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The equation of state (EOS) of nuclear dense matter plays a crucial role in many astrophysical
phenomena associated with neutron stars (NSs). Fluid oscillations are one of the most fundamental
properties therein. NSs support a family of gravity g-modes, which are related to buoyancy. We study the
gravity g-modes caused by composition gradient and density discontinuity in the framework of pseudo-
Newtonian gravity. The mode frequencies are calculated in detail and compared with Newtonian and
general-relativistic (GR) solutions. We find that the g-mode frequencies in one of the pseudo-Newtonian
treatments can approximate remarkably well the GR solutions, with relative errors in the order of 1%. Our
findings suggest that, with much less computational cost, pseudo-Newtonian gravity can be utilized to
accurately analyze oscillation of NSs constructed from an EOS with a first-order phase transition between
nuclear and quark matter, as well as to provide an excellent approximation of GR effects in core-collapse
supernova (CCSN) simulations.

DOI: 10.1103/PhysRevD.108.064005

I. INTRODUCTION

The oscillation modes of neutron stars (NSs) provide a
means to probe the internal composition and state of dense
matter. NSs have rich oscillation spectra, with modes
associated with different physical origins, such as the
internal ingredients, the elasticity of the crust, superfluid
components, and so on [1]. For typical nonrotating fluid
stars, the oscillation modes include the fundamental (f),
pressure (p), and gravity (g) modes, which provided the
basic classification of modes according to the physics
dominating their behaviors [2]. More realistic stellar
models and rotation introduce additional classes of oscil-
lation modes.
In this work, we study the g-mode oscillations for

nonrotating NSs in the framework of pseudo-Newtonian
gravity [3–10]. Reisenegger and Goldreich [11] investi-
gated the g-mode induced by composition (proton-to-
neutron ratio) gradient in the cores of NSs. Moreover,
hot young NSs may excite g-modes supported by entropy
gradients [12–15]. It has also been demonstrated that the
onset of superfluidity has a key influence on the buoyancy
that supports the g-modes [16–20]. Density discontinuity
produced by abrupt composition transitions may play an
important role in determining the g-mode properties
[21,22]. Sotani et al. [23] calculated f and g modes of
NSs with density discontinuity at an extremely high density

and discussed the stability of the stellar models. A phase
transition occurred in the cores of NSs with a poly-
tropic equation of state (EOS) has been studied by
Miniutti et al. [24]. The frequencies of g-modes from
density discontinuity are larger than those induced by the
entropy gradient. Furthermore, discontinuity g-mode may
occur in perturbed quark-hadron hybrid stars [25,26].
Recently, Zhao et al. [27] considered the g-mode of NSs
containing quark matter and discussed the Cowling
approximation, which leads to a relative error of ∼10%
for higher-mass hybrid stars. We here focus on the f and g
modes of NSs in pseudo-Newtonian gravity caused by the
first-order phase transition in the cores of NSs.
The study of NS oscillations is timely in the gravita-

tional-wave era [28–30]. Tidal interaction in a coalescing
binary NS can resonantly excite the g-mode oscillation of
NSs when the frequency of the tidal driving force
approaches the g-mode frequencies [31,32]. Moreover,
the mixture of pure-inertial and inertial-gravity modes
can become resonantly excited by tidal fields for rotating
NSs [33,34]. The g-mode can also result in secular inst-
ability in rotating NSs [35]. Gaertig and Kokkotas [36]
considered the g-mode of fast-rotating stratified NSs using
the relativistic Cowling approximation. The typical scenar-
ios pertain to the p-g mode instability and the saturation of
unstable modes [37,38]. The universal relation of
g-mode asteroseismology has been discussed by Kuan
et al. [39] for different classes of EOSs. In particular,
the absence of very low-frequency g-modes helps to
explain the absence of tidal resonances [40]. The cut-off
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in the high-order g-mode spectrum may also be relevant for
scenarios of nonlinear mode coupling. The properties of
g-modes for newly-born strange quark stars and NSs using
Cowling approximation in Newtonian gravity have been
discussed by Fu et al. [41].
Hydrodynamical simulations are necessary to study the

properties of the proto-NS in a core-collapse supernova
(CCSN). The g-mode of such a scenario may impact
associated gravitational waves [42]. However, the physics
of neutrino transport and EOS is very uncertain for the
hydrodynamical simulations. As multidimensional general-
relativistic (GR) codes for numerical simulations are scarce
and have high demand of computational cost, most pre-
vious investigations relied on the Newtonian approximation
for the strong gravitational field and fluid dynamics [3,4].
Nevertheless, “Case A potential” formalism (cf. Sec. II A)
was found to be a good approximation to relativistic
solutions in simulating nonrotating or slowly rotating
CCSNs. This potential allows for an accurate approxima-
tion of GR effects in an otherwise Newtonian hydro-
dynamic code, and it also works for cases of rapid
rotation [4]. This has motivated a sequence of CCSN
simulations [5–8]. The effectiveness of using Case A
potential formalism to approximate GR has been studied
by Mueller et al. [4], O’Connor et al. [7], Pajkos et al. [43].
In particular, Mueller et al. [4] found that Case A potential
formalism cannot obtain the correct oscillation modes and
indicated the failure of the Case A potential, possibly being
attributed to the absence of a lapse function. Recently,
Zha et al. [9] have extended the Case A potential
formalism with a lapse function to simulate the oscillation
of proto-neutron star (PNS). They found that Case A
potential formalism with an additional lapse function can
approximate well the frequency of the fundamental
radial mode.
Tang and Lin [10] studied the radial and nonradial

