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In this work we establish in a rigorous manner, and a model-independent way, the conditions for
bypassing Bekenstein’s no-scalar-hair theorem for static, spherically symmetric, and asymptotically flat
black holes, while maintaining the validity of the energy conditions. Specifically, we argue that an
assumption in the theorem, namely the vanishing of the quantity G ¼ E þ Tθ

θ, where E is the energy density
and Tθ

θ the corresponding component of the energy-momentum tensor of the scalar field theory, can be
relaxed. Indeed, if G is positive, as a consequence of the assumption on the validity of the energy conditions,
then scalar hair is potentially allowed in the black hole’s exterior, consistently with the gravitational
equations and the generic properties of the (nontrivial) energy-momentum tensor. As an explicit example, in
which such a behavior is realized, we discuss thewell-knownmodel of a (3þ 1)-dimensional Schwarzschild
black hole coupled to a spontaneously broken Yang-Mills SUð2Þ gauge theory interacting with a Higgs
scalar. We present a rather novel approach to obtain analytical black-hole solutions for this system (in
contrast to the numerical ones in the existing literature) by applying an appropriate perturbative treatment
whereby the black-hole configuration is derived as a result of backreaction of Higgs and gauge fields onto an
initially fixed flat spacetime. The massive nature of the scalar and gauge fields in this example requires a
special treatment because of their asymptotic form, which we discuss in some detail.
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I. INTRODUCTION

In 1995 Bekenstein published a seminal paper [1] in
which he derives a no-hair theorem for static, spherically
symmetric and asymptotically flat black holes. Although
this work considers scalar fields coupled only with each
other and minimally with gravity, nonetheless it rules out a
very large class of scalar fields as providers of scalar hair to
black holes (hence the terminology “modern no-scalar-hair”
theorem, the word modern being added to make the theorem
distinct from the standard no-hair theorem for black holes,
due to Israel, Ruffini and Wheeler [2–4]). The action of
these scalar fields is introduced as an effective theory of
some more fundamental theory in which particles are
elementary. Then, the interactions (couplings) of the scalar
fields between each other arise naturally from integrating
out massive elementary fields in the functional integral. As
such, Bekenstein considers a general Lagrangian that
accounts for all these possible couplings between the fields.
The main result of Bekenstein’s modern no-hair theorem

can be summarized in the following statement.
If the weak energy condition (WEC) is satisfied by the

conserved energy-momentum tensor of the pertinent scalar

field theory, then the latter should be trivial, given that a
nontrivial energy-momentum tensor would contradict the
gravitational field equations.
Thus, in order to dress a black hole with scalar fields, one

has to bypass the main assumption of Bekenstein’s theo-
rem; that is, the WEC has to be violated by the conserved
energy-momentum tensor of the theory. However, in [1]
an additional assumption for the energy-momentum
tensor, beyond the validity of the WEC, had been made.
This assumption does not violate any of the energy
conditions but instead constrains the energy-momentum
tensor through the imposition of a specific relation between
its temporal and angular components, which is due to the
class of couplings Bekenstein considered in his analysis. To
be specific, the Lagrangian Bekenstein considers for the
matter fields (assuming, for simplicity and concreteness,
two scalar fields ψ and χ) is of the form

Lmatter ¼ −Eðψ ; χ;F ; T ;KÞ; ð1:1Þ

where T ¼ gαβ∂αψ∂βψ , F ¼ gαβ∂αχ∂βχ, K ¼ gαβ∂αψ∂βχ,
and Eðx1;…Þ is the energy density for static fields,
considered here, which is an otherwise arbitrary function
of its arguments. As mentioned earlier, its precise form
depends on the underlying microscopic theory, whose
effective field theory, after integration of heavy elementary
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degrees of freedom, is the generic scalar field model at
hand. The corresponding energy-momentum tensor reads

Tα
β ¼ −Eδαβ þ 2

∂E
∂T

∂αψ∂
βψ þ 2

∂E
∂F

∂αχ∂
βχ

þ ∂E
∂K

ð∂αψ∂βχ þ ∂βψ∂
αχÞ: ð1:2Þ

For a static and spherically symmetric black hole, the scalar
fields can only depend on the radial spacetime coordinate.
Thus, the derivatives with respect to t and θ have to vanish.
As a result, it is straightforward to see that the energy-
momentum tensor obeys

G≡ E þ Tθ
θ ¼ 0; ð1:3Þ

where E ¼ −Tt
t is the energy density. The above condition,

of course, can be challenged if the assumptions of spherical
symmetry and/or the static nature of the black hole are
relaxed. In this article we shall not be interested in such
cases. However, the assumption (1.3) can be challenged
even if staticity and spherical symmetry are present, by
including nontrivial couplings of the fields, either with
higher-curvature terms or non-Abelian [e.g., SUðNÞ] gauge
fields. As we shall discuss in the current work, this kind of
couplings contribute to the energy-momentum tensor, in
such a way that Gmight be nonzero, and this is precisely the
point where Bekenstein’s modern no-hair theorem fails,
even if no violation of the energy conditions occurs.
Indeed, as already known in the literature for some

time [5–9], higher-curvature couplings between scalar
fields and gravity are able to bypass Bekenstein’s no-hair
theorem. Such couplings bypass Bekenstein’s theorem
because they produce a conserved energy-momentum
tensor that violates the energy conditions. Another exam-
ple of bypassing the theorem, by violating directly the
energy conditions, in particular corresponding to negative
energy density black holes, can be found in the work of
Ref. [10]. There, a solution for a self-interacting scalar
field that supports a black-hole geometry has been con-
sidered. The authors solve the system of differential
equations corresponding to the field equations in a reverse
way; that is, they take an ansatz for the scalar field but not
for the potential that describes the self-interactions of the
scalar field. Then, a black-hole solution with a nontrivial
scalar field configuration is obtained, with a potential
that has the double-well form of the Higgs’ scalar field.
This Higgs scalar field around the black hole eluded the
first form of Bekenstein’s no-hair theorem [11], but the
negative energy density near the event horizon made such a
solution rather unphysical. Nonetheless, the latter property
actually reinforces Bekenstein’s theorem [1], providing
a connection between the possible existence of hair for
black holes and the violation of energy conditions of the

corresponding (covariantly conserved) energy-momentum
tensor of the theory.
Such examples provide false support that the violation of

the energy conditions is a necessary condition for the hair to
exist. However, as we shall discuss below, this is not the case
of black holes in the presence of SUðNÞ gauge fields [12].1
The repulsive nature of the latter is able to avoid the no-hair
theorem without violating the energy conditions. A model-
independent proof of whether the violation of the energy
conditions is necessary for bypassing the no-hair theorem
does not exist in the literature. This leads many authors to
state that there does not exist a single no-hair theorem but
rather many no-hair theorems or bypasses thereof, which
exclude or produce, respectively, hairy black holes in
different theories of gravity.
One way by means of which a model-independent

