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Ultralight bosons are predicted in many extensions to the Standard Model and are popular dark matter
candidates. The black hole superradiance mechanism allows for these particles to be probed using only their
gravitational interaction. In this scenario, an ultralight boson cloud may form spontaneously around a
spinning black hole and extract a non-negligible fraction of the black hole’s mass. These oscillating clouds
produce quasi-monochromatic, long-duration gravitational waves thatmay be detectable by ground-based or
space-based gravitational wave detectors. We discuss the capability of a new long-duration signal tracking
method, based on a hiddenMarkovmodel, to detect gravitational wave signals generated by ultralight vector-
boson clouds, including cases where the signal frequency evolution timescale is much shorter than that of a
typical continuous wave signal. We quantify the detection horizon distances for vector-boson clouds with
current- and next-generation ground-based detectors. We demonstrate that vector clouds hosted by black
holeswithmass≳60M⊙ and spin≳0.6 arewithin the reach of current-generation detectors up to a luminosity
distance of ∼1 Gpc. This search method enables one to target vector-boson clouds around remnant black
holes from compact binary mergers detected by gravitational-wave detectors. We discuss the impact of the
sky localization of the merger events and demonstrate that a typical remnant black hole reasonably well-
localized by the current generation detector network is accessible in a follow-up search.
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I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
made by the Advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO) in 2015 ushered in a new and
exciting era of astrophysics [1,2]. The addition of two
detectors, Advanced Virgo [3] and KAGRA [4], coupled
with continuous upgrades in sensitivity, has led to a total of
90 direct observations of compact binary coalescence
(CBC) events to date, with this number expected to grow
exponentially in the coming years [5–7]. In the wake of
these discoveries, one of the most exciting prospects is to
use GWs to address questions in fundamental physics.
From a particle physics perspective, GW detectors are
invaluable and unique tools in the search for physics
beyond the Standard Model. Specifically, the black hole
superradiance mechanism [8–12] and the resulting detect-
able gravitational radiation are ideal probes of weakly
coupled ultralight bosons [13,14] in regions of the param-
eter space inaccessible to current terrestrial experiments.

Ultralight bosons have been invoked in a variety of
settings in order to address open problems in particle
physics and cosmology. These include scalar (spin-0), vector
(spin-1) particles, as well as massive tensor (spin-2) fields.
The QCD axion, as well as axionlike particles, are well-
motivated ultralight scalar particles that solve the strongCP-
problem and may constitute a significant fraction of dark
matter [15–18]. Similarly, ultralight vector bosons emerge in
low-energy limits of quantum gravity models and could
contribute to the dark matter density [19–25], and general
relativity may be modified by massive spin-2 fields [26,27].
Typical strategies used in lab experiments to search for these
elusive particles rely on weak but nonzero couplings to the
Standard Model. The superradiance mechanism around
spinning black holes, on the other hand, results in observable
smoking gun signatures of the presence of ultralight bosons
that depend only on gravitational interactions.
Ultralight bosons can form bound states around spinning

black holes, growing into macroscopic clouds that produce
distinct observational signatures as a result of a time-
varying quadrupole moment (and higher moments)
[13,14,28–40] (see Ref. [12] for a review). As the cloud*Corresponding author: dana.jones@anu.edu.au
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extracts energy and angular momentum from the black hole
through the superradiance mechanism, its amplitude grows
exponentially [8,10,11,13,41–44]. Considering only gravi-
tational interactions of the ultralight bosons, this unstable
behavior saturates due to the spin down of the black hole,
resulting in a superradiant cloud that dissipates through
GW emission [40,45]. The subsequent GW emission is
quasi-monochromatic and occurs at roughly twice the
oscillation frequency of the boson cloud. In particular,
the frequency of gravitational radiation from clouds around
stellar mass black holes falls squarely within the sensitive
band of ground-based GW detectors if the boson mass lies
within a range of ∼10−14–10−11 eV [14,32]. These GW
signals can be searched for in data collected by current and
future detector networks, and confident constraints may be
placed on the existence of ultralight bosons in the absence
of a signal. Black hole spin measurements have previously
been used to place constraints on the existence of ultralight
scalar [14,32,35,46] and vector bosons [33,35], but with
significant associated uncertainties.
Various ultralight boson search strategies and target

signals have been considered, broadly classified into con-
tinuous wave (CW) searches (blind or directed), stochastic
GW background searches, and follow-up searches for
quasicontinuous GWs from previously observed binary
black hole merger events. All-sky searches for scalar bosons
using CW search techniques are described in Refs. [47–49],
studies targeting galactic sources are carried out in
Refs. [50,51], and a directed search of the x-ray binary
system Cygnus X-1 is presented in Ref. [52]. Searches for a
stochastic GW background from a population of black holes
with scalar [53] and vector [54] boson clouds have been used
to place constraints on the respective mass ranges. However,
these constraints are subject to assumptions about the
underlying black hole population and the past astrophysical
history of specific black holes. Follow-up searches targeting
remnant black holes formed in binary mergers remedy this
shortcoming, as the entire history of the newly formed black
hole, as well as its properties, are well understood.
Follow-up searches of merger remnants are therefore ideal

for two reasons: They have discovery potential, and in the
absence of a signal, they allow for constraints to be placed,
subject only to the uncertainty in the remnant black hole
properties as measured from the merger GW signal. Simple
estimates using matched filter signal-to-noise ratios (SNRs)
suggest that these types of searches are in principle possible
for both scalar and vector-boson clouds using ground-based
detectors [34]. In Ref. [55], it was demonstrated, using a CW
search method (a hidden Markov model), that follow-up
searches for scalar boson clouds around remnant black holes
may plausibly be conducted only in the next-generation era of
detectors. Vector-boson clouds, on the other hand, grow
on much faster timescales and radiate at higher power
compared to their scalar counterparts, resulting in signifi-
cantly stronger GW emissions [33,39,45,56]; however,

they exhibit relatively fast frequency evolution, rendering
the detection of these signals with traditional CW search
methods challenging [55].
In this paper, we propose a new method to search for

long-duration, quasicontinuous GWs produced by ultra-
light vector boson clouds. We start by giving an overview
of black hole superradiance as it relates to GW science.
Making use of the latest waveform model, we detail the
boson signal morphology and the parameter space of a
typical search and present estimated horizon distances for
current and next-generation detectors. We discuss the
numerous challenges unique to vector boson searches
and propose detailed guidelines for a directed search that
is capable of handling these challenges. In addition, we
discuss potential target sources with an emphasis on
remnant black holes from compact binary merger events
observed by the ground-based GW detector network.
The structure of the paper is as follows. In Sec. II, we

review the concept of black hole superradiance, the evolution
of the boson cloud, and different GWemission mechanisms.
We detail the signal waveform and parameter space and the
typical duration of a vector boson signal. In Sec. III, we
describe the search method and present guidelines for
selecting a configuration and running a directed search for
vector boson signals. We obtain horizon distances through a
series of simulations using the numerical waveforms in
Sec. IV. In Sec. V, we discuss promising target black holes
and the required sky grid spacing. We conclude in Sec. VI.
Note, we employ c ¼ 1 units throughout.

II. VECTOR-BOSON CLOUDS

The prospect of probing new physics beyond the Standard
Model using the superradiance mechanism has motivated
significant progress in understanding the relevant processes
[12]. In the case of vector-boson clouds, a combination of
analytic [33,57–60] and numerical [35,39,40,45,56,61]
methods has been applied to predict observational signatures
of the presence of thismechanismand the resulting clouds. In
the following, we provide a brief overview of the black hole
superradiance process in Sec. II A, discuss the quasi-mono-
chromatic gravitational radiation properties in Sec. II B,
describe the parametrization of the GWs in Sec. II C, and
discuss the parameter space of the black hole-boson system
and the correspondingGWsignal characteristics in Sec. II D.
We mainly focus on the case of vector-boson clouds in
this study.