oscillation modes of NSs in pseudo-Newtonian gravity,
including the Case A potential with and without the lapse
function. Motivated by Tang and Lin [10], we here study
the g-mode of NS cores using Case A potential formalism
with and without the lapse function. Our findings suggest
that, with much less computational cost, pseudo-Newtonian
gravity can be utilized to accurately analyze oscillation of
NSs constructed from an EOS with a first-order phase
transition, thus to provide an excellent approximation of
GR effects in CCSN simulations.
The paper is organized as follows. In Sec. II, we

introduce the key ingredients of the model, including
different pseudo-Newtonian schemes and the buoyancy
nature associated with g-mode. The local dynamics of NS
cores, including composition gradient and density discon-
tinuity, are presented in Sec. III. Finally, we summarize our
work in Sec. IV. Throughout the paper, we adopt geometric
units with c ¼ G ¼ 1, where c and G are the speed of light
and the gravitational constant, respectively.

II. KEY INGREDIENTS OF THE MODEL

A. Case A potential in pseudo-Newtonian gravity

Case A effective potential is defined by replacing the
Newtonian gravitational potential in a spherically symmet-
ric Newtonian hydrodynamic simulation by [3,10]

ΦTOVðrÞ ¼ −4π
Z

∞

r

dr0

r02

�
mTOV

4π
þ r03P

�

×
1

Γ2

�
ρþ ρϱþ P

ρ

�
; ð1Þ

where r is the radial coordinate, ρ is the rest-mass density, P
is the pressure, ϱ is the specific internal energy, and the total
energy density is given by ϵ ¼ ρþ ρϱ. The function mTOV
is defined by

mTOVðrÞ ¼ 4π

Z
r

0

dr0r02ϵΓ; ð2Þ

with

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

mTOV

r

r
: ð3Þ

From Eq. (1) and Eq. (2), we have

dmTOV

dr
¼ 4πr2ϵΓ; ð4Þ

dΦTOV

dr
¼ 4π

r2

�
mTOV

4π
þ r3P

�
1

Γ2

ðϵþ PÞ
ρ

: ð5Þ

Weuse theCaseAandCase Aþ lapse schemes and theother
four schemes to study the g-mode originating from the
composition gradient and density discontinuity of NS cores
in the framework of pseudo-Newtonian gravity. All back-
ground and perturbation equations for each scheme are given
in the next three subsections and summarized in Table I.

TABLE I. Different schemes to calculate the oscillation modes,
along with the corresponding background and the lapse function.
Nonradial perturbation equations are the same [Eqs. (28)–(31)]
for all six schemes, but some of them include a lapse-function α
in the hydrodynamic equations. Note that the lapse function only
appears in the perturbation equations but not in the background
equations.

Scheme Background equations Lapse function α

N Eqs. (6)–(8) � � �
Nþ lapse Eqs. (6)–(8) Eq. (17)
TOV Eqs. (9)–(11) � � �
TOVþ lapse Eqs. (9)–(11) Eq. (17)
Case A Eqs. (12)–(14) � � �
Case Aþ lapse Eqs. (12)–(14) Eq. (17)
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B. Equilibrium configurations

We consider the following three sets of equilibrium
configurations.

(I) For the Newtonian (N) and Newtonianþ lapse
function (Nþ lapse) schemes, the hydrostatic equi-
librium equations are

dm
dr

¼ 4πr2ρ; ð6Þ

dP
dr

¼ −
ρm
r2

; ð7Þ

dΦ
dr

¼ −
1

ρ

dP
dr

: ð8Þ

where ρ is the rest-mass density, and Φ is the
Newtonian gravitational potential.

(II) Instead, if we consider spherical and static stars in
GR, we have the Tolman-Oppenheimer-Volkoff
(TOV) equations

dm
dr

¼ 4πr2ϵ; ð9Þ

dP
dr

¼ −
ðϵþ PÞðmþ 4πr3PÞ

rðr − 2mÞ ; ð10Þ

dΦ
dr

¼ −
1

ϵþ P
dP
dr

: ð11Þ

(III) Lastly, for the Case A and Case Aþ lapse schemes,
the background equations are obtained by replacing
the Newtonian gravitational potential by the Case A
potential [3,10], and we have

dm
dr

¼ 4πr2ϵΓ; ð12Þ

dP
dr

¼ −
4π

r2

�
m
4π

þ r3P

�
1

Γ2
ðϵþ PÞ; ð13Þ

dΦ
dr

¼ −
1

ρ

dP
dr

: ð14Þ

We use the modified Newtonian hydrodynamic equations
in Zha et al. [9] and Tang and Lin [10], where a lapse
function α is added to mimic the time-dilation effect. The
modified hydrodynamic equations are

∂ρ

∂t
þ∇ · ðαρv⃗Þ ¼ 0; ð15Þ

∂

∂t
ðρv⃗Þ þ∇ · ½αðρv⃗ v⃗þPI

↔Þ� ¼ −αðρ − PÞ∇Φ; ð16Þ

where v⃗ is the fluid velocity and the lapse function is
defined by

α ¼ expðΦÞ: ð17Þ

The readers can infer Tang and Lin [10] for a detailed
variational derivation of the linearized fluid equations. We
will use the same lapse function in our calculations.

