strong and Tipler-strong curvature singularity
at r ¼ jCj (i.e. causal observers can reach it in finite proper time).

(iii) Surface r ¼ jCj also appears to be a Killing horizon, but it is
not null.

(iv) As their counterparts with C < 0, they can be smoothly
matched with an interior Minkowski spacetime at any given
radius for every C [16].

Class 2 R0 (L−2)a

D (L0)
C ≠ 0 (L)b

R0 > 0 (59) (i) Infinite number of accessible curvature singularities.
(ii) Infinite number of would-be (non-null) Killing horizons, all

coincident with curvature singularities.
(iii) Generically unstable, as per Result 3.

R0 < 0 (64) (i) Protected Królak-strong and Tipler-strong curvature singularity
at the origin.

(ii) Generically unstable, as per Result 3.

R0 ¼ 0
c (48) (i) Protected Królak-strong and Tipler-strong curvature singularity

at the origin.
(ii) Describes a pair of disconnected parallel universes, one at each

side of the central singularity.

Class 3 R0 (L−2)d

M (L−1)e
M ¼ 0, R0 > 0 (73) (i) The metric signature becomes unphysical, i.e. ðþ;þ;−;−Þ, for

radii r larger than the critical value r ¼ ffiffiffiffiffiffiffiffiffiffi
6=R0

p
.

(ii) The region with an unphysical metric signature is accessible in
finite proper time.

(iii) r ¼ ffiffiffiffiffiffiffiffiffiffi
6=R0

p
is also an apparent horizon (a null surface in

which grr ¼ 0).
(iv) Generically unstable, as per Result 3.

M ¼ 0, R0 < 0 (76) (i) Describes a traversable wormhole made out of pure vacuum.
(ii) However, it is generically unstable, as per Result 3.

M > 0, R0 ¼ 0 (77) (i) The metric signature becomes unphysical for r < 2GM.
(ii) The region with an unphysical metric signature is accessible in

finite proper time.
(iii) r ¼ 2GM is also the location of an apparent horizon.
(iv) Curvature singularity at r ¼ 0 (i.e. within the unphysical region).

M < 0, R0 ¼ 0 (81) (i) Accessible Królak-strong and Tipler-strong curvature singularity
at r ¼ 0.

M < 0, R0 < 0 (84) (i) Accessible Królak-strong and Tipler-strong curvature singularity
at r ¼ 0.

(ii) Generically unstable, as per Result 3.

(Table continued)
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II. CONSTANT-CURVATURE VACUUM
SOLUTIONS OF f ðRÞ GRAVITY

Throughout this article, we shall define a constant-
curvature spacetime as the one represented by a metric
whose Ricci scalar is constant, i.e.

R ¼ const≡ R0: ð3Þ

When the equations of motion of fðRÞ gravity (2) are
evaluated in vacuum—i.e. Tμν ¼ 0—and constant scalar

curvature R0 solutions are sought, the last term on the left-
hand side of (2) vanishes. Thus, the equations of motion
reduce to

f0ðR0ÞRμν ¼
fðR0Þ
2

gμν: ð4Þ

Taking the trace of (4), one finds that, in vacuum, such a
constant-curvature solution satisfies

TABLE I. (Continued)

Type
Parameters
(dimensions) Subclass

Line
element Issues and oddities

M > 0, R0 < 0 (87) (i) The metric signature becomes unphysical for radii r smaller
than some critical value rah given by expression (88).

(ii) Curvature singularity at r ¼ 0 (i.e. within the unphysical region).
(iii) Generically unstable, as per Result 3.

M < 0, R0 > 0 (89) (i) The metric signature becomes unphysical for radii r larger than
some critical value rah given by expression (90).

(ii) Królak-strong and Tipler-strong curvature singularity at r ¼ 0.
(iii) Generically unstable, as per Result 3.

M > 0, R0 > 0 (91) (i) If 3GM
ffiffiffiffiffiffiffiffiffiffi
R0=2

p
≥ 1, the metric signature is unphysical for all r.

If 3GM
ffiffiffiffiffiffiffiffiffiffi
R0=2

p ¼ 1, then r ¼ 3GM ¼ ffiffiffiffiffiffiffiffiffiffi
2=R0

p
would be a

wormhole throat (were the metric signature physical).
(ii) If 0 < 3GM

ffiffiffiffiffiffiffiffiffiffi
R0=2

p
< 1, the metric signature is unphysical for

r < r0 and for r > r1, where r0 and r1 are two critical values
given by expressions (92) and (93), respectively. r ¼ r0 and
r ¼ r1 correspond to apparent horizons.

(iii) Curvature singularity at r ¼ 0 (i.e. within the unphysical
region).

(iv) Generically unstable, as per Result 3.

Class 4 z ≠ 0 (L0)f

c> 0 (Lb)g

R0>0 (L)h

b ¼ b� (both) (95) (i) They are not asymptotically flat (they do not describe fully
isolated objects), but they comply with Solar System tests for
b ¼ b− and jzj ≪ 1.

(ii) Curvature singularity at r ¼ 0, hidden within an event horizon.
(iii) The central singularity is unprotected if z > −10þ 4

ffiffiffi
6

p ¼
−0.202…, and protected if z < −10 − 4

ffiffiffi
6

p ¼ −19.798…
aNotice that, by changing the value of R0, one is actually changing the set of fðRÞ models in which this spacetime is a vacuum

solution; cf. conditions (6) and (7).
bAs explained in Sec. V B in the bulk of the text, this constant can always be absorbed by a redefinition of the time coordinate.

We have deliberately kept it in the metric for purely dimensional purposes (i.e. so as to have a time coordinate with dimensions of
length), and also to explicitly demonstrate that it represents the same physical quantity as similarly named parameter C in Class 1
solutions.

cIn this case, dimensionless constant D can always be absorbed by a coordinate redefinition.
dSee footnote a.
eR0 and M cannot vanish at the same time because, in that case, Class 3 solutions would trivially reduce to Minkowski spacetime.
fFor consistency, conditions z < −10 − 4

ffiffiffi
6

p
or −10þ 4

ffiffiffi
6

p
< z (i.e. z < −19.798… and z > −0.202…) are also necessary;

see text.
gExponent b depends on parameter z. Its two allowed values, b�, are given in Eq. (98).
hAgain, this constant is left in the metric solely on dimensional grounds and might be removed with a coordinate redefinition.
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f0ðR0ÞR0 ¼ 2fðR0Þ: ð5Þ

Thus, in the event that vacuum solutions with constant-
curvature R0 are present in a given fðRÞ model, Eqs. (2),
(4), and (5) hold simultaneously, giving rise to the follow-
ing scenarios:

(i) If R0 ¼ 0, Eq. (5) necessarily implies that fð0Þ ¼ 0.
As a result, Eq. (4) then entails that either f0ð0Þ ¼ 0
or Rμν ¼ 0. This means that an fðRÞ model satisfy-
ing fð0Þ ¼ 0 always admits the same R0 ¼ 0 sol-
utions as GR (for which Rμν ¼ 0). If, in addition,
f0ð0Þ ¼ 0, then the full equations of motion (4)—or,
equivalently, (2)—are satisfied automatically, and
the theory admits any metric having R0 ¼ 0 as a
solution, even if said vanishing-curvature metrics are
not solutions of GR. Notice that these novel, fðRÞ-
exclusive solutions would coexist with those of GR
in fðRÞ models satisfying f0ð0Þ ¼ 0.

(ii) If R0 ≠ 0, there are two possibilities within this
scenario.
On the one hand, for fðRÞ models satisfying

fðR0Þ ≠ 0, Eq. (4) necessarily implies that f0ðR0Þ ≠
0 (since R0 ≠ 0). Thus, Eqs. (2) and (4) turn into
Rμν ¼ ðR0=4Þgμν, and only the constant-curvature
solutions of GRþ Λ—with Λ ¼ R0=4 ¼ fðR0Þ=
2f0ðR0Þ—solve the equations of motion of the
fðRÞ model under consideration.
On the other hand, for fðRÞ models satisfying

fðR0Þ ¼ 0, Eq. (4) forces f0ðR0Þ ¼ 0. As such,
Eqs. (2) and (4) are trivially satisfied, and any metric
with constant scalar curvature R0 is a solution of the
fðRÞ model. In particular, the constant-curvature
solutions of GRþ Λ (with Λ ¼ R0=4) would also
be solutions of this particular set of fðRÞ models.
Thus, in these models, the novel, fðRÞ-exclusive
constant-curvature solutions (which do not satisfy
the usual Einstein equations in the presence of a
cosmological constant) would coexist with the con-
stant-curvature solutions of Einsteinian gravity (with
an appropriate cosmological constant).

In summary, any metric with a vanishing Ricci scalar
trivially solves the vacuum equations of motion of all fðRÞ
models such that

fð0Þ ¼ 0; f0ð0Þ ¼ 0; ð6Þ

with the first condition being necessary for the model to
harbor the vanishing-curvature solutions of GR.
Analogously, every metric with constant Ricci scalar R0

is a vacuum solution of any fðRÞ model satisfying

fðR0Þ ¼ 0; f0ðR0Þ ¼ 0: ð7Þ

fðRÞmodels fulfilling conditions (6) or (7) shall thus be the
object of study of the present work. As explained in the

Introduction, we will generically refer to these special
choices of function f as R0-degenerate models. In addition,
we shall further distinguish between ðR0 ¼ 0Þ-degenerate
models, which satisfy conditions (6), and ðR0 ≠ 0Þ-
degenerate models, which comply with (7) instead.
Finally, constant-curvature solutions exclusive to R0-
degenerate fðRÞ models will hereafter be referred to as
R0-degenerate (in analogy with the models themselves), or
as fðRÞ-exclusive, or even as novel solutions.
The reader should note that it is straightforward to find

nontrivial R0-degenerate fðRÞ models which appear to be,
at least a priori, physically well-motivated. The most
paradigmatic examples would be the so-called “power-
of-GR” models, fðRÞ ∝ R1þδ, which fulfill conditions (6)
provided that δ > 0. These models have interesting appli-
cations in cosmology and might be compatible with Solar
System experiments, depending on the value of δ [18,19].
Another simple instance of a ðR0 ≠ 0Þ-degenerate model
would be fðRÞ ¼ R − R0=2 − R2=ð2R0Þ, which satisfies
(7) while behaving as R − 2ΛþOðR2Þ for R ≪ R0, with
R0 being the only dimensional parameter. The fact that
there exist R0-degenerate models which reduce to GRþ Λ
in the appropriate limit is a remarkable result, given that GR
with (or without) a cosmological constant is not R0-
degenerate by itself (for any R0).
At this point, it is important to remark that R0-degenerate

fðRÞ models may admit solutions which are not degener-
ate. For example, in Appendix C, we present a simple fðRÞ
model harboring constant-curvature solutions for two
different values of R0. However, the model is R0-degen-
erate for only one of these two R0’s; for the other value, the
fðRÞ model only hosts the (nondegenerate) constant-
curvature solutions of GRþ Λ.
Another important observation is that fðRÞ models do

not need to be fine-tuned in order to become R0-degenerate.
For example, the power-of-GR models fðRÞ ∝ R1þδ with
δ > 0 discussed above are always ðR0 ¼ 0Þ-degenerate.
These models have been well-studied in the literature in the
context of cosmology and, certainly, were not purposefully
designed to be ðR0 ¼ 0Þ-degenerate. Thus, as a matter of
fact, whenever conditions (6) or (7) are satisfied—either
accidentally or on purpose—the fðRÞ model in question is
constant-curvature degenerate for the appropriate values of
R0. It is true, however, that nothing prevents one from
constructing a designer R0-degenerate fðRÞ model hosting
as many solutions as one wishes with a particular constant-
curvature R0.
Before closing this section, a brief comment on the

predictability of R0-degenerate fðRÞ models is pertinent.
As their name suggests, it is not clear whether fðRÞmodels
complying with either (6) or (7) have full predictive power.
In any such R0-degenerate model, there is a set of initial
conditions (namely, those requiring the Ricci scalar to be
R0) whose evolution is not dictated by the vacuum
equations of motion; recall Eq. (2) hold trivially for (the
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infinite number of) metrics with R ¼ R0. Moreover, there
are indications that some metrics with the privileged Ricci
scalar R0 can almost always be smoothly glued to each
other [16], thus suggesting that R0-degenerate models
might be unable to discern between its (infinitely many)
constant-curvature solutions.