A. Superradiant clouds

In this work, we are primarily interested in following up
binary black hole merger events detected with a ground-
based GW detector network. The properties of the merger
remnant determine the subsequent growth and evolution of
the superradiant cloud. After the merger, the cloud begins
extracting energy and angular momentum from the
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remnant, growing exponentially with e-folding timescale
τinst. This growth phase saturates after roughly ∼Oð90Þτinst
(for stellar-mass black holes) by spinning down the black
hole and emitting gravitational radiation. Provided an
ultralight boson of the right mass exists, we expect a
detectable GW signal to emerge from the sky position of
the binary merger after roughly ∼Oð90Þτinst. The boson
cloud dissipates through GW radiation on a timescale
τGW ≫ τinst, resulting in a frequency drift (spin up) of
the nearly monochromatic signal. In this section, we briefly
summarize the timescales and frequencies relevant to the
growth and saturation of the superradiant cloud and return
to a characterization of the emitted GW signal in Secs. II B
and II C.
Superradiance around a spinning black hole of mass M

and dimensionless spin χ may be triggered by a collection of
ultralight bosons.1 Let this cloud be characterized by an
azimuthal mode number m and mode frequency ω. Then a
bosonic perturbation extracts rotational energy from the
black hole through the superradiance process if the condition

0 < ω < mΩH ð1Þ

is satisfied. Here, ΩH ¼ χ=ð2rþÞ is the black hole horizon
frequency, with rþ ¼ rgð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ and rg ¼ GM. Due

to the vector boson’s mass mV , it can form states that are
gravitationally bound to the black hole and are thus con-
tinuously amplified; this is known as superradiant instability.
In order to quantify the relevant timescales and frequencies
associated with this process, it is instructive to define the
dimensionless “gravitational fine-structure” constant

α≡ rg
ƛ
¼ GM

mV

ℏ
; ð2Þ

which compares the size of the black hole∼rg to the reduced
Compton wavelength of the ultralight boson ƛ ¼ ℏ=mV .
Therefore, α naturally divides the parameter space into a
nonrelativistic regime, α ≪ 1, where the superradiant cloud
is much larger than the black hole, and a relativistic regime,
α ∼ 1, where the black hole and the cloud are roughly the
same size.
In the nonrelativistic regime, the gravitational influence

of the black hole follows a simple inverse-radius potential.
Hence, the superradiant cloud growing around the black
hole is in a hydrogenlike gravitationally bound state. Cloud
states are characterized by m ≥ 1, radial node number
n̂ ≥ 0, and polarization S∈ f−1; 0; 1g. In this limit, the
frequency of each state is given by [33,57,60,61]

ω ¼ mV

ℏ

�
1 −

1

2

α2

n2
þ GmS

�
; ð3Þ

where n ¼ mþ n̂þ Sþ 1. The coefficients GmS ∼Oðα4Þ
encode the higher-order corrections in the relativistic α ∼ 1
regime. From Eq. (3) we see that the superradiant cloud
oscillates with frequency ω ≈mV=ℏ (i.e., roughly set by the
vector boson mass) around the central black hole. The
exponential growth of the superradiant cloud is most
efficient when the Compton wavelength of the bosonic
particle is comparable to the size of the black hole,
α ∼Oð1Þ. The growth rates Γinst (and associated timescales
τinst ≡ Γ−1

inst) for the vector field in the small-α-limit are [33]

Γinst ¼ α4mþ2Sþ52rþðmΩH − ωÞCmS: ð4Þ

The coefficients CmS > 0 depend on the black hole spin χ
[60], and in the relativistic regime also on α [56]. In the
nonrelativistic limit, the growth rates are highly suppressed
by large powers of α; states with small azimuthal index
jmj ≥ 1, zero radial nodes (n̂ ¼ 0), and S ¼ −1 grow the
fastest. In this work, we primarily focus on m ¼ 1 unstable
modes. For ω > mΩH, the growth rates turn negative, i.e.,
Γinst < 0, indicating the exponential decay of this cloud
state. Therefore, the superradiance process is most efficient,
i.e., Γinst is largest, for α≲m=2.
Both the frequency ω and growth rates Γinst are com-

puted for superradiant vector clouds in the nonrelativistic
[33,60] (see also Ref. [44]) and relativistic [35,39,56,61]
regimes using analytic and numerical methods, respec-
tively. In this work, we utilize the waveform model
SuperRad [62], which interpolates between the analytic
and numerical results in their different regimes of validity,
providing the most accurate estimates for ω and Γinst, which
remain valid across the entire relevant parameter space. To
provide some intuition, in the nonrelativistic limit α ≪ 1,
the instability timescale of the fastest growing mode
ðm; n̂; SÞ ¼ ð1; 0;−1Þ around a black hole of dimensionless
spin χ is roughly given by

τinst ≈ 2 mins

�
M

10M⊙

��
0.1
α

�
7 1

χ
: ð5Þ

We return to the frequency ω for typical parameters in the
next section.
For a given superradiant energy level, as long as Eq. (1)

is satisfied, the occupation number of the vector cloud
continues to grow as energy and angular momentum are
extracted from the black hole. However, the system
eventually reaches the point at which the black hole has
lost sufficient energy and angular momentum, i.e., ΩH has
decreased such that Eq. (1) becomes asymptotically satu-
rated: mΩH → ω. At this stage, the system has reached a
quasiequilibrium state between the black hole and boson
cloud [45]. In the absence of any additional processes

1We focus here entirely on the case of ultralight vector bosons.
See, e.g., Ref. [62] for a comparison of the properties of
superradiant scalar and vector-boson clouds.
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(e.g., accretion), the saturated mass of the boson cloud Mc
is simply the difference between the initial and final
black hole masses, Mi and Mf, respectively. When only
the m ¼ 1 energy level is populated, the cloud mass is
approximately [32]

Mc ¼ Mi −Mf ≈ 0.01

�
α

0.1

��
χi − χf
0.1

�
Mi; ð6Þ

where χi and χf are the initial and final dimensionless spins
of the black hole, respectively. We assumed here that
initially the system satisfies αi ≪ 1. In this same non-
relativistic limit, the spun-down black hole has a final spin
of approximately

χf ¼ 4αfm

4α2f þm2
< χi; ð7Þ

where αf ¼ GMfmV=ℏ. Equations (6) and (7) are obtained
assuming a linear and adiabatic evolution of the black hole-
boson cloud system, as well as the saturation of the
superradiance condition ω ¼ mΩH. A more accurate pre-
diction for Mf and χf can be obtained by numerically
solving a set of four ordinary differential equations describ-
ing the linear evolution of the black hole and boson cloud
masses and angular momenta, and the corresponding
gravitationally emitted energy and angular momentum
[63]. While the waveform model SuperRad is able to
provide more accurate estimates, in the remainder of this
work we assume the system saturates at ω ¼ mΩH.

2 The
final black hole and cloud parameters obtained assuming
ω ¼ mΩH, and using the aforementioned linear adiabatic
time-domain evolution, differ only at the percent level (see
Ref. [62]), and hence do not affect any of the conclusions
drawn in this work. It has been shown using fully nonlinear
numerical relativity techniques that, due to superradiance
alone, the cloud can extract up to 10% of the black hole’s
total mass [40]. Once the growth saturates, GW emission
stemming from the dissipation of the oscillating cloud
becomes the dominant evolution mechanism. This occurs
over timescales much longer than those of the cloud
growth.

B. GW emission

In the context of isolated boson clouds, there are several
mechanisms that may produce gravitational radiation:
emission from boson annihilation in a single cloud state,
the transition of bosons in the cloud between energy levels,
and the collapse of the boson cloud under its own self-
interactions, i.e., a “bosenova.” Cloud transitions, or a

beating between modes oscillating at different frequencies,
may only produce significant gravitational radiation if
comparable occupation numbers can be found in more
than one energy level. In the case of vector clouds, these
transitions can occur even for young black holes, resulting
in quasiperiodic GW signals (whereas transitions in scalar
clouds occur primarily around old black holes [14,30]).
Unfortunately, because these transitions occur on time-
scales shorter than that of the typical GW emission of a
single vector cloud level, the observational window for
transition signals is small [56]. If the massive vector boson
obtains its mass through a Higgs mechanism, depending on
the relevant coupling constants, the cloud can reach a large
enough occupation number to backreact on the Higgs-like
field and lead to the formation of string vortices. This drives
a stringy bosenova [64,65] where the cloud is strongly
disrupted, resulting in recurring burstlike GW emission.3

However, these explosive phenomena are not yet well-
modeled. In this work we focus solely on quasi-mono-
chromatic GW emissions from the dissipation of a single
cloud state assuming only the gravitational coupling. This
picture may change, however, if the vector boson couples
sufficiently strongly to the Standard Model, or to an
extended dark sector [70–73].
As discussed in the previous section, once the super-

radiant growth of the cloud terminates with the saturation of
the condition in Eq. (1), the cloud of mass Mc oscillates
around the black hole with angular frequency ω. The
frequency of the emitted quasi-monochromatic GWs is
then set by ω, defined in Eq. (3), in the source frame as
twice the mode frequency:

fGW ¼ ω=π: ð8Þ

For typical cloud parameters in the nonrelativistic limit, and
considering only the most unstable m ¼ 1 mode, the GW
signal frequency is roughly [Eqs. (2)–(3)]

fGW ≈ 645 Hz

�
10M⊙

M

��
α

0.1

�
: ð9Þ

Stellar-mass black holes can therefore support boson clouds
with emission frequencies that lie within the most sensitive
band of ground-based GW detectors. (We return to the
frequency evolution later in this section.)
The GW amplitude is obtained on a Kerr black hole

background using the Teukolsky formalism [74] (or limits
thereof). The nonrelativistic estimate obtained in Ref. [33]
is refined and extended to the relativistic regime in Ref. [56]
and is consistent with a fully nonlinear treatment of
the problem [39,45]. Combining these results, in the

2Spot checks have been carried out using the more accurate
evolution estimates, and no difference is found in the search
results.

