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Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the
strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals
with theoretical waveform models to constrain possible deviations from GR. Any physics that is not
included in these waveform models might show up as apparent GR deviations. The waveform models used
in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by
ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal
from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of
these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with
the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests
(TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test.
To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with
three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of
400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz.
We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while
signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity
cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of≳1.5 Gpc.
Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about
detecting a deviation from GR.
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I. INTRODUCTION

At present, general relativity (GR) is the most successful
theory of gravity as it explains current astronomical
observations and laboratory experiments [1,2]. GR has
been rigorously tested over the years but no statistically
significant deviation has been found yet when tested using
solar system observations [1], binary pulsar observations
[2–5], and gravitational-wave (GW) observations [6–10].
Testing GR with GWs from mergers of binary systems has
a special significance since it allows us to probe gravity in
the highly nonlinear and dynamical regime that is not
probed by other tests. In these tests, one compares
theoretical waveform models with the data collected by
GW detectors such as LIGO [11] and Virgo [12]. Any
disagreement between the models and the data may hint
toward a possible deviation from GR (modulo any effects
due to nonstationary and non-Gaussian noise in the data).
Hence it is crucial to have waveform models that are as
accurate as possible; i.e., they should include all known
physics in GR and have systematic errors that are well
below the statistical errors in the observations.
The current tests of GR carried out by the LIGO-Virgo-

KAGRA Collaboration (LVK) that use waveform models

that describe the entire signal are based on waveform
models designed for coalescing binary black holes (BBHs)
on quasicircular orbits and lack information on the eccen-
tricity of the orbit. This is a reasonable choice since binaries
formed through the isolated formation channel [13] get
efficiently circularized by gravitational radiation [14,15]
and hence are expected to have negligible eccentricities
shortly before the merger when their GWs enter the
frequency band of ground-based detectors. However, there
are other pathways that can lead to a significant eccentricity
at small binary separations. For instance, binary formation
from primordial black holes (e.g., [16,17]), dynamical
interactions in dense stellar environments such as galactic
cores or globular clusters (e.g., [18–29]), active galactic
nuclei (e.g., [30,31]), and the evolution of isolated triple
systems (e.g., [32–34]). In these scenarios, the eccentricity
could be as high as ∼1 at 10 Hz.
Various N-body simulations on the evolution of binaries

in globular clusters (e.g., [22,27]) suggest that ≳5% of
binaries can have eccentricities > 0.1 when their GWs
enter the advanced LIGO frequency window. This suggests
that at least a fraction of binaries detected by LIGO-Virgo
detectors will have non-negligible eccentricity. Recent
analyses of data from GWTC-3 [35] events found evidence
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of eccentricity [36–39] but are not able to distinguish
between the effects of spin precession and eccentricity at
present (see, e.g., [40]) since there are no waveform
models including the merger-ringdown portion of the
waveform that contain both effects. Moreover, it has
been shown that inferred binary parameters will be biased
if the detected binaries are on eccentric orbits [36,41,42],
and nonnegligible residual eccentricity in the ground-
based detector band can also mimic a significant deviation
from GR [43,44].
In this paper, we study the effect of ignoring eccentricity

while testing GR using some of the standard tests employed
by the LVK. Specifically, we consider the test infrastructure
for general relativity (TIGER) [45,46], flexible-theory-
independent (FTI) [47], modified dispersion relation
(MDR) [48], and inspiral-merger-ringdown (IMR) con-
sistency [49,50] tests and check their response to simu-
lated eccentric BBH GW signals in the LIGO-Virgo
network at its forecast O4 sensitivity [51]. To simulate
eccentric GW signals, we use numerical relativity (NR)
waveforms from the simulating extreme spacetimes (SXS)
catalog [52]. Our simulated observations have the follow-
ing properties: all binaries are nonspinning, have three
mass ratios (q ¼ 1, 2, 3) and a redshifted total mass of
80M⊙, and are observed face-on at a luminosity distance
of 400 Mpc. Moreover, for each mass ratio, we choose NR
simulations (from [53]) where the binary’s eccentricity is
∼0.05 and ∼0.1 at 17 Hz for our total mass of 80M⊙.
For comparison, we also consider a quasicircular NR
waveform for each mass ratio.
We found that, as expected, all quasicircular signals are

consistent with GR at 90% credibility in all tests except for
q ¼ 2, 3 in the IMR consistency test. We find that the
biases obtained in the IMR consistency can be attributed to
the inclusion of higher modes in the analysis for the face-on
signals we consider, though the same set of higher modes is
used in both the simulated signal and the recovery wave-
form, and this bias is even present when the same wave-
forms are used for both the simulated signal and recovery.
Ongoing studies [54] have found that these biases are only
significant for binaries very close to face-on (or face-off).
The signals with lower eccentricity show significant GR
deviations in the TIGER and FTI tests for higher order post-
Newtonian (PN) testing parameters while the higher-
eccentricity signals show very significant GR deviations
for almost all testing parameters. Both lower- and higher-
eccentricity signals are found to be consistent with GR at
90% credibility for almost all testing parameters in MDR
test. On the contrary, the higher-eccentricity signals show
strong GR deviations in the IMR consistency test even in an
analysis without higher modes. We also study the scaling of
the posterior probability distributions of testing parameters
with luminosity distance for a few cases. This is because
increasing the distance leads to fainter signals which in turn
lead to broader posteriors, so any GR deviation that is

present might be lost in the statistical error. We found that
we can still observe GR deviations at ∼90% credibility
from eccentric signals placed at distances ≳1.5 Gpc,
≳1.2 Gpc, and ≳0.5 Gpc in the TIGER, FTI, and MDR
tests, respectively.
This paper is organized as follows: In Sec. II, we give the

details of the four tests of GR we consider, and in Sec. III
we give the specifics of our simulated observations. In
Sec. IV, we discuss the results from our analysis, and we
conclude in Sec. V. We use geometrized (G ¼ c ¼ 1) units
throughout.

II. TESTS OF GR

The tests we consider are all based on waveform models
for quasicircular BBHs in GR, viz., IMRPhenomPv2
[55–57] (TIGER), SEOBNRv4HM_ROM [58,59] (FTI),
and IMRPhenomXPHM [60] (IMR consistency and
MDR). IMRPhenomPv2 is a frequency-domain phenom-
enological model which only has the dominant ðl; mÞ ¼
ð2;�2Þ modes in the coprecessing frame and a simple,
single-spin model for precession. SEOBNRv4HM_ROM is a
frequency-domain reduced-order model of a (time-domain)
aligned-spin effective-one-body model that includes the
ð2;�1Þ, ð3;�3Þ, ð4;�4Þ, and ð5;�5Þ modes in addition to
the dominant ð2;�2Þ modes. IMRPhenomXPHM is a
frequency-domain phenomenological model that improves
the accuracy of IMRPhenomPv2, including two-spin
precession and the ð2;�1Þ, ð3;�3Þ, ð3;�2Þ, and ð4;�4Þ
subdominant modes in the coprecessing frame. The
latest LVK testing GR catalog paper [10] also uses
IMRPhenomXPHM for the IMR consistency test and
the version without higher modes (IMRPhenomXP) for
the MDR test. The latest LVK testing GR catalog paper
does not include the TIGER test, but the previous testing
GR catalog paper [9] also uses IMRPhenomPv2. The
LVK FTI analyses use SEOBNRv4HM_ROM (the version
without higher modes) for most events, but the previous
testing GR catalog paper [9] uses SEOBNRv4HM_ROM
when applying FTI to signals with significant evidence for
higher modes.