approach to establishing the conditions for the existence
of nontrivial hair to a black hole can be achieved is
to consider only the properties of the corresponding
(covariantly) conserved energy-momentum tensor Tμν,
without reference to a specific Lagrangian density that
produces such a Tμν. In such a case, one imposes specific
conditions to the energy-momentum tensor, mainly in the
form of energy conditions, and specific geometric assump-
tions, through appropriate conditions on the metric tensor
(e.g., asymptotic flatness). Then, on assuming (in an
abstract way) that the field equations are valid, one is
able to deduce whether a nontrivial energy-momentum
tensor might be allowed or not. Of course, such a view
lacks a field theoretic approach, in the sense that it does not
refer to any specific Lagrangian theory that produces such
a Tμν. On one hand, this may be seen as an advantage,
because it makes our considerations model independent,
thus making us able to deduce general results about the
behavior of the matter fields around a black hole. On the
other, however, lacking such a detailed model prevents our
considerations to be extended to a more fundamental level,
since it does not specify the fundamental field(s) and their
interactions that exhibit such properties.
In this work we shall attempt to go both ways. We shall

follow the above-described approach focusing on the role of
the quantity G. Firstly, we review Bekenstein’s no-hair
theorem and we show that, under the constraint G ¼ 0,
the violation of the energy conditions is indeed necessary
to avoid the contradiction between a nontrivial Tμν and the
field equations. Then, we consider a nonvanishing and
positive G > 0, to show, in the spirit of Bekenstein’s no-hair
theorem, that the existence of a nontrivial Tμν, and

1We mention here the related work of Ref. [13], where the
authors studied numerically spherically symmetric classical
solutions to SUð2Þ non-Abelian Proca theory and spontaneously
broken gauge theory (EYMH). In this work, the authors provided
plausibility arguments, but no proof, as to how gauge fields can
evade Bekenstein’s no-hair theorem, albeit their discussion is
limited only to the first form of the theorem [14].
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consequently the possible existence of hairy black holes,
might be achieved without violation of the energy con-
ditions. In the last part of this work, we revisit the SUð2Þ
spontaneously broken Einstein-Yang-Mills-Higgs (EYMH)
theory [12], as a specific example which supports the above
general considerations.
The structure of the article is the following: in Sec. II,

we review the basic features of Bekenstein’s modern
no-hair theorem [1], including the assumption (1.3).
In Sec. III, we consider bypassing Bekenstein’s no-hair
theorem by considering the violation of (1.3), while
respecting the energy conditions, and demonstrating, in
a generic, model-independent, way that the existence of a
well-defined and nontrivial energy-momentum tensor is
not necessarily in contradiction with Einstein’s (graviton)
equations. In Sec. IV, we support these considerations in a
highly nontrivial way, by discussing the violation of the
no-hair theorem, while respecting the energy conditions,
in the context of a specific Lagrangian model, that of
spontaneously broken SUð2Þ gauge theory. The model
involves massive fields, which require special treatment,
as far as their asymptotic behavior is concerned, distinct
from the usual asymptotic behavior of the long-range

massless fields, encountered in cases of black holes with
scalar hair. Finally, conclusions and discussion are given
in Sec. V.

II. BEKENSTEIN’S NO-HAIR THEOREM

For a gravitational theory, we assume the following
properties of the energy-momentum tensor:

(i) validity of the weak energy condition and
(ii) finiteness at the horizon.

In Ref. [1], Bekenstein, by considering only radially
dependent scalar fields coupled with each other and gravity,
actually assumes for the energy-momentum tensor that
G ¼ 0, i.e., a specific way under which the null energy
condition (NEC) is satisfied. However, if more complicated
couplings are introduced for the scalars, such an assumption
might not be true; in this sense, the validity of Bekenstein’s
modern no-hair theorem is limited. Such limitations will be
examined later in the article. In this section, we shall review
Bekenstein’s case in Ref. [1], based on the assumption
(1.3), G ¼ 0.
The assumptions about the geometry are the following:

1: static and spherically symmetric spacetime∶ ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2;

2: asymptotic flatness∶ νðrÞ; λðrÞ ¼ Oð1=rÞ as r → ∞;

3: event horizon at rh∶ eνðrhÞ ¼ e−λðrhÞ ¼ 0: ð2:1Þ

We will use only the (3þ 1)-dimensional Einstein’s field
equations and the corresponding conservation of the
energy-momentum tensor, which we define as the tensor
that is proportional to the Einstein tensor Gμν when one
applies the principle of least action to the gravitational field,
i.e., when one performs variation of some gravitational
action with respect to the metric tensor. By means of an
appropriate Bianchi identity for the Ricci and scalar
curvature tensors, then, we obtain that such an energy-
momentum tensor is covariantly conserved. That is, we
have Einstein’s equations (we work in units of the gravi-
tational Newton constant G ¼ 1, as well as ℏ ¼ c ¼ 1,
throughout this article):

Gμν ¼ 8πTμν; Gμν
;μ ¼ 0 ¼ Tμν

;μ; ð2:2Þ

where Tμν encodes every possible information coming from
the couplings between the scalar fields. The tt and rr
components of the Einstein’s equations are given by the
following:

tt component∶ e−λ
�
1

r2
−
λ0

r

�
−

1

r2
¼ −8πE;

rr component∶ e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ 8πTr

r: ð2:3Þ

We first note that asymptotic flatness requires e−λ → 1,
λ → Oð1rÞ, λ0 → Oð 1r2Þ as r → ∞, implying that both E and
Tr

r are decreasing asOð 1r3Þ asymptotically. Similar behavior
characterizes the purely angular components of the energy-
momentum tensor. From the radial component, we have

e−ν=2

r2
ðeν=2r2Þ0 ¼ 4πrTr

reλ þ eλ þ 3

2r
: ð2:4Þ

The conservation of the energy-momentum tensor
∇μTμν ¼ 0 is expressed as

∇νTμ
ν ¼ 1ffiffiffiffiffiffi−gp ∂λð

ffiffiffiffiffiffi
−g

p
Tμ

λÞ − 1

2
ð∂μgαβÞTαβ ¼ 0: ð2:5Þ

Taking the r component, we find
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ðeν=2r2Tr
rÞ0 ¼ eν=2r2

2

�
ν0Tt

t þ
4

r
Tθ

θ

�
; ð2:6Þ

where a prime denotes differentiation with respect to r. In
the above calculations we used only the assumption of
spherical symmetry which implies Tθ

θ ¼ Tϕ
ϕ and the

metric’s determinant
ffiffiffiffiffiffi−gp ¼ e

νþλ
2 r2j sinðθÞj. Moreover,

the assumption (1.3), G ¼ 0, leads to

ðeν=2r2Tr
rÞ0 ¼ −ðeν=2r2Þ0E; ð2:7Þ

where we have substituted eν=2r2
2

ðν0 þ 4
rÞ ¼ ðeν=2r2Þ0.