III. STRONG-COUPLING PATHOLOGIES
IN R0-DEGENERATE f ðRÞ MODELS

Innocent as they might seem at first sight, the special
class of R0-degenerate fðRÞ models—i.e. those fulfilling
either conditions (6) or (7)—can be shown to be inherently
pathological, as stated in the Introduction. In the following,
we shall concentrate in a physically relevant shortcoming of
said models, namely, an apparent strong-coupling insta-
bility—i.e. the nonpropagation of all expected degrees of
freedom at linear level around a flat background.
The linearized spectrum of a given gravity theory

comprises all the independent fields which propagate on
top of a suitable background when the equations of motion
are expanded up to linear order in perturbations. The
linearized spectrum around flat Minkowski spacetime thus
coincides with the possible gravitational-wave polarization
modes which can be observationally detected, since the
weak-field approximation is appropriate near current exper-
imental settings.
It is well-known that, generically, the gravitational wave

spectrum of metric fðRÞ models consists of a massless and
traceless graviton akin to that of GR (with two polarization
modes, the so-called “þ” and “×” polarizations) plus an
additional longitudinal (i.e. massive) scalar degree
of freedom [6,7], in consonance with the fact that fðRÞ
theories of gravity are dynamically equivalent to a
scalar-tensor theory [20,21].1

The fact thatmost fðRÞmodels propagate a massless and
traceless graviton renders them compatible with gravita-
tional wave observations [27] (notice that no current
gravitational-wave detectors are sensible to nontensorial
modes, including scalar modes, which remain unobserved).
However, it is important to remark that, in general, previous
analyses of gravitational waves in fðRÞ gravity made no
assumptions on function f itself (apart from analyticity at
R ¼ 0, which is necessary to perform the linearization of
the field equations, as we shall see later). For these reasons,
these investigations failed to recognize that not all fðRÞ
models propagate the expected linearized degrees of free-
dom (gravitonþ scalar) around a Minkowski background.
Indeed, we have found that ðR0 ¼ 0Þ-degenerate models

feature such evanescence of the expected degrees of free-
dom, signaling the presence of a previously undiscovered
strong-coupling instability in these models.2 In particular,
we have been able to establish the following two results:
Result 1. At linear level in perturbations, ðR0 ¼ 0Þ-

degenerate fðRÞ models—i.e. those complying with con-
ditions (6)—propagate, at most, one single massless scalar
mode atop a flat background. In other words, these models
do not contain the expected spin-2 graviton in their
linearized spectrum, and thus Minkowski spacetime is
strongly coupled in ðR0 ¼ 0Þ-degenerate fðRÞ models.
Result 2. Around a Minkowski background, the linear-

ized spectrum of ðR0 ¼ 0Þ-degenerate fðRÞ models sat-
isfying f00ð0Þ ¼ 0 does not contain any dynamical degrees
of freedom whatsoever.
As mentioned before, Result 1 puts into question the

physical viability of ðR0 ¼ 0Þ-degenerate fðRÞ models,
since the two polarization modes corresponding to a
massless and traceless spin-2 graviton have been detected
in all gravitational-wave experiments carried out by the
LIGO and VIRGO Collaborations since 2015 [29,30]. We
must also stress at this point that it is not very difficult to
find ðR0 ¼ 0Þ-degenerate fðRÞ models that comply with
the hypotheses of Result 2; for instance, all power-of-GR
models fðRÞ ∝ R1þδ with δ > 1 (we shall also assume that
δ is a natural number for the series expansion around R ¼ 0
to exist).
In order to prove the assertions in Results 1 and 2, we

will proceed as follows. First, we will review the lineari-
zation of the fðRÞ field equations (2) for any choice of
function f. After that, we will particularize the results to the
special case of ðR0 ¼ 0Þ-degenerate models—i.e. we will
make use of conditions (6)—to demonstrate the existence
of aforementioned apparent strong-coupling instabilities.
To perform the linear expansion of the fðRÞ equations of

motion (2) around Minkowski spacetime, one starts by
choosing a suitable coordinate system in which the metric
gμν can be decomposed as

gμν ¼ ημν þ hμν; ð8Þ

where ημν is the Minkowski background and hμν is the
metric perturbation, i.e. jhμνj ≪ 1 in this special coordinate

1Some studies [22–24] claimed that the linearized spectrum of
fðRÞ contained a second scalar polarization mode, dubbed
breathing mode, in disagreement with previous results. The
controversy was finally settled against the existence of such a
breathing mode resorting to the Hamiltonian formalism [25] and
gauge-invariant methods [26].

2A background is said to be strongly coupled whenever at least
one of the expected perturbative degrees of freedom fails to
propagate atop said background. In other words, the kinetic
term(s) of the evanescent field(s) vanish when evaluated in the
strongly coupled background; equivalently, interaction terms
blow up upon canonicalization of the equations of motion, hence
the name strong-coupling. Comprehensive accounts of the
generalities of strong-coupling phenomena may be found in
works investigating the appearance of such instabilities in
physical theories. We refer the interested reader to references
such as [28], for instance.
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system. As is widely known, the following expressions are
true at first order in hμν:

gμν ¼ ημν − hμν þOðh2Þ; ð9Þ

Rμν ¼ Rð1Þ
μν þOðh2Þ; ð10Þ

R ¼ Rð1Þ þOðh2Þ; ð11Þ

where

Rð1Þ
μν ≡ 1

2

h
□hμν þ ∂μ∂νh − 2∂λ∂ðμhλνÞ

i
; ð12Þ

Rð1Þ ≡ ημνRð1Þ
μν ¼ □h − ∂μ∂νhμν; ð13Þ

hμν ≡ ημρηνσhρσ; hμν ≡ ημλhλν; h≡ ημνhμν: ð14Þ

In expressions (12)–(14) and hereafter, □ shall denote the
Minkowski-space d’Alembertian, i.e. □ ¼ ημν∂μ∂ν.
The existence of a linearized regime of fðRÞ theories

requires one additional assumption to bemade, namely thatf
must be analytic at R ¼ 0, and therefore series-expandable
up to linear order in the Ricci-scalar perturbationRð1Þ, i.e. up
to linear order in metric perturbations. This is to guarantee
that the resulting linearized equations of motion remain first-
order in hμν, something which is impossible whenever f and
its derivatives cannot be linearized in the first place.
For a generic fðRÞ theory of gravity which is analytic

around R ¼ 0, taking into account all the previous con-
siderations results in the following set of linearized vacuum
equations of motion:

f0ð0ÞGð1Þ
μν þ f00ð0Þð∂μ∂ν − ημν□ÞRð1Þ þOðh2Þ ¼ 0; ð15Þ

where we have defined the Einstein-like tensor

Gð1Þ
μν ≡ Rð1Þ

μν −
1

2
ημνRð1Þ: ð16Þ

Taking the trace of (15), one finds

3f00ð0Þ□Rð1Þ þ f0ð0ÞRð1Þ þOðh2Þ ¼ 0; ð17Þ

which is a noncanonical Klein-Gordon equation for Rð1Þ
provided that f00ð0Þ ≠ 0. Direct inspection of this equation
clearly reveals that the kinetic term for Rð1Þ vanishes if
f00ð0Þ ¼ 0. Therefore, expression (17) alone suffices to
conclude that, only in cases where f00ð0Þ ≠ 0, the Ricci-
scalar perturbation Rð1Þ behaves as an independent, propa-
gating scalar degree of freedom at the linearized level. One
might then divide both sides of Eq. (17) by f00ð0Þ so as to
canonicalize the kinetic term, yielding

□Rð1Þ þ f0ð0Þ
3f00ð0ÞR

ð1Þ þOðh2Þ ¼ 0: ð18Þ

Thus, for f00ð0Þ ≠ 0, the propagating scalar degree of
freedom Rð1Þ has an effective mass meff given by

m2
eff ¼

f0ð0Þ
3f00ð0Þ : ð19Þ

Turning back to the full linearized equations of motion
(15), we are now in a position that will allow us to
understand intuitively why the spin-2 sector of the theory
does not propagate atop the Minkowski background in
ðR0 ¼ 0Þ-degenerate fðRÞ models. Aside from the higher-
order terms, Eq. (15) contains (i) the term proportional to

f0ð0Þ and the Einstein-like tensor Gð1Þ
μν given by (16), which

encapsulates all terms depending on hμν and its derivatives;
and (ii) the term containing derivatives of the scalar mode
Rð1Þ, which is proportional to f00ð0Þ and does not depend on
hμν or its derivatives. From this, it is clear that:

(i) The first term (i) vanishes whenever function f is
such f0ð0Þ ¼ 0, which is precisely one of the
defining conditions of ðR0 ¼ 0Þ-generate fðRÞmod-

els; cf. (6). Given that Gð1Þ
μν contains all the deriv-

atives of hμν appearing in the equations of motion,
the absence of this term entails that the spin-2 mode
does not propagate, as stated in Result 1. The strong-
coupling problem becomes evident once one notices
that the interaction terms—i.e. the Oðh2Þ terms—
blow up when one divides Eq. (15) by f0ð0Þ (in order
to canonicalize the graviton kinetic terms) and then
takes the limit f0ð0Þ → 0.

(ii) The second term (ii) will not be present either
whenever f00ð0Þ ¼ 0, as discussed above. Thus,
for ðR0 ¼ 0Þ-generate fðRÞ models such that
f00ð0Þ ¼ 0, Eqs. (15) and (17) contain no kinetic
terms at all, only the Oðh2Þ interaction terms
survive, and thus those theories do not possess a
linearized spectrum, as asserted in Result 2.

However, there is a more insightful (and more mathemati-
cally explicit) way of understandingwhy the spin-2 degree of
freedom fully decouples when f0ð0Þ ¼ 0, i.e. for ðR0 ¼ 0Þ-
degenerate fðRÞ models. The argument goes as follows. As
in GR, in fðRÞ gravity it is possible [6] to define a new
symmetric rank-two tensor field, h̄μν, such that Eq. (15)
reduces to the wave equation

□h̄μν þOðh2Þ ¼ 0 ð20Þ

in the de Donder gauge, i.e. after setting

∂μh̄μν ¼ 0 ð21Þ
using some of the available gauge freedom in the theory. The
remaining gauge freedom is then employed to impose the

PHYSICAL NONVIABILITY OF A WIDE CLASS OF fðRÞ … PHYS. REV. D 108, 064006 (2023)

064006-7



transverse-traceless (TT) condition. In a generic fðRÞ theory
of gravity, after expanding (15) in the de Donder gauge
and comparing the result with (20), one finds that h̄μν is
given by3

h̄μν ¼ f0ð0Þh̄GRμν − f00ð0ÞRð1Þημν; ð22Þ

where

h̄GRμν ≡ hμν −
h
2
ημν ð23Þ

is the usual spin-2 degree of freedom of GR. In consequence,
Eqs. (20) and (22) evince that what propagates at the speed of
light (invacuum) in a genericfðRÞ gravitymodel is amixture
of the GR spin-2 graviton and the extra scalar mode. As per
Eq. (22), such a propagating mixture reduces to its scalar
component provided that f0ð0Þ ¼ 0. In such a situation, Rð1Þ
becomes effectively massless, due to (19), and the Klein-
Gordon equation (17) becomes equivalent to the wave
equation (20). As a result, only the massless scalar degree
of freedom propagates in ðR0 ¼ 0Þ-degenerate fðRÞmodels
such that f00ð0Þ ≠ 0, as previously stated in Result 1. Again,
one clearly sees that no propagating degree of freedom
survives the limit f00ð0Þ → 0, in agreement with the strong-
coupling instability described in Result 2.