A. TIGER and FTI

The TIGER test [45,46] introduces parametrized devia-
tions in the frequency-domain phase of the BBH signal.
The version used in, e.g., [8,9] modifies the phase of
the aligned-spin dominant mode IMRPhenomD waveform
model [56], and then this modified phase is twisted up
using GR spin precession (as in the unmodified
IMRPhenomPv2) to obtain a modified version of the
precessing IMRPhenomPv2 waveform. There is a new
IMRPhenomXP-based version of TIGER that was not
ready for inclusion in [10] and is not yet publicly available.
The parametrized deviations are introduced in the PN
coefficients (φk, φkl) in the Fourier-domain inspiral phase
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of the waveform (leaving off additive constants and phase
and time shifts),

ΦðfÞ ¼ 3

128ηv5
X7

k¼0

ðφkvk þ 3φklvk ln vÞ ð1Þ

(the factor of 3 in the log term is due to the definition
of PN coefficients used in TIGER) as well as in the
phenomenological coefficients in the late-inspiral and
merger phases of the waveform (βk and αk). See Table I
in [6] for a summary of the frequency dependence of
these terms. In the frequency-domain phase expression,
η ≔ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio, where
m1;2 are the binary’s individual masses, and v ≔ ðπMfÞ1=3,
whereM ≔ m1 þm2 is the binary’s (redshifted) total mass
and f is the GW frequency. Additionally, the logarithmic
coefficients are only nonzero for k∈ f5; 6g.
The IMRPhenomD phase is constructed to be C1, so the

changes to one of the lower-frequency portions of the phase
affects the remainder of the phase due to the C1 matching.
For example, the deviations in the PN coefficients also
affect the late inspiral and merger-ringdown portions of
the signal. Denoting any of these coefficients by pk, the
deviation parameter δp̂k is introduced by the replacement
pk → ð1þ δp̂kÞpk, except for δφ̂1 which is zero in GR, so
we just normalize by 0PN coefficient. Additionally, for
the PN coefficients, the deviation parameter is normalized
by the nonspinning portion of the coefficient, to prevent
degeneracies in cases where the spins can cause a
coefficient to vanish. The deviation parameters are all
zero in GR.
While one expects all PN coefficients after a given order

to be modified in an alternative gravity theory, we only
vary one parameter at a time in our application of TIGER,
as in the LVK catalog analyses [8,9]. We do this since one
obtains uninformative results when allowing multiple
parameters to vary simultaneously, as illustrated for
GW150914 in [6], but one can still detect GR deviations
that modify multiple PN coefficients (or other testing
parameters) when varying a single one (even if this testing
parameter is itself not modified), as illustrated in [46,61].
However, in the future, it will possible to constrain all PN
coefficients at the same time with good accuracy using
multiband observations of BBHs [62,63]. This is because
degeneracies between parameters are removed when
combining data from a ground-based detector such as
Cosmic Explorer [64] and a space-based detector such
as LISA [65], which improves the measurement of param-
eters. Principal component analysis is another method to
perform multiparameter tests which is shown to be effective
with observations from current [66,67] and future [68,69]
GW detectors.
The FTI test [47] is similar to TIGER, except it only

considers deviations in the PN coefficients and is applicable
to any aligned-spin waveform model, though the current

implementation of the higher-mode version is restricted to
SEOBNRv4HM_ROM. Additionally, it tapers the deviations
to zero above a given frequency instead of letting them
affect the rest of the signal. FTI also normalizes the
deviation parameter using the full PN coefficient, including
the spin contributions, but we reweight the results to the
TIGER convention as in the LVK analyses [8–10], for easy
comparison.

B. Modified dispersion relation

TheMDR test introduces a phenomenological dispersion
relation, following [48], which gives a frequency-
dependent propagation of GWs. Specifically, it considers

E2 ¼ p2 þ Aαpα; ð2Þ

where E and p are the energy and momentum of the GWs,
while Aα and α are phenomenological parameters that
determine the strength of the GR deviation and the
frequency dependence of the dispersion, respectively.
For α ¼ 0 and A0 > 0, this corresponds to the dispersion
relation of a massive graviton. As discussed in [8], it is a
good assumption to take the waveform close to the source
to be that given by GR to a very good approximation, and
the only modification to the waveform is due to the
dispersive propagation. In general, this modification is
an addition ∝ Aαfα−1 to the waveform’s frequency-domain
phase,1 and the magnitude of the dephasing increases
with distance (see, e.g., [8] for the specific expressions).2

As in the LVK analyses (e.g., [10]), we consider α∈
f0; 0.5; 1.5; 2.5; 3; 3.5; 4g, where α ¼ 2 is omitted since
there is no dispersion in this case. We also omit α ¼ 1 since
the current implementation gives the logarithmic dephasing
one gets using the particle velocity considered in [48],
while the expression using the group velocity [71] (which it
makes more sense to consider) gives a constant dephasing.
Such a constant dephasing is detectable with waveforms
including higher modes but is not implemented in the
current implementation of the test in LALSuite [72]. Also as
in the LVK analyses, we sample in an effective wavelength
parameter (given in [8]) and consider the positive and
negative Aα cases separately. We then combine together the
results for the two different signs of Aα and reweight to a
flat prior in Aα, as described in [8].

1While the MDR dephasing for α ¼ 0 has the same frequency
dependance as the δφ̂2 TIGER/FTI and δα̂2 TIGER testing
parameters, the MDR dephasing affects the entire signal,
while the TIGER and FTI dephasing is only restricted to
certain frequencies.

2The exponent in Eq. (4) of [8] should be 1=ð2 − αÞ, as pointed
out in [9]. Additionally, as in, e.g., [10], we use the TTþ lowPþ
lensingþ ext cosmological parameters from [70] in calculating
the dephasing.
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C. IMR consistency test

The IMR consistency test [49,50] checks the consistency
of the low- and high-frequency portions of a BBH signal.
The division between these portions of the signal is made at
the median of the (jmj ¼ 2) GW frequency of the innermost
stable circular orbit (ISCO) of the final Kerr black hole [73]
obtained from the GR analysis of the full signal. The LVK
analysis uses a more involved procedure to obtain the cutoff
frequency using the medians of the individual masses
and spins. However, we found that this gives negligible
differences (at most 1 Hz) compared to the more straight-
forward calculation we use. Thus, considering the
dominant ð2;�2Þ modes of the waveform, the low- and
high-frequency portions of the signal correspond to the
inspiral and postinspiral stages of the binary’s coalescence.
The test assesses the consistency of the two portions of

the signal by inferring the (redshifted) final mass Mf and
spin χf from each portion, giving deviation parameters,

ΔMf

M̄f
≔ 2

Minsp
f −Mpostinsp

f

Minsp
f þMpostinsp

f

;
Δχf
χ̄f

≔ 2
χinspf − χpostinspf

χinspf þ χpostinspf

;

ð3Þ

where the “insp” and “postinsp” superscripts correspond to
the low- and high-frequency portions of the signal. These
deviation parameters should both be zero if the signal is
consistent with the waveform model used in the analysis
(which is a quasicircular BBH merger in GR in all current
applications). The final mass and spin are computed as
follows. One first performs parameter estimation analysis
for each portion of the signal using a standard BBH
waveform (in our case, IMRPhenomXPHM) parameterized
by the binary’s initial masses and spins. One then computes
the final mass and spin using an average of fits to NR
simulations [74–76].3 As in [9,10], we reweight to a flat prior
in the deviation parameters to obtain the final results.