Integration from rh to r > rh gives us

Tr
r ¼ −

e−ν=2

r2

Z
r

rh

ðeν=2r2Þ0Edr; ð2:8Þ

where the boundary term vanishes at rh due to the
assumption of finiteness of the energy-momentum tensor
at the horizon and eνðrhÞ → ∞. On differentiating the left-
hand side of (2.7) [or, equivalently, (2.8)], we find

ðTr
rÞ0 ¼ −

e−ν=2

r2
ðeν=2r2Þ0J ; ð2:9Þ

where for notational brevity we have defined

J ≡ E þ Tr
r:

If we now multiply (2.4) with J and use (2.9), we obtain
for the points where J ≠ 0

−
ðTr

rÞ0
J

¼ 4πrTr
reλ þ eλ þ 3

2r
; ð2:10Þ

which implies

4πrTr
reλ < −

ðTr
rÞ0

J
ð2:11Þ

in the black hole’s exterior region.
This inequality is a consequence of the gravitational

field equations and is valid at the black hole’s exterior. Its
relevance for the theorem lies on the fact that it defines
forbidden behaviors for the radial pressure of the energy-
momentum tensor. Specifically, for an energy-momentum
tensor that satisfies the WEC (and consequently the NEC),
it is certain that J > 0. From this it follows that the radial
pressure and its slope cannot be positive definite, implying
that regions where Tr

r; ðTr
rÞ0 > 0 are forbidden. This

statement, which relies only on the validity of the gravi-
tational field equations and an energy-momentum tensor
that satisfies the WEC (and consequently the NEC), is an
inextricable part of the theorem, since this constitutes the
base of the forthcoming contradiction that excludes a

nontrivial energy-momentum tensor at the black hole’s
exterior. We can interpret the inequality (2.11) as follows:
the gradient pressure force defined by the radial pressure of
the energy-momentum tensor constrains the sign of the
radial pressure itself through the gravitational equations of
motion.
In order to establish whether the existence of the

aforementioned forbidden region should be necessarily
expected at the black hole’s exterior, we have to explore
the near-horizon (r ∼ rh) and asymptotic behavior (r ≫ rh)
of the purely radial component of the energy-momentum
tensor, which we now proceed to discuss.

(i) Near-horizon behavior.—Since at the horizon
eν ¼ 0, and for the exterior region, rþ ϵ > rh, we
have ν ≠ 0, thus eν > 0, we obtain that the function
eνðrÞ is an increasing function of r near the horizon.
So, ðeν=2r2Þ0 > 0 at r ∼ rh, and, then, (2.9) implies
the near-horizon condition:

Tr
r ≤ 0 ðr ∼ rhÞ; ð2:12Þ

since E > 0, as implied by the validity of the WEC.
Moreover, (2.9) and J > 0 imply

ðTr
rÞ0 ≤ 0 ðr ∼ rhÞ: ð2:13Þ

Thus, near the horizon Tr
r has to be a negative and

decreasing with r function.
(ii) Asymptotic behavior.—Asymptotic flatness implies

that eν=2 → 1 in the region r ≫ rh. So, by Eq. (2.9),

ðTr
rÞ0 ≈ −

2

r
J : ð2:14Þ

Thus, since J > 0,

ðTr
rÞ0 ≤ 0: ð2:15Þ

The integral in (2.7) converges and Tr
r tends to zero,

because Einstein’s equations and asymptotic flatness
imply that all the components of Tμν are decreasing
asymptotically as Oð1=r3Þ. For a decreasing func-
tion this can be achieved only if Tr

r is positive
definite function:

Tr
r ≥ 0: ð2:16Þ

Thus, asymptotically Tr
r has to be positive definite

and decreasing.
The behavior of Tr

r and ðTr
rÞ0 near the horizon and

asymptotically, as shown in Fig. 1, implies that there is
an interval in which Tr

r > 0 and ðTr
rÞ0 > 0, simultaneously

(dashed region in Fig. 1). However, (2.11) implies that such
a region is forbidden by the field equations if J > 0. One
way to avoid this contradiction is for J < 0, expressing the
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violation of the NEC. If the NEC is respected and J ≥ 0,
in order to avoid the contradiction, the radial component of
the energy-momentum tensor has to be constant and zero
(due to asymptotic flatness), implying immediately that all
the components of Tμν have to be zero. The latter is a
consequence of the assumption G ¼ 0, which implies that
Tθ

θ ¼ Tϕ
ϕ ¼ −E. In addition, in view of (2.9), the con-

stancy of the radial component can be achieved only
for J ¼ 0, i.e., for Tr

r ¼ −E. Hence, it follows trivially
that for a constant and vanishing radial component, all of
the components of the stress tensor vanish, Tθ

θ ¼ Tϕ
ϕ ¼

Tr
r ¼ −E ¼ 0. The only way therefore for the energy-

momentum tensor to be nontrivial at the black hole’s
exterior is to violate the NEC, and consequently all of the
energy conditions or, alternatively, if the WEC (and
consequently the NEC) is satisfied, all of the components
of the energy-momentum tensor have to be trivially zero.
This summarizes the content of the modern version of
the no-scalar-hair theorem of Bekenstein [1]. In the next
section we discuss ways to bypass the theorem, by relaxing
some of its crucial assumptions but maintaining the
validity of the energy conditions.

III. BYPASSING BEKENSTEIN’S THEOREM:
CIRCUMVENTING THE ASSUMPTION (1.3)

So far, we have assumed G ¼ 0 [(1.3)], which is a
consequence of the specific couplings among the scalar
fields considered in [1]. In this section we aim to be more
general and consider the case where G ≠ 0 is not fixed, in
order to include more complicated couplings. As a conse-
quence of the validity of the WEC, which we shall assume
here, we shall set G > 0 and examine whether a contra-
diction between the nontriviality of the energy-momentum

tensor and the field equations arises. From the conservation
law (2.5), with G > 0, one easily obtains

Tr
r ¼ e−ν=2

r2

Z
r

rh

h
−ðeν=2r2Þ0E þ 2reν=2G

i
dr;

ðTr
rÞ0 ¼ −

�
ν0

2
þ 2

r

�
J þ 2

r
G: ð3:1Þ

Arbitrarily close to the horizon, the terms multiplied
by ν0ðrÞ dominate, since for r → rh, ν0ðrÞ behaves as
ν0ðrÞ ∼ 1

r−rh
and is positive. The behavior of J has to be

J ∼Oðr − rhÞ since we want to avoid the otherwise
present discontinuity of the components of Tμν on the
horizon.2 We end up with

ðTr
rÞ0 ≈ −

ν0

2
J þ 2

r
G: ð3:2Þ

The behavior of J ∼Oðr − rhÞ makes Eq. (3.2) finite as
we go arbitrarily close to r → rh. The sign of ðTr

rÞ0 cannot
be determined from the above relation and depends on the
details of the specific theory under consideration. We
now want to examine the near-horizon behavior of Tr

r, as
r → rh. We easily obtain the corresponding leading
behavior:

Tr
r ≈

e−ν=2

r2

Z
r

rh

�
−ðeν=2r2Þ ν

0

2
E
�
dr: ð3:3Þ

Checking now the signs of Eq. (3.3), we easily see that the
positivity of E implies that Tr

r is negative as we go arbitrarily
close to the horizon. This means that Tr

r starts from a
negative, finite value on the horizon, and then, depending on
the sign of ðTr

rÞ0 [cf. Eq. (3.2)], either increases or decreases,
which in itself depends on the details of the underlying
microscopic theory. What is certain, though, is that the
positivity of the energy density at the near-horizon regime
implies that the radial pressure is negative definite. The
latter can be changed only for a negative energy density near
the horizon, which albeit violates the WEC. This is the case,
for example, of (3þ 1)-dimensional theories of gravity that
include higher-curvature couplings of the scalar field with
the Gauss-Bonnet topological term for various forms of the
coupling function [5–8].
On the other hand, the contribution of a nontrivial G

affects the asymptotic behavior (r ≫ rh) more drastically,
since it leaves undetermined the signs of both Tr

r and
ðTr

rÞ0. To see this, let us start from (3.1) and the assumption
of asymptotic flatness, which implies νðrÞ; λðrÞ ∼Oð1=rÞ,

FIG. 1. A smooth connection between the asymptotic and near-
horizon behavior of Tr

r implies a behavior for Tr
r (dashed line)

which is forbidden by the gravitational field equations if the WEC
is satisfied. Such a contradiction can be avoided only by a trivial
energy-momentum tensor.

2Since the event horizon is the null hypersurface on which the
radial and temporal metric components change their character
(the radial becomes temporal and vice versa), these components
have to be equal on the horizon in order for Tμν to be continuous.
Then, J ¼ 0, for r ¼ rh [15].
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and also ν0ðrÞ; λ0ðrÞ ∼Oð1=r2Þ. Moreover, as we already
know from the field equations, J ;G ∼ 1=r3. Thus, asymp-
totically, (3.1) implies

ðTr
rÞ0 ≈ 2

r
ðG − J Þ ðr ≫ rhÞ: ð3:4Þ

It is thus obvious that the asymptotic behavior of Tr
r is

determined by the sign of G − J far away from the horizon.
This sign cannot be determined in a model-independent
way. Since G − J ¼ Tθ

θ − Tr
r, the asymptotic behavior of

the radial pressure depends on whether the theory produces
a radial- or tangential-pressure-dominated fluid far away
from the black-hole horizon. Such a choice might depend
on the parameters of the theory as it happens in the case of
the spontaneously broken Einstein-Yang-Mills-Higgs
theory, studied in [12], which we shall come back to later
on, in Sec. IV.
Thus, neither the near-horizon nor the asymptotic

behavior are totally constrained to behave in a specific
way, but they depend on the details of the underlying
model. This means that the appearance of a nonvanishing G
can alter the behavior of the radial pressure, Tr

r, at both the
near-horizon and asymptotic regimes, except for its sign
near the horizon, which has to be negative if the WEC is
satisfied; it is only the sign of its slope ðTr

rÞ0 which is left
undetermined. To understand this better, the reader should
recall that asymptotic flatness determines the sign of Tr

r
from the sign of its slope. In Bekenstein’s case, the radial
pressure was positive and decreasing (due to asymptotic
flatness). Combined with the negative radial pressure near
the horizon, it seems, at first sight, that an intermediate
region where the radial pressure is positive and increasing
would be required. However, such a region would be in
contradiction with the gravitational field equations. We can
conclude then, that, if the asymptotic behavior of radial
pressure is negative and increasing, no such region is
required and, thus, a contradiction with the field equations
can be avoided. According to the previous considerations,
this is the case for a tangential-pressure-dominated fluid
away from the black hole, since in this case G − J > 0.
Such a behavior does not imply any violation of the energy
conditions and, thus, a positive G can evade the no-hair
theorem, by altering the asymptotic behavior of Tr

r.
Altering the asymptotic behavior however is not the only

way by means of which the presence of G could prevent a
contradiction with the field equations. Due to the positive
valued G, the inequality (2.11), which constrains the sign of
the radial pressure, thereby leading to the contradiction,
could be modified in a nontrivial way. Indeed, on expressing
the lhs of (2.4) through (3.1), we obtain

e−
ν
2

r2
ðeν

2r2Þ0J ¼ −ðTr
rÞ0 þ 2

r
G: ð3:5Þ

Then, the inequality (2.11) is modified as

Tr
r <

e−λ

4πGr
1

J

�
−ðTr

rÞ0 þ 2

r
G
�
: ð3:6Þ

At first, for a negative slope ðTr
rÞ0 < 0, the rhs of (3.6) is

positive definite (since G > 0 on account of the validity of
the energy conditions), which means that Tr

r is not con-
strained to take on only negative values, in contrast to what
happened in the case of Bekenstein [1]. On the other hand,
for a positive slope, ðTr

rÞ0 > 0, the rhs of (3.6) might be
negative or positive definite, depending on the underlying
theory. Specifically, it is positive definite if the following
condition is satisfied:

2G=r > ðTr
rÞ0 ð3:7Þ

and negative definite or zero, otherwise. It is evident that, if
the introduction of a nonvanishing and positive definite G is
such that the condition (3.7) is satisfied, then there are no
constraints on the sign of Tr

r. The quantity 2G=r behaves,
therefore, as an effective gradient pressure force, in the
sense that if it dominates on ðTr

rÞ0, then it overcomes its
effect and leaves the sign of the radial pressure uncon-
strained. So, 2G=r as an effective gradient pressure is crucial
for bypassing Bekenstein’s no-hair theorem by circum-
venting the main origin of the contradiction, as a negative J
did, which was the only option in the case of a vanishing G.
Thus, in each case, the nontriviality of the energy-

momentum tensor and the Einstein’s equations are not
necessarily in contradiction with each other in the sense of
Bekenstein, if the energy conditions are respected, eluding
in this way the original formulation of the no-hair theorem.
Summarizing, this can occur in two ways.

(i) The presence of a positive definite G can alter the
asymptotic behavior of Tr

r, in such a way that a
potentially forbidden region from Einstein’s equa-
tions does not necessarily arise (this is the case for a
tangential-pressure-dominated fluid far away from
the black hole).

(ii) The presence of a positive definite G produces an
effective gradient pressure that dominates over
ðTr

rÞ0, in such a way that a forbidden region that
would otherwise emerge from the field equations
does not even exist.