C. Buoyancy and the g-mode

It is well known that NSs always have real frequency
f-mode and p-mode regimes. However, g-mode may have
a real, imaginary, and zero frequency, which correspond to
convective stability, instability, and marginal stability. We
consider the local dynamics of NS cores, focusing on the
buoyancy experienced by fluid elements and the associated
g-mode. The frequencies of g-modes are closely related to
the Brunt-Väisälä frequency N, defined via

N2 ¼ g2N

�
1

c2e
−

1

c2s

�
; ð18Þ

where gN is the positive Newtonian gravitational accel-
eration, cs is the adiabatic sound speed,

c2s ¼
�
∂P
∂ρ

�
s
: ð19Þ

Here the subscript “s”means “adiabatic,” which in this case
implies constant composition. The quantity ce is given by

c2e ¼
dP
dρ

; ð20Þ

where the subscript “e” stands for “equilibrium.” If
c2s ¼ c2e , the star exhibits no convective phenomena
(zero-buoyancy case). In this work, we consider only the
g-mode of NS cores, so we set c2s ¼ c2e for the crustal
region. Again, c2s > c2e (c2s < c2e) denotes convective sta-
bility (instability). Combining Eqs. (18)–(20), we can write
the Brunt-Väisälä frequency as

N2 ¼ −AgN; ð21Þ

where A is

A ¼ d ln ρ
dr

−
1

Γ1

d lnP
dr

; ð22Þ

which is called the Schwarzschild discriminant. If the
star model obeys a simple polytropic EOS, P ¼ Kργ , then
γ ¼ d lnP=d ln ρ is defined for the unperturbed background
configuration. Hence, the Schwarzschild discriminant
becomes

A ¼
�
1

γ
−

1

Γ1

�
d lnP
dr

: ð23Þ
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Clearly, if the adiabatic indexΓ1 > γ, the star is related to the
convective stability, in the case of c2s > c2e . In Sec. III A, we
will calculate the frequencies of g-modes for the composi-
tion gradient, which is related to the discussion here.

D. Nonradial perturbation equations

In this section, we study nonradial oscillations of NSs in
pseudo-Newtonian gravity. Tang and Lin [10] calculated the
quadrupole (l ¼ 2) f and p modes. The perturbation of
scalars is expanded in spherical harmonics and the
Lagrangian displacement is expanded in vector spherical
harmonics [10,13]. When considering an eigenmode, we
have

δρ ¼ δρ̃ðrÞYlm; ð24Þ

δP ¼ δP̃ðrÞYlm; ð25Þ

δΦ ¼ δΦ̃ðrÞYlm; ð26Þ

ξ⃗ ¼ UðrÞYlmr̂þ VðrÞ∇Ylm; ð27Þ

where Ylm is the standard spherical harmonic function, and r̂
is the radial unit vector. Then one can obtain the following
system of equations for the fluid perturbations (see Tang and
Lin [10], for a detailed variational derivation),

dU
dr

¼ −
�
2

r
þ dΦ

dr
þ 1

γP
dP
dr

−
A
α

�
U

þ
�
αlðlþ 1Þ
ρr2ω2

−
1

αΓ1P

�
δP̃

þ αlðlþ 1Þ
r2ω2

δΦ̃; ð28Þ

dδP̃
dr

¼
�
ρω2

α
−
dP
dr

A

�
U þ 1

Γ1P
dP
dr

δP̃ − ρ
dδΦ̃
dr

; ð29Þ

dδΦ̃
dr

¼ Ψ; ð30Þ

dΨ
dr

¼ −
2

r
Ψþ lðlþ 1Þ

r2
δΦ̃þ 4π

ρ

Γ1P
δP̃ − 4πρAU: ð31Þ

To solve these equations, we require the boundary
conditions at the center and surface of the NS. At the
center, the regularity conditions of the variables yield the
following relations [10,44]

U ¼ rl−1A0; ð32Þ

δP̃ ¼ rlB0; ð33Þ

δΦ̃ ¼ rlC0; ð34Þ

Ψ ¼ lrl−1C0; ð35Þ

A0 ¼
αl
ρω2

ðB0 þ ρC0Þ; ð36Þ

where B0 and C0 are constants. At the surface of the star,
the perturbed pressure must vanish, which provides

dP
dr

U þ δP̃ ¼ 0: ð37Þ

The δΦ̃ and dδΦ̃=dr are continuous, so we obtain

Ψ ¼ −
lþ 1

r
δΦ̃: ð38Þ

Note that in the N, Case A, and TOV schemes, the lapse
function equals to 1 (α ¼ 1).
To test our numerical code, we have redone calculations

with the same polytropic EOS as that in the Appendix A of
Marek et al. [3], where the polytropic index γ and the
adiabatic index Γ1 > γ are constant throughout the stellar
interior. Detailed numerical results are shown in Table II.
It is noted that our numerical results for the polytropic
model with Γ1 ¼ γ agree with Table 3 of Tang and Lin [10].
In Table II, we compare the frequencies of p, f, and g
modes computed with Γ1 > γ and Γ1 ¼ γ [10,44].

TABLE II. Comparison of the nonradial mode frequencies (unit: Hz) of a polytropic star model where polytropic index γ ¼ 2,
K ¼ 1.4553 × 105 g−1 cm5 s−2, and central density ρc ¼ 7.9 × 1014 g cm−3, to earlier results of Westernacher-Schneider [44] and Tang
and Lin [10].

Mode Westernacher-Schneider [44] Tang and Lin [10] Γ1 ¼ 2.01 Γ1 ¼ 2.05 Γ1 ¼ 2.1 Γ1 ¼ 2.15

p2 7290 7932 7957 8049 8163 8276
p1 5122 5131 5151 5216 5297 5377
f 2024 2021 2021 2025 2029 2032
g1 � � � � � � 143 317 441 532
g2 � � � � � � 99 219 306 369
g3 � � � � � � 76 169 235 284
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The frequencies of p and f modes increase with the
increase of the adiabatic index Γ1. In particular,
the g-mode frequencies also increase with increase of
the adiabatic index Γ1, which indicates a larger buoyancy.