3In the case of axions, these explosive phenomena due to self-
interactions are unlikely to happen [66–69].
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nonrelativistic regime and for the m ¼ 1 cloud state, the
characteristic amplitude is roughly

h0 ≈ 3 × 10−26
�

M
10M⊙

��
α

0.1

�
5
�
0.1 Gpc

d

��
χi − χf
0.1

�
:

ð10Þ

Here, we define d as the luminosity distance, h0 ¼
ð10ĖGWÞ1=2=ð2πfGWdÞ as the characteristic GW strain,
and ĖGW as the total GW energy flux. We can approximate
the power radiated by the fastest-growing cloud state as

ĖGW ≈ 6 × 1046 erg=s

�
α

0.1

�
12
�
χi − χf
0.1

�
2

ð11Þ

in the nonrelativistic regime. Note that the radiated power
from vector clouds, which are the focus of this paper, is
orders of magnitude larger than that from scalar clouds.
This also implies, however, that the signals from vector-
boson clouds last for timescales orders of magnitude
shorter than those from scalar clouds. (We return to this
point and its implications for the search methods below.)
As the cloud dissipates energy to GWs, the signal

amplitude, starting at its peak when the cloud is at its
maximum size [given by Eq. (10)], will decrease over time.
This occurs over a timescale on the order of the signal
duration. During the emission process, the cloud’s massMc
decreases following the relationship

McðtÞ ¼
Msat

c

1þ ðt − tsatÞ=τGW
; τGW ≡ Msat

c

Ėsat
GW

; ð12Þ

where tsat is the saturation time of the superradiant growth,
and Msat

c and Ėsat
GW are the quantities at tsat, and we define

the characteristic GWemission timescale τGW. We consider
this to be the typical duration of the signal, since at a time
τGW after the saturation, the signal amplitude has halved.
Recalling the approximations made in Eq. (6) and Eq. (11),
we can rewrite this timescale in the dominant vector energy
level and in the nonrelativistic limit as

τGW ≈ 33 days

�
M

10M⊙

��
0.1
α

�
11
�

0.1
χi − χf

�
: ð13Þ

The GW emission timescale is typically orders of magni-
tude longer than the cloud growth timescale [compare
Eq. (5) to Eq. (13)], which allows us to treat the two as
distinct stages in the system’s evolution.
Lastly, the evolution of the total mass of the cloud [McðtÞ

in Eq. (12)] implies an increase in the GW frequency fGW on
the timescale τGW. The smaller Mc is, the weaker the
gravitational redshift of the emitted GWbecomes, and hence
the higher the frequency. The resulting frequency drift can, to
leading order, be approximated by the change of the

Newtonian potential sourced by the presence of the super-
radiant cloud [33,55,56,68].4 The first time derivative of the

frequency, ∂ð1Þt fGW ≡ ḟGW, can be obtained from the rate of
change of Mc at the saturation point and is given by [73]

ḟGW ¼ 5α3G
8πr2g

ĖGW

≈ 10−8 Hz=s

�
10M⊙

M

�
2
�

α

0.1

�
15
�
χi − χf
0.1

�
2

ð14Þ

in theα ≪ 1 limit. The complete frequency evolutionwith all

time derivatives ∂
ðnÞ
t fGW can be determined directly

from Eq. (12).
In this section, we focused on providing intuition for and

rough scalings of all relevant observables. In practice,
however, we utilize SuperRad [62] to accurately deter-
mine the GWamplitude, frequency evolution, and involved
timescales across the entire parameter space for a set of
initial source parameters.

C. GW signal parametrization

In the previous section, we qualitatively introduced all
relevant GW properties. In the following section, we
discuss the precise parametrization of the quasi-monochro-
matic gravitational radiation used in the remainder of this
work. We focus on the source frame quantities, and we
assume that a single cloud level is dominating the GW
signal and that the superradiance condition is saturated.
The GW strain signal in a detector I is written as a sum

over two polarizations:

hIðtÞ ¼ FIþðtÞhþðtÞ þ FI
×ðtÞh×ðtÞ; ð15Þ

where FIþ and FI
× are the antenna response (or beam

pattern) functions of detector I to GW signals with plus (þ)
and cross (×) polarizations, respectively. (For explicit
expressions, see, e.g., Appendix in Ref. [75].) These are
periodic functions that depend on the relative location of
the detector and source, typically parametrized by right
ascension (RA) and declination (Dec), and the polarization
angle. The strain amplitudes hþ;×ðtÞ are set by the GW
phase and amplitude and the inclination angle (ι) between
the rotational axis of the black hole and the line of sight.
We expand the GW polarization waveforms hþ;× in

terms of a series of spin-weighted spherical harmonics

sYel m̃ðι;φÞ ¼ sSel m̃ðιÞe−im̃φ of spin-weight s ¼ −2, where
φ is the azimuthal coordinate in the source frame. With the
luminosity distance d, the polarization waveform is gen-
erally (see, e.g., Ref. [73])

4Note a missing factor of 2 in the frequency drift expressions
of Refs. [33,55] is pointed out in Ref. [68] and included in the
relevant vector cloud expressions in Ref. [73].
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hþ ¼ 1

d

X
l̃≥m̃

jhl̃ m̃jð−2Sel m̃ þ ð−1Þl̃−2Sel−m̃Þ
× cosðΦðtÞ þ m̃φþ ϕl̃ m̃Þ; ð16Þ

h× ¼ 1

d

X
l̃≥m̃

jhl̃ m̃jð−2Sel m̃ − ð−1Þl̃−2Sel−m̃Þ
× sinðΦðtÞ þ m̃φþ ϕl̃ m̃Þ: ð17Þ

Here, ΦðtÞ is the GW phase, hel m̃ is the GW mode
amplitude, and ϕel m̃ is the phase difference between the

ðel; m̃Þ-modes. (By construction, we choose ϕ22 ¼ 0, while
all other ϕlm may be nonvanishing.) In the nonrelativistic
limit (α ≪ 1), the GW signal from an m cloud state is
dominated by the el ¼ m̃ ¼ 2m contribution; for m ¼ 1
vector cloud solutions around the black hole, the GW
emission is given entirely by the ðel; m̃Þ ¼ ð2; 2Þ compo-
nent. In the relativistic regime (α ∼ 1), this mode is
subdominant to the ðel; m̃Þ ¼ ð3; 2Þ contribution. Similar
behavior can be observed for higher-m cloud states [56].
The frequency evolution of the quasi-monochromatic

GW signal is encoded in the GW frequency

fGWðtÞ ¼ f0 þ
δf

1þ ðt − tsatÞ=τGW
; ð18Þ

where f0 is the asymptotic GW frequency at late times
(t ≫ τGW), and δf

5 characterizes the shift of fGW away from
f0 due to the self-gravity of the superradiant cloud, with
jfGWðtÞ − f0j ∝ Mc. In all cases consideredhere,f0 ≫ jδfj.
The frequency derivative ḟGW, given in Eq. (14), follows
directly from Eq. (18). The GW phase ΦðtÞ is simply the
integral offGW starting from the saturation time tsat up to time
t, added to an initial phase-offset Φ0:

ΦðtÞ ¼ Φ0 þ 2π

Z
t

tsat

dt0fGWðt0Þ: ð19Þ

The frequency and phase evolution in the source frame are
modified at cosmological distances by appropriate redshift
factors. We discuss the details of this in Sec. IVA.
Finally, here and in the following, we use hpeak0 and fpeakGW

to denote the signal strain amplitude and frequency,
respectively, at the time of cloud saturation, i.e., hpeak0 ¼
h0ðtsatÞ and fpeakGW ¼ fGWðtsatÞ.