IV. STABILITY OF THE NOVEL
CONSTANT-CURVATURE SOLUTIONS

Even though R0-degenerate fðRÞ models possess an
infinite number of solutions having constant scalar curva-
ture R ¼ R0, it is actually possible to study the stability of
all such solutions at once within a given model, without
needing to perform a case-by-case analysis. In order to do
so, we will resort to the Einstein-frame (i.e. scalar-tensor)
representation of fðRÞ gravities, which is ideally suited to
study stability against small perturbations about a given
constant value of R.
As previously stated, it is well-known that metric fðRÞ

theories can be regarded as equivalent to a scalar-tensor
gravitational theory. More precisely, in the so-called
Einstein frame [20,21],

ḡμν ¼ f0ðRÞgμν; ð24Þ

the action (1) of metric fðRÞ gravity transforms into that of
GR plus a dynamical gravitational scalar field ϕ, with the
latter being given by

ϕðRÞ ¼
ffiffiffiffiffi
3

2κ

r
ln f0ðRÞ: ð25Þ

This scalar field, also known as the scalaron, is subject to
the fðRÞ-model-dependent potential

VðRÞ ¼ f0ðRÞR − fðRÞ
2κf02ðRÞ : ð26Þ

Notice that the Ricci scalar R appearing in the previous
expressions is that of the so-called Jordan-frame metric, i.e.
the original, physical metric gμν. As mentioned before, the
scalaron (25) is related to the scalar polarization mode
found in the gravitational-wave spectrum of the theory.
When working in the Einstein frame, the stability of a

Jordan-frame constant-curvature solution will depend on
whether R ¼ R0 is a minimum of the scalaron potential,
and on whether such a minimum is either global or local (in
the latter case, the solution will only be metastable).
Nonetheless, we must stress that some subtleties arise
when using the Einstein frame in R0-degenerate models.
The ones relevant to our work will be comprehensively
discussed in Appendix A. Also, it is straightforward to
notice in (26) that, if the fðRÞ model is R0-degenerate, a
naive evaluation of VðRÞ at R ¼ R0 leads to a 0=0
indetermination. The reason is that, in such a case, both
the numerator and the denominator in Eq. (26) become zero
when R → R0, owing to conditions (7). Therefore, the limit
must be evaluated carefully.
There are two possible ways of computing limits which

naively evaluate to indeterminations of the 0=0 kind:
(i) performing series expansions or (ii) applying
L’Hôpital’s rule. The only difference between the afore-
mentioned methods is their range of applicability: Taylor
series require analyticity around the expansion point, while
L’Hôpital’s rule only requires differentiability of the
numerator and denominator. In our assessment of the
stability of constant-curvature solutions in R0-degenerate
models, we have made use of both methods, obtaining
exactly the same outcomes, as shown in Results 3 and 4
(recall that analyticity requires differentiability, and thus the
results obtained using L’Hôpital’s rule imply those obtained
using series expansions). However, for the sake of clarity,
and to avoid cluttering up this communication with long
formulas, we shall only present the derivation using Taylor
series, which produces shorter expressions at the expense
of a more limited scope. However, we insist that the final
results apply to nonanalytic but differentiable f’s as well.
It is worth noting that, regardless of the method

employed in the stability analysis, one is forced to assume
that f00ðR0Þ ≠ 0 to prevent some denominators from

3Our expression (22) for h̄μν is slightly different from the one
commonly found in the literature [6,24],

h̄μν ¼ h̄GRμν −
f00ð0Þ
f0ð0Þ R

ð1Þημν;

which, as the reader may immediately notice, is not valid if
f0ð0Þ ¼ 0, i.e. precisely in the case we are interested in.
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blowing up at R ¼ R0.
4 In addition, it is well-known that

fðRÞ models having f00ðRÞ < 0 develop the so-called
Dolgov-Kawasaki matter instability [31–33]. As such,
the additional constraint f00ðR0Þ > 0 is unavoidable on
physical grounds.
Having explained why we have chosen to present just the

computations using the series-expansion method, let us
proceed with the stability analysis. As stated above, apart
from demanding conditions (7) to hold (so that the model is
R0-degenerate and harbors any solution with constant
scalar curvature R0), we shall only make two additional
assumptions, in particular, that function f is analytic
around R ¼ R0 (so that it can be Taylor-expanded around
R0, as explained before), and also that f00ðR0Þ > 0. As
a result, it is possible to expand both the numerator
and the denominator of the scalaron potential (26) around
R ¼ R0. Indeed, close to R0, the denominator of VðRÞ
behaves as

f0−2ðRÞ ∼
R¼R0

f00−2ðR0ÞðR − R0Þ−2 þ
f000ðR0Þ
f003ðR0Þ

ðR − R0Þ−1

þO½ðR − R0Þ0�; ð27Þ

whereas the numerator can be expanded as

f0ðRÞR − fðRÞ ∼
R¼R0

R0f00ðR0ÞðR − R0Þ

þ f00ðR0Þ þ R0f000ðR0Þ
2

ðR − R0Þ2

þO½ðR − R0Þ3�: ð28Þ

As a result, we have that

2κVðRÞ ∼
R¼R0

R0

f00ðR0Þ
ðR − R0Þ−1

þ f00ðR0Þ − R0f000ðR0Þ
2f002ðR0Þ

þOðR − R0Þ: ð29Þ

We can now clearly infer from this last expression that the
limit of VðRÞ as R → R0 does not exist unless R0 ¼ 0.
Certainly, should R0 be different from zero, series expan-
sion (29) would be dominated by the order ðR − R0Þ−1
term, which is a hyperbola tending to either positive or
negative infinity depending whether R0 is approached from
the left or the right. More precisely,

lim
R→R�

0
R0≠0

VðRÞ ¼ sign
�

R0

f00ðR0Þ
�
× ð�∞Þ: ð30Þ

Requiring the Dolgov-Kawasaki stability condition
f00ðRÞ > 0 to hold on physical grounds, this expression
further simplifies to

lim
R→R�

0
R0≠0

VðRÞ ¼ signðR0Þ × ð�∞Þ; ð31Þ

but, as we can see, the limit still does not exist under the
new condition.
As mentioned earlier in this section, even though the

previous findings have been obtained using Taylor expan-
sions (and thus under the assumption that f is analytic at
R ¼ R0), the equivalent computation using L’Hôpital’s rule
yields exactly the same results (30) and (31) for choices of
f which might not be analytic. We can therefore establish
the following general result:
Result 3. Consider an ðR0 ≠ 0Þ-degenerate fðRÞ model

—i.e. one fulfilling conditions (7)—such that f00ðR0Þ ≠ 0.
Then its infinitely many solutions with constant-curvature
R ¼ R0 are generically unstable.
On the contrary, if R0 ¼ 0, series expansion (29) yields

lim
R→0

VðRÞ ¼ 1

4κf00ð0Þ ; ð32Þ

i.e. the potential (26) is analytic and perfectly well-defined
at R ¼ 0. Consequently, whenever R ¼ 0 is a global
minimum of the potential, zero-scalar-curvature solutions
will be stable. If R ¼ 0 is a local but nonglobal minimum,
then the solutions will be just metastable (i.e. stable only
under small-enough perturbations). In either case, the
additional constraints one must impose on VðRÞ are the
usual minimum conditions:

V 0ð0Þ ¼ lim
R→0

V 0ðRÞ ¼ 0; ð33Þ

V 00ð0Þ ¼ lim
R→0

V 00ðRÞ > 0 but finite: ð34Þ

Again, should the limits of V 0ðRÞ and V 00ðRÞ as R tends to
zero be taken directly, indeterminations of the 0=0-type
would emerge in each case. Consequently, one has to
proceed exactly as we have done abovewhen evaluating the
limit of the potential itself. As before, we shall only assume
that f is analytic around R ¼ R0 ¼ 0, and that f00ð0Þ ≠ 0
(and, eventually, that f00ð0Þ > 0).
Taking this into account, the limit of V 0ðRÞ as R → 0

may again be computed by expanding its numerator and
denominator around R ¼ 0, yielding

lim
R→0

V 0ðRÞ ¼ −
f000ð0Þ

12κf002ð0Þ : ð35Þ

As per local minimum condition (33), metastability of the
solutions with R ¼ 0 then requires

4Condition f00ðRÞ ≠ 0 ensures that the correspondence be-
tween the Jordan and Einstein frames is well-posed [20]. More-
over, the extrema of VðRÞ and VðϕÞ coincide if and only if
f00ðRÞ ≠ 0, as discussed in Appendix A.
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f000ð0Þ ¼ 0: ð36Þ

Similarly, one finds that the limit of V 00ðRÞ as R → 0 is also
well-defined, being

lim
R→0

V 00ðRÞ ¼ −
f0000ð0Þ

24κf002ð0Þ : ð37Þ

As a result, local minimum condition (34) implies that an
ðR0 ¼ 0Þ-degenerate fðRÞ model must be such that

f0000ð0Þ < 0 ð38Þ

for its infinitely many vanishing-scalar-curvature solutions
to be at least metastable. Once more, as in the R0 ≠ 0 case,
results (30), (31), and (35)–(38) are also found using
L’Hôpital’s rule, and therefore hold for functions f which
need not be analytic. In consequence, we can formulate the
following generic result:
Result 4. All vanishing-scalar-curvature spacetimes are

at least metastable vacuum solutions of ðR0 ¼ 0Þ-degenerate
fðRÞmodels—i.e. those satisfying conditions (6)—provided
that function f is such that (i) f00ð0Þ ≠ 0, (ii) f000ð0Þ ¼ 0, and
(iii) f0000ð0Þ < 0. It should also be taken into account that
compliance with the Dolgov-Kawasaki stability criterion
forces f00ðRÞ > 0 for all R, and, a fortiori, f00ðR0Þ > 0,
instead of condition (i) above.
Analytic fðRÞ models satisfying all the assumptions of

Result 4 [including f00ð0Þ > 0] would admit the following
Taylor expansion around R ¼ 0:

fðRÞ ¼ αR2 − βR4 þOðR5Þ; ð39Þ

where α > 0 and β > 0 are real constants. The simplest
such models are, evidently, the polynomic ones with

fðRÞ ¼ αR2 − βR4: ð40Þ

It is not difficult to show that, for α > 0, R ¼ 0 is just a
local minimum of the potential associated with model (40).
The only other extrema of VðRÞ are two maxima at
R ¼ � ffiffiffiffiffiffiffiffiffiffi

α=6β
p

. Thus, for jRj > ffiffiffiffiffiffiffiffiffiffi
α=6β

p
the potential is

monotonically decreasing, i.e. VðRÞ → −∞ as R → �∞.
In other words, the model has a potential not bounded
below and lacks a ground state. As a result, the metastable
solutions with R ¼ 0 could be driven to infinite scalar
curvature, should the perturbations applied on them be
large enough. On the other hand, if α were negative, the
extremum at R0 ¼ 0 would be the true, global minimum of
the potential; in such a case, however, the Dolgov-
Kawasaki stability condition f00ðRÞ > 0 would be violated,
and the model would be unstable.