The above cases refer to solutions in which all of
the components of the energy-momentum tensor are
nonvanishing outside a black hole, without the need for
violating the energy conditions. However, one can go
even beyond such cases, by assuming a solution with an
energy-momentum tensor of the form characterizing an
Einstein cluster [16], i.e., a solution of the gravitational
equations with a vanishing radial pressure. This case
is quite interesting in astrophysics as it could provide a
dark-matter candidate [17] around black holes. Such a
configuration has also been recently found to be an exact
solution of the field equations in cosmological systems
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with a matter distribution inspired by observations [18]
(in which, however, no specific Lagrangian has been
given). Previously, such a case was forbidden due to
G ¼ 0. This is not the case for a nonvanishing G, since now
the condition J ¼ 0 is not necessary for a constant radial
pressure [cf. (3.6)], and also one has Tθ

θ ¼ Tϕ
ϕ ≠ −E,

because G ≠ 0. Thus, the nonvanishing G is crucial for an
Einstein cluster solution to exist. This immediately means
that the solution of [18], which lacks a field theoretic
origin for the matter distribution, cannot be the result of
scalar fields only coupled with each other, as in [1].

IV. AN EXPLICIT EXAMPLE: BLACK HOLES
IN SPONTANEOUSLY BROKEN EINSTEIN-

YANG-MILLS-HIGGS THEORY

We proceed now to give a field-theoretic example
in which the above-described bypass of Bekenstein’s
modern no-scalar-hair theorem [1], with G > 0, respecting
the energy conditions, is explicitly realized. This example
concerns the Einstein Yang-Mills-Higgs system of [12].
It has already been stated in [12] that the nonvanishing

G ≠ 0 due to the gauge fields is the main reason for evading
Bekenstein’s theorem. As these authors stated, the non-
vanishing G encodes the repulsive nature of the gauge fields,
which produces a balance with the competitive gravitational
attraction, thus leading to the existence of black holes able to
support nontrivial matter fields outside their horizons. Our
goal here is to understand better the arguments of [12,19]
and provide a formal proof of the role of non-Abelian gauge
fields in evading the modern version of Bekenstein’s no-
scalar-hair theorem [1], according to our previous model-
independent results.
Specifically, we associate the repulsive nature of the

gauge fields with the nontrivial effective gradient pressure,
2G=r, with G defined in (1.3), which, by being dominant
over the gradient radial pressure, ðTr

rÞ0, is capable of
overcoming the effects of the latter, thus leaving uncon-
strained its behavior. At this point we want to emphasize
the fact that the gauge fields fit perfectly our previous
general arguments on the evasion of Bekenstein’s theorem
without violation of the energy conditions. It should be
stressed that this is a nontrivial result, given that it is not
true in general that generic couplings of scalar fields that
produce a nonvanishing G lead also to an evasion of the
theorem without violation of the energy conditions. One
such example is the coupling of a scalar field with the
Gauss-Bonnet topological term in (3þ 1) dimensions.
Such a higher-curvature coupling indeed produces a non-
vanishing G [5], but it also violates the WEC near the
horizon, in a similar manner to the Higgs’ scalar field
considered in [10]. Such examples therefore do not go
beyond Bekenstein’s no-hair theorem, in the sense that
they do not produce hairy black holes without violating the
energy conditions. Par contrast, the non-Abelian gauge
field do, by respecting these conditions.

To see this, we consider a black-hole solution of the
spontaneously broken Einstein-Yang-Mills-Higgs SUð2Þ
(EYMH) gauge theory. In contrast to the numerical sol-
utions of [12,13], we find here an analytic but approximate
spherically symmetric solution in terms of perturbation
theory on a flat spacetime background. Specifically, our
procedure is the following: we first assume a fixed flat
spacetime background for which we determine the non-
dynamical (constant) solution of the fields, in which the
Higgs field acquires its vacuum expectation value (VEV).
Then, we consider static and spherically symmetric per-
turbations of the fields, still on a fixed flat spacetime. The
smallness of the perturbations is ensured via the intro-
duction of a small dimensionless parameter q, jqj ≪ 1, in
terms of which we first solve the equations up to first order.
We then proceed by considering the dynamical character
of the spacetime itself and we determine the backreaction
to the metric up to the same order in the perturbation
parameter q. Subsequently, following the same method, we
solve the system of differential equations up to second
order in perturbation theory, Oðq2Þ, in which an expo-
nential form of the backreaction terms for massive fields
appears. We demonstrate in an analytic way that indeed the
positive effective gradient pressure 2G=r and its domi-
nance over ðTr

rÞ0 are sufficient to support Bekenstein’s
forbidden behavior for the radial pressure, without the
need for violating the energy conditions, thus truly evading
Bekenstein’s modern no-scalar-hair theorem [1].
Let us now give the details of this procedure. To this end,

we first remark that the gauge invariant Lagrangian of the
SUð2Þ EYMH theory, containing a doublet of complex
scalar fields

Φ ¼
"
ϕþ

ϕ0

#
ð4:1Þ

has the following form3:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ 1

2
TrðFμνFμνÞ

þ 1

2
ðDμΦÞ†ðDμΦÞ þ VðΦ†ΦÞ

�
; ð4:2Þ

where Fμν denotes the field strength of the gauge fields, Ai
μ:

Fb
μν ¼ ∂μAb

ν − ∂νAb
μ þ gϵijbAi

μA
j
ν ð4:3Þ

with Greek letters denoting spacetime indices, taking on
values from 0 to 3, and Latin letters denoting the SUð2Þ

3We use metric signature with one negative eigenvalue
ð−;þ;þ;þÞ and the Riemann tensor is given as Rρ

σμν ¼
∂μΓρ

νσ − ∂νΓρ
μσ þ Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ with Γρ

νσ the Levi-Civita
connection.
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group indices, taking values from 1 to 3. The Levi-Civita
symbol ϵijk is introduced as the structure constants of the
Lie algebra that the suð2Þ-algebra generators, Tb, obey:

½Ti; Tj� ¼ iϵijkTk ð4:4Þ

under the convention for the generators Tb ¼ τb=2, where
τa; a ¼ 1, 2, 3 are the 2 × 2 Pauli matrices. The gauge
covariant derivative Dμ is defined as usual:

Dμ ¼ ∂μ − igAμ; Aμ ¼ Ai
μTi: ð4:5Þ

For the Higgs doublet Φ we assume the double-well
potential:

VðΦ†ΦÞ ¼ λ

4
ðΦ†Φ − v2Þ2; λ > 0; ð4:6Þ

which acquires a minimum at Φ†Φ ¼ v2. Since, we are
interested in the broken phase of the SUð2Þ gauge theory, we
assume that the doublet takes the following standard form:

Φ ¼
"

0

ϕðxÞ

#
: ð4:7Þ

Expressing all of the above with respect to ϕðxÞ, the
potential reads

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2 ð4:8Þ

while the corresponding gravitational action and matter
Lagrangian L take the following simplified form (we remind
the reader we work in units where Newton constant G ¼ 1):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− L
�

ð4:9Þ

with

L¼−
1

4π

�
1

4
FμνbFμνbþ1

2
ð∂μϕÞð∂μϕÞþ

1

8
ϕ2jAμj2þVðϕÞ

�
:

ð4:10Þ

The field equations for the metric, scalar and gauge
fields read

Gμν ¼ 8πTμν;