D. System parameter space and
GW emission characteristics

In the following, we expand on the presentation in
Secs. II A and II B and analyze the relevant parameter

space in more detail, focusing entirely on the most unstable
m ¼ 1 vector-boson cloud state. The expected GW signal
parameters depend on the intrinsic parameters of the system
—the initial mass and spin of the black hole and the boson
mass. For a given black hole, there exists a broad range of
boson masses that satisfy the superradiance condition.
Since in a real search, the vector boson mass is unknown,
a single black hole with known intrinsic parameters allows
us to probe a range of boson masses and requires us to
consider a corresponding range of GW frequencies, fre-
quency evolution rates, emission timescales, and signal
amplitudes.
Figure 1 shows the characteristic GW strain at saturation

hpeak0 as a function of emission frequency fpeakGW for a vector
cloud (in the most unstable m ¼ 1 cloud state) around five
different black holes with masses from 5M⊙ to 100M⊙
(with initial spin χi ¼ 0.7 and luminosity distance
d ¼ 100 Mpc). For convenience, we parametrize how
“well-matched” the boson mass is to the black hole via
the gravitational fine-structure constant α [Eq. (2)]. We
define αopt to be the fine-structure constant that maximizes
the strain amplitude in the source frame for a fixed initial
black hole mass and spin; i.e.,

αopt ¼ arg maxαh
peak
0 : ð20Þ

For each given black hole in Fig. 1, α ¼ αopt only when h
peak
0

is at its maximum. (This will not in general correspond
exactly to the α value that gives the largest horizon distance;
see Sec. IV B.) As an example, the signal strain for
Mi ¼ 100M⊙, αopt ¼ 0.176, and cos ι ¼ 1.0 is estimated

FIG. 1. Strain amplitude at the cloud’s saturation hpeak0 as a
function of fpeakGW for five different black holes with Mi ¼ 5, 10,
20, 50, and 100M⊙ for χi ¼ 0.7 and d ¼ 100 Mpc. The color
corresponds to α. For all five black holes, the optimally matched
scenario (i.e., maximum hpeak0 ) occurs at αopt ¼ 0.176.5For an explicit form of δf ¼ Δω=π, see Eq. (22) in Ref. [62].
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to behpeak0 ¼ 4.41 × 10−24. For eachblack holemass, there is
a range of possible α values that allow for superradiance, and
accordingly, a range of possible signal parameters. As shown
in Secs. II A and II B and demonstrated in the figure, more
massive black holes emit louder GW signals at lower
frequencies.
Let us consider the impact of the black hole’s spin on the

emitted GW signal from superradiant vector-boson clouds.
Figure 2 shows the optimally matched boson mass mopt

V as
well as hpeak0 and fpeakGW as a function of initial black hole
mass Mi for different values of initial black hole spin χi.

Generally, as χi increases, αopt (and the correspondingm
opt
V )

increases as well, resulting in an upward trend of hpeak0 and
fpeakGW [consult also Eqs. (2), (9), and (10)], which span a
wide range depending on the value of Mi. Similar to what
was shown in Fig. 1, heavier black holes together with
lighter vector bosons harbor clouds that emit louder GW
signals at lower frequencies. As dictated by Eq. (6), heavier
black holes with higher initial spins are able to support
heavier boson clouds, resulting in gravitational radiation
with higher signal amplitudes.
We now turn to the two timescales characterizing the

evolution of the superradiant cloud. In Secs. II A and II B,
we introduced the cloud growth timescale, τinst, as well as
the GW emission timescale, τGW, which determine how
long the vector-boson cloud takes to grow, and how long
the subsequent GWemission phase lasts. In Fig. 3, we show
the GW emission timescale τGW for a range of initial black
hole masses and spins assuming α ¼ αopt. The decay of the
GW emission after saturation can occur on timescales as
short as τGW∼ mins for light and rapidly spinning black
holes. Dropping the assumption of Eq. (20), in Fig. 4, we
compare both timescales for a moderate initial spin of
χi ¼ 0.7. For a given initial black hole mass, as α deviates
from αopt (dashed white line), the instability growth and
GW emission timescales increase. Moreover, for any given
set of Mi and α, τinst is orders of magnitude smaller than
τGW for the most unstable m ¼ 1 cloud state.
We now consider targeting a newly born black hole, such

as a binary black hole merger remnant. It is important to
account for the total growth time tgrowth ¼ τinst logðMc=
mVÞ=2 of the vector-boson cloud around the black hole.
Once the cloud reaches its saturation (at an age of tgrowth), it
contains a significant fraction of the black hole’s mass, after
which theGWsignal ismost likely to be detectable. Thus, for
a stellar-mass black hole, GW emissions from the newly

FIG. 2. Boson mass mopt
V ¼ αoptℏ=rg in units of eV (top), hpeak0

(for d ¼ 100 Mpc) (middle), and fpeakGW (bottom) as a function of
initial black hole mass Mi. In all three panels, we use the
optimally matched α as defined in Eq. (20). The colored lines in
each panel correspond to different values of initial black
hole spin.

FIG. 3. GW emission timescale τGW as a function of initial
black hole mass Mi and spin χi for αopt as defined in Eq. (20).
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formed vector-boson cloud reach their peak around
tgrowth¼ τinst logð0.01M⊙=10−13 eVÞ=2≈85τinst. The ampli-
tude of the GW signal then drops by half roughly tgrowth þ
τGW after the birth of the black hole. Therefore, a GW search
would begin roughly tgrowth after the black hole is born and
last for ∼τGW. As shown in Fig. 4, the growth timescale for
α≳ 0.05 lasts only a few days or less, which enables us, in
most cases, to follow up a black hole merger remnant within
the sameobserving run inwhich itwas detected. If a potential
target is observed toward the end of an observing run or right
before a significant commission break, however, these
timescales may extend beyond the end of the observing
period, where we no longer have data. In that case, higher
azimuthal states of the vector-boson cloud around a given
black hole could be considered in the next observing period,
but we leave this to future work.
The GWemission timescale is closely related to the GW

signal evolution as demonstrated in Secs. II B and II C. In
Fig. 5, we show the first time derivative of the GW signal
frequency ḟGW as a function of Mi and χi for αopt at
saturation. While the frequency evolution is not linear (see

Sec. II C), ḟGW provides a guide to the evolution timescales
of the GW frequency. The frequency derivative spans tens
of orders of magnitude across the entire parameter space,
with lower-mass and higher-spin black holes yielding the
largest ḟGW values (for αopt). This implies that a vector-
boson cloud may emit nearly monochromatic CW signals
(for high black hole masses and low spins) or be highly
dynamical with ḟGW ∼Oð1Þ Hz s−1 (for low black hole
masses and high spins). As we show in the following
sections, the search techniques developed in this paper can
track signals with ḟGW up to ∼10−4 Hz s−1, covering most
of the parameter space in Fig. 5 other than the top left
corner. As a final note, when considering vector signals
with small ḟGW values at tsat (toward the bottom right
corner in Fig. 5), their frequency evolution rates are
comparable to signals from scalar clouds (but they corre-
spond to very different black holes). In these cases, signals
from vector clouds are still generally higher in amplitude,
occur over shorter timescales, and are more easily detect-
able than scalar signals with comparable ḟGW values.

III. DIRECTED SEARCHES

While there are many observational signatures that
would allow us to infer the existence of vector-boson
clouds formed via black hole superradiance [13,14,28–
33,35–38,76], in this study, we choose to focus on direct
detection via GW radiation. Although the emission time-
scales for vector bosons are often shorter than the typical
timescales associated with CW searches, much of the
parameter space (as we show in Sec. II D) would still
produce signals that are considered long duration. As such,
we need to use search techniques that are capable of
tracking signals on timescales shorter than CWs but longer
than transients. In particular, we focus on directed searches,

FIG. 4. Cloud growth (top) and GW emission timescales
(bottom) as a function of initial black hole mass Mi and α with
initial black hole spin χi ¼ 0.7. The dashed white line marks
α ¼ αopt ¼ 0.176 corresponding to the optimally matched boson
mass for each black hole mass, as defined in Eq. (20).

FIG. 5. First time derivative of the GW frequency ḟGW (at
saturation) as a function of initial black hole massMi and spin χi,
assuming α ¼ αopt as defined in Eq. (20).
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in which we target black holes with known (or well-
constrained) parameters such as mass, spin, and sky
position, as opposed to a blind all-sky search, in which
we search for signals from unknown black holes with
unknown parameters. One benefit of conducting a directed
search is that we will be able to place constraints on the
existence of vector bosons without needing to rely on black
hole population models, which come with large uncertain-
ties. If we make a detection, we will learn the particle’s
mass and dynamics through detailed measurements of the
signal morphology. If no detection is made, having prior
knowledge about the black hole’s parameters will allow us
to place stringent constraints on the boson mass.
In this section, we introduce a hidden Markov model

(HMM)-based search method to track vector boson signals.
In Sec. III A, we review the general HMM algorithm and
describe the new implementation of the algorithm in this
study to search for vector boson signals. We investigate the
parameter space and corresponding configurations of a
typical search in Sec. III B and describe the simulations
using SuperRad.