V. SOME PARADIGMATIC f ðRÞ-EXCLUSIVE
CONSTANT-CURVATURE SOLUTIONS

As we saw before in Sec. II, any spacetime with
constant-curvature R0 is a solution of any R0-degenerate
fðRÞ model. Therefore, the problem of obtaining new
constant-curvature solutions for such R0-degenerate mod-
els reduces to solving the differential equation R ¼ R0.
This can be accomplished by postulating several simple
ansätze for the metric.
As a first approximation to the problem, one may require

the constant-curvature solution to be static and spherically
symmetric. In such a case, it is always possible to choose
“areal-radius” coordinates ðt; r; θ;φÞ such that the most
generic static and spherically symmetric line element can
be written as

ds2 ¼ AðrÞdt2 − BðrÞdr2 − r2dΩ2; ð41Þ

where A and B are the only independent metric functions.
Line element (41) has Ricci scalar

R ¼ −
A00

AB
þ A0

2AB

�
A0

A
þ B0

B

�

−
2

r

�
A0

AB
−
B0

B2

�
þ 2

r2

�
1 −

1

B

�
: ð42Þ

Notice that (41) is directly expressed in the so-called
Abreu-Nielsen-Visser gauge,

ds2 ¼ e2Φ
�
1 −

2GMMSH

r

�
dt2

−
�
1 −

2GMMSH

r

�
−1
dr2 − r2dΩ2; ð43Þ

with Misner-Sharp-Hernández (MSH) mass [34,35]

MMSHðrÞ ¼
r
2G

�
1 −

1

BðrÞ
�

ð44Þ

and anomalous redshift function

ΦðrÞ ¼ 1

2
ln ½AðrÞBðrÞ�: ð45Þ

These two quantities will help us interpret the various
solutions to be discussed in what follows.
Equation R ¼ R0 ¼ const—with R given by expression

(42)—has infinitely many solutions; i.e. there is an infinite
number of static, spherically symmetric spacetimes having
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a constant Ricci scalar.5 For this reason, we will focus on
spherically symmetric spacetimes which have been previ-
ously reported in the literature [10,16], or generalizations
thereof. Even though some of these spacetimes might
look like mere deviations from either Minkowski or
Schwarzschild spacetimes, it is evident that hardly one
family (namely, Class 4, to be discussed in Sec. V D) passes
standard weak-field or Solar System experiments. Thus, if
they existed in nature, the solutionswe are considering in this
work would describe other, more exotic compact objects,
such as black holes, wormholes, etc. Moreover, it is impor-
tant to remark that none of the infinitely manyR0-degenerate
solutions ofR0-degeneratefðRÞmodels isa prioriprivileged
(on physical grounds) over the others—recall, for instance,
that Birkhoff’s theorem does not hold in fðRÞ theories of
gravity in general, least of all in R0-degenerate models. As
such, even the simplest suchR0-degenerate solutionsmust be
taken into full consideration within R0-degenerate fðRÞ
models.6 Proving that these degenerate solutions display
unphysical traits provides further evidence against the
viability of their host R0-degenerate fðRÞ models (adding
on to the one already presented in Results 1–4 above). For
these reasons, we will devote the sections below to study the
simple (yet archetypal) solutions we have chosen in detail.
Once we have presented the paradigmatic solutions in

Secs. VA–VD, we will proceed to characterize them. That
is to say, we would like to know which kind of objects
(wormholes, black holes, etc.) such solutions represent, and
whether they have physically meaningful properties. With
that purpose, we will analyze the following five aspects:

(i) Apparent and Killing horizons.
(ii) Coordinate singularities.

(iii) Curvature singularities. In cases where it is feasible
to perform the relevant computations, we will also
determine whether said singularities are strong or
weak, according to the criteria laid out by Tipler and
Królak [37–39].

(iv) Geodesic completeness, i.e. whether the curvature
singularities can be reached in finite time by freely
falling observers.

(v) Regions in which the metric has an unphysical
signature (e.g. regions in which there are two time
coordinates or the metric becomes Euclidean), and
whether these pathological regions can be reached in
finite time by freely falling observers.

The precise definitions of the properties listed above may
be found in Appendix D, along with useful formulas that
will be employed during our characterization of the
solutions. For instance, Eq. (D8) will allow us to determine
whether a singularity or a region with an unphysical metric
signature is out of reach for causal observers.
The R0-degenerate solutions we are about to consider

have been chosen because they allow for a fully analytic
examination. Our findings concerning the points above are
summarized in Table I. As may be deduced from these
results, the paradigmatic solutions to be described in what
follows exhibit a number of unusual characteristics which
put their physical viability into question. As said before,
given that the number of constant-curvature solutions a
certain R0-degenerate model hosts is infinite, one expects
the majority of those constant-curvature spacetimes to be
pathological. This section is thus intended to provide a
limited but illustrative picture of the kind of issues one
should expect to find when dealing with novel, fðRÞ-
exclusive constant-curvature solutions.

A. Novel solutions of Class 1

The first set of fðRÞ-exclusive constant-curvature sol-
utions we would like to discuss (hereafter to be known as
Class 1 solutions) shall be those metrics whose line element
can be expressed as

ds2 ¼
�
1þ C

r

�
2

dt2 − dr2 − r2dΩ2; ð46Þ

where C is a free parameter with dimensions of length,
which might be either positive or negative. These space-
times have a vanishing Ricci scalar for any value of C, and
thus solve the equations of motion of all fðRÞ models
complying with conditions (6). An interesting property of
Class 1 spacetimes is that they can be smoothly matched to
a Minkowski interior at any given spherical surface
r ¼ r� ¼ const, as shown in [16]. Metric (46) thus repre-
sents the spacetime outside of such a static vacuole
solution.
The most straightforward way of obtaining line element

(46) consists in setting R ¼ 0 in Eq. (42) and solving for

5A remarkable observation is that, given any function AðrÞ,
there is a closed-form expression for the precise function BðrÞ
which solves equation R ¼ R0, namely

BðrÞ ¼ IðrÞ
B0 þ B1ðrÞ

;

where B0 is an integration constant,

B1ðrÞ≡
Z

r

1

dx
x

4IðxÞAðxÞ
4AðxÞ þ xA0ðxÞ

�
1 −

R0

2
x2
�
;

and function IðrÞ is defined as

IðrÞ≡ exp

�Z
r

1

dx
x

4AðxÞ þ 4xA0ðxÞ − x2A02ðxÞ
AðxÞ þ 2x2A00ðxÞ

4AðxÞ þ xA0ðxÞ
�
:

6We would like to stress at this point that, in fðRÞ gravity,
Birkhoff’s theorem is absent and, in addition, Schwarzschild
cannot describe the spacetime outside any matter source, and it
can only exist as a black hole [36]. Therefore, novel exterior
solutions must exist. In particular, nothing prevents, in principle,
the exterior to a certain physical body to be described by any of
the R0-degenerate solutions of degenerate fðRÞ models.
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AðrÞ using the simple ansatz BðrÞ ¼ 1. By doing so, one
finds that the general solution is given by the (a priori) two-
parameter family of metrics

ds2 ¼
�
Dþ C

r

�
2

dt2 − dr2 − r2dΩ2; ð47Þ

where C and D are, again, real constants, with D being
dimensionless. However, it is not difficult to realize that
parameter D can always be removed from the metric. If
D ≠ 0, it is always possible to transform line element (47)
into the Class 1 form (46) presented above by redefining
C=D → C and D2dt2 → dt2. Nonetheless, if D ¼ 0, metric
(47) becomes

ds2 ¼
�
C
r

�
2

dt2 − dr2 − r2dΩ2; ð48Þ

Spacetimes of this form (48) are a particular instance of one
of the families of fðRÞ-exclusive constant-curvature sol-
utions originally discovered by Calzà, Rinaldi, and
Sebastiani in Ref. [10].7 We shall consider metrics of the
form (48) to be solutions of Class 2, given that they cannot
be recovered from the standard Class 1 form (46), and for
further reasons that will become apparent in Sec. V B.
Consequently, in the present subsection we shall focus on
analyzing only the properties of metrics of the form (46).

1. General properties of Class 1 solutions

It is clear from line element (46) that Class 1 solutions
are asymptotically flat, and that they also reduce to
Minkowski spacetime in the limit C → 0. Using (44)
and (45), one might immediately deduce that metrics of
the form (46) have vanishing MSH mass and anomalous
redshift function

ΦðrÞ ¼ ln

����1þ C
r

����: ð49Þ

In consequence, Class 1 solutions may be regarded as
metrics deviating from Minkowski spacetime only in a
gravitationally induced anomalous redshift. The interpre-
tation of length scaleC appearing in (46) is far less clear. As
shown in [16], the value of this parameter cannot be fixed
by glueing (46) to a Minkowski spacetime at a given
spherical surface r ¼ r� ¼ const. Class 1 solutions are also
strikingly similar to the extremal Reissner-Nordström
spacetime, sharing a common Newtonian limit gtt ≃ 1þ
2ϕN (where ϕN is the Newtonian potential) upon identi-
fication ofCwith (Newton’s constant times) the mass or the
charge of the black hole. In spite of this, Class 1 metrics are
not sourced by any electromagnetic field. Instead, as

mentioned before, the correction to the point-like-mass
potential in the weak-field limit of (46) is entirely due to
anomalous gravitational effects (recall this is a vacuum
solution). Therefore, the interpretation of C as an “extremal
charge” seems not to be appropriate.
Expressions (46) and (49) reveal that the remaining

properties of Class 1 solutions depend crucially on the sign
of C. As such, we will study separately the subclass of
solutions with C > 0 and the subclass with C < 0.

2. Class 1 solutions with C > 0

Direct inspection of line element (46) reveals that Class 1
solutions with C > 0 harbor only one coordinate singu-
larity at r ¼ 0, with the metric remaining regular for any
other r > 0. Moreover, when C > 0 there are neither
apparent nor Killing horizons, nor any regions in which
the signature of line element (46) becomes unphysical.
Given that the Kretschmann scalar corresponding

to (46) is

K ¼ 24C2

r6

�
1þ C

r

�
−2
; ð50Þ

one immediately realizes that the coordinate singularity at
the origin is an actual curvature singularity. Despite this, the
singularity is inaccessible for any causal observer. Integral
(D8) may be computed for Class 1 solutions with C > 0
directly, yielding

Δλðrini → rfinÞ ¼
����rfin − rini þ C ln

�
rfin
rini

�����: ð51Þ

It is thus apparent that, along a radial null geodesic, the
affine parameter separating any r > 0 and the central
singularity is infinite. Because photons take an infinite
amount of affine parameter to reach the central singularity,
no other particle can reach r ¼ 0 in finite proper time either.
In consequence, for all practical purposes, the singularity at
r ¼ 0 is inaccessible, and spacetime (46) is geodesically
complete for C > 0.
The previous result can easily be understood in view of

the form of the anomalous redshift function (49) for Class 1
spacetimes with C > 0. As we can clearly deduce from this
expression, the anomalous redshift becomes infinite at
r ¼ 0. In other words, modified-gravity effects induce an
ever-increasing redshift function which protects observers
from the curvature singularity.
Finally, it is worth noting that the central singularity in

Class 1 spacetimes with C > 0 turns out to be both Królak-
strong and Tipler-strong, as one might infer using (D13)
and (D14).

7More precisely, line element (48) can be obtained by setting
b ¼ 2, z ¼ −2, and c0 ¼ 0 in Eqs. (33)–(35) of [10].
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3. Class 1 solutions with C < 0

The metric of Class 1 spacetimes with C < 0, viz.

ds2 ¼
�
1 −

jCj
r

�
2

dt2 − dr2 − r2dΩ2; ð52Þ

exhibits two coordinate singularities: the one at r ¼ 0
(which was already present in the C > 0 subclass), and
a second one at r ¼ jCj. Both prove to be curvature
singularities, since the Kretschmann scalar becomes

K ¼ 24C2

r6

�
1 −

jCj
r

�
−2

ð53Þ

for C < 0. As we shall see now, the singularity at r ¼ 0
remains inaccessible for radially infalling photons.
However, the singularity at r ¼ jCj is causally connected
to the rest of the spacetime.
On the one hand, for rini, rfin < jCj, integral (D8) yields

Δλðrini < jCj → rfin < jCjÞ ¼
����rfin − rini − jCj ln

�
rfin
rini

�����:
ð54Þ

One may readily substitute rfin ¼ 0 in this expression to
find that the curvature singularity at r ¼ 0 cannot be
reached in finite time by causal observers. In parallel with
the C > 0 case, the curvature singularity is protected by an
fðRÞ-induced infinite redshift, and is Królak- and Tippler-
strong, as may be inferred using (D13) and (D14).
On the other hand, if rini ≠ jCj, but rfin ¼ jCj, then

integral (D8) becomes

Δλðrini → jCjÞ ¼
����jCj − rini − jCj ln

�jCj
rini

�����; ð55Þ

which is finite for every rini ≠ 0. Therefore, a photon
traveling along a null radial geodesic will reach the singu-
larity at r ¼ jCj in finite time, should it not be “emitted” at the
other singularity at the origin. Furthermore, Eqs. (D13) and
(D14) reveal that the naked singularity at r ¼ jCj is also both
Królak- and Tippler-strong.
For completeness, we shall also compute Δλðrini → rfinÞ

for rini > jCj and rfin ≤ jCj (without loss of generality8). To
do so, we must first remark that the integral in (D8) breaks
into two pieces in this case:

Δλðrini → rfinÞ ¼
����
Z jCj

rini

dr

�
1−

jCj
r

�
−
Z

rfin

jCj
dr

�
1−

jCj
r

�����:
ð56Þ

As a result,

Δλðrini → rfinÞ ¼
����rini þ rfin − 2jCj

�
1þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
rinirfin

p
jCj

������:
ð57Þ

This expression attests once more that, whatsoever value
rini takes, Δλðrini → rfinÞ remains finite unless rfin ¼ 0.
Thus, the central singularity is protected, with the one at
r ¼ jCj being truly naked.
Another surprising feature of surface r ¼ jCj is that it

appears to be a Killing horizon for ξ ¼ ∂=∂t, since

gμνξμξν ¼
�
1 −

jCj
r

�
2

ð58Þ

vanishes at r ¼ jCj. However, r ¼ jCj is not a null surface
because its normal vector nμ ¼ ∂μr ¼ δrμ is everywhere
timelike. Therefore, strictly speaking, it cannot be a Killing
horizon.9 Given the fact that gμνξμξν > 0 for any r ≠ jCj,
the would-be Killing horizon at r ¼ jCj would be degen-
erate, in analogy with the true Killing horizon of extremal
Reissner-Nordström black holes. A remarkable difference
between Class 1 solutions with C < 0 and extremal
Reissner-Nordström black holes is that the former do not
possess any apparent horizons, while the Killing horizon of
extremal Reissner-Nordström black holes is also an appar-
ent horizon.10

B. Novel solutions of Class 2

Class 2 shall encompass three different kinds of con-
stant-curvature solutions, all of which are characterized by
their compliance with the simple ansatz BðrÞ ¼ 1, as those
of Class 1. As a result, all Class 2 spacetimes will have
vanishing MSHmass, and thus only differ fromMinkowski
spacetime in an fðRÞ-induced anomalous redshift factor.
The first two subclasses within Class 2 will contain,

respectively, the solutions of equationR ¼ R0withBðrÞ ¼ 1
and either positive (first subclass) or negative (second
subclass) constant-curvature R0—recall that the Ricci scalar
of static spacetimes is given by expression (42). The third
subclass will be conformed by those spacetimes resulting
from settingR0 → 0 in the aforementioned Class 2 solutions
with R0 ≠ 0.

8As mentioned in Appendix D, the absolute value in (D8)
entails that Δλðrini → rfinÞ ¼ Δλðrfin → riniÞ, so it is always
possible to exchange rini ↔ rfin.

9Given that r ¼ jCj is also a curvature singularity, as seen
before, it is technically not part of the spacetime.

10Furthermore, the horizon of extremal Reissner-Nordström
black holes is regular, i.e. free of curvature singularities.
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As done in the previous section, we will analyze each
subclass within Class 2 separately.

1. Class 2 solutions with R0 > 0

Substituting the simple ansatz BðrÞ ¼ 1 in (42) and
solving the equation R ¼ R0 > 0 for AðrÞ, one finds the
following family of constant-curvature solutions of
ðR0 ≠ 0Þ-degenerate fðRÞ gravity models:

ds2 ¼
�
C
r

�
2

cos2
� ffiffiffiffiffiffi

R0

2

r
rþD

�
dt2 − dr2 − r2dΩ2; ð59Þ

where C ≠ 0 and D are integration constants, C having
dimensions of length, and D being dimensionless. Notice
that, even though C can always be removed from the line
element through the coordinate redefinition t → t=C, we
have kept it in (59) for dimensional reasons (i.e. the new,
rescaled time coordinate would be dimensionless, while the
new gtt would have dimensions of length squared).
Class 2 spacetimes with R0 > 0 are highly pathological;

despite their simple appearance, they are, perhaps, the least
physically well-founded solutions we will consider in this
work. For instance, it is immediate to infer from expression
(59) that these solutions have an infinite number of
coordinate singularities. One of them is located at r ¼ 0,
where gtt → ∞, while the remaining ones are located at the
points in which the cosine vanishes, that is to say, at

rn ¼
ffiffiffiffiffiffi
2

R0

s �
π

2
ð2nþ 1Þ −D

�
; ð60Þ

with n an integer.11 Direct computation of the Kretschmann
scalar provides a long expression (which we shall not
include here) which diverges at r ¼ 0 and all the rn above.
As a result, the infinite coordinate singularities represent
actual curvature singularities.
What is worse, only the curvature singularity at r ¼ 0

can be out of reach for any causal observer, and only in very
particular circumstances, as we shall see. To obtain this
result, we first recall that Δλðrini → rfinÞ can always be
expressed in terms of the primitive (D10), evaluated at
some particular values of r.12 For solutions of the form (59),
it turns out that

λðrÞ ¼ jCj
�
sinDSi

� ffiffiffiffiffiffi
R0

2

r
r

�
þ cosDCi

� ffiffiffiffiffiffi
R0

2

r
r

��
; ð61Þ

where Si and Ci are the so-called sine integral and cosine
integral functions, respectively:

SiðzÞ ¼
Z

z

0

dx
x
sin x; ð62Þ

CiðzÞ ¼ γ þ ln zþ
Z

z

0

dx
x
ðcos x − 1Þ; ð63Þ

where γ is the Euler-Mascheroni constant. The sine integral
function is regular for all r, while the cosine integral only
blows up (to negative infinity) when r ¼ 0. As a result, λðrÞ
solely becomes infinite at r ¼ 0 provided that cosD ≠ 0.
There are, thus, two different scenarios:

(i) If cosD ≠ 0, then Δλðrini → rfinÞ blows up if and
only if either rini or rfin is equal to zero, and thus
“only” the infinite number of curvature singularities
located at rn—with rn given by (60)—are accessible
for radially falling causal observers.

(ii) If cosD ¼ 0, then Δλðrini → rfinÞ remains finite
regardless of the values of rini and rfin. As a result,
all curvature singularities can be reached in finite
time by causal observers.

In either case, causally propagating particles in Class 2
spacetimes with R0 > 0 may encounter an infinite number
of curvature singularities in finite time, and thus we can
immediately assert that these solutions are physically
unjustifiable just for this reason. Other pathological proper-
ties of Class 2 solutions with R0 > 0 include the existence
of infinite would-be Killing horizons located at each of the
rn given by (60)—which cannot be true Killing horizons
since their normal remains timelike for all r, as in Class 1
solutions with C < 0—as well as the inherent instability of
fðRÞ-exclusive constant-curvature solutions with R0 ≠ 0
demonstrated in Result 3.

2. Class 2 solutions with R0 < 0

Setting BðrÞ ¼ 1 and solving equation R ¼ R0 < 0 for
AðrÞ, one obtains instead another set of novel solutions,
characterized by

ds2¼
�
C
r

�
2

cosh2
� ffiffiffiffiffiffiffiffi

jR0j
2

r
rþD

�
dt2−dr2−r2dΩ2; ð64Þ

where C ≠ 0 and D are once again integration constants.
Since the hyperbolic cosine never vanishes, Eq. (64)
possesses only one coordinate singularity, which is located
at the origin r ¼ 0 of the spherical coordinate system. As in
the R0 > 0 case, this coordinate singularity turns out to be a
curvature singularity. The Kretschmann scalar for Class 2
solutions with R0 < 0 is given again by a convoluted
expression (which we shall not include here); careful
examination of such an expression reveals that there are
no more curvature singularities apart from the one at r ¼ 0.

11We remark that the allowed values of n depend on the value
of D. In particular, the minimum possible n should be such that
rn > 0 for all permitted ns.

12Note, however, that expression (D9) does not hold for
arbitrary rini, rfin in this case. The reason is that, for Class 2
solutions with R0 > 0, the integrand in (D10) is a cosine, which
changes sign periodically.
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Once more, we turn to determine whether the central
curvature singularity is accessible to causal observers in
spacetimes of the form (64). In this particular case,
primitive (D10) might be readily expressed in terms of
special functions, namely the hyperbolic sine integral (Shi)
and the hyperbolic cosine integral (Chi), as13

λðrÞ ¼ jCj
�
sinhDShi

� ffiffiffiffiffiffiffiffi
jR0j
2

r
r

�

þ coshDChi

� ffiffiffiffiffiffiffiffi
jR0j
2

r
r

��
: ð65Þ

Said special functions are defined as

ShiðzÞ ¼
Z

z

0

dx
x
sinh x; ð66Þ

ChiðzÞ ¼ γ þ ln z −
Z

z

0

dx
x
ðcosh x − 1Þ; ð67Þ

in analogy with their trigonometric counterparts (62) and
(63).Moreover, Shi, as Si, is regular for all r, whileChi, asCi,
diverges at r ¼ 0. Hence, λðrÞ—and thus Δλðrini → rfinÞ—
diverges only if either rini or rfin is zero [notice that, this time,
the prefactor accompanying Chi in (65), which is coshD,
does not vanish for anyD]. As a result, the only singularity in
(64) is out of reach of radially infalling photons, and for this
reason causal observers cannot encounter it in finite time.
Moreover, using Eqs. (D13) and (D14), we find that
the central singularity hosted by Class 2 line elements with
R0 < 0 is both Królak-strong and Tipler-strong.
The metric components of Class 2 solutions with R0 > 0

are always positive, so these metrics contain no apparent or
Killing horizons. As a result, they describe the spacetime
outside the singularity at r ¼ 0. As this singularity cannot
interfere in finite time with causal observers, spacetimes of
the form (64) are much more physically well-founded than
their counterparts (59) with R0 < 0. Nonetheless, we insist
that Class 2 spacetimes with R0 ≠ 0 are automatically
unstable, as per Result 3.

3. Class 2 solutions with R0 = 0

The only Class 2 solutions which can be stable (in
accordance with Result 4) are the ones which result from
taking the limit of (59) or (64) as R0 → 0. It turns out that
those solutions have a line element given by expression
(48). This is the reason why we have grouped these
solutions within Class 2 and not Class 1.
Line element (48) appears to describe a wormhole with

its throat at r ¼ 0 upon extension of coordinate r to

negative values [10]. This would be a remarkable result,
since such a wormhole would not require negative energies
to form; in fact, it would be a vacuum solution of the
equations of motion.
However, Class 2 solutions with R0 ¼ 0 cannot describe

wormholes since (i) they contain a naked singularity at
r ¼ 0, and (ii) light rays cannot arrive at the locus of such a
singularity in a finite affine parameter by following radial
null geodesics. On the one hand, feature (ii) implies that the
singularity is protected; however, it also entails that, even if
there were no curvature singularity, light rays would never
be able to cross the wrongly identified wormhole throat in
finite time.
The previous assertions (i) and (ii) are easy to verify.

Indeed, the Kretschmann scalar corresponding to line
element (48) evaluates to

K ¼ 24

r4
; ð68Þ

which diverges at r ¼ 0 independently of the value of C, as
expected.14 Using (D8), we find that

Δλðrini → rfinÞ ¼ jCj ln
���� rfinrini

����; ð69Þ

which only diverges when either rini or rfin equals zero.
Therefore, we conclude that these solutions cannot describe
a traversable wormhole. In reality, what they model is two
parallel and causally disconnected universes which are
separated by an unreachable curvature singularity at the
origin. The central curvature singularity is found to be both
Królak-strong and Tipler-strong using (D13) and (D14),
respectively.
Apart from the central singularity, Class 2 solutions with

R0 ¼ 0 do not have any other remarkable features; in
particular, they have no apparent or Killing horizons.

C. Solutions of Class 3

Class 3 solutions, discovered in Ref. [10], can be
obtained by solving equation R ¼ R0—with R0 given, as
always, by expression (42)—for BðrÞ, under the simple
assumption that AðrÞ ¼ 1. Class 3 comprises a family of
Kottler15 lookalikes:

ds2 ¼ dt2 −
�
1 −

2GM
r

−
R0

6
r2
�

−1
dr2 − r2dΩ2; ð70Þ

13Notice that the integrand leading to (65) is a hyperbolic
cosine, which is always positive. Thus, for Class 2 solutions with
R0 < 0, identity (D9) holds for whatsoever rini, rfin.

14Notice that constant C in line element (48) can always be
removed by redefining C2dt2 → dt2; however, as we have done
before for the other Class 2 solutions, we have explicitly included
it in the metric for dimensional reasons.