III. NUMERICAL RESULTS

A. Composition gradient

Taking the matter composition into account, and assum-
ing that the model accounts for the presence of neutrons,
protons, and electrons, we have a two-parameter EOS,
P ¼ Pðn; xÞ, which is a function of the baryon number
density n and the proton fraction x ¼ np=n. Specifically,
we use shorthand notations: “n” for neutrons, “p” for
protons, and “e” for electrons. The energy per baryon of the
nuclear matter can be written as [31,45–47]

Enðn; xÞ ¼ Tnðn; xÞ þ V0ðnÞ þ V2ðnÞð1 − 2xÞ2; ð39Þ
where

Tnðn; xÞ ¼
3

5

ℏ2

2mn
ð3π2nÞ2=3½x5=3 þ ð1 − xÞ5=3�; ð40Þ

is the Fermi kinetic energy of the nucleons, and mn is the
nucleon mass. V0 mainly specifies the bulk compressibility
of the matter, and V2 is related to the symmetry energy of
nuclear matter [48].
To compare the results of g-modes in Newtonian

gravity [31], we adopt the same V0 and V2 for different
EOS models, based on the microscopic calculations in
Wiringa et al. [47]. Detailed numerical results of V0 and V2

have been tabulated in Table IVof Wiringa et al. [47]. The
approximate formulas of V0 and V2 are presented in
Sec. 4.3 of Lai [31].
In this work, we consider the model “AU” (the

EOS based on nuclear potential AV14þ UVII in
Wiringa et al. [47]) and the model “UU” (the EOS based
on nuclear potential UV14þ UVII in Wiringa et al. [47]),
respectively. For the model AU, V0 and V2 (in the unit of
MeV) are fitted as [31]

V0 ¼ −43þ 330ðn − 0.34Þ2; ð41Þ

V2 ¼ 21n0.25; ð42Þ

where n is the baryon number density in fm−3. For the
model UU, we have

V0 ¼ −40þ 400ðn − 0.3Þ2; ð43Þ

V2 ¼ 42n0.55: ð44Þ

These fitting formulas are valid for 0.07 fm−3 ≤ n ≤
1 fm−3. For densities 0.001 fm−3 < n < 0.07 fm−3, we

employ the EOS of Baym et al. [49], while for
n ≤ 0.001 fm−3, we employ the EOS of Baym et al. [50].
Once we have this relation, we can work out the mass-

energy density, pressure, and adiabatic sound speed. The
equilibrium configuration must satisfy the beta equilibrium,

μn ¼ μp þ μe; ð45Þ

and the charge neutrality

np ¼ ne; ð46Þ

where μi are the chemical potentials of the three species of
particles. The equilibrium proton fraction xðnÞ ¼ xeðnÞ can
be obtained by solving Eqs. (4.12)–(4.14) of Lai [31].
Hence, the mass-energy density and pressure are deter-
mined as

ϵðn; xÞ ¼ n½mn þ Eðn; xÞ=c2�; ð47Þ

Pðn; xÞ ¼ n2
∂Eðn; xÞ

∂n

¼ 2n
3
Tn þ

n
3
Te þ n2

h
V 0
0 þ V 0

2ð1 − 2xÞ2
i
; ð48Þ

where

Teðn; xeÞ ¼
3

4
ℏcð3π2nÞ1=3x4=3e ; ð49Þ

is the energy per baryon of relativistic electrons. Here, and
in the following, primes denote baryon number density n
derivatives (for example, V 0

0 ¼ dV0=dn). The adiabatic
sound speed c2s is

c2s ¼
∂P
∂ϵ

¼ n
ϵþ P=c2

∂P
∂n

¼ n
ϵþ P=c2

�
10

9
Tn þ

4

9
Te þ 2n

h
V 0
0 þ V 0

2ð1 − 2xÞ2
i�

þ n
ϵþ P=c2

n
n2
h
V 00
0 þ V 00

2ð1 − 2xÞ2
io

: ð50Þ

The difference between c2s and c2e is given by

c2s − c2e ¼
n

ϵþ P=c2

�
∂P
∂n

−
dP
dn

�
¼ −

n
ϵþ P=c2

�
∂P
∂x

�
dx
dn

¼ −
n3

ϵþ P=c2

�
∂

∂n
ðμe þ μp − μnÞ

�
dx
dn

: ð51Þ

From the beta equilibrium [i.e. Eq. (45)], we obtain

dx
dn

¼ −
�
∂

∂n
ðμe þ μp − μnÞ

��
∂

∂x
ðμe þ μp − μnÞ

�
−1
: ð52Þ
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Finally, the difference between c2s and c2e can be repre-
sented as

c2s − c2e ¼
n3

ϵþ P=c2

�
∂

∂n
ðμe þ μp − μnÞ

�
2

×

�
∂

∂x
ðμe þ μp − μnÞ

�
−1
: ð53Þ

In the upper left panel of Fig. 1, we show the EOS
models AU and UU, which include below neutron-drip
region [49] and the lower-density crustal region [50]. In the
bottom left panel of Fig. 1, we show the relation between
the proton fraction x ¼ np=n and the mass-energy density
ϵ. One notices that the value of x of model UU is larger than
that of model AU. In the right panels of Fig. 1, we show
the relation between the adiabatic sound speed cs and the
fractional difference between c2s and c2e , as functions of the
mass-energy density. Note that, in our work, we consider
only g-mode of the NS core, so we set c2s ¼ c2e in the lower-
density region. As mentioned in Sec. 4 of Lai [31] that
c2s ¼ c2e in the crustal region indicates effectively sup-
pressing the crustal g-mode while concentrating on the core
g-mode.
As shown in Fig. 2, the mass and radius of model UU are