A. Search method

We implement a semicoherent search method dedicated
for vector boson signals, which are expected to be much
shorter (on a timescale of hours to months) than the typical
CW signal. The method combines a frequency-domain
matched filter, F -statistic (widely used in CW searches
[77–79]), with an efficient HMM search technique to track
the signal evolution. The HMM tracking technique has
been applied to searches for many types of quasimono-
chromatic, continuous, or long-transient GW signals
[55,80–82]. It is an ideal search strategy for signals from
vector-boson clouds because it is extremely computation-
ally efficient, allowing us to cover a wide parameter space,
including signal frequency, duration, and sky position.
Other semicoherent search techniques generally rely on
Taylor expansions of the signal phase evolution within the
matched filtering and are thus quite model dependent (e.g.,
Refs. [78,83]). HMM, on the other hand, is an ideal choice
in searches where uncertainties may exist in the signal
waveforms predicted by theories and numerical calcula-
tions because it allows for some uncertainty in the signal
morphology.
Factoring in the random noise present in the detector

data, HMM is able to find the most probable signal
frequency evolution, or “path,” as a function of time
[80,81]. To accomplish this, the frequency-time plane is
divided into a discrete grid of NQ frequency bins and NT
time steps. The length of each time step and the corre-
sponding width of the bins are chosen carefully, based on
prior knowledge of the target signal, to satisfy two criteria:
The signal is considered “monochromatic” (with the signal
power concentrated in one bin) over the course of a single
time step, and it can move at most one bin from one discrete

time step to the next. In other words, the signal does not
evolve too rapidly for HMM to track.
Over the total observing time Tobs, we select a coherent

time interval, Tcoh ¼ Tobs=NT , such that

����
Z

tþTcoh

t
dt0ḟGWðt0Þ

���� ≤ Δf ð21Þ

is always satisfied for 0 < t < Tobs − Tcoh; i.e., the signal
does not evolve outside the tracking capabilities of HMM.
Here Δf ¼ 1=ð2TcohÞ is the frequency bin size in the
F -statistic output computed over Tcoh, where theF -statistic
calculation takes a series of short Fourier transforms (SFTs)
of length TSFT ð< TcohÞ as input. Considering the maximum
spin-up of the signal over the whole tracking duration, ḟmax

GW,
we require ḟmax

GWTcoh ≤ Δf following Eq. (21), and thus

Tcoh ≤ ð2ḟmax
GWÞ−1=2: ð22Þ

Since longer Tcoh values yield better search sensitivity [81],
in a typical search, we set Tcoh ¼ ð2ḟmax

GWÞ−1=2 to maximize
sensitivity. For vector boson signals, when the cloud is
saturated at tsat, the strain amplitude reaches its peak, and
the frequency evolution rate is also at its maximum, i.e.,
ḟmax
GW ¼ ḟGWðtsatÞ. Thus,we compute ḟmax

GW usingSuperRad
for each given system (e.g., Fig. 5) and set Tcoh ¼
ð2ḟmax

GWÞ−1=2, rounded down to the nearest 0.1 min.
We estimate the likelihood of the signal in each fre-

quency bin at each time step via the F -statistic, which
accounts for the Earth’s motion with respect to the source
through Doppler corrections [78,84]. We coherently inte-
grate the data over the duration Tcoh; this results in NT ¼
Tobs=Tcoh coherent F -statistic segments over the total
duration of the search Tobs. The coherent segments are
then combined incoherently using HMM tracking, as
outlined in, e.g., Refs. [80,81]. The particular choice of
transition probability matrix, i.e., the probability for the
signal frequency in each bin fi at the current time step to be
in bin fj at the next time step, does not largely impact the
sensitivity of the HMM tracking as long as it captures the
general behavior of the signal [80,85]. Given that the vector
boson signal has a small positive ḟGWðtÞ, i.e., the signal
frequency slowly increases (see Sec. II B), we apply for
simplicity a uniform probability on ḟGW in the range of
½0; ḟmax

GW � and write the transition probability Afjfi from one
time step to the next as [55,80,81]

Afiþ1fi ¼ Afifi ¼
1

2
; ð23Þ

with all other entries being zero. This means that, from the
current time step to the next, a signal in bin fi either
remains in bin fi or evolves to a higher frequency bin fiþ1.
A uniform prior Πfi ¼ N−1

Q is applied on all frequency bins
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over the total frequency band being searched. We use the
Viterbi algorithm to solve the HMM and identify the most
probable signal path recursively across the frequency-time
plane [86].
In this work, we extend the standard HMM tracking used

in CW searches to a much shorter timescale by introducing
more flexible configurations and a new detection statistic.
Reference [55] states that the F -statistic/HMM-pipeline is
not currently capable of tracking signals with ḟGW≳
10−8 Hz s−1. This statement makes the assumption that
TSFT used in the search is fixed to 30 mins (the standard
SFT length used in CW searches). Due to the faster signal
evolution characteristic of vector boson searches, both Tcoh
and TSFT have to be much shorter [recall Eq. (22)].
We set a lower cutoff Tcoh ≥ 1 min with a minimum
TSFT ≥ 0.25 min. For each detector, the coherentF -statistic
calculation requires as input a minimum of two SFTs.
However, tomitigate issueswith insufficient data, we require
at minimum a length of 4TSFT per F -statistic segment. The
cutoff on Tcoh is chosen because we find that, for
Tcoh < 1 min, the F -statistic values computed in pure
Gaussian noise no longer follow the expected central chi-
squared distribution with four degrees of freedom. (For a
more detailed discussion of the statistical studies behind
short-segment F -statistics, see Ref. [87].) This cutoff cor-
responds to ḟGW ¼ 1.39 × 10−4 Hz s−1, which is the maxi-
mum ḟGW covered by the search method described in this
paper. For signals that evolve more rapidly, other HMM-
based methods outlined in Refs. [82,88] to track long-
transient signals could be applied, but this is outside the
scope of this study. On the other hand, for a parameter space
that corresponds tomuch longer signals on timescales similar
to typical CWs, we set an upper bound of TSFT ¼ 30 min to
prevent power leakage due to the Doppler effect as the Earth
rotates. We also set an upper bound of Tcoh ¼ 10 d for
computing efficiency6 and to allow for some model uncer-
tainty [55,80,81].
In many of the existing HMM-based CW searches, a

detection statistic called the “Viterbi score” is used to
quantify the significance of the most probable path returned
by the tracking (e.g., Refs. [52,55,81]). The Viterbi score S
is defined such that the log likelihood of the optimal Viterbi
path equals the mean log likelihood of all NQ paths ending
in NQ bins plus S standard deviations at the final step NT .
In other words, the significance of the signal is evaluated by
comparing the optimal path to all other paths in a given sub-
band searched. We do not use the Viterbi score as our
detection statistic in this study, however, because the
Viterbi score is only reliable for NQ ≫ NT. When
NQ ∼ NT , the NQ paths partially overlap and so are
correlated [89]. Because the typical timescale of a vector

boson signal is much shorter than the standard CW signals,
most configurations in this study require wider frequency
bins and fewer tracking steps compared to a standard CW
search, and thus we often have NQ ≳ NT .
Instead, we define a new detection statistic as the total

log-likelihood L of the optimal path divided by the number
of steps NT written as

L̄≡ L=NT: ð24Þ

In theory, we could simply use L as our detection statistic,
as in Refs. [89–93]. However, since we need to cover a
wide parameter space for a given source (see Sec. II D),
using L̄ allows us to remove the dominant dependence of
the detection statistic on NT and generalize the detection
statistic to many configurations covering a wide range of
signal durations (note that L̄ still weakly depends on NT
and Tcoh; see Sec. III B). This is of particular importance for
setting a detection threshold for a search.