15The Kottler spacetime is also known as Schwarzschild–de
Sitter or Schwarzschild–anti–de Sitter, depending on whether R0

is positive or negative, respectively.
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whereM is a free parameter with units of mass, which can be
(in principle) either positive or negative. Class 3 solutions
with constant curvature R0 ≠ 0 are generically unstable as
per Result 3; Class 3 solutions with R0 ¼ 0 could be at least
metastable should the hypotheses of Result 3 hold.
Even thought line element (70) is reminiscent of the

Kottler metric, there are two notable differences between
them. First, unlike the latter, the former has an anomalous
redshift function distinct from unity; specifically,

ΦðrÞ ¼ −
1

2
ln

�
1 −

2GM
r

−
R0

6
r2
�
: ð71Þ

This modified-gravity-induced redshift function (71)
allows (70) to have gtt ¼ 1 instead of gttgrr ¼ −1.
Second, the “cosmological-constant term” of Class 3
solutions, R0r2=6, is exactly half of the one present in
Kottler spacetime, namely R0r2=12. As a result, Class 3
solutions have MSH mass

MMSHðrÞ ¼ M þ R0

12G
r3: ð72Þ

Notice that, while Class 3 solutions might harbor apparent
horizons, they do not exhibit any Killing horizon corre-
sponding to the generator of time translations ∂t, since its
norm remains equal to unity throughout all spacetime, as
per (D2) and (70).
While all members of this family were originally thought

to describe traversable wormholes [10], we shall see that
they might exhibit several unphysical properties depending
on the values of M and R0. We shall sort Class 3 solutions
into subclasses according to the signs of their free param-
eters M and R0. We shall also consider the simple cases
M ¼ 0, R0 ≠ 0 and M ≠ 0 and R0 ¼ 0 separately.

1. Class 3 solutions with M = 0 and R0 > 0

In the simple case in which parameterM vanishes and R0

is positive, the metric reduces to a de Sitter lookalike:

ds2 ¼ dt2 −
�
1 −

R0

6
r2
�

−1
dr2 − r2dΩ2: ð73Þ

Class 3 solutions with M ¼ 0 have no curvature singular-
ities, since their Kretschmann scalar, K ¼ R2

0=3, remains
constant for all r. Nonetheless, direct inspection of line
element (73) reveals that these spacetimes suffer from an
evident physical pathology: if r > rah, where

rah ¼
ffiffiffiffiffiffi
6

R0

s
; ð74Þ

then the metric has two time coordinates, t and r, since grr
changes sign. What is more, the region with an unphysical

metric signature can be reached by causal observers in
finite time. When evaluated for spacetime (73) and rini,
rfin ≤ rah, integral (D8) can be computed using (D9), with
primitive (D10) being given by

λðrÞ ¼ arcsin

 ffiffiffiffiffiffi
R0

6

r
r

!
: ð75Þ

It is evident from this expression that Δλðrini → rfinÞ
remains finite when either rini or rfin is equal to rah.
Before closing this section, it is interesting to emphasize

that rah corresponds to an apparent horizon of (73), being a
zero of grr ¼ 1=BðrÞ.

2. Class 3 solutions with M = 0 and R0 < 0

One way to cure the pathology in the metric signature
exhibited by (70) is to change the sign of the constant-
curvature R0. In such a case, one obtains a line element
given by

ds2 ¼ dt2 −
�
1þ R0

6
r2
�

−1
dr2 − r2dΩ2; ð76Þ

whose components remain non-negative for all r, and has
neither horizons nor curvature singularities.16 In fact,
Eq. (76) is the only Class 3 solution which truly describes
a traversable wormhole centered at the origin, since the
metric can be effortlessly extended to negative values of r.
The remarkable fact that a traversable wormhole can exist
as a vacuum solution of an infinite number of fðRÞ models
is downplayed by the fact that such a wormhole is
generically unstable, as per Result 3.

3. Class 3 solutions with M > 0 and R0 = 0

In this case, the metric is a Schwarzschild lookalike:

ds2 ¼ dt2 −
�
1 −

2GM
r

�
−1
dr2 − r2dΩ2: ð77Þ

The metric signature changes to ðþ;þ;−;−Þ if r < 2GM.
Within this region also lies a curvature singularity, located
at the origin r ¼ 0, as revealed by the form of the
Kretschmann scalar, which is

K ¼ 24G2M2

r6
: ð78Þ

Exactly as in the M ¼ 0, R0 > 0 case, the unphysical
region can be reached by radially infalling photons for a

16Notice that, as in the previous case, the Kretschmann scalar is
constant and equal toK ¼ R2

0=3. As a result, the usual coordinate
singularity at r ¼ 0 is not an actual curvature singularity, but an
artifact caused by the choice of “areal-radius” coordinates.
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finite value of the affine parameter. This is because, for
spacetime (77), integral (D8) is of the form (D9), where
primitive (D10) is now given by

λðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr−2GMÞ

p
þGM ln

h
r−GMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr−2GMÞ

p i
:

ð79Þ

As one may readily infer from this expression, λðrÞ remains
finite and positive for all rini and rfin equal to or larger than
2GM.17 In particular,

λð2GMÞ ¼ GM lnðGMÞ: ð80Þ

Hence, we conclude that line element (77) is physically
unsatisfactory, as causal observers can access the region
with an unphysical metric signature in finite time.

4. Class 3 solutions with M < 0 and R0 = 0

A change in the sign of the mass parameter turns line
element (73) into

ds2 ¼ dt2 −
�
1þ 2GjMj

r

�
−1
dr2 − r2dΩ2: ð81Þ

As a result, grr remains positive for all r > 0, and thus the
metric signature remains physical throughout all spacetime.
Nonetheless, metric (81) remains pathological, since the
singularity at the origin is naked and reachable in finite
proper time by causal observers. In this case, the
Kretschmann scalar is still given by (78), and thus r ¼ 0
is a true curvature singularity of (81). Furthermore, the
affine-parameter interval between any two radii is given
again by (D9), but with primitive λðrÞ now being

λðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 2GjMjÞ

p
−GjMj ln ½rþ GjMj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 2GjMjÞ

p
�: ð82Þ

This quantity remains finite for all r, and in particular

λð0Þ ¼ −GjMj lnðGjMjÞ; ð83Þ

hence, the central singularity is causally connected to the
rest of the spacetime. The central singularity is also Królak-
strong and Tipler-strong, as may be deduced using (D13)
and (D14). From this it is clear that, just as its positive-mass
counterpart (77), metric (81) is not well-founded from a
physical point of view.

5. Class 3 solutions with M < 0 and R0 < 0

When both the mass scale M and the constant-curvature
R0 in (70) are negative, the line element becomes

ds2 ¼ dt2 −
�
1þ 2GjMj

r
þ jR0j

6
r2
�

−1
dr2 − r2dΩ2: ð84Þ

Thus, in this case, BðrÞ remains positive for all positive
radii, and the metric signature remains physical through all
spacetime. However, the metric harbors a curvature singu-
larity at r ¼ 0, where the Kretschmann scalar,

K ¼ 24G2M2

r6
þ R2

0

3
; ð85Þ

diverges. Radially infalling photons can have access to this
singularity in finite time. This is because

Δλðrini → 0Þ ¼
����
Z

0

rini

dr

�
1þ 2GjMj

r
þ jR0j

6
r2
�

−1=2
����

<

����
Z

0

rini

dr

���� ¼ jrinij < ∞ ð86Þ

for any rini < ∞. Once again, the reachable singularity
turns out to be Królak-strong and Tipler-strong. Therefore,
this subclass is also pathological.

6. Class 3 spacetimes with M > 0 and R0 < 0

In this case, the metric is

ds2 ¼ dt2 −
�
1 −

2GM
r

þ jR0j
6

r2
�

−1
dr2 − r2dΩ2: ð87Þ

Apart from the curvature singularity at the origin, Eq. (87)
also has a coordinate singularity whenever there is an
apparent horizon, i.e. when grr vanishes. This occurs
only at

rah ¼
ffiffiffiffiffiffiffiffi
8

jR0j

s
sinh

�
1

3
arcsinh

�
3GM

ffiffiffiffiffiffiffiffi
jR0j
2

r ��
; ð88Þ

What is more, grr is a strictly increasing function of r for
r > 0. The monotonicity of grr, together with the fact that
(88) is its only root, guarantees that grr < 0 for r < rah, and
thus the metric signature changes inside the apparent
horizon. As such, the central curvature singularity at
r ¼ 0 lies within the region with an unphysical metric
signature.

7. Class 3 spacetimes with M < 0 and R0 > 0

This case is analogous to the previous one. The metric
now reads

17Notice that λðrÞ becomes complex for r < 2GM, in yet
another example of the pathological character of this subclass of
spacetimes.
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ds2 ¼ dt2 −
�
1þ 2GjMj

r
−
R0

6
r2
�

−1
dr2 − r2dΩ2; ð89Þ

and has a curvature singularity at r ¼ 0 and a coordinate
singularity at

rah ¼
ffiffiffiffiffiffi
8

R0

s
cosh

�
1

3
arccosh

�
3GM

ffiffiffiffiffiffi
R0

2

r ��
; ð90Þ

which is also the only zero of grr, i.e. an apparent horizon.
Because grr is monotonically decreasing for all r, we find
that the metric signature changes for r > rah. Thus, in
contrast with the previous case, the central curvature
singularity at r ¼ 0—which can be shown to be Królak-
strong and Tipler-strong using (D13) and (D14)—lies
within the region where the metric signature is physical.

8. Class 3 spacetimes with M > 0 and R0 > 0

To conclude the investigation of Class 3 spacetimes, we
study the case in which the mass and the scalar curvature of
the Kottler lookalike are both positive. The line element
becomes

ds2 ¼ dt2 −
�
1 −

2GM
r

−
R0

6
r2
�

−1
dr2 − r2dΩ2: ð91Þ

After some computations, one might realize that:
(i) If 3GM

ffiffiffiffiffiffiffiffiffiffi
R0=2

p
> 1, then grr does not vanish for

any r.
(ii) If 3GM

ffiffiffiffiffiffiffiffiffiffi
R0=2

p ¼ 1, then grr has a double zero (i.e.
a wormhole throat) at r ¼ 3GM ¼ ffiffiffiffiffiffiffiffiffiffi

2=R0

p
, which is

also a coordinate singularity.
(iii) If 0 < 3GM

ffiffiffiffiffiffiffiffiffiffi
R0=2

p
< 1, then grr vanishes at

r0 ¼
ffiffiffiffiffiffi
8

R0

s
sinψ0; ð92Þ

r1 ¼
ffiffiffiffiffiffi
2

R0

s
ð
ffiffiffi
3

p
cosψ0 − sinψ0Þ; ð93Þ

where

ψ0 ≡ 1

3
arcsinh

�
3GM

ffiffiffiffiffiffi
R0

2

r �
: ð94Þ

Both r0 and r1 are apparent horizons and coordinate
singularities.

Furthermore, it is straightforward to show that grr always
has a maximum at r� ¼ ð6GM=R0Þ1=3, with grrðr�Þ ¼
1–3GM

ffiffiffiffiffiffiffiffiffiffi
R0=2

p
. In consequence:

(i) If 3GM
ffiffiffiffiffiffiffiffiffiffi
R0=2

p
> 1, then grrðr�Þ < 0, and thus

grr < 0 (i.e. the metric signature is unphysical) for

all r, since r� is a global maximum. Thus, this
subclass of solutions is not acceptable from a
physical point of view.

(ii) If 3GM
ffiffiffiffiffiffiffiffiffiffi
R0=2

p ¼ 1, then grrðr�Þ ¼ 0, and again the
metric signature is unphysical for all r, due to the
fact that r� is a maximum. For this reason, this
subclass of solutions is also not acceptable from a
physical point of view.

(iii) If 0 < 3GM
ffiffiffiffiffiffiffiffiffiffi
R0=2

p
< 1, then grrðr�Þ > 0. Thus,

because r0 and r1—as given by (92) and (93),
respectively—are zeros of grr (with r0 < r1), we
have that grr must become negative for r < r0 and
r > r1. Therefore, the metric signature is physical
only for r0 < r < r1.

Notice that all Class 3 solutions with M > 0 and R0 > 0
also harbor a curvature singularity at the origin, as their
Kretschmann scalar is given by (85). However, this
curvature singularity lies within the region with an unphys-
ical metric signature.