plotted against the central density ϵc. The Case A and GR
lines represent the background equations calculated by the
Case A and TOV schemes, respectively (see Table I). We
can see that the masses computed in the Case A formulation
can approximate well the GR solutions. The Case A
formulation has absolute percentage differences 5–17%
for the radius of model UU. Note that the percentage

difference of the stellar radii depends on the value of central
density and the different EOS models. Detailed percentage
differences of the stellar radii are illustrated in Appendix B
of Tang and Lin [10].
The energy density profiles of the GR and Case A

schemes with central density ϵ ¼ 2.0 × 1015 g cm−3 for
model UU is shown in Fig. 3. Compared with the GR
solution, the Case A solution has a noticeable deviation
only in the outer region of the surface. The total mass of the

FIG. 2. Mass and radius of model UU as a function of central
density ϵc. The Case A and GR lines represent the background
equations calculated by the Case A and TOV schemes, respec-
tively.

FIG. 1. The left panels show the pressure P (upper) and the proton fraction x ¼ np=n (lower) versus the mass-energy density ϵ for
representative EOS models AU and UU. The right panels show the relation between the adiabatic sound speed cs and the fractional
difference between c2s and c2e versus the mass-energy density ϵ. The purple dashed line is the mass-energy density ϵ ¼ 0.07 fm−3.
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star is mainly determined by the high-density inner region.
The above results may explain the fact that the total mass
computed in the Case A formulation approximates well the
GR solutions, though the radius has a large deviation.
Note that the rest-mass density ρ appears in the background

and perturbation equations in N and Nþ lapse schemes; the
total energy density ϵ and rest-mass density ρ exhibit the
background equations in Case A and Case Aþ lapse
schemes, but the rest-mass density ρ appears in the perturba-
tion equations. To comparewith the results of Lai [31], we use
the energy density ϵ to obtain themass-radius relation, aswell
as to solve perturbation equations. The difference between
Case A and GR is apparent, though much smaller than the
difference between Newtonian gravity and GR. Case A
potential has captured some main effects from the full GR.
As we will see, the perturbation results will be even closer to
that of GR than the background results.
Lai [31] investigated f and g mode frequencies of EOS

models AU and UU with a given mass M ¼ 1.4M⊙.
1

They found that the f-mode properties are very similar,
due to the fact that the two EOSs have similar bulk
properties (V0) for the nuclear matter. However, the
properties of the g-mode are very different from models
AU and UU. From the bottom right panel of Fig. 1, we find
that the value of ðc2s − c2eÞ=c2s is different with increase of
the energy density. These differences reflect the sensitive
dependence of g-mode on the nuclear matter’s symmetry
energy (V2).

In our study, we extend calculations in Lai [31] by
computing the g-mode. We use the stars with a fixed mass
M ¼ 1.98M⊙ as an example. In the upper panel of Fig. 4,
we plot the frequencies of the first eight quadrupolar
g-mode for the EOS AU. The results computed by all
perturbation schemes are represented by different color
lines in Fig. 4. The lower panel of Fig. 4 shows the absolute
fraction difference ΔC defined by

ΔC ¼
				 f − fCase Aþlapse

fCase Aþlapse

				; ð54Þ

where f is the frequency of g-mode obtained by our
perturbation schemes in Table I. According to the numeri-
cal results of nonradial oscillation (f-mode) in Tang and
Lin [10], the Case Aþ lapse scheme can approximate to
about a few percents for a given mass M ¼ 1.4M⊙ in
full GR. Hence, we use the results of Case Aþ lapse as
the baseline in the case of the composition gradient.
In particular, we found that the TOVþ lapse scheme can
give a good approximation to the g-mode frequencies
to a few percent levels. Besides, the absolute percentage
difference ΔC of the TOVþ lapse scheme decreases
with increasing nodes. We also plot the results of
frequencies of g-mode and the absolute percentage differ-
ence ΔC for the EOS UU in Fig. 5. We have seen similar
properties of g-mode, as the EOS AU in Fig. 4.

FIG. 4. The g-mode frequencies for the EOS model AU, with a
given massM ¼ 1.98M⊙. The upper panel shows the frequencies
of the first eight quadrupolar (l ¼ 2) g-modes with different
schemes. The lower panel shows the absolute fractional differ-
ence ΔC between our numerical results and the Case Aþ lapse
scheme.

FIG. 3. Comparison of the energy density profiles of the GR
and Case A background solutions for model UU.