B. Simulations and search configurations

We define a 1% false alarm probability threshold in each
sub-band searched in order to quantify the confidence in a
detected signal. Because we consider a wide range of
search configurations in this study, each with a unique
threshold depending on the choices of Tcoh and NT , we
adopt a hybrid method to estimate thresholds based on both
empirical simulations and analytical fitting. The procedure
is as follows. We first empirically test the following Tcoh
values: 1 min, 2 min, 5 min, 10 min, 30 min, 1 h, 12 h, 1 d,
5 d, and 10 d, covering the whole range of typical vector
boson searches. For each choice of Tcoh, we consider five to
eight NT values we might use in a real search. For each
combination of Tcoh and NT , we obtain the threshold by
running 300 searches in pure Gaussian noise within a single
1-Hz sub-band. We extract L̄ at the 99th percentile, denoted
as L̄th. We consider anything with L̄ > L̄th to be a GW
candidate (i.e., there is a 1% probability the candidate is a
false alarm in each sub-band). Then, for a given Tcoh, we
plot L̄th as a function of NT and fit an exponential decay
curve to the data points; an example is shown in Fig. 6 for
Tcoh ¼ 30 min for seven sample NT values. Repeating this
process for all Tcoh values chosen above, the fitted curves
for different Tcoh values end up roughly overlapping (the
variation of L̄th for any given NT is within ∼� 5%),
demonstrating that L̄th depends more on NT than on Tcoh. It
is indeed expected that the threshold is almost independent
of Tcoh because the F -statistic values computed over each
coherent step in pure Gaussian noise should follow the
same central chi-squared distribution with four degrees of
freedom. Due to the maximization in the HMM tracking,
the tail in the L̄ ¼ L=NT distribution still depends on NT .
In practice, we determine a choice of (Tcoh, NT) for the
search based on the signal parameter space. We then find

6The computing cost scales as ∼T2
coh in HMM-based

searches [81].
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L̄th at the chosen NT from the exponential fitting curve.
Although the deviations among the fitting curves for
different Tcoh values are small, we take the curve obtained
with the Tcoh value (among the 10 values tested) closest to
the one chosen for the search configuration. We use this
method in this study in order to get the threshold and obtain
an estimate of the search sensitivity across the whole
parameter space while saving on computing costs (see
Sec. IVA). In a real directed search, we can always
empirically obtain the threshold using the specific search
configurations suitable for a given source to avoid small
statistical deviations introduced by interpolation.
Once we have obtained detection thresholds, we run

searches for synthetic vector boson signals simulated based
on the signal morphology described in Secs. II B–II C across
the parameter space and demonstrate howwell the method is
able to recover the signal. As an example, we consider a
system withMi ¼ 200M⊙, χi ¼ 0.6, and α ¼ αopt ¼ 0.141.
We place this system at d ¼ 500 Mpc, which corresponds to
a peak strain amplitude of hpeak0 ¼ 5.66 × 10−25. We assume
the system has the optimal orientation, i.e., cos ι ¼ 1.0. We
use SuperRad to build a signal waveform based on
these parameters and inject the signal into Gaussian noise
with an amplitude spectral density (ASD) of S1=2h ¼ 4 ×
10−24 Hz−1=2 (the aLIGO design sensitivity in the most
sensitive frequency band∼102 Hz) using thesimulateCW
Python module in the LALPulsar library of LALSuite
[94,95]. We inject the signal at RA ¼ 4.41955 rad and
Dec ¼ 0.62385 rad in the 1-Hz band starting from 40 Hz
(with two aLIGO detectors).
Given the ḟGW estimated by SuperRad, we choose

the best possible coherent length based on Eq. (22),
Tcoh ¼ 207 min, and track the signal over ∼26 days. The
result is shown in Fig. 7, with the injection indicated by the
dashed blue curve and the signal path recovered by HMM

indicated by the solid orange curve. The stairstep pattern of
the recovered signal is a result of the search beingdivided into
discrete frequency bins and time steps. The detection statistic
associated with this recovered path is L̄ ¼ 57.43, well above
the estimated threshold, L̄th ¼ 6.73, indicating a successful
detection. As demonstrated, the HMM is able to accurately
reconstruct the signal down to a root-mean-square error
of 2.12 × 10−5 Hz.
As mentioned, we run the search over a total duration

Tobs ≈ 26 days in the above example. Unlike standard CW
signals, which have essentially constant strain amplitude
over the entire observing time of ∼years, vector boson
signals decay much quicker. Thus, there is an optimal range
for Tobs that is long enough to accumulate a significant
SNR, but short enough to not accumulate pure noise after
the signal strength falls below the detection limit. The
optimal range of Tobs varies for different systems but is
expected to be on the order of τGW [see Eq. (12) and Fig. 3].
Hence, we use Tobs ≈ τGW (with some rounding involved
such that Tobs is evenly divided into Tcoh intervals).
To demonstrate the effect of searching over longer

or shorter durations, we show another example in Fig. 8.
We consider a system with Mi ¼ 60M⊙, χi ¼ 0.7,
and α ¼ αopt ¼ 0.176 at d ¼ 500 Mpc (cos ι ¼ 1.0) and

inject a synthetic signal into Gaussian noise (S1=2h ¼
4 × 10−24 Hz−1=2) in the 168–169 Hz sub-band for two
aLIGO detectors. We track the injection with Tcoh ¼
11.6 min forNT ¼ 23, 46, 92, and 184 steps; the respective
trackings are shown in panels a)–d), corresponding to
Tobs ¼ 0.25τGW, 0.5τGW, τGW, and 2τGW, respectively. In
panel (a), we find that L̄ falls below the threshold, so the
signal is not recovered. This is because Tobs is too short to
accumulate enough signal power. In panels (b) and (c), we

FIG. 6. L̄th as a function of NT for Tcoh ¼ 30 min (data points
are taken at NT ¼ 25, 50, 100, 200, 300, 400, and 500 steps). The
solid curve is an exponential decay fit: L̄th ¼ ae−bNT þ c with fit
parameters a ¼ 2.99, b ¼ 0.0168, and c ¼ 6.66.

FIG. 7. Viterbi tracking (solid orange curve) for a synthetic
vector boson signal (dashed blue curve) injected into Gaussian
noise with S1=2h ¼ 4 × 10−24 Hz−1=2 for two aLIGO detectors
(system parameters: Mi ¼ 200M⊙, χi ¼ 0.6, αopt ¼ 0.141, and
d ¼ 500 Mpc). We use Tcoh ¼ 207 min ¼ 3.45 h and run the
search for a total duration of ∼26 d (NT ¼ 181 steps). The
detection statistic is L̄ ¼ 57.43 > L̄th ¼ 6.73.
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have L̄ > L̄th, so the signal is successfully recovered in both
cases. The recovered signals in each panel (solid orange
curves) align well with the injected signals (dashed blue
curves). As such, Tobs ¼ 0.5τGW and τGW are both good
choices for this system. In panel (d), while L̄ is above the
threshold, it is only marginally so. This is because h0
decreases as the boson cloud dissipates, and as shown in
(d), the tracking loses the signal and begins to collect pure
noise in the last third of the total Tobs, resulting in a less
significant detection statistic. Overall, we find it is safest to
use Tobs ≈ τGW, which always falls in the optimal range for
the systems we have tested across the system parameter
space.
Here we have considered the optimal Tobs range for a

marginal signal in order to quantify the search sensitivity. If
the signal is sufficiently loud, using Tobs ≈ τGW is still safe
for detecting the signal, but extending Tobs would further
increase the SNR, allowing a follow-up verification for the
signal candidate.

IV. SEARCH SENSITIVITY
AND HORIZON DISTANCE

Based on the simulations described above, we estimate
horizon distances in optimal scenarios for current and

future generation detectors in Sec. IVA and discuss the
nonoptimal cases in Sec. IV B. Because we do not make
any assumptions about the origins of our target sources, our
conclusions are broadly applicable to stellar-mass black
holes with reasonably well-constrained sky positions and
intrinsic parameters.

A. Horizon distance estimate

In this section, we quantify the horizon distance dH,
defined as the farthest luminosity distance we would be able
to detect a vector boson signal from a given black hole in the
optimal scenario. Here, the optimal scenario is defined as:
(i) the boson mass optimally matches its host black hole in
terms of maximizing the intrinsic strain amplitude when the
cloud is saturated, and (ii) the black hole-boson system is
optimally oriented (face-on or face-off), such that the
effective strain amplitude on Earth is maximized.
In Sec. IV B of Ref. [55], the authors estimate horizon

distances for scalar clouds by first obtaining the search
sensitivity on signal strain amplitude corresponding to 95%
detection efficiency at 1% false-alarm probability, denoted
by h95%0 , for a particular search configuration. Sensitivities
under other search configurations (i.e., different choices of
Tcoh and Tobs) can be obtained by the following scaling [81]:

FIG. 8. Viterbi tracking (solid orange curve) for a synthetic vector boson signal (dashed blue curve) injected into Gaussian noise with
S1=2h ¼ 4 × 10−24 Hz−1=2 for two aLIGO detectors (system parameters: Mi ¼ 60M⊙, χi ¼ 0.7, αopt ¼ 0.176, and d ¼ 500 Mpc). We
use Tcoh ¼ 11.6 min and run the search for (a) 23 steps, (b) 46 steps, (c) 92 steps, and (d) 184 steps, corresponding to Tobs ¼ 0.25τGW,
0.5τGW, τGW, and 2τGW, respectively (τGW ¼ 0.74 days). In panels (b), (c), and (d), L̄ is above the corresponding threshold, whereas in
panel (a), L̄ < L̄th, which is a nondetection.
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h95%0 ðfÞ ∝ ShðfÞ1=2
N1=2

ifo ðTcohTobsÞ1=4
; ð25Þ

assuming that Nifo detectors in the network have the same
ASD at the signal frequency. The horizon distance is then the
luminosity distance of the systematwhich the signal strainh0
at dH equals h95%0 ðfdetÞ, where fdet is the signal frequency in
the detector frame.
We do not follow this scaling in this study, however,

because Eq. (25) is not as reliable for short signals.
Moreover, the effects of redshift in vector boson searches
are more significant since we can reach much farther into
the Universe, as we discuss below. Thus, we need to
consider a wide range of possible values of h0, fGW, Tcoh,
TSFT, and Tobs for a given system, all depending on
the system’s luminosity distance from Earth. Because of
the challenges these factors pose, we instead estimate the
horizon distance directly on a grid of black hole masses
and spins.
Figure 9 shows the estimated horizon distances as a

function of Mi and χi, assuming a network of two aLIGO
detectors at design sensitivity [96]. Here, the results are
presented for the optimal scenario described above (i.e., the
boson mass is mopt

V ¼ αoptℏ=rg and the system is face-on/
face-off). We limit Tcoh to 1 min ≤ Tcoh ≤ 10 days. (See
Sec. III A for the justification.) We set the total observing
time Tobs ¼ minðτGW; 180 dÞ. (See Fig. 3 for the typical
range of τGW values for a given black hole.) We select a
180 d cutoff for the total observing time because we aim to
follow up promising CBC merger remnants in LIGO-
Virgo-KAGRA (LVK) observing runs, which usually last

∼1 year with events detected throughout the run. This
180 d cutoff is also motivated by the need to save on
computing costs wherever possible. The gray area in the top
left corner of Fig. 9 denotes the region of the parameter
space where the maximum allowed Tcoh is shorter than
1 min and the signal is evolving too quickly for this method
to cover.7 Moreover, because aLIGO detectors have little
sensitivity below ∼5 Hz, we set a lower cutoff in frequency
at 5 Hz. This results in a noticeable suppression in the
horizon distance at very large Mi, where the systems are
optimal for low-mass bosons and tend to emit at lower
frequencies.
The effect of redshift z on the signal frequency is non-

negligible at large luminosity distances and can be expressed
as fdet ¼ fsrcð1þ zÞ−1 and ḟdet ¼ ḟsrcð1þ zÞ−2, where fsrc
(ḟsrc) is the frequency (derivative) in the source frame, and
fdet (ḟdet) is the respective quantity in the detector frame. This
allows us to use longer coherent lengths,Tz

coh ¼ Tcohð1þ zÞ,
and longer SFT lengths, Tz

SFT ¼ TSFTð1þ zÞ, where the
superscript z denotes redshifted signals. Similarly, we have
a redshifted GW emission timescale τzGW ¼ τGWð1þ zÞ
and thus are able to observe over longer durations
Tz
obs ¼ Tobsð1þ zÞ. Hence, for a given system at cosmo-

logical distances, the search sensitivity may improve as
distance increases because we are able to extend Tcoh (and
search sensitivity improves as Tcoh increases); the search
sensitivity may also degrade, however, since the distance to
the system is increasing (and the signal amplitude linearly
scales with the inverse of the distance). Whether it is a net
gain or loss in sensitivity depends on the configuration of the
system, redshift, and the detector noise ASD at the signal
frequency in the detector frame.
The estimated horizon distances shown in Fig. 9 have the

redshift effects taken into account. The procedure to
account for redshift is as follows. For a given black
hole-boson system (a given set of Mi, χi, and mopt

V ), we
first inject synthetic signals calculated by SuperRad into
Gaussian noise with the following set of extrinsic param-
eters: d ¼ 50 Mpc, cos ι ¼ 1, a randomized polarization
angle, a fixed ASD of S1=2h ¼ 4 × 10−24 Hz−1=2, and a
set of arbitrarily chosen sky coordinates ðRA;DecÞ ¼
ð4.41955; 0.62385Þ rad. We choose the optimal search
configuration for the system that is assumed to lie at this
distance and attempt to recover the signal using HMM. If
the signal is recovered with L̄ > L̄th, we increase d to
100 Mpc and repeat the same process. We continue to
increase the distance by an interval of 100 Mpc until L̄
drops below the threshold. We quote the largest distance at
which we are still able to recover the signal as the horizon
distance, dH, for each given black hole in the ðMi; χiÞ

FIG. 9. Horizon distance (colored contour) as a function of the
initial black hole mass Mi and initial spin χi for two aLIGO
detectors at design sensitivity. The gray regionmarks the parameter
space where the signal is evolving too quickly to be tracked using
the method in this paper (ḟdet > 1.39 × 10−4 Hz s−1). The white
contours mark the optimally matched boson masses [as defined in
Eq. (20)] in eV.

7As discussed in Sec. III A, alternative HMM-based methods,
e.g., Refs. [82,88], can be used for rapidly evolving signals in the
gray region. Also see Sec. IV B for additional discussion
regarding nonoptimally matching scenarios.
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plane. Then we rescale dH based on the frequency-
dependent ASD curve for aLIGO design sensitivity [96],
with Tcoh, Tobs, and the redshift effect all taken into
account, following the scaling given by Eq. (25):

h0ðdHÞ½TcohðdHÞTobsðdHÞ�1=4
S1=2h

¼ h0ðd0HÞ½Tcohðd0HÞTobsðd0HÞ�1=4
S1=2h ðd0HÞ

; ð26Þ

where S1=2h is fixed to the value used in the simulations, i.e.,

4 × 10−24 Hz−1=2, S1=2h ðd0HÞ is the aLIGO design ASD at
the redshifted signal frequency fdet (which in turn depends
on dH), and d0H is the target horizon distance scaled to the
aLIGO design sensitivity. We obtain the target d0H value by
numerically solving Eq. (26) for each system.
As expected, the horizon distance generally increases

with bothMi and χi. High-mass black holes lead to signals
with smaller ḟGW values, allowing us to use longer Tcoh
segments, yielding increased sensitivity. The gain is
diminished by the fact that the lower-mass bosons matching
the higher-mass black holes emit at lower frequencies,
where ground-based detectors are less sensitive due to
seismic noise. When the horizon distances correspond to
high redshifts, the signals are redshifted to even lower
frequencies. Hence, the horizon distance degrades toward
the higher end of the black hole mass spectrum in the figure.
Toward the lower end of the Mi spectrum, the optimally
matching bosons have higher mass and emit at higher
frequencies, where the detector’s sensitivity is limited by
shot noise. In addition, boson clouds around smaller black
holes emit lower-amplitude GWs. Thus, in the low Mi
region, the search sensitivity is also limited. Nevertheless,
unlike the expected signals generatedby scalar clouds around
CBC remnants, for which the detection prospects are dim for
current generation detectors,8 for a parameter space with
Mi ≳ 60M⊙ and χi ≳ 0.6 (corresponding to a boson mass of
∼10−13 eV and d≳ 400 Mpc), searches for vector boson
signals are promising using existing detectors; CBC events
detected in previous observing runs are found at luminosity
distances ≲Oð1 GpcÞ.
In Fig. 10, we compare the horizon distances using two

aLIGO detectors at design sensitivity with the proposed
next-generation detectors: Cosmic Explorer [97–99] and
Einstein Telescope [100–103]. The top panel is the same as

Fig. 9, but with a different color scale for visual comparison
with the bottom two panels. We use the same method as
described above to rescale the horizon distances using the
design ASD curves for Cosmic Explorer and Einstein
Telescope (also with a lower cutoff frequency at 5 Hz)
[96,104]. According to the figure, future generation

FIG. 10. Horizon distance (colored contour) as a function of the
initial black hole mass Mi and initial spin χi for two aLIGO
detectors at design sensitivity (top), one Cosmic Explorer
(middle), and one Einstein Telescope with three identical
observatories at the same triangular site (bottom). The gray
region marks the parameter space where the signal is evolving too
quickly to be tracked using the method in this paper
(ḟdet > 1.39 × 10−4 Hz s−1). The white contours mark the opti-
mally matched [as defined in Eq. (20)] boson masses (in eV),
roughly indicating the parameter space that can be probed with
these ground-based detectors.