D. Solutions of Class 4

Last but not least, we proceed to analyze the fðRÞ-
exclusive, vanishing-curvature solutions

ds2 ¼
�
r
r0

�
z
aðrÞdt2 − dr2

aðrÞ − r2dΩ2; ð95Þ

where

aðrÞ ¼ k −
c
rb

; ð96Þ

with z ≠ 0 a dimensionless real parameter, k given by

k ¼ 4

z2 þ 2zþ 4
; ð97Þ

exponent b being allowed to take the z-dependent values

b� ¼ 1

4
ð3zþ 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 20zþ 4

p
Þ; ð98Þ

c > 0 being an integration constant (with units of length to
the power of b) and r0 a free parameter which is left in line
element (95) for dimensional purposes only. Requiring
exponents b ¼ b� to be real imposes two additional
constraints on z: z < −10 − 4

ffiffiffi
6

p
and z > −10þ 4

ffiffiffi
6

p
(numerically, z < −19.798… and z > −0.202…).
Metrics of the form (95) are a particular instance of some

novel black hole solutions with spherical topology dis-
covered in [10]. One could in principle distinguish between
two subclasses within Class 4, depending on whether b ¼
bþ or b ¼ b−. In spite of this, this distinction will be of little
help in practice, as both subtypes exhibit the same key
features. The main advantage of Class 4 solutions as
compared with those of Classes 1–3 is that they are able
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to pass weak-field and Solar System tests for b ¼ b− and
jzj ≪ 1. Moreover, their vanishing Ricci scalar allows them
to be at least metastable solutions of ðR0 ¼ 0Þ-degenerate
fðRÞ models. However, no Class 4 spacetime is asymp-
totically flat, as may be immediately deduced from line
element (95). This entails that they do not truly describe
fully isolated black holes (except in the GR limit z ¼ 0). In
any case, Class 4 solutions are certainly among the less
pathological spacetimes we are considering in this work.
As mentioned before, Class 4 spacetimes describe

spherically symmetric black holes. This is because

rhor ¼
�
c
k

�
1=b

; ð99Þ

the only positive root of equation aðrÞ ¼ 0, turns out to be
both an apparent and Killing horizon for Killing vector ∂t.

18

This horizon is regular; the Kretschmann scalar associated
with (95) can be shown to be of the form

KðrÞ ¼ 1

r4

�
K0ðzÞ þ

c
rb

K1ðzÞ þ
�
c
rb

�
2

K2ðzÞ
�
; ð100Þ

where functions Ki ¼ KiðzÞ do not depend on r. Thus, we
clearly see that the only curvature singularity is the one at
the origin r ¼ 0, and is hidden inside the horizon. As per
(D8), the difference in the affine parameter between any
rini > 0 and rfin ¼ 0 is given by (D9), with primitive (D10)
being19

λðrÞ ¼ 2r0
zþ 2

�
r
r0

�ðzþ2Þ=2
; ð101Þ

which is finite for every r > 0, regardless of z. Considering
only the allowed values of z, we deduce that λð0Þ—and thus
Δλðrini → 0Þ—remains finite for z > −10þ 4

ffiffiffi
6

p
, but

diverges for z < −10 − 4
ffiffiffi
6

p
, in which case a photon falling

radially into the black hole would never encounter the
central singularity (i.e. it would be protected).

VI. CONCLUSIONS

In this work we have performed an assessment of the
physical viability of R0-degenerate fðRÞmodels, as well as
of their (infinitely many) constant-curvature solutions. As
our results demonstrate, there are reasons to believe that
these models cannot be successful in describing nature,
even when experimental uncertainties do not rule them out

directly. It is important to emphasize that fðRÞ models
which are R0-degenerate for some values of R0 are not
difficult to find even without fine-tuning or model-
engineering. In fact, some of these fðRÞ models are
compatible with Solar System experiments and cosmologi-
cal observations, and may host nondegenerate and pathol-
ogy-exempt solutions for Ricci scalars different from the
degenerate value R0.
One of the first anomalies we have detected is that

ðR0 ¼ 0Þ-degeneratefðRÞmodels feature a strongly coupled
Minkowski background (Result 1), meaning that the
expected massless and traceless graviton does not propagate
on top of such a background. This result renders ðR0 ¼ 0Þ-
dependent fðRÞ models incompatible with gravitational-
wave observations. For instance, this result applies to the
so-called power-of-GR models fðRÞ ∝ R1þδ with integer
δ > 0. We have also found that some ðR0 ¼ 0Þ-degenerate
fðRÞ models do not even propagate the scalar degree of
freedom atop a Minkowski background (Result 2), and thus
their linearized spectrum does not contain any polarization
modes whatsoever.
Another important weakness of R0-degenerate fðRÞ

models (either with R0 ¼ 0 or R0 ≠ 0) is their apparent lack
of predictive power, given the infinite degeneracy of their
constant-curvature solutions and the triviality of the equa-
tions of motion (2) when evaluated for R0-degenerate-
exclusive constant-curvature solutions.More precisely, there
is a subset of all possible initial conditions for the metric
(namely, requiring R ¼ R0) whose evolution is not deter-
mined by the equations of motion of R0-degenerate models,
which hold automatically for those initial conditions.
In relation to the previous point, there are reasons to

believe that novel fðRÞ-exclusive constant-curvature sol-
utions can easily be matched to each other in R0-degenerate
models [16]. This result is actually more disturbing than it
seems, given that one expects most of the (infinitely many)
constant-curvature solutions to exhibit all sorts of physi-
cally undesirable properties. In particular, the Class 1
models presented in Sec. VA, which are not exempt from
pathologies, are known to smoothly match with Minkowski
spacetime, forming a vacuolelike solution. The fact that one
may freely choose the radius where solutions (46) match
the interior Minkowski spacetime raises the question of
whether a degenerate fðRÞ model can actually predict the
boundaries at which spacetime ceases to be described by
one of its constant-curvature solution and makes way for
another constant-curvature solution.
Regarding the R0-degenerate constant-curvature solu-

tions themselves, we have performed a stability analysis of
these solutions, finding that, in general terms, the constant-
curvature solutions of ðR0 ≠ 0Þ-degenerate models are all
unstable (Result 3). The constant-curvature solutions of
ðR0 ¼ 0Þ-degenerate fðRÞ models can be metastable pro-
vided that function f satisfies some constraints (Result 4).
This can be a problem, however, since the conditions

18Note that aðrÞ can be shown to be a monotonic function of r,
and one can thus guarantee that rhor is the only horizon of (95). This
is a null surface; as in Schwarzschild spacetime, coordinates t and r
exchange roles at r ¼ rhor, so there is no region with an unphysical
metric signature.

19We note that z ¼ −2, for which λðrÞ ¼ r0 lnðr=r0Þ, lies within
the forbidden parameter band −10 − 4

ffiffiffi
6

p
< z < −10þ 4

ffiffiffi
6

p
.
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required for the stability of constant-curvature solutions
may be incompatible with those guaranteeing the absence
of other instabilities (such as the Dolgov-Kawasaki insta-
bility). Moreover, the latter result also implies that constant-
curvature solutions exhibiting pathological features can be
stable.
In order to exemplify the kind of pathologies onemay find

in fðRÞ-exclusive constant-curvature solutions, we have
chosen four representative classes of such spacetimes, so
as to thoroughly analyze various key aspects determining
their physical viability: coordinate and curvature singular-
ities, singularity strength (according to the Królak and Tipler
criteria), regions in which the metric acquires an unphysical
signature (i.e. themetric determinant changes sign due to one
spatial coordinate abruptly becoming timelike), and geodesic
completeness (i.e. whether causal observers can or cannot
encounter any of the previous pathologies in finite proper
time). As the results in Table I reveal, all the solutions
considered in this work exhibit unphysical properties. For
example, we have found that in all those cases where the
analysis was computationally viable, such curvature singu-
larities turned to be Królak-strong and Tipler-strong, mean-
ing that extended objects are compressed to zero volume
when falling into them. This was true even for some of the
naked singularities we have found, which are accessible to
causal observers in finite proper time. These and all the
remaining unsubstantiated traits found in Table I suffice to
conclude that the solutions considered herein are unlikely to
exist in nature.
Finally, we must stress that there are some issues we

would like to study in more detail in future works. For
example, we have not investigated the linearized spectrum
of ðR0 ≠ 0Þ-degenerate fðRÞ theories, in which the natural
background is no longer Minkowski spacetime, but (anti–)
de Sitter (depending on the sign of R0). Similarly, we have
not performed a perturbative expansion around any of the
novel, fðRÞ-exclusive constant-curvature solutions, since
we have only been concerned with obtaining the linearized
spectrum of the theory far from any gravitational-wave
source. To shed more light on these issues, a general
analysis of strong-coupling instabilities in fðRÞ gravity
theories is currently in preparation.
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APPENDIX A: SOME CAVEATS CONCERNING
THE USE OF THE EINSEIN FRAME
IN R0-DEPENDENT f ðRÞ MODELS

In this appendix, we shall present some of the subtleties
arising when using the Einstein-frame representation (24)–
(26) of R0-degenerate fðRÞ models, and in particular when
dealing with their constant-curvature solutions and their
stability.
The first caveat is that conformal transformation (24)

leading to the Einstein frame becomes singular when
evaluated on fðRÞ-exclusive constant-curvature solutions,
since the existence of those solutions requires f0ðR0Þ ¼ 0.
In consequence, the dynamical equivalence between the
Einstein and Jordan frames appears to break down in this
scenario. However, given that the transformation between
frames becomes singular only if R ¼ R0 (i.e. in a null-
measure set of values of R), one may argue that the
transformation does not indeed fail provided that all the
relevant physical quantities remain well-defined after tak-
ing the limit R → R0.

20 In particular, the scalaron poten-
tial naively evaluates to a 0=0 indetermination for R0-
degenerate constant-curvature solutions (as mentioned in
Sec. IV). Only in cases where said indetermination can be
resolved shall we consider the Einstein frame to be a valid
representation of the fðRÞ dynamics.
A second crucial observation is that, in our stability

analysis, we have treated the scalaron potential V as a
function of R instead of as a function of the scalaron ϕ, the
reason being that it is more enlightening to perturb the
scalar curvature instead of the abstract scalaron. However,
in doing so, one must check that the extrema of V as a
function of R coincide with those of V seen as a function of
ϕ. This is indeed the case provided that f00ðRÞ ≠ 0. More
precisely, given that

dV
dR

¼ dϕ
dR

dV
dϕ

¼
ffiffiffiffiffi
3

2κ

r
f00ðRÞ
f0ðRÞ

dV
dϕ

; ðA1Þ

the zeros of dV=dR coincide with those of dV=dϕ if and
only if f00ðRÞ ≠ 0. Moreover, one also has that

20Under this scope, the fact that the conformal transformation
(24) becomes singular at R ¼ R0 is simply a reflection of the fact
that the scalaron (25) tends to negative infinity as R → R0.
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d2V
dR2

¼ d2ϕ
dR2

dV
dϕ

þ
�
dϕ
dR

�
2 d2V
dϕ2

; ðA2Þ

by virtue of which

sign

"
d2V
dR2

����
dV
dϕ¼0

#
¼ sign

�
d2V
dϕ2

�
; ðA3Þ

i.e. the character of the extremum (maximum, minimum, or
saddle point) does not change when one regards the
scalaron potential to be a function of R instead of ϕ.
Finally, it is worth mentioning that

dV
dR

¼ f00ðRÞ
2κ

2fðRÞ − f0ðRÞR
f03ðRÞ : ðA4Þ

Thus, a constant-curvature solution with R ¼ R0 will
extremize the scalaron potential—with respect to both R
and ϕ—provided that (i) f00ðR0Þ ≠ 0, (ii) f0ðR0Þ ≠ 0, and
(iii) the trace (5) of the equations of motion holds. If
f0ðR0Þ ¼ 0, i.e. in R0-degenerate models, the stability
analysis is more complicated and must be performed as
done in Sec. IV, as the potential and its derivatives might
not be well-defined in the limit R → R0. Moreover, when
f0ðR0Þ ¼ 0, mere compliance with Eq. (5)—which now
holds automatically—does not guarantee that R0-degener-
ate solutions extremize the potential. Results 3 and 4
provide the conditions under which R0-degenerate con-
stant-curvature solutions are not stable.
In order to shed more light on these issues, in

Appendix C we shall consider a particular instance of
fðRÞ model hosting both unstable degenerate constant-
curvature solutions and stable non-degenerate constant-
curvature solutions.