III. SIMULATED OBSERVATIONS AND
PARAMETER ESTIMATION SETUP

We consider simulated BBH observations in the LIGO-
Virgo network with the forecast O4 sensitivity [51]—we
use the more sensitive LIGO noise curve and do not include
KAGRA since it is expected to be much less sensitive than
LIGO and Virgo in O4 [78]. We also do not include noise in
our simulated observations (i.e., taking the zero realization
of Gaussian noise) in order to avoid biases due to specific
noise realizations. We model the BBH waveforms using a
selection of nonspinning NR simulations from the SXS
catalog [52]. In particular, all the eccentric waveforms are

ones used in [53], since that paper gives the eccentricities at
a fixed dimensionless frequency obtained by comparison
with a PN waveform. We consider cases with eccentricities
around 0.05 and 0.1, for comparison. We do not consider
the higher eccentricity simulations from that paper, since
they are not long enough to include all the power starting at
20 Hz for our chosen total mass of 80M⊙. We also consider
quasicircular waveforms with the same mass ratios, for
comparison. We give the properties of all the simulations
we consider in Table I. We use the N ¼ 2 extrapolated
waveforms and the highest resolution simulation available
in the SXS catalog.
We choose a (redshifted) total mass of 80M⊙ so that

the simulation is long enough that the binary’s entire
signal is in the detectors’ sensitive band starting from a
Fourier frequency of 20 Hz. We consider a face-on signal
(inclination angle 0) so that only the m ¼ 2 [spin-(−2)-
weighted] spherical harmonic modes of the signal contrib-
ute, and thus we do not have to worry about the m > 2
modes, which would require significantly longer NR
simulations in order for the signal to include all the power
down to 20 Hz without a much higher total mass (∼120M⊙
for the current simulations even if only including the
jmj ¼ 3 modes). For the other extrinsic parameters, we
choose a luminosity distance of 400 Mpc, similar to
GW150914 [79], and a randomly chosen sky location
(right ascension, declination of 3.19, −0.14 rad), polariza-
tion angle (1.53 rad), and coalescence GPS time
(1129708949). We also consider selected cases at a larger
distance, for comparison, as discussed in Sec. IV E. In GW
data analysis terminology we often refer to these simulated
GW observations as injections, which we will henceforth
use in the paper.

TABLE I. The SXS simulations we consider and their proper-
ties. All of these simulations have negligible spins. The eccen-
tricities given are those from [53], which are quoted at a PN
velocity squared of 0.075 (so an jmj ¼ 2 GW frequency of
∼17 Hz for the 80M⊙ binaries we consider), except for the ones
that give an upper bound of 10−4. For these, we quote an upper
bound that is greater than the eccentricities quoted in the SXS
metadata. Those eccentricities come from the eccentricity reduc-
tion procedure, which is not designed to measure nonzero values
of eccentricity.

ID Mass ratio Eccentricity

SXS:BBH:1155 1 < 10−4

SXS:BBH:1355 1 0.053
SXS:BBH:1357 1 0.097

SXS:BBH:1222 2 < 10−4

SXS:BBH:1364 2 0.044
SXS:BBH:1368 2 0.097

SXS:BBH:2265 3 < 10−4

SXS:BBH:1371 3 0.055
SXS:BBH:1373 3 0.093

3We augment the aligned-spin final spin fits with the con-
tribution from in-plane spins [77], but as in [8–10], we do not
evolve the initial spins before applying the fits.
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We choose the same (spin-weighted spherical harmonic)
mode content in the injections as the (coprecessing frame)
modes present in the waveform models used in the tests, to
avoid any biases due to missing modes. Since only the
m ¼ 2 mode contributes in our face-on case, that means
that we just include the (2, 2) mode in the injections
to which we apply TIGER and FTI tests (using
IMRPhenomPv2 and SEOBNRv4HM_ROM, respectively)
and also include the (3, 2) mode in the injections to
which we apply the MDR and IMR consistency tests
(using IMRPhenomXPHM). The (3, 2) mode makes a
∼10% correction to the (2, 2) mode’s amplitude; in general
the maximum amplitudes of the ðl; 2Þmodes scale roughly
as 102−l with respect to the (2, 2) mode, so the (4, 2) and
higher modes make a ∼1% correction. Thus, we do not
expect significant differences between our results and the
results one would obtain when applying these tests to a real
eccentric signal with the same parameters as our signals.
We obtain network signal-to-noise ratios (SNRs) for our
ð2; 2Þ þ ð3; 2Þ [(2, 2) only] injections of about 120 (116),
106 (103), and 90 (87) for mass ratios q ¼ m1=m2 ¼ 1, 2,
and 3, respectively. The SNR values given are those for the
lower-eccentricity injections, rounded to the nearest inte-
ger. The SNRs of the quasicircular and higher-eccentricity
injections differ by < 1.
We perform the parameter estimation using the imple-

mentation of nested sampling [80] in the LALInference

code [81] in the LALSuite software library [72]. We use a
lower frequency of 20 Hz and upper frequency of 512 Hz in
analyzing the injections, except for the different upper and
lower frequencies used in the inspiral and postinspiral
analyses, respectively, for the IMR consistency test. We use
the same priors on the GR parameters as in the LVK
applications of these tests, which are the same as the GR
parameter estimation analyses (see, e.g., the discussion in
Appendix E of [35]), except with larger ranges in some
cases to account for correlations with non-GR parameters
and with a prior on the luminosity distance that is uniform
in Euclidean volume, instead of the more complicated prior
uniform in comoving frame merger rate used in the LVK
GR parameter estimation analyses. Specifically, we use
uniform priors in redshifted masses and spin magnitudes as
well as isotropic priors in spin directions, binary orienta-
tion, and sky location. The priors on the non-GR param-
eters are all flat.

IV. RESULTS

We now discuss the results obtained when performing
the four tests of GR described in Sec. II on the simulated
eccentric signals discussed in Sec. III.