1Lai [31] also calculated models UT and UU2. However, the
maximum mass of the model UT does not accord with the new
observation results [51,52]. Also the model UU2 only considers
the free n, p, e (V0 ¼ V2 ¼ 0). We will not include the two EOSs
in our calculations.
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B. Density discontinuity

In this subsection, we study the effect of discontinuities
at high density on the oscillation spectrum of a NS. We
consider a simple polytropic EOS of the form [21,22,24]

P ¼
(
Kϵγ; ϵ > ϵd þ Δϵ;

K


1þ Δϵ

ϵd

�
γ
ϵγ; ϵ ≤ ϵd;

ð55Þ

where the discontinuity of amplitude Δϵ is located at a
mass-energy density ϵd. We study the properties of g-modes
with density discontinuity using the pseudo-Newtonian
gravity schemes in Table I.
Now we have five parameters for a NS: the central

density ϵc, the discontinuity of amplitude Δϵ, the critical
density ϵd, the polytropic index γ, and K. To compare with
the results of nonradial oscillating relativistic stars
in the full theory [i.e. without the relativistic Cowling
approximation, 24], we adopt the same parameters as
Miniutti et al. [24]: the polytropic index γ ¼ 2,
K ¼ 180 km2 for the NSs without discontinuity, and
Kð1þ Δϵ=ϵdÞ2 ¼ 180 km2 for the case with a disconti-
nuity. Some examples of this EOS are illustrated in Fig. 6.
In performing the calculation, boundary conditions must

be specified at the locations of the density discontinuities.
Finn [21] analyzed the jump conditions of the perturbation
variables with the Cowling approximation in Newtonian
gravity. Since the density is discontinuous, the perturbation
variables are discontinuous as well, and the differential
equations (28)–(31) require jump conditions in the dis-
continuity density, denoted as [ρ]

½U� ¼ 0; ð56Þ

½δP̃� ¼ gN ½ρ�U; ð57Þ

½δΦ̃� ¼ −4π½ρ�U; ð58Þ

½Ψ� ¼ 0: ð59Þ

To compare with the results of Miniutti et al. [24], we use
the energy density ϵ to solve perturbation equations.
In the left panel of Fig. 7, we show the mass M versus

central density ϵc for each value of Δϵ=ϵd. As Δϵ=ϵd gets
larger, the maximum mass decreases, and the stable region
dM=dϵc > 0 becomes narrower and moves to a high-
density region. In this work, we study only stable NS
models with dM=dϵc > 0. In our analysis, we fix the mass
of a NS toM ¼ 1.4M⊙ as an example. In the right panel of
Fig. 7, we plot the mass-radius relation for NSs with and
without density discontinuity. In both cases, we set the
polytropic index γ ¼ 2. Comparing to the same EOS for
ϵ < ϵd, we adopt K ¼ 180 km2 for the NS models without
discontinuity, and Kð1þ Δϵ=ϵdÞ2 ¼ 180 km2 for the NS
models with discontinuity. We find that the maximum mass
is lower for the model with a discontinuity. Because the
softening of EOS affected by the discontinuity. NSs with a
discontinuity are more compact than those without dis-
continuity for a fixed mass.
Now we will focus on the l ¼ 2 nonradial oscillation

modes. In particular, we consider the quadrupolar funda-
mental f-mode and gravity g-mode. The frequency versus
density ϵd for the fixed mass M ¼ 1.4M⊙ is shown in the
top panel of Fig. 8. The results computed by the four
different perturbation schemes are represented by different
color lines in Fig. 8. The GR curves in the upper panel
correspond to the results of full perturbation theory in

FIG. 6. EOSs with density discontinuity, for different values of
Δϵ=ϵd. The density and pressure are normalized by the standard
nuclear density ϵnuc ¼ 2.68 × 1014 g cm−3.

FIG. 5. Same as Fig. 4, bur for the EOS model UU.
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FIG. 7. Left: the relation between the mass of NSs and central density ϵc for different values of Δϵ=ϵd. Right: mass and radius relation
of NSs with the same value of Δϵ=ϵd. The horizontal blue line shows the mass M ¼ 1.4M⊙.

FIG. 8. The top panels plot the frequency of the nonradial f-mode for different values of Δϵ=ϵd versus the density ϵd for the four
perturbation schemes. The bottom panels show the absolute fractional difference ΔD between our numerical results and the results of
Miniutti et al. [24]. We here consider stars with a fixed mass M ¼ 1.4M⊙.

FIG. 9. Same as Fig. 8, but for the g-mode frequencies.

g-MODE OF NEUTRON STARS IN PSEUDO-NEWTONIAN … PHYS. REV. D 108, 064005 (2023)

064005-9



GR [24]. Additionally, the absolute fraction difference ΔD
defined by

ΔD ¼
				 f − fGR

fGR

				; ð60Þ

is shown in the bottom panel of Fig. 8. The frequency of
f-mode of the Case Aþ lapse scheme decreases with
increasing density ϵd, which is similar to the GR results
in trend. Again, the Case Aþ lapse scheme is quite
accurate for the frequency of the f-mode. For the
Δϵ=ϵd ¼ 0.3, the Case Aþ lapse scheme is not as good

TABLE III. Comparison between the frequencies of f-mode (unit: Hz) of Miniutti et al. [24] and the different schemes in Table I, with
a given mass M ¼ 1.4M⊙ and Γ ¼ 2 with different central densities. The polytropic coefficient K is Kð1þ Δϵ=ϵÞ2 ¼ 180 km2.