Tμν ¼ Lgμν þ
1

4π

�
Fρ

μbFρνb þ ∂μϕ∂νϕþ 1

4
ϕ2AμbAνb

�
;

ð4:11Þ

□ϕ ¼ V 0ðϕÞ þ 1

4
ϕjAμj2; ð4:12Þ

∇μFμνb ¼ ϵcbdAρcFρ
νd þ 1

4
ϕ2Aνd: ð4:13Þ

In what follows, we consider only static and spherical
symmetric solutions. Thus, we introduce the following
metric ansatz:

ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2dΩ2 ð4:14Þ

with

gttðrÞ ¼ −
�
1 −

mðrÞ
r

�
eδðrÞ; ð4:15Þ

grrðrÞ ¼
�
1 −

mðrÞ
r

�
−1
: ð4:16Þ

For the Yang-Mills fields, we assume the form introduced
in [20] and used in the existing literature for EYMH black
holes [12,13]:

A ¼ ð1þ ωðrÞÞ½−τφdθ þ τθ sin θdφ�; ð4:17Þ

where τr;θ;φ denote the Pauli matrices in spherical-polar
coordinates.
Our goal is to consider asymptotically flat black-hole

solutions in the presence of the above-described Higgs and
Yang-Mills fields. The Higgs and the Yang-Mills fields on a
flat spacetime have to be a well-defined limit of the black-
hole solution. In this spirit, one can consider first the fields
lying on a flat spacetime background and then approximate
the black-hole solution through the backreaction of the
fields on the background spacetime.
Specifically, we first explore Higgs and SUð2Þ Yang-

Mills fields on a flat spacetime and then, by introducing a
perturbation parameter q, we find the backreaction of the
fields onto the spacetime up to second order in q, Oðq2Þ.

A. Varying the fields on a flat spacetime

For a flat spacetime, mðrÞ ¼ δðrÞ ¼ 0, the field equa-
tions read

ϕ00 þ 2

r
ϕ0 ¼ ϕðωþ 1Þ2

2r2
þ λϕðϕ2 − v2Þ; ð4:18Þ

ω00 ¼ ðωþ 1Þðr2ϕðrÞ2 þ 4ω2 − 4ωÞ
4r2

: ð4:19Þ

In the broken phase, the Higgs field, which lies on its
VEV, ϕ ¼ v, has to be a solution of the above equations.
Indeed, this is the case with ω ¼ −1, as can be easily
verified from the above equations. Thus, the nondynamical
solution with constant fields on a flat background reads

ϕ ¼ v; ð4:20Þ
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w ¼ −1: ð4:21Þ

In order to obtain nontrivial static field configurations,
with spatial-only-coordinate dependence on the flat space-
time, we first consider small and spherically symmetric
variations of the fields around their constant solutions,
ignoring the backreaction on the spacetime. To this end, we
introduce the perturbation parameter, q, and the fields of
the following form:

ϕðrÞ ¼ vþ qϕ1ðrÞ; ð4:22Þ

ωðrÞ ¼ −1þ qω1ðrÞ: ð4:23Þ

Solving Eqs. (4.18) and (4.19) up to OðqÞ, and choosing
the constants of integration such that the corrections vanish
for r → ∞, we find the following solutions:

ϕ1ðrÞ ¼
c1
r
e−

ffiffiffiffi
2λ

p
vr; ð4:24Þ

ω1ðrÞ ¼ c2

�
vþ 2

r

�
e−

v
2
r; ð4:25Þ

where c1;2 are integration constants.

B. Backreaction to the metric up to OðqÞ
Now, we consider the backreaction of the above

solutions to the flat metric background, up to first order
in the perturbation parameter OðqÞ. In order to do that, we
perturb the metric components around the flat spacetime
metric as follows:

mðrÞ ¼ qm1ðrÞ; ð4:26Þ

δðrÞ ¼ qδ1ðrÞ; ð4:27Þ

and we demand that the gravitational equations of motion
are satisfied up to OðqÞ. It is trivial to see that up to this
order on the perturbation parameter, q, the gravitational
equations of motion lead to the Schwarzschild-like metric
components:

m1ðrÞ ¼ c3; ð4:28Þ

δ1ðrÞ ¼ c̃3; ð4:29Þ

where c3 and c̃3 are integration constants. We can set
c̃3 ¼ 0, since such a constant can be eliminated by a mere
rescaling of the temporal coordinate.

C. Varying the fields to the Schwarzschild-like
spacetime up to Oðq2Þ

Taking the background spacetime as fixed up to OðqÞ,
we aim to determine the Higgs [ϕðrÞ] and gauge field
[wðrÞ] configurations up to Oðq2Þ. To this end, we assume
the following form for the respective functions:

ϕðrÞ ¼ vþ q
c1
r
e−

ffiffiffiffi
2λ

p
vr þ q2ϕ2ðrÞ; ð4:30Þ

wðrÞ ¼ −1þ qc2

�
vþ 2

r

�
e−

rv
2 þ q2w2ðrÞ; ð4:31Þ

and we determine the ϕ2; w2 by demanding that the field
equations are satisfied up to Oðq2Þ. The corresponding
differential equations read:

ϕ00
2 þ

2ϕ0
2

r
− 2λv2ϕ2 ¼

3λvc21
r2

e−2
ffiffiffiffi
2λ

p
rv þ c1c3

�
1

r4
þ

ffiffiffiffiffi
2λ

p
v

r3
þ 2v2λ

r2

�
e−

ffiffiffiffi
2λ

p
rv þ vc22

2

�
v
r
þ 2

r2

�
2

e−rv; ð4:32Þ

−4r4w00
2 þ r2ðr2v2 þ 8Þw2 ¼ ð−2c1c2r3v2 − 4c1c2r2vÞe−rv

2
ð1þ2

ffiffiffiffi
2λ

p Þ þ 12c22ðrvþ 2Þ2e−rv
þ ð−c2c3r3v3 − 4c2c3r2v2 − 12c2c3rv − 24c2c3Þe−rv

2 : ð4:33Þ

By solving the above equations one obtains

ϕ2ðrÞ ¼
c22v
r2

e−rv þ
c1c3

� ffiffiffiffiffi
2λ

p
rv logðc7r Þ þ 1

�
2r2

e−
ffiffiffiffi
2λ

p
rv þ c22ð1 − 4λÞv2

4
ffiffiffiffiffi
2λ

p
r

e−
ffiffiffiffi
2λ

p
rvEi

� ffiffiffiffiffi
2λ

p
rv − rv

�

−
c22ð1 − 4λÞv2

4
ffiffiffiffiffi
2λ

p
r

e
ffiffiffiffi
2λ

p
rvEi

�
−

ffiffiffiffiffi
2λ

p
rv − rv

�
þ 3c21

ffiffiffi
λ

p

2
ffiffiffi
2

p
r
e

ffiffiffiffi
2λ

p
rvEi

�
−3

ffiffiffiffiffi
2λ

p
rv
�

−
3c21

ffiffiffi
λ

p

2
ffiffiffi
2

p
r
e−

ffiffiffiffi
2λ

p
rvEi

�
−

ffiffiffiffiffi
2λ

p
rv
�
þ c1c3

ffiffiffi
λ

p
vffiffiffi

2
p

r
e

ffiffiffiffi
2λ

p
rvEi

�
−2

ffiffiffiffiffi
2λ

p
rv
�
; ð4:34Þ
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w2ðrÞ ¼ c1c2