A. TIGER

We give the posterior probability distributions (hence-
forth posterior distributions or posteriors) of the TIGER

testing parameters for all our injections in Fig. 1. As
expected, results from quasicircular injections for all three
mass ratios are consistent with GR at 90% credibility.
For the lower-eccentricity injections, we find that GR is
excluded at ≳90% credibility in almost all cases. The
higher-eccentricity injections all show strong deviations
from GR, with GR excluded at > 90% credibility (often
well above this) for all three mass ratios and all testing
parameters.
We summarize the statistical level at which GR is

excluded in Fig. 2, giving the equivalent Gaussian sigmas.
However, we find that GR is excluded at such high credible
levels in some cases that we cannot trust that the GR
quantile is estimated accurately with the ∼104 posterior
samples we obtain. In order to estimate an appropriate
lower bound in such cases, we drew 1.8 × 104 samples
from a Gaussian and compared the analytically computed
Gaussian sigma values with the ones obtained using the
same kernel density estimator (KDE) calculation applied to
the results of the tests of GR. We chose this number of
samples to be similar to (and on the lower side of) the
number of samples we obtain for many of our analyses. We
also varied the mean and standard deviation of the Gaussian
to produce different GR quantiles and to reproduce the
rough properties of the posteriors we obtain for the testing
parameters. We found that Gaussian sigma values above
around 3σ had absolute errors (comparing the KDE and
analytic results) of more than 0.1, so we quote a lower
bound of 3σ on significances.
We find that GR is excluded at > 3σ for all testing

parameters for the q ¼ 1 higher-eccentricity injections. GR
is also excluded with > 3σ for the q ¼ 2, 3 higher-
eccentricity injections with the exception of δφ̂6, δφ̂7,
and δβ̂2 for q ¼ 2 and δβ̂2 for q ¼ 3, though in all of
these cases GR is excluded at > 2σ and close to 3σ in some
cases. The lower-eccentricity q ¼ 1 and q ¼ 2 injections
exclude GR at < 3σ for all testing parameters with the
exception of δβ̂3, where it is excluded at > 3σ. For the
q ¼ 3 lower-eccentricity injection, GR is excluded at > 3σ
only for the δφ̂5l, δφ̂6, δφ̂7, and δβ̂2 testing parameters.
In Fig. 1, we notice that the sign of the deviation from

GR for a given mass ratio and eccentricity is different for
different testing parameters. This is due to the PN coef-
ficients and phenomenological parameters used in the
normalization themselves having different signs. We also
see that all the testing parameters are on the opposite sides
of zero for the lower- and higher-eccentricity injections
for q ¼ 1. This can be attributed to these cases being well
outside of the linear regime of the test’s response to
eccentricity, and these cases generally have significantly
different sets of GR and non-GR parameters giving the
best agreement with the observed signal for the two
eccentricities. For instance, for δφ̂0 and q ¼ 1, the chirp
mass is biased to larger values for the smaller eccentricity
and smaller values for the larger eccentricity, while for the
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same testing parameter and q ¼ 2, the bias in the GR
parameters generally increases monotonically from the
smaller to the larger eccentricity, as does the value of the
testing parameter.
Additionally, we find that the sign of a given testing

parameter is different for different mass ratios. For the
higher-eccentricity cases, there is generally a monotonic
dependence of the value of the testing parameter on mass
ratio, but for the lower-eccentricity cases, the signs of the
PN coefficient testing parameters are the same for q ¼ 1
and q ¼ 3 and opposite those for q ¼ 2. We investigate this
difference in signs as follows: We first take the 3.5PN
accurate quasicircular TaylorF2 nonspinning inspiral phase
[82,83] and add the TIGER testing parameters at each PN
order. We compare this phase with the eccentric PN inspiral
phase from Moore et al. [84] which incorporates the effect
of eccentricity to 3PN order (but is 3.5PN accurate in the
quasicircular terms) and the leading-order (quadratic) terms
in eccentricity. For each testing parameter, we obtain
the value that minimizes the least-squares difference
between the two phases with all the GR parameters fixed
to the same values. However, we do not find any indication

of a sign flip, and also find that this analysis returns values
of the testing parameter of the order 10−3, significantly
smaller than what we find in the full analysis, suggesting
that the merger-ringdown portion of the signal is quite
important here. Nevertheless, we do find that the frequency
derivative of the eccentric PN phase depends nonmonotoni-
cally on mass ratio (the ordering of the value by mass ratio
is 1, 3, 2), showing that there is some nonmonotonicity
present in the PN results.
We now compare our results with those from Saini et al.

[43] which also studied the effect of ignoring eccentricity
when performing the parametrized test of PN coefficients
(though they do not consider the δφ̂1 testing parameter).
The authors compare the expected value of the deviation
parameters due to eccentricity using the formalism from
[85], which is based on the Fisher matrix approach [86,87]
that is used to obtain a prediction for the statistical errors in
the deviation parameters. They only consider the inspiral
portion of the signal and model the eccentric waveforms by
adding the nonspinning eccentric contribution to the 3PN
frequency domain phase from Moore et al. [84] to the
aligned-spin 3.5PN GR phase [82,83,88,89], which is also

FIG. 1. The results of the TIGER test on the quasicircular, lower-eccentricity, and higher-eccentricity simulated injections of mass
ratios 1, 2, and 3 in the top, middle and bottom panels, respectively. The posteriors of the testing parameters are presented as violin plots
and the associated 90% credible intervals are labelled as horizontal bars. We mark the GR value of zero with dashed lines. We also show
the results for the lower SNR injections, simulated by scaling the distance of selected higher-eccentricity runs for each mass ratio, as
black unfilled violin plots. Details about the lower SNR cases are given in Sec. IV E.
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what they use to model the GR signals. Out of all the cases
that Saini et al. considered, we make comparisons only for
binaries with total redshifted masses of 72M⊙ and 99M⊙
(source-frame masses of 65M⊙ and 90M⊙) since they are
the closest to the 80M⊙ used for our injections. Saini et al.
only consider a mass ratio of 2, include aligned spins of 0.5
and 0.4, place the binaries at a distance of 500 Mpc, and
specify the binaries’ eccentricity at 10 Hz. Since we are
using the eccentricity values from [53], which are given at
the PN velocity squared of 0.075, corresponding to ∼17 Hz
for our 80M⊙ binary, we use Eq. (4.17) in [84] to obtain an
estimate of our lower and higher eccentricities at 10 Hz,
giving 0.08 and 0.18, respectively, for the q ¼ 2 case. We
also have to convert the deviation parameters from the FTI
convention (i.e., including the spinning terms in the PN
coefficient used for the scaling) used by Saini et al. to the
TIGER convention (i.e., only scaling by the nonspinning
PN terms) that we use. We do this roughly using their
injected parameters, which give scaling factors of 0.70,
0.75, 0.23, 0.029, and −1.2 (ratios of full to nonspinning

PN coefficients) for δφ̂3, δφ̂4, δφ̂5l, δφ̂6, and δφ̂7. For the
other cases, the PN coefficients have no dependence on the
spin, so no rescaling is necessary.
Comparing the standard deviations of our posterior

distributions of inspiral testing parameters for q ¼ 2 to
the statistical biases shown in Fig. 1 of Saini et al., scaling
their results to our SNRs, we found that the Saini et al.
statistical errors are larger by a factor of ∼2–9 (smallest for
δφ̂3 and largest for δφ̂4) with the exception of δφ̂6, δφ̂6l,
and δφ̂7, where the Saini et al. statistical errors are smaller
than our standard deviations by a factor of ∼3–5. (When
making these comparisons here and below we always quote
the smaller of the two differences between our results and
the Saini et al. results for total masses of 72M⊙ and 99M⊙.)
For these high-PN order coefficients, the smaller errors
found by Saini et al. may be because they take the inspiral
to extend up to the ISCO frequency of the final black hole
(Mf ≃ 0.06 in their case), while the TIGER testing param-
eters are only applied up to the end of the IMRPhenomD
inspiral phase (Mf ¼ 0.018). Additionally, while we scale