ϵd (g cm−3) Δϵ=ϵd Miniutti et al. [24] Case A Case Aþ lapse TOV TOVþ lapse

� � � 0.0 1666 2144 1673 2423 1863

3 × 1014 0.1 1998 2629 1984 3058 2257
4 × 1014 0.1 1962 2562 1942 2987 2213
5 × 1014 0.1 1915 2482 1892 2890 2155
6 × 1014 0.1 1857 2404 1842 2782 2089
7 × 1014 0.1 1792 2302 1777 2644 2004
8 × 1014 0.1 1723 2215 1720 2526 1929
9 × 1014 0.1 1670 2152 1678 2431 1864

4 × 1014 0.2 2408 3269 2359 3968 2765
5 × 1014 0.2 2330 3117 2273 3764 2658
6 × 1014 0.2 2226 2901 2149 3536 2532
7 × 1014 0.2 2088 2665 2006 3238 2362
8 × 1014 0.2 1901 2451 1871 2860 2137
9 × 1014 0.2 1680 2171 1692 2451 1881

5 × 1014 0.3 3216 4213 2859 6350 3829
6 × 1014 0.3 3039 3909 2708 5718 3585
7 × 1014 0.3 2831 3605 2547 5066 3305
8 × 1014 0.3 2553 3044 2236 4298 2938
9 × 1014 0.3 2002 2311 1783 3053 2254

TABLE IV. Same as Table III, but for the g-mode frequencies.

ϵd (g cm−3) Δϵ=ϵd Miniutti et al. [24] Case A Case Aþ lapse TOV TOVþ lapse

� � � 0.0 � � � � � � � � � � � � � � �
3 × 1014 0.1 504 571 500 604 523
4 × 1014 0.1 567 660 570 695 596
5 × 1014 0.1 613 730 624 766 651
6 × 1014 0.1 644 786 665 820 690
7 × 1014 0.1 659 828 692 855 712
8 × 1014 0.1 658 858 708 874 720
9 × 1014 0.1 641 876 713 876 712

4 × 1014 0.2 840 987 834 1059 883
5 × 1014 0.2 912 1093 916 1168 969
6 × 1014 0.2 961 1173 976 1252 1032
7 × 1014 0.2 987 1229 1016 1305 1070
8 × 1014 0.2 979 1262 1034 1311 1071
9 × 1014 0.2 906 1240 1009 1240 1010

5 × 1014 0.3 1211 1445 1174 1647 1286
6 × 1014 0.3 1281 1556 1257 1758 1375
7 × 1014 0.3 1326 1642 1319 1835 1439
8 × 1014 0.3 1339 1667 1341 1862 1467
9 × 1014 0.3 1251 1572 1274 1726 1383
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as that of the Δϵ=ϵd ¼ 0.1, 0.2 cases, but it is still the best
among the four perturbation schemes. Tang and Lin [10]
calculated f-mode using Newtonian, Newtonianþ lapse,

Case A, and Case Aþ lapse schemes. They found that the
Case Aþ lapse scheme performs much better and can
reasonably approximate the f-mode frequency.

FIG. 10. The top panels plot the frequency of the nonradial f-mode for different values of Δϵ=ϵd versus the density ϵd for the four
perturbation schemes. The bottom panels show the absolute fractional difference ΔD between our numerical results and the results of
Sotani et al. [23]. We here consider stars with a fixed mass M ¼ 1.2M⊙.

FIG. 11. Same as Fig. 10, but for the g-mode frequencies.

TABLE V. Comparison between the frequencies of f-mode (unit: Hz) of Sotani et al. [23] and the different schemes, with a given mass
M ¼ 1.2M⊙ for different central densities.

ϵd (g cm−3) Δϵ=ϵd Sotani et al. [23] Case A Case Aþ lapse TOV TOVþ lapse

8 × 1014 0.1 2575 3514 2574 4148 2952
1.2 × 1015 0.1 2745 3792 2726 4542 3159
1.6 × 1015 0.1 2818 3913 2788 4721 3249

8 × 1014 0.2 2982 4212 2967 5112 3464
1.2 × 1015 0.2 3230 4643 3180 5776 3774
1.6 × 1015 0.2 3386 4914 3303 6231 3971

8 × 1014 0.3 3588 5426 3565 6898 4267
1.2 × 1015 0.3 4046 6440 3970 6647 4890
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In the top panel of Fig. 9, we show the frequency of
g-mode as a function of the density ϵd for the four schemes
and the results ofMiniutti et al. [24].We also plot the results
of ΔD for the four schemes at the bottom of Fig. 9. In
particular, we find that the Case Aþ lapse scheme can
approximate the g-mode frequency of GR reasonably well
[24]. The percentage difference ΔD of g-mode of the Case
Aþ lapse scheme decreases with increasing Δϵ=ϵd. The
Case Aþ lapse scheme provides the best approximation to
the frequencies of f and g modes. For the same central
density and discontinuity density, the radius of density
discontinuity Rd is larger than the radius R of the

Newtonian star. Hence, we ignore the N and Nþ lapse
schemes of discontinuity g-mode in this work. Numerical
results of the different schemes are given in Tables III and IV.
To prove that the pseudo-Newtonian treatments can

approximate well the GR solutions, we also calculate the
f and g modes of mass M ¼ 1.2M⊙ for the different
schemes. Detailed numerical results of the different
schemes are given in Figs. 10, 11, as well as in
Tables V and VI. We find that the pseudo-Newtonian
gravity can accurately describe the oscillation of the
relativistic NSs constructed from an EOS with a first-order
phase transition.
For a given density ϵd and Δϵ=ϵd, we show our numerical

results for the frequencies off andgmodeswith four schemes
and the GR scheme, where the GR results were calculated by
Sotani et al. [23], Miniutti et al. [24]. They integrated
the equations describing the polar, nonradial perturbations

TABLE VI. Same as Table V, but for the g-mode frequencies.