�
2

ffiffiffiffiffi
2λ

p

r
−
1

r

�
e−

1
2
ð2 ffiffiffiffi

2λ
p þ1Þrv − 3c22

�
1

r2
þ v
2r

�
e−rv −

c2c3e−
rv
2 ðrvð2þ rvÞ logðc10r Þ þ 6Þ

4r2

þ 9c22v

�
1

8r
−

v
16

�
e
rv
2Ei

�
−
3rv
2

�
− 9c22v

�
1

8r
þ v
16

�
e−

rv
2Ei

�
−
rv
2

�
þ c2c3ve

rv
2

�
1

2r
−
v
4

�
Eið−rvÞ

þ c1c2ð1 − 4λÞ
�
1

r
−
v
2

�
Ei
�
−rv

� ffiffiffiffiffi
2λ

p
þ 1

��
e
rv
2 − c1c2ð1 − 4λÞ

�
1

r
þ v

2

�
Ei
�
−

ffiffiffiffiffi
2λ

p
rv
�
e−

rv
2 ; ð4:35Þ

where

EiðxÞ ¼
Z

x

−∞

et

t
dt ð4:36Þ

is the elliptic integral function, which asymptotically (for
x ≫ 1) can be expanded as

Eið−xÞ ¼ e−x
�
−
1

x
þ 1

x2
þ � � �

�
: ð4:37Þ

D. Backreaction to the metric up to Oðq2Þ
Having found the solutions for the scalar and gauge fields

up to Oðq2Þ, we now proceed to solve the gravitational
equations of motion up to Oðq2Þ, in order to determine the
corresponding backreaction onto the spacetime. We take for
the metric components the following ansatz:

mðrÞ ¼ qc3 þ q2m2ðrÞ; ð4:38Þ

δðrÞ ¼ q2δ2ðrÞ: ð4:39Þ

Then, we find

mðrÞ ¼ c3qþ c5q2 − q2
�

1

8πr
þ

ffiffiffi
λ

p
v

4
ffiffiffi
2

p
π

�
c21e

−2
ffiffiffiffi
2λ

p
rv

− q2
�

1

πr3
þ v
πr2

þ v2

2πr
þ v3

8π

�
c22e

−rv; ð4:40Þ

δðrÞ ¼ −q2
λv2

2π
c21Eið−2

ffiffiffiffiffi
2λ

p
rvÞ − q2

�
1

8πr2
þ

ffiffiffi
λ

p
v

2
ffiffiffi
2

p
πr

�

× c21e
−2

ffiffiffiffi
2λ

p
rv þ q2

v4

8π
c22Eið−rvÞ

− q2
�

1

2πr4
þ v
2πr3

þ v2

2πr2

�
c22e

−rv: ð4:41Þ

From the above, it becomes evident that the backreacting
terms, beyond the usual Oð1=rnÞ terms, which characterize
massless cases, contain also exponential terms of order
Oð1=rnÞe−vr, with the exponent related to the mass of the
fields (Yukawa-like backreaction). Such backreacting terms
vanish faster than any polynomial of inverse powers of the
radial coordinate r. This means that constants of integration
that come along with such an exponent cannot be deter-
mined from an asymptotic limit; i.e., they cannot be related
to a global charge like the Arnowitt-Deser-Misner mass.
Thus, such constants are independent parameters of the
solution and not global charges. One is tempted to view
them as being related to some notion of scalar hair of the

FIG. 2. The metric components gtt and grr versus rv, up to
second order in the perturbation parameter q for 0 < λ < 1=8.
The existence of horizons is clearly shown, thus demonstrating
the black-hole nature of the solution.

FIG. 3. Left panel: the behavior of Tr
r for λ < 1=8, which is positive and decreasing as rv gets bigger (as λ approaches the critical value

of 1=8, the positive bump of Tr
r tends more and more to be flattened). Right panel: demonstration of the finiteness of the radial pressure

on the event horizon.
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potential black-hole solution in the sense put initially by
Ruffini and Wheeler [3,4]. In the above solutions, such
constants are the c1;2 that were introduced to the leading-
order terms of the Higgs and Yang-Mills fields, respectively.
Some clarification is needed at this point. The back-

reaction terms that we found above correspond to the
asymptotic behavior of a static and spherically symmetric
matter distribution located around the center of the space-
time r ¼ 0 and vanishing far away. Whether such a
distribution corresponds to a black hole or not is determined
by the appropriate boundary conditions. Specifically, if
such a distribution forms a black hole, an event horizon
has to appear at some finite radial distance r ¼ rh; i.e., the
boundary condition ½gttðrhÞ ¼ 0; grrðrhÞ → þ∞� has to be
consistent with our perturbative solution. In order to achieve
this, we give specific values to our integration constants to
simulate a black-hole solution, something, we stress that is
not satisfied for the entire parametric space of these con-
stants. The situation concerning the black-hole solution in
the EYMH system is summarized in the plots given in
Figs. 2–8. For brevity and convenience in most of those plots
we work in units of the VEVof the Higgs field; i.e., we set
v ¼ 1 when plotting the relevant quantities.
At this stage we have to point out that, as shown in [12],

the asymptotic behavior of ðTr
rÞ0 changes for different

values of the parameter λ > 0 of the Higgs potential.

Specifically, for λ > 1=8, ðTr
rÞ0 > 0 (asymptotically),

implying that Tr
r will vanish in the asymptotic limit as

it increases from negative values, in order to respect the
asymptotic flatness of our geometry. For 0 < λ < 1=8,
ðTr

rÞ0 < 0 (asymptotically), implying that Tr
r will drop to

zero from positive values. The value of λ ¼ 1=8 is actually
a critical value for the behavior of our solution, as follows
clearly from Eqs. (4.24) and (4.25). We can see that the
exponents become equal for the critical value λ ¼ 1=8,
implying that away from this value of λ the relative
strength of the fields is altered, something that is also
detected in the behavior of Tr

r as shown in Figs. 3 and 7.
Moreover, in Fig. 3, we show the behavior of Tr

r
for 0 < λ ≤ 1=8, while in Fig. 4 we plot the factor
½−ðTr

rÞ0 þ 2
r G�, introduced in Eq. (3.6). Our perturbative

solution verifies that the positivity of this quantity at the
regions where Tr

r; ðTr
rÞ0 > 0 is actually the essence for

bypassing Bekenstein’s no-hair theorem, without violating
the energy conditions, as can be verified in Fig. 5. In that
figure, we plot (i) the null energy condition, the validity of
which is expressed via J ¼ −Tt

t þ Tr
r > 0 (radial part) and

via G ¼ −Tt
t þ Tθ

θ > 0 (tangential part), (ii) the weak
energy condition, which is expressed via ρ ¼ −Tt

t > 0,
(iii) the strong energy condition, which requires that
−Tt

t þ Tr
r þ 2Tθ

θ > 0, and (iv) the dominant energy

FIG. 4. The quantity ½−ðTr
rÞ0 þ 2

r G� as a function of rv, the
positivity of which (after some value of r > 0) makes Tr

r actually
unconstrained, highlighting the key difference in the respective
behavior of the EYMH system in relation to Bekenstein’s
no-hair theorem.