FIG. 2. The Gaussian sigma value at which GR is excluded for the eccentric injections with the TIGER, FTI, and MDR tests. A lower
bound of 3σ is denoted using an upward arrow, above which the values cannot be stated with certainty from the order of 104 posterior
samples in our analyses. The sizes of different markers and lengths of arrows have no significance and are varied to avoid overlaps with
other data points as much as possible.
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the Saini et al. statistical errors to our SNR to make the
results more comparable, there are many differences
between our two analyses, so the significant differences
we find are likely not unexpected. In particular, in addition
to the differences in statistical methods and waveforms,
Saini et al. also only consider a single LIGO detector with a
slightly older noise curve and use a lower-frequency cutoff
of 10 Hz, while we use 20 Hz.
We also compare the median of our q ¼ 2 posteriors

with the systematic biases shown in Fig. 1 of Saini et al. In
general, we find that the agreement is better for the lower
PN coefficients (k ≤ 4). Specifically, for both eccen-
tricities, we found that our median is contained within
the Saini et al. range of systematic biases for the two total
masses for δφ̂0 and δφ̂4. Additionally, for the larger
eccentricity our median is only ∼5% smaller than the
result for the larger total mass for δφ̂2 and ∼20% larger than
the result for the smaller total mass for δφ̂3. For δφ̂5l, the
Saini et al. systematic bias is ∼5 times (∼20%) larger than
our median for the larger (smaller) eccentricity. For all the
δφ̂k not yet mentioned for a given eccentricity, the Saini
et al. systematic bias is smaller than our median. For the
larger eccentricity, the Saini et al. systematic bias is smaller
by a factor of ∼10 for δφ̂6 and δφ̂7, while it is smaller by a
factor of ∼20 for δφ̂6l. For the smaller eccentricity, the Saini
et al. systematic bias is smaller by factors of ∼2 (for δφ̂3) to
∼60 (for δφ̂6l).
It is also useful to compare the statistical level at which

GR is excluded in the two analyses. Here we can compare
the ratio of the systematic bias to statistical error (scaled
to our SNR) from Saini et al. with the Gaussian sigma
equivalents to our GR quantiles (as given in Fig. 2). We find
that both analyses agree that there is a significant GR
deviation for the larger eccentricity and δφ̂0, δφ̂2, and δφ̂4.
However, the Saini et al. systematic biases are smaller or
comparable to their (SNR scaled) statistical errors for the
other PN coefficients and the higher eccentricity, as well as
for the smaller eccentricity, even though we find significant
(> 2σ) GR deviations for most testing parameters in those
cases. Nevertheless, the Saini et al. study finds that one can
obtain a significant GR deviation for an eccentricity of∼0.1
for the smaller total masses (particularly 15M⊙) for which
their inspiral-only analysis is more reliable, so their overall
conclusions are in agreement with those of our study.
Finally, we consider the biases in the GR parameters: As

mentioned above for δφ̂0, we find that for q ¼ 1, the chirp
mass is biased in different directions for the smaller and
larger eccentricity cases; we also find that the bias is in the
opposite direction with the δα̂k deviation parameters than
with the other deviation parameters. This bias primarily
comes from a bias in the total mass, and we also find that
there are biases in the total mass and chirp mass for the
other mass ratios, though the biases are in the same
direction for both eccentricity values for almost all testing
parameters, and for q ¼ 3, the total mass is consistent with

the injected value for the PN deviation parameters. We also
find biases in the effective spin [90,91], and find significant
support for nonzero values of the effective precession
spin parameter χp [55,92] for many cases, particularly
for the higher eccentricities and δφ̂k deviation parameters.
There are even no samples near χp ¼ 0 for a few testing
parameters in the higher-eccentricity cases. However, we
do not find that the cases with larger support for precession
have smaller GR deviations, as one might think would be
the case (i.e., that the precession was absorbing some of the
GR deviation). In fact, we usually finds both more support
for precession and a larger GR deviation when increasing
the eccentricity, though we generally do not find correla-
tions between the testing parameter and χp. However, we
find significant correlations between the testing parameter
and χeff . We also find biases in the distance (both to larger
and smaller values) and inclination angle, particularly for
the larger eccentricity cases.

B. FTI

Similar to Fig. 1, Fig. 3 displays the posterior distribu-
tions of FTI testing parameters as violin plots. As we
anticipate, all quasicircular injections are consistent with
GR at 90% credibility. The q ¼ 1 and 2 lower-eccentricity
injections are both consistent with GR at 90% credibility.
However, for the q ¼ 3 lower-eccentricity injection, GR is
excluded at > 90% credibility for all but δφ̂0, with the
credible level at which GR is excluded increasing with
increasing PN order. For the higher-eccentricity injections,
the testing parameters show significant deviations from
GR for q ¼ 1 and q ¼ 3 while moderate to no deviation for
q ¼ 2, which is consistent with GR at 90% credibility for
most testing parameters. We refer to Fig. 2 again for the
corresponding GR quantiles for all of our injections. We
find that for the q ¼ 1 higher-eccentricity injection, GR is
excluded at > 3σ for all testing parameters, except for δφ̂5l,
δφ̂6, and δφ̂7. For the q ¼ 2 higher-eccentricity injection,
there is consistency with GR at < 2σ, except for the δφ̂0

and δφ̂7 testing parameters, where GR is excluded at
slightly above 2σ.4 For q ¼ 3, we again find that GR is
excluded at > 3σ for all testing parameters for the higher-
eccentricity injection and for δφ̂5l, δφ̂6 for the lower-
eccentricity injection. We see the same general monotonic
dependence of the value of the testing parameters with
mass ratio seen for TIGER, but do not see the difference in
signs for the lower- and higher-eccentricity cases seen for
q ¼ 1 with TIGER.
Comparing the standard deviations and medians of our

FTI posterior distributions with the results from Saini et al.

4We checked that the significant difference between the
TIGER and FTI results for q ¼ 2 is not due to the inclusion
of higher modes in the FTI analysis by applying FTI for δφ̂3 with
just the dominant l ¼ jmj ¼ 2 modes to an injection containing
just these modes and found that the posterior still peaks at 0.
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as we did for TIGER, we find the same relation between the
statistical errors that we did with TIGER. The medians we
obtain with FTI are all smaller in magnitude than those
obtained with TIGER, so we find that for the smaller
eccentricity they are contained between the values for the
two (redshifted) total masses considered by Saini et al.
(72M⊙ and 99M⊙) for δφ̂0, δφ̂2, and δφ̂4. Our median is ∼2
times larger for δφ̂3 and δφ̂6, ∼30 times larger for δφ̂6l, and
∼6 (∼2) times smaller for δφ̂5l (δφ̂7). For the larger
eccentricity, only the median for δφ̂0 is between the two
boundaries. For δφ̂6, δφ̂6l, and δφ̂7, our median is ∼5–8
times larger than the systematic bias obtained by Saini
et al., but in all the other cases our median is smaller than
the Saini et al. systematic bias, only by a factor of ∼3 for
δφ̂4, but up to a factor of ∼20 for δφ̂3. Since the FTI GR
deviations are not as large as the TIGER ones for q ¼ 2,
there are not many cases as for TIGER where we find a
significant GR deviation with FTI but Saini et al. find a
systematic bias that is comparable to or smaller than the
statistical error scaled to our SNR, though δφ̂7 larger
eccentricity is a notable such case.
We find in general the same sorts of biases in the GR

parameters as for TIGER, except mostly smaller (as is
likely expected for the smaller parameter space of non-
precessing systems considered here), and without any

significant bias in the inclination angle. However, we do
find that there are notable biases to larger total masses,
more equal mass ratios, and larger distances for the q ¼ 3
higher-eccentricity case.