ϵd (g cm−3) Δϵ=ϵd Sotani et al. [23] Case A Case Aþ lapse TOV TOVþ lapse

8 × 1014 0.1 727 856 730 901 761
1.2 × 1015 0.1 871 1076 891 1134 931
1.6 × 1015 0.1 963 1247 1004 1311 1048

8 × 1014 0.2 1041 1234 1033 1318 1084
1.2 × 1015 0.2 1271 1570 1277 1688 1349
1.6 × 1015 0.2 1439 1847 1463 1994 1554

8 × 1014 0.3 1272 1558 1260 1692 1329
1.2 × 1015 0.3 1595 2021 1575 2228 1674

FIG. 12. The top panel plots the frequency of the nonradial
f-mode with Δϵ=ϵd ¼ 0.3 versus the density ϵd for the different
perturbation schemes. The bottom panel shows the absolute
fractional difference ΔD between our numerical results and the
results of Miniutti et al. [24]. Here we consider stars with a fixed
mass M ¼ 1.4M⊙. FIG. 13. Same as Fig. 12, but for the g-mode frequencies.
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of a nonrotating star as formulated by Lindblom and
Detweiler [53] and Detweiler and Lindblom [54].
Finally, Sotani et al. [23] used the Cowling approxima-

tion to calculate the f and g modes and compared them to
the results obtained from full GR. The results computed by
the different perturbation schemes are represented by
different colored lines in Figs. 12 and 13. We can see that
the Case Aþ lapse scheme provides the best approxima-
tion to the frequency of g-mode when the central density
increases.

IV. CONCLUSIONS

In light of new observations, oscillating modes of NSs
are of particular interests to the physics and astrophysics
communities in recent years. In this work, we have
investigated the properties of the gravity g-mode for NSs
in the framework of pseudo-Newtonian gravity. Tang and
Lin [10] have investigated barotropic oscillations (Γ1 ¼ γ
and the Schwarzschild discriminant A ¼ 0). We extended
the work and have studied the g-mode of NSs with the same
polytropic EOS model. We find that, the g-mode frequen-
cies increase with increasing adiabatic index, which indi-
cates that the buoyancy becomes much larger.
A deeper understanding of the oscillation of NSs, which

could be associated with emitted gravitational waves,
requires an analysis of both the state and composition of
the NS matter. We considered the case of the composition
gradient, and have extended calculations in Lai [31] to
compute the g-mode. The value of ðc2s − c2eÞ=c2s is different
when the energy density increases. In particular, these
differences reflect the sensitive dependence of g-mode on
the nuclear matter’s symmetry energy [V2 in Eq. (39)].
Note that the tidal deformability of binary NSs appears to
be related to the dominant oscillation frequency of the
postmerger remnant [55]. The impact of thermal and
rotational effects can provide simple arguments that help
explain the result [56]. More recently, Andersson et al. [57]
consider the dynamic tides of NSs to build the structure
NSs in the framework of post-Newtonian gravity. We may
expect using the pseudo-Newtonian gravity to study the
resonant oscillations and tidal response in coalescing
binary NSs in the future.
We considered a phase transition occurring in the inner

core of NSs, which could be associated with a density
discontinuity. Phase transition would produce a softening
of EOSs, leading to more compact NSs. Using the different
schemes, we have calculated the frequencies of f and g
modes for the l ¼ 2 component. Compared to the results
of GR [23,24], the Case Aþ lapse scheme can approximate
the f-mode frequency very well. The absolute percentage
difference ΔD ranges from 0.01 to 0.1 percent. In parti-
cular, we find that the Case Aþ lapse scheme also can
approximate the g-mode frequency of GR reasonably
well [23,24]. The percentage difference ΔD of g-mode of

the Case Aþ lapse scheme decreases with increasing
Δϵ=ϵd in our model.
The existence of a possible hadron-quark phase tran-

sition in the central regions of NSs is associated with the
appearance of g-mode, which is extremely important as
they could signal the presence of a pure quark matter core
in the center of NSs [58]. Our findings suggest that the
pseudo-Newtonian gravity, with much less computational
efforts than the full GR, can accurately study the oscillation
of the relativistic NSs constructed from an EOS with a first-
order phase transition. Observations of g-mode frequencies
with density discontinuity may thus be interpreted as a
possible hint of the first-order phase transition in the core of
NSs. Lastly, our work also provides more confidence in
using the pseudo-Newtonian gravity in the simulations of
CCSNs, thus reducing the computational cost significantly.
McDermott et al. [13] investigated the nonradial oscil-

lation of NSs using Cowling approximation and discussed
the different damping mechanisms. Reisenegger and
Goldreich [11] considered the g-mode induced by compo-
sition (proton-to-neutron ratio) gradient in the cores of NSs
and discussed damping mechanisms. They also estimated
damping rates for the core g-modes. Cutler et al. [59]
assessed the accuracy of Cowling eigenfunctions and found
that the relativistic Cowling approximation by McDermott
et al. [12] accurately predicts frequencies and eigenfunc-
tions. Chugunov and Gusakov [60] calculated the nonradial
oscillations of superfluid nonrotating stars. An approximate
decoupling of equations describing the oscillation modes of
superfluid and normal fluid has been studied by Gusakov
and Kantor [61]. Further, Gusakov et al. [62] developed an
approximate method to determine the eigenfrequencies and
eigenfunctions of an oscillating superfluid NS. In this
work, we found that the g-mode frequencies in one of
the pseudo-Newtonian treatments can approximate remark-
ably well the GR solutions than the relativistic Cowling
approximation. Hence, we may conjecture that the eigen-
function and dissipation of the pseudo-Newtonian treat-
ments are also more accurate than the relativistic Cowling
approximation. Based on the approximate method of
Gusakov et al. [62], one can calculate the eigenfunctions
and the different damping mechanisms in future studies.
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