FIG. 5. The validity of the energy conditions, which leads to the existence of hair throughout the black-hole exterior region.
On the left panel, the WEC and NEC are plotted, while on the right, the SEC and DEC are plotted, both throughout the exterior region of
the black hole.

FIG. 6. The same as in Fig. 2, but for λ > 1=8, demonstrating
the black-hole behavior of the solution to second order in the
perturbation parameter q in this region of the Higgs self-
interaction coupling λ.
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condition, given by −Tt
t − jTr

rj > 0 (the radial part) and
−Tt

t − jTθ
θj > 0 (the tangential part). Similar arguments

can be made for the case of λ > 1=8. Tr
r is shown in Fig. 7

together with the factor F ≡ ½−ðTr
rÞ0 þ 2

r G�. The asymp-
totic behavior of Tr

r is indeed verified, as long as F is
positive definite, even though a region of a positive and
increasing Tr

r does not exist in this case. Finally, the
energy conditions are again satisfied at the exterior region
of the black hole, as shown in Fig. 8.

V. SUMMARY AND OUTLOOK

This work was motivated by the need to provide a
rigorous and rather generic proof of existence of scalar hair
on black holes in general relativity and its extensions,
which dominate the recent literature and may also be
subjected to potential experimental observations in the
near future, due to the increased precision measurements of
black-hole properties in the Universe. Specifically, we have
attempted to clarify here an important, in our opinion,
question. We have asked ourselves whether the existence of
scalar hair is necessarily associated with the violation of
(some of) the energy conditions, as it seems to be implied
by the current formulation of the no-hair theorems.
In this article, we have shown that this is not necessarily

the case, at least in the context of scalar fields in general
relativity. Concretely, we have first circumvented the
modern version of the no-hair theorem of Bekenstein,
where the above association of the existence of scalar hair
with the violation of the energy conditions has been linked

with the assumption (1.3). Relaxing the vanishing of the
linear combination of components of the energy-momentum
tensor, G, appearing in that relation, we have argued that the
assumption of the validity of the energy conditions requires
a positive G > 0. Then, by first making use of generic
properties of the energy-momentum tensor, without appeal-
ing to a concrete Lagrangian model, we have demonstrated
that there is compatibility of the scalar-matter energy-
momentum tensor with the graviton (Einstein) equations
of motion, thus establishing the potential existence of
nontrivial hair. We have then presented an explicit nontrivial
example of a model that satisfies these criteria, that of
spontaneously broken Einstein-Yang-Mills SUð2Þ gauge
system with Higgs scalar hair. This well-known system
bypasses Bekenstein’s theorem, without violating any of the
energy conditions, precisely due to the fact that G > 0 in this
case. Although this system had been studied long ago, and is
one of the first systems where scalar hair had been proven to
exist, nonetheless the precise mechanism bymeans of which
the existence of the Higgs (scalar) hair is safeguarded, in
association with the validity of the energy conditions, had
not been discussed previously in the literature, and this
constituted one of the main results of this article. In addition,
this system exhibits interesting asymptotic behavior, due to
the massive nature of the gauge and scalar fields, which we
discuss here in detail, given that in the majority of the
current literature only massless excitations have been
considered.
Moreover, the SUð2Þ EYMH black hole is known [12]

to be unstable, similar in nature to a sphaleron solution.

FIG. 7. Left panel: the behavior of Tr
r for λ > 1=8, which is negative and increasing as r gets bigger. Right panel: plot of the quantity

½−ðTr
rÞ0 þ 2

r G� versus rv, the positivity of which enforces, in this case too, the unconstrained nature of Tr
r.

FIG. 8. Left panel: the validity of WEC and NEC, which leads to the existence of hair throughout the black-hole exterior
region, motivated by the existence of the positive G (left). Right panel: the validity of SEC and DEC throughout the exterior region
of the black hole.
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However, by considering EYMH in SOð3Þ with a real
Higgs scalar triplet, one expects stable configurations
for topological reasons, although this needs to be proven.
It would be interesting to examine the bypassing of
Bekenstein’s no-hair theorem for this real scalar case,
following the methods developed in this work.4

Before closing we would like to stress once again that the
bypass of the no-hair theorem we have discussed formally
here pertains to the general relativity framework. From
specific cases in the contemporary literature, it appears that,
in the presence of higher-curvature modifications, the
existence of hair is associated with the violation of energy
conditions. This is the case, for instance, of the Gauss-
Bonnet (GB) scalar theories in both string-inspired dilaton
models [5], and its modern (shift-symmetric) versions [6–8],
or rotating black holes with axion hair, in the context of
Chern-Simons gravity [21,22], where we do know, for a
long time now, that axion hair characterizes the correspond-
ing black-hole solutions [23]. In such a case, the presence of
the axion field coupled to the higher-curvature Chern-
Simons terms bypasses the theorem by violating the energy
conditions [24], in a spirit similar to what happens in the
GB models.
However, the aforementioned models are just examples

of some specific higher-curvature couplings. The answer to
the question as to whether bypassing Bekenstein’s theorem
through violation of the energy conditions is a generic
property of the higher-curvature couplings, or there are
cases where the situation resembles the EYMH system
studied above, has not been answered as yet. We should
note that such higher-curvature couplings share the

property with the Yang-Mills ones that they induce a non-
vanishing G, albeit with an unconstrained sign. Moreover, a
crucial difference from the Yang-Mills case examined here
and in [12,13] is that only the higher-curvature couplings
affect the black hole’s entropy in a nontrivial way as Wald’s
formula implies [25–27]. Thus, a potential relation between
this property of the higher-curvature couplings and the
violation or not of the energy conditions constitutes an
interesting avenue for future research.
We conclude by remarking that other assumptions of

Bekenstein’s theorem could be relaxed, for instance the
staticity of spacetime. Such an assumption can indeed be
loosened by considering stationary spacetimes, describing
rotating black holes, or by assuming an explicit temporal
dependence for the metric components. Such extensions are
of crucial physical importance, since rotating and dynami-
cal black holes [28] are more realistic theoretical models
for the black holes that exist in our observable Universe.
We hope to come back to the study of such issues in a
forthcoming work.
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