C. MDR

Figure 4 illustrates the posteriors of the modified
dispersion parameter Ãα for different values of the modified
dispersion relation exponent α. All the cases considered
are consistent with GR at 90% credibility except for the
q ¼ 2, α ¼ 1.5; q ¼ 3, α ¼ 3; and q ¼ 3, α ¼ 3.5 higher-
eccentricity and q ¼ 1, α ¼ 1.5 lower-eccentricity cases
where GR is excluded at> 2σ. However, GR is excluded at
< 3σ for all testing parameters as illustrated in Fig. 2. The
lack of significant GR deviation in MDR test means that the
modification to the waveform from the modified dispersion
is mostly orthogonal to the modification introduced due to
eccentricity (compared to the manifold of quasicircular
waveforms). We find that in most cases, there is significant
support for precession (usually well-constrained χp poste-
riors with no posterior samples near zero), except in a few
lower-eccentricity q ¼ 2 cases. These χp posteriors are
generally considerably narrower than those for TIGER.
There are also small biases in the effective spin (in both

FIG. 3. Violin plots for FTI testing parameters. The color scheme and the layout of the subplots are similar to Fig. 1.
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directions) in some cases, as well as biases in the total mass
to slightly larger values.

D. IMR consistency test

In Fig. 5 we show our results from the IMR consistency
test.5 We find a significant deviation from GR for all three
mass ratios for the higher-eccentricity injections (GR
quantiles of 99.9%, ∼100%, and 99.4% for q ¼ 1, 2,
and 3, respectively)6 and also for the lower-eccentricity
injections for q ¼ 2, 3 (GR quantiles of 93% and 99.8%,
respectively).7 Surprisingly, we also find that q ¼ 2, 3
quasicircular injections give noticeable GR deviations

(GR quantiles of 96% and 99%, respectively). We find
the same biases when applying the test to injections with
the same parameters created using IMRPhenomXPHM
instead of NR waveforms, so this is not due to waveform
systematics. Thus, we suspect that this is due to the
presence of higher modes in the recovery waveform
model (i.e., IMRPhenomXPHM), since there are not yet
extensive tests of the IMR consistency test using waveform
models including higher order modes. However, while
there are applications of the test to detected signals using
IMRPhenomXPHM [10], the methods papers [49,50] do not
consider waveform models with higher modes.
To verify this hypothesis, for these cases we applied

the IMR consistency test to the (2, 2)-mode-only NR
injections using IMRPhenomXP, which is the same as
IMRPhenomXPHM, except it only has the ð2;�2Þ modes
in the coprecessing frame, as the recovery waveform
model. We use the same cutoff frequencies as in the
IMRPhenomXPHM analysis. We show the results from
these analyses in Fig. 6. As expected, we now find that the
quasicircular injections indeed agree with GR (as do the
lower-eccentricity injections) while the higher-eccentricity
injections still show a GR deviation (GR quantiles of

FIG. 4. Violin plots for the modified dispersion relation dimensionless parameter Ãα ≔ 1043−12αAα=eV2−α for different values of the
modified dispersion relation exponent α, where the scaling is chosen to keep the plotted results of order unity. The color scheme and
layout of subplots are similar to Fig. 1. The q ¼ 2 lower-SNR result is omitted due to difficulty in obtaining reliable results.

5The cutoff frequencies are f120; 119; 126g Hz, f107; 107;
108g Hz, and f95; 96; 94g Hz for q ¼ 1, 2, and 3, giving the
values as fquasicircular; lower-eccentricity; higher-eccentricityg.
These are obtained from a GR analysis of the signals using
IMRPhenomXPHM.

6We have not checked the extent to which these large GR
quantiles are reliable given the order of 104 posterior samples we
have.

7Both inspiral and postinspiral analyses prefer equal masses,
while the total mass is biased to lower values in the inspiral and to
higher values in the postinspiral.
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∼100% and 99% for q ¼ 2 and 3, respectively). Therefore,
we conclude that it is necessary to have a better under-
standing of the IMR consistency test when using wave-
forms with higher order modes. The studies necessary to
obtain such a better understanding are currently underway,
and they have already found that the bias is only significant
when the binary is quite close to face-on (or face-off),
though the bias does increase monotonically as the incli-
nation varies from edge-on to face-on/face-off [54].
Bhat et al. [44] also studied the effect of missing

eccentricity in the recovery waveform model when

performing the IMR consistency test. They used the same
Fisher matrix approach in this analysis as in the PN
parameter analysis in Saini et al., but here they use a full
waveform model (the nonprecessing dominant mode
IMRPhenomD model [56]), instead of just restricting to
the PN inspiral waveform. They model the eccentric
inspiral signal by adding the PN eccentric frequency
domain phase contribution to the IMRPhenomD phasing.
They also assume that the eccentricity has a negligible
effect on the merger-ringdown part of the signal (as one
expects will be the case for small eccentricities, since

FIG. 5. The results from the IMR consistency test as the 90% credible regions of the joint posterior distributions of the recovered final
mass and spin deviation parameters for quasicircular, lower-eccentricity, and higher-eccentricity injections for mass ratios 1 (top left),
2 (top right), and 3 (bottom). We also show the one-dimensional distributions for the marginalized deviation parameters. The color
scheme is the same as in Fig. 1. Note that the range of the horizontal axes is smaller for the q ¼ 2 plot than for the other two cases and the
vertical axis range is larger for the q ¼ 3 plot than for the other two cases.
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eccentricity decreases during the inspiral), and ignored its
effects on the mapping between the inspiral parameters and
the final mass Mf and spin χf of the merger remnant. Bhat
et al. considered only a mass ratio of 2 (and aligned spins of
0.4 and 0.3) and specified the binary’s eccentricity at 10 Hz.
Thus, as described in Sec. IVA, we approximately obtain
the eccentricity of our q ¼ 2 injections at 10 Hz, giving
∼0.08 and ∼0.18 at 10 Hz.
We make a rough comparison between our q ¼ 2 results

for a (redshifted) total mass of 80M⊙ with the Bhat et al.
results for redshifted total masses of 72M⊙ and 111M⊙
(source-frame masses of 65M⊙ and 100M⊙). While the
111M⊙ total mass is considerably further from our 80M⊙
total mass than the 72M⊙ mass is, we still consider it to
bracket our total mass, particularly since the spins in the
Bhat et al. signal make the dominant (l ¼ m ¼ 2, n ¼ 0)
quasinormal mode (QNM) frequency of the final black hole
in the 111M⊙ case closer to the QNM frequency of the final
black hole in our injections. Specifically, the QNM fre-
quency in our q ¼ 2 injections is 211 Hz (the same to this
accuracy for all three simulations), while the QNM fre-
quency for the 111M⊙ and 72M⊙ total mass Bhat et al.
cases is 173 Hz and 267 Hz, respectively, so 38 Hz less and
56 Hz greater, respectively. We compute the QNM frequen-
cies from the final masses and spins using the fit from [93].
For the Bhat et al. case, the final mass and spin are 0.950
times the total mass and 0.764, respectively (computed
using the average of fits to NR results used in the IMR
consistency test).
Since Bhat et al. just give ΔMf and Δχf, we divide these