APPENDIX B: R0-DEGENERATE SOLUTIONS IN
THE BRANS-DICKE REPRESENTATION

OF f ðRÞ GRAVITY

As widely known [20,21], apart from the Einstein-frame
representation (24)–(26), the fðRÞ action (1) can also be
cast in the form of a Brans-Dicke scalar-tensor theory [40]
with parameter ω0 ¼ 0, provided that condition f00ðRÞ ≠ 0
is fulfilled for all R. To accomplish this, one first has to
introduce a Lagrange multiplier field χ in (1) as follows:

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞ þ f0ðχÞðR − χÞ� þ Smatter: ðB1Þ

This entails that χ ¼ R if and only if f00ðRÞ ≠ 0, in which
case actions (1) and (B1) are dynamically equivalent to
each other. If one redefines χ to ψ through the implicit
relation ψ ¼ f0ðχÞ, Eq. (B1) becomes the ω0 ¼ 0 Brans-
Dicke action

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½ψR −UðψÞ� þ Smatter; ðB2Þ

where we have introduced the Brans-Dicke potential

UðψÞ ¼ χðψÞψ − fðχðψÞÞ: ðB3Þ

Then the equations of motion corresponding to (B2) are

Gμνψ ¼ Dμνψ −
UðψÞ
2

gμν − κTμν; ðB4Þ

R ¼ U0ðψÞ; ðB5Þ

with the interactions between ψ and matter being given by
the trace of (B4), which is

3□ψ þ 2UðψÞ − ψU0ðψÞ ¼ −κT: ðB6Þ

Notice that the transformations leading to the Brans-Dicke
representation (B2)–(B6) of fðRÞ gravities do not affect the
metric, which is still gμν in all the aforementioned equa-
tions. This is in stark contrast with the Einstein frame,
where the corresponding metric (24) is conformally related,
but (in general) is distinct from gμν.
Provided that f00ðRÞ ¼ 0, dynamical equivalence of (1),

(B1), and (B2) entails that ψ ¼ f0ðRÞ and

UðψÞ ¼ ψRðψÞ − fðRðψÞÞ: ðB7Þ

Hence, in R0-degenerate fðRÞ models, R0-degenerate
constant-curvature solutions are trivial solutions of (B4)–
(B6) in vacuum, having Brans-Dicke scalar ψ ¼ 0 and
potentialUðψÞ ¼ 0, as per conditions (7). Therefore, in R0-
degenerate fðRÞ models, the Jordan-frame and Brans-
Dicke representations of R0-degenerate constant-curvature
solutions coincide. It should be noted, however, that other
solutions of R0-degenerate models can feature a nontrivial
scalar field ψ in the Brans-Dicke representation.

APPENDIX C: A SIMPLE ILLUSTRATIVE MODEL

For illustrative purposes, let us consider the simple, one-
parameter model

fðRÞ ¼ R� − Rþ R ln

�
R
R�

�
; ðC1Þ

where R� > 0 is a constant with units of inverse length
squared. This model harbors constant-curvature solutions
for two different values of R, namely:

(i) R0 ¼ R�. Since fðR�Þ ¼ 0 and f0ðR�Þ ¼ 0, all
spacetimes with R0 ¼ R� trivially solve the equa-
tions of motion associated with (C1); i.e. the model
is R�-degenerate.
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(ii) R0 ¼ ηR�, with η ¼ 4.92155… being the nontrivial
solution of 2 − 2ηþ η ln η ¼ 0 (η ¼ 1 is the trivial
solution of this transcendental equation). In this case,
fðηR�Þ ≠ 0 and f0ðηR�Þ ≠ 0, but the trace of the
equations of motion (5) holds. As a result, the fðRÞ
equations of motion (2) reduce to the Einstein
equations with cosmological constant (4), and model
(C1) admits the same constant-curvature solutions as
GRþ Λ, providedΛ ¼ ηR�=4, without being ðηR�Þ-
degenerate.

Due to Result 3, the constant-curvature solutions of (C1)
having R0 ¼ R� are all unstable. However, the nondegen-
erate constant-curvature solutions with R0 ¼ ηR� are all
stable. Indeed, it is straightforward to check that
(i) f00ðηR�Þ ≠ 0, (ii) f0ðηR�Þ ≠ 0, and (iii) Eq, (5) is satisfied
for constant-curvature solutions withR0 ¼ ηR�. Thus, as per
the discussion in Appendix A, nondegenerate solutions
havingR0 ¼ ηR� extremize the scalaron potential, regardless
of whether it is understood to be a function of R or of ϕ.
Moreover,

dV
dR

����
R¼ηR�

¼ η

8R�

η − 2

ðη − 1Þ3 > 0; ðC2Þ

given that R� > 0 and η > 2. Thus, R0 ¼ ηR� is a minimum
of the scalaron potential. It can be shown that there
are no other extrema in the region R > R0, and given that
VðRÞ → þ∞ as R → Rþ

0 , we conclude that nondegenerate
constant-curvature solutions ofmodel (C1) havingR0 ¼ ηR�
are stable.

APPENDIX D: QUANTITIES AND FORMULAS
OF INTEREST FOR THE PHYSICAL

CHARACTERIZATION OF SOLUTIONS

Given the extraordinary amount of symmetry exhibited
by static, spherically symmetric spacetimes of the form
(41), the study of all the points listed at the beginning of
Sec. II simplifies considerably. For any given solution, one
essentially needs to determine the values of r where
functions AðrÞ and BðrÞ either vanish or become infinite,
and which of these points or regions are pathological, as
explained in what follows. As stated in the bulk of the text,
this appendix is also meant to further clarify our nomen-
clature and symbol conventions.

1. Apparent and Killing horizons

It can be shown that, when a static spherically symmetric
spacetime is expressed in the Abreu-Nielsen-Visser gauge
(43)—equivalently, in areal-radius coordinates (41)—its
apparent horizons are located at the simple roots rah of the
algebraic equation grrðrahÞ ¼ 0.21 In other words, Eq. (41)

has an apparent horizon at r ¼ rah when BðrahÞ → ∞ or,
equivalently, if

rah ¼ 2GMMSHðrahÞ: ðD1Þ

On the other hand, ξ ¼ ∂=∂t is a Killing vector of every
line element of the form (41), since they are all static. As a
result, these spacetimes will harbor a Killing horizon
provided that Killing vector ξ becomes null in some region
of spacetime. In areal-radius coordinates ðt; r; θ;φÞ,
ξμ ¼ δμt, so the norm of ξ is given by

gμνξμξν ¼ gtt ¼ AðrÞ: ðD2Þ

We then conclude that spacetimes of the form (41) will host
a Killing horizon at r ¼ rKh provided that rKh is a root of

AðrKhÞ ¼ 0: ðD3Þ

Expressions (D1) and (D3) imply that line element (41)
exhibits coordinate singularities at the locations of the
apparent and Killing horizons, respectively. However, we
must stress that the aforementioned conditions (D1) and
(D3) are obtained by computing scalar quantities, which
should remain invariant even when they are expressed in
singular coordinates, such as the areal radius coordinates.
For the purpose of our analysis, this level of rigor shall be
sufficient; we are nonetheless aware that a more detailed
and mathematically precise computation can be performed.

2. Singularities and geodesic completeness

The existence of coordinate singularities [points in
which AðrÞ and/or BðrÞ become zero or infinite] may also
point out the presence of curvature singularities. The
existence of such curvature singularities, however, must
be determined in a coordinate-invariant way; for example,
we will compute the Kretschmann scalar

K ¼ RμνρσRμνρσ ðD4Þ

for each solution, and then determine the values of r where
this quantity diverges.
The mere existence of curvature singularities is not a sign

of unphysical dynamics per se, even though they represent
points or regions in which tidal forces become infinite.
Should these singularities be unreachable in a finite affine
parameter for causal observers, then none of such observers
would experience infinite tidal forces at any point along
their world lines.
In order to compute whether a photon can reach a

singularity for a finite value of the affine parameter, we
will analyze the corresponding geodesic equation. Given
that all the spacetimes we are considering are spherically
symmetric, we may always choose, without loss of general-
ity, to perform all computations on the equatorial plane

21In addition, spacetimes (43) possess a wormhole throat
wherever grr has a double root.
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(θ ¼ π=2). As a result, the equation for the null geodesics
of (41) reduces to�

dr
dλ

�
2

¼ E2

AðrÞBðrÞ −
L2

r2BðrÞ ; ðD5Þ

where λ is the affine parameter of the trajectory and E and L
are the observer’s conserved quantities, namely

E ¼ AðrÞ dt
dλ

¼ const; ðD6Þ

L ¼ r2
dφ
dλ

¼ const: ðD7Þ

From expression (D6), it is evident that one can always
rescale λ in such a way that E ¼ 1. Accordingly, a photon
with unit energy traveling from a given rini following a radial
geodesic (L ¼ 0) takes the following variation of affine
parameter λ to reach any other value of the areal radius rfin:

Δλðrini → rfinÞ ¼
����
Z

rfin

rini

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p ����: ðD8Þ

[Notice that an absolutevalue has been intentionally included
in the previous expression in order to produce the same value
of Δλðrini → rfinÞ regardless of whether rini < rfin or
rini > rfin.] In most practical cases, the evaluation of (D8)
will reduce to

Δλðrini → rfinÞ ¼ jλðrfinÞ − λðriniÞj; ðD9Þ

where we have defined the primitive

λðrÞ≡
Z

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p
: ðD10Þ

However, it is evident that (D9) does not hold when the
integrand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp

changes sign within the integration
interval, as is the case with some of the spacetimes and
intervals considered in this work.
Finally, a singularity can be considered to be strong if any

object falling into it is inevitably compressed to zero volume
[41]. There exist criteria, due to Tipler [37] and Królak [38],
that allow one to discern whether a singularity is strong or
not. These criteria are as follows [39]. Consider an affinely
parametrized timelike or null geodesic passing through two
given spacetime points at λ ¼ λini and λ ¼ λfin, respectively.
A singularity is said to be Królak-strong if the integral

ΔKðλini → λfinÞ≡
����
Z

λfin

λini

dλRμν
dxμ

dλ
dxν

dλ

���� ðD11Þ

diverges when the final point approaches the singularity, for
any starting point. Similarly, a singularity is considered to be
Tipler-strong if

ΔTðλini → λfinÞ≡
����
Z

λfin

λini

dλ
Z

λ

λini

dχRμν
dxμ

dχ
dxν

dχ

���� ðD12Þ

diverges when the final point approaches the singularity, for
any starting point. Notice that the curvature singularity in the
Schwarzschild spacetime (having Rμν ¼ 0) is automatically
both Królak-weak and Tipler-weak.
For a radial null geodesic of a static spherically sym-

metric spacetime of the form (41), the integrals in Królak
and Tipler conditions (D11) and (D12) can be expressed in
terms of radial coordinate r using Eqs. (D5)–(D7):

ΔKðrini → rfinÞ ¼
����
Z

rfin

rini

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p

×

�
RttðrÞ
A2ðrÞ þ

RrrðrÞ
AðrÞBðrÞ

�����; ðD13Þ

ΔTðrini → rfinÞ ¼
����
Z

rfin

rini

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p
×
Z

r

rini

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞ

p

×

�
RttðxÞ
A2ðxÞ þ

RrrðxÞ
AðxÞBðxÞ

�����; ðD14Þ

where the Ricci-tensor components Rtt and Rrr may be
readily computed from (41). Equations (D13) and (D14)
are ideally suited to determine the strength of the curvature
singularities present in some of the R0-degenerate space-
times encapsulated in Table I.

3. Regions in which the metric
signature becomes unphysical

Last but not least, the existence of zeros of functions A
and B can also lead to changes in the metric signature. For
example, if A becomes negative for some values of r, then
the metric becomes Euclidean (i.e. all coordinates become
spacelike). If, on the contrary, B becomes negative, then
there are two time coordinates. Both situations are clearly
unphysical and should be avoided. In particular, we can use
again Eq. (D8) to know whether such regions with
unphysical metric signatures can be reached by causal
observers in a finite affine parameter.
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