by the injected values of the final mass and spin (quoted
above) for the purposes of this comparison. We compare

our IMRPhenomXP results (see Fig. 6) and the results in
Fig. 3 of Bhat et al., which gives results for eccentricities of
0.08 and 0.15.8 As in the comparison with Saini et al., we
scale their statistical errors to our SNRs (using the SNR of
the entire signal, noting that the SNRs of the inspiral and
postinspiral portions that Bhat et al. quote add in quad-
rature). We find that the scaled Bhat et al. statistical errors
bracket the widths of the 68% credible intervals we obtain
for the deviation parameters except for the larger eccen-
tricity final mass, where our error is ∼30% smaller.
Comparing our medians with the Bhat et al. systematic
biases, we find that for the lower eccentricity, the median of
our final mass posterior is about 2 times larger than the
systematic bias found by Bhat et al., but our final spin
median is contained within the range for the two masses. For
the larger eccentricity, our final mass median is ∼5 times
smaller than the one from Bhat et al., but only ∼30% smaller
for the final spin, though this comparison underestimates the
difference between the two results, since the Bhat et al.
results with which we are comparing are for a somewhat
smaller eccentricity (0.15 vs ∼0.18), and there is a relatively
steep dependence of the systematic error on the eccentricity.
As in the Saini et al. comparison, here we compare with
the Bhat et al. total mass that gives the smaller differences
(of the two total masses that bracket our total mass).
In general, we find that the Bhat et al. results qualita-

tively agree with ours. Specifically, we find that while the
Bhat et al. statistical errors scaled to our SNR would give a

FIG. 6. The same as Fig. 5 except for just the q ¼ 2, 3 cases and only including the ð2;�2Þ (coprecessing frame) modes in the
injections and recovery waveform model. Here the q ¼ 2 plot now has the same horizontal axis range as the other plots (here and in
Fig. 5) and the q ¼ 3 plot has a larger range for the vertical axis.

8The point for an eccentricity of 0.15 and a source-frame total
mass of 65M⊙ is not included in the plotted region in Fig. 3 of Bhat
et al., but it has values of ΔMf ¼ 1.42M⊙, Δχf ¼ 0.25 [94].
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significant GR deviation for the lower eccentricity and the
lower total mass, the larger total mass would give con-
sistency with GR in this case, in agreement with our results.
Bhat et al. also find a significant GR deviation for an
eccentricity of 0.15 for both total masses, in agreement with
our result for an eccentricity of ∼0.18.

E. Checks of the scaling with SNR

As noted earlier, our injections with total mass 80M⊙
and luminosity distance 400 Mpc have network SNRs ∼
90–120 at the forecast O4 sensitivity we are considering,
which are on the higher side and way above the minimum
SNRs of ∼10 one obtains for the high-significance signals
considered in the LVK testing GR analyses [8–10]. There
will be larger errors on testing parameters (broader
posterior distributions) for lower-SNR signals, so appar-
ent GR deviations due to eccentricity can be lost in the
statistical error at smaller SNRs. In the high-SNR limit,
the width of the posteriors scales like 1=SNR; we want to
check if this scaling works well for our injections. We do
not consider a low-SNR version of each of our injections
(given in Table I) but make at least one for each of
the higher-eccentricity cases, as well as for one lower-
eccentricity case. We prepare our low-SNR injections as
follows. For each injection and TIGER, FTI, and MDR
testing parameter, we compute the luminosity distance at
which we would expect to exclude GR at 90% credibility.
We compute this by finding the scaling of the width of the
90% credible interval for which the edge of the scaled
credible interval would just touch the GR value of zero,
keeping the median of the posterior the same. We then
apply this scaling to the injected luminosity distance, and
for each test and mass ratio pick the injection and testing
parameter that gives the largest luminosity distance for our
low-SNR injection. The low-SNR injections then use this
scaled luminosity distance while keeping the other binary
parameters the same as for the high-SNR ones. We then
apply the test to that injection just for the specific testing
parameter used to find the scaling. For this study, we do
not perform the IMR consistency test due to the significant
systematic bias we find for that test due to the presence of
higher order modes. The injected SNR in the low-SNR
cases can be found by scaling the SNRs quoted in Sec. III
by the appropriate distance scaling.
TIGER: For the TIGER test, it is the higher-eccentricity

case that gives the largest GR quantiles for all three mass
ratios. For q ¼ 1, 2, and 3, we obtained the largest scaling
factors for δβ̂3, δα̂2, and δφ̂3, giving 4.9, 3.7, and 3.8,
respectively. The results are shown as black unfilled violins
in Fig. 1. As expected, these posterior distributions are all
broader than their high-SNR counterparts, and the 90%
bound is very close to the GR value in the q ¼ 1, 2 cases,
though the median is also notably shifted to lower values in
the q ¼ 1 case, with a smaller shift in the q ¼ 2 case. For
q ¼ 3, GR is still excluded at 2.2σ due to a shift in the

median away from zero. These shifts in the median are due
to degeneracies between the testing parameter and the chirp
mass and between the chirp mass and distance. The
distance prior we have chosen favors larger distances
and thus larger chirp masses, while larger chirp masses
are correlated with smaller values for these three testing
parameters. Since a lower SNR allows for a larger mis-
match of the model waveform with the injection, the
degeneracy makes the testing parameter posterior peak at
smaller values. As discussed for FTI in [47], the degeneracy
between the testing parameter and chirp mass is most
prominent for δφ̂0 and other low-PN-order parameters, but
it is also present for other testing parameters.
FTI: For FTI test, it is again the higher-eccentricity case

that gives the largest GR quantiles for all three mass ratios.
For q ¼ 1, 2, and 3, we obtained the largest scaling factors
for δφ̂3, δφ̂7, and δφ̂0, giving 2.5, 1.3, and 3.0, respectively.
The results are shown as black unfilled violins in Fig. 3. We
observe that the scaling works very well for the q ¼ 1 case,
with the 90% bound almost exactly at the GR value, and
fairly well for the q ¼ 2 case, though GR is still excluded at
1.9σ. However, while the posterior for q ¼ 3 is broadened,
as expected, there is also a significant shift away from zero
in the median, and GR is still excluded beyond 3σ, as it is in
the high-SNR case. This is due to the significant degen-
eracy between δφ̂0 and chirp mass mentioned above, where
larger δφ̂0 values are correlated with larger chirp masses,
which are correlated with the larger distances favored by
our distance prior.
MDR: For the MDR test, we find that the q ¼ 1 lower-

eccentricity α ¼ 1.5, q ¼ 2 higher-eccentricity α ¼ 1.5,
and q ¼ 3 higher-eccentricity α ¼ 3 cases give the largest
scaling factors, specifically 1.9, 1.3, and 1.9, respectively.
The results for q ¼ 1 and q ¼ 3 are shown as black unfilled
violins in Fig. 4. We do not plot the q ¼ 2 results, since we
were unable to obtain reliable results in this case, finding
that the posterior peaks at significantly larger values of Aα

than the Aα values that give the largest likelihood (the
maximum likelihood is ∼4 orders of magnitude larger than
the likelihood values near the peak of the posterior), while
there is only a factor of ≲2 difference in the prior values.
We get the expected broadening of posteriors for q ¼ 1 and
q ¼ 3, and also see shifts of the median to smaller values
of Aα, which we expect, since a given Aα causes a larger
dephasing on the waveform at a larger distance. To check
that the shifts in the median are indeed the expected ones,
we compare the posteriors on the dephasing in the low- and
high-SNR cases. However, we find that the dephasing
posterior peaks at zero for both eccentricities, it has a
secondary peak at nonzero values in the high-SNR cases,
making it difficult to draw any conclusions.

V. SUMMARY AND CONCLUSIONS

The waveform models employed in the LVK’s current
tests of GR do not account for the effects of eccentricity and
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are only applicable to BBHs on quasicircular orbits. This
has not been a serious issue since the binaries formed
through isolated formation channels [13] are expected
to have negligible eccentricity by the time their signals
enter the sensitive band of ground-based GW detectors.
However, there are many other formation pathways (such
as dynamical formation, e.g., [22,24,27]) that can lead to
non-negligible eccentricities in the frequency band of
ground-based GW detectors for a small fraction of detected
signals. Thus, as we detect more and more GW signals as
current GW detectors improve in sensitivity [51], it is
anticipated that a fraction of these binaries may be eccentric
in nature. The mismatch between an eccentric GW signal in
the data and the quasicircular waveform model used in the
tests of GR can lead to a false GR deviation (see [43,44]). In
this paper, we investigate the effect of ignoring eccentricity
when performing some of the LVK’s standard tests of GR
on realistic eccentric BBH signals.
Specifically, we consider the TIGER [45,46], FTI [47],

MDR [48], and IMR consistency [49,50] tests and check
their response to simulated eccentric BBH GW signals in the
LIGO-Virgo network at the forecast O4 sensitivity [51]. Our
eccentric GW signals are modeled using NR waveforms
from the SXS catalog [52]; all waveforms are nonspinning,
and we consider three mass ratios (q ¼ 1, 2, 3). We inject the
signals with a total mass of 80M⊙ and at a luminosity
distance of 400Mpc, giving SNRs of about 120, 105, and 90
for the three mass ratios. We choose the SXS simulations
such that the binary’s eccentricity is ∼0.05 and ∼0.1 at
17 Hz. For each mass ratio, we also consider a quasicircular
SXS waveform, to compare our results with eccentric cases.
We inject these NR waveforms into zero noise.
As expected, all quasicircular injections are consistent

with GR at 90% credibility when subjected to the TIGER,
FTI, and MDR tests. However, for the IMR consistency
test, the q ¼ 2 and 3 quasicircular injections show a
significant GR deviation (GR excluded at > 2σ). We find
that this is attributable to the use of higher modes in the
recovery waveform model (i.e., IMRPhenomXPHM). In
particular, when we keep only the (2, 2) mode in the
quasicircular q ¼ 2, 3 injections and use IMRPhenomXP
(which does not contain higher modes) to perform the IMR
consistency test, no GR deviation is found.
For the TIGER test, we found that the lower-eccentricity

injections are consistent with GR at < 3σ except for the
higher-PN-order parameters for q ¼ 3 and δβ̂3 for q ¼ 1, 2
where they exclude GR at > 3σ. We found very significant
GR deviations (> 3σ in almost all cases) with TIGER for
the higher-eccentricity injections. For the FTI test, we
found the lower-eccentricity injections to be consistent with
GR at 2σ, except for the higher-PN-order parameters in the
q ¼ 3 case, where these are > 3σ deviations. Higher-
eccentricity injections show large GR deviations in many
cases, though not as large as in the TIGER analysis. In the
MDR test, both lower- and higher-eccentricity injections

are found to be consistent with GR at 3σ, with only three
cases where GR is excluded at > 2σ. Further, the IMR
consistency test with higher mode analysis reports strong
GR deviations (> 2.7σ) for both lower- and higher-
eccentricity injections, except for the lower-eccentricity case
for q ¼ 1, which is consistent with GR at 90% credibility.
However, the analysis without higher modes for the q ¼ 2, 3
cases finds that GR is excluded at 90% credibility (indeed
> 2.5σ) only for the higher-eccentricity cases.
We also checked the scaling of our results with distance

for the TIGER, FTI, andMDR results in a few cases that we
expected to still give a significant GR deviation at much
larger distances. Here we found that one will still exclude
GR at the ∼90% credible level for at least one testing
parameter at a distance of ∼2 Gpc (∼1.5 Gpc) for TIGER
and the q ¼ 1 (q ¼ 2, 3) higher-eccentricity injections;
at distances of ∼1, 0.5, and 1.2 Gpc for FTI and the q ¼ 1,
2, and 3 higher-eccentricity injections; and at distances
of ∼0.7 Gpc (∼0.5 Gpc) for MDR and the q ¼ 1 lower-
eccentricity and q ¼ 3 higher-eccentricity (q ¼ 2 higher-
eccentricity) injections. We found that the q ¼ 1
lower-eccentricity injection gives a larger GR deviation
with MDR than the higher-eccentricity injection does.
The results we obtained in this paper suggest that one

will obtain strong GR deviations when applying standard
current LVK tests of GR to GW signals from binaries with
non-negligible eccentricity (∼0.05–0.1 at 17 Hz). While we
have only considered a small portion of binary parameter
space, in particular just one total mass, the Fisher matrix
results in [43,44] suggest that this is a fairly general
conclusion. Therefore, the possibility of the signal being
from an eccentric binary needs to be ruled out before one
can make any claims of GR violation.
Ruling out an eccentric binary as a possible cause of an

apparent GR violation will require analysis of the signal
using waveforms for eccentric BBHs in GR, and likely the
implementation of tests of GR (those used in this paper or
others) using eccentric GR waveform models as a baseline.
It will be necessary to use waveforms including both
eccentricity and precession in such analyses. While there
are not yet any full IMR models for BBHs with both
eccentricity and precession, there is a PN inspiral model
with both these effects [95], as well as full IMR effective-
one-body models for eccentric BBHs with aligned spins
[96,97] and an NR surrogate model for nonspinning
eccentric BBHs [98]. Thus, the prospects for having
waveform models for precessing eccentric BBHs in the
near future seem good, though even when these are
available, it will be necessary to perform careful studies
to determine the extent to which one can distinguish various
possible GR deviations from the effects of eccentricity.
Additionally, there are several other physical effects

that are missing in the current waveform models employed
by the LVK’s tests of GR, e.g., gravitational lensing
and environmental effects, and could be important.
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For instance, [99] showed that strong lensing can modify
the lensed GW signal in such a way that it can become
inconsistent with unlensed GR GW signal and [100]
showed that this can indeed lead to biases in estimating
parameters of lensed signal if the recovery waveform model
does not account for lensing effects. Furthermore, even if
the magnitude of the environmental effects are expected to
be small [101] for ground-based detectors [102,103], there
could be a possibility of detecting a GW signal with the
effect of a third body at the forecast O4 sensitivity (see, e.g.,
[104]). Therefore, it will be interesting to see if and how
such effects can potentially mimic a GR violation at the
sensitivities that can be expected in the near future [51].
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