8Scalar clouds emit weaker signals that occur over much
longer timescales; in this case, galactic black holes that are older
but more nearby would be the more promising targets for current
generation detectors (see, e.g., Refs. [47,52]). However, it is
important to note that when targeting unknown black holes and/or
known black holes with unknown ages within our galaxy,
constraints derived on the boson mass are contingent on the
assumed system age as well as the black hole population.
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detectors will improve the horizon distances by about an
order of magnitude, allowing us to probe a much wider
parameter space for boson masses ∼10−14–10−12 eV.
For comparison, we calculate the matched filter SNR

(SNRmf) for each of three example black holes with
optimally matched boson masses at the aLIGO horizon
distances (Table I). The SNRmf values are in the range
≈15–25, roughly what we would expect for detection in a
semicoherent HMM search. In Ref. [34], it is assumed that
any signal with SNRmf > 8 can be detected, and corre-
spondingly, they find horizon distances that are a factor of
a few larger than found here. (Reference [34] also uses a
nonrelativistic estimate of the GW amplitude.) In reality, a
more flexible method that is less susceptible to model
uncertainties, like the one described in this paper, sacrifices
some sensitivity and requires a higher SNR for confident
detection. That is, for a less sensitive semicoherent search,
we require a signal with higher SNR (SNRmf ≳ 15–25)
than that which is required in a fully coherent search
(SNRmf > 8) to ensure the signal is detectable.

B. Nonoptimal scenarios

Up until this point, all horizon distances have been
estimated using the optimally-matched boson massmopt

V . In
the case of scalar bosons, the optimally matching case
automatically yields the maximum horizon distance [55],
assuming no impact from the detector ASD, since the
signals last for timescales on the order of years or more and
the signal strain is maximized over the whole observing
time. This is not always the case for vector bosons, as we
demonstrate in Fig. 11, which shows the horizon distances
for a range of α values as a function of Mi for a fixed
χi ¼ 0.7. The horizontal dashed line marks αopt ¼ 0.176.
We see that αopt does not align with the maximum horizon
distance for any given Mi; rather, the maximum dH (with a
factor of ∼1.2–2 improvement) lies roughly at α ≈ 0.15
with a long tail into the lower α values. This behavior is
unique to vector boson signals, which are much shorter
than scalar signals.
The optimally matching value of α, by construction, has

the maximum strain when the cloud is saturated. However,
since this means the radiated power will be nearly maxi-
mized, the signal will evolve rapidly with a large ḟGW and a
short τGW, which limits the length of Tcoh and Tobs that can
be used in the search and thus degrades the sensitivity. On
the other hand, when we consider a suboptimal boson mass

for a given black hole, by Eqs. (11) and (13), the cloud
radiates at lower power and emits GWs over a longer
timescale. Although the signal strain is smaller due to lower
intrinsic GW power, because the signal evolves more
slowly and lasts longer, we are able to extend Tcoh, gaining
sensitivity, and we can track over a longer Tobs, accumu-
lating a higher SNR. In Fig. 11, when α ≲ αopt, the gain in
sensitivity outweighs the loss due to a smaller signal strain.
But as α further decreases, the signal becomes too weak,
and the sensitivity degrades again. Hence, the horizon
distances presented in Sec. IVA are only for the optimally
matching boson for each black hole; they are not neces-
sarily the largest luminosity distances we can reach for any
possible boson mass. Some suboptimal boson masses will
lead to better detection prospects. It follows that for a given
black hole, it is not only possible, but also beneficial for us
to probe a range of boson masses.
Although not shown in Fig. 11, as χi increases, the α

value corresponding to the maximum dH shifts more
significantly from αopt. This is because for higher-spin
black holes with α ¼ αopt, the signal frequency evolves
quicker and thus requires shorter Tcoh lengths in the search;
the sensitivity gain at nonoptimal α values, which allow for
longer Tcoh segments, is then more significant.
The gray shaded regions in Figs. 9 and 10, which mark

the parameter space where the signals evolve too quickly to
track with the method described in this paper, are not
necessarily inaccessible. For suboptimal α values, the
frequency derivative is smaller, allowing us to significantly
extend Tcoh and probe the gray region of the parameter
space for such boson masses.
We also consider the case in which the source is not

optimally oriented with respect to the detectors, i.e.,
cos ι ≠ �1. The luminosity distance (d) and orientation

TABLE I. Matched filter SNRs for three sample systems at the
estimated horizon distances using two aLIGO detectors.

Mi½M⊙� χi dH [Gpc] SNRmf

40 0.5 0.175 25.3
80 0.6 0.564 20.7
100 0.7 1.096 14.9

FIG. 11. Horizon distance (colored contour) as a function ofMi
and α (at χi ¼ 0.7) for two aLIGO detectors at design sensitivity.
The dashed white line marks αopt ¼ 0.176, the α-value corre-
sponding to the optimally matched boson mass for each black
hole mass.
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(ι) of the source are degenerate, and we can write the
effective strain amplitude seen by the detectors as [78,105]

heff0 ¼ h0ðdÞ2−1=2f½ð1þ cos2 ιÞ=2�2 þ cos2 ιg1=2: ð27Þ

Since the sensitivity to the effective strain heff0 remains fixed
within a given detector, we can analytically scale the
horizon luminosity distance for a nonoptimally oriented
system using Eq. (27).9

V. SOURCES AND SKY LOCALIZATION

As discussed in Sec. I, although constraints have already
been placed on the boson mass using black hole spin
measurements, there are significant associated uncertain-
ties. Searches targeting individual black holes represent a
more direct approach to testing the superradiance phe-
nomenon and constraining the boson mass. We describe
promising search targets for vector bosons in Sec. VA.
Then, we discuss the impact of the sky localization of the
target black hole and analyze two different systems as
examples in Sec. V B.

A. CBC remnant black holes

To determine what types of black holes would be ideal
targets for vector boson searches, we first consider black
holes with well-estimated masses, spins, and ages that could
host boson clouds whose signals would fall within reach of
current-generation detectors. Having prior knowledge of the
black hole’s intrinsic parameters (mass and spin) and
extrinsic parameters (luminosity distance and orientation)
allows us to accurately predict the strain amplitude emitted
by the source for a given α and thereby place confident
constraints on the boson mass. An accurate estimate of the
black hole age enables us to predict the optimal starting time
of the search for a range of bosonmasses. Prior knowledge of
the sky position is also useful (in most cases; see Sec. V B),
motivating us to target known, well-localized black holes
constrained within ∼102–103 deg2.
We can infer the parameters of a CBC remnant black hole

from the inspiral-merger-ringdown signal observed by the
detectors. The intrinsic and extrinsic source parameters listed
in the previous paragraph are provided by CBC parameter
estimation.We can pinpoint the time required for the cloud to
grow and emit (if the corresponding boson particle exists)
accurately since we know when the black hole was born. In
addition, for sources seen by multiple detectors, we often
have decent sky localization, particularly if there is an

electromagnetic counterpart (i.e., at least one of the merging
objects is a neutron star).
Reference [55] thoroughly discusses the benefits and

drawbacks of targeting CBC remnants, as well as another
potentially interesting target source: black holes in x-ray
binaries. In this study, we show that, for vector boson signals,
we are able to reach a much farther distance compared to
scalar boson signals, and that current-generation detectors
are capable of reaching sources at luminosity distances in line
with some typical CBC remnants (Sec. IV). Thus, nearby
CBC remnants are arguably the more desirable choice given
the uncertainties associated with x-ray binary systems and
the fact that they will typically be much older. Given that we
donot have prior knowledge of the conjectured particlemass,
it is in our best interest to target all black holes with
reasonable potential to produce a detectable signal regardless
of where they lie in the mass-spin plane. Targeting multiple
black holes with different properties allows us to probe a
larger boson mass range. The fourth observing run of the
LVKnetwork is about to start with upgraded detectors, sowe
expect to have many remnant black holes suitable for vector
boson studies.

B. Sky localization uncertainty

In this section, we discuss in more detail how the sky
localization of a CBC event would impact a vector boson
search, and we analyze two different systems as examples.
For CBC remnant black holes detected by LIGO and

Virgo, the sky positions are usually constrained to
∼101–103 deg2. When targeting a particular black hole,
we need to run the search multiple times on a grid of sky
positions to tile the patch in the sky where the source is
believed to lie. We call these tiles “sky templates.” To
minimize the computational cost, but also ensure we do not
miss the signal, we must choose the number Nsky and
spacing Ωsky of the sky templates carefully. This depends
on a few factors: the position of the black hole, the size of
the sky area constrained by the parameter estimation of the
CBC signal, the signal strength, and the frequency reso-
lution of the search.
A general guideline for selecting sky templates is to

calculate the mismatch [81,106]. However, given the wide
parameter space that needs to be covered in vector boson
searches and the variety of search configurations required,
more careful empirical verification is needed. Here we
outline how to determine Nsky and Ωsky in a real search
by injecting a synthetic signal into Gaussian noise
(S1=2h ¼ 4 × 10−24 Hz−1=2) and searching over a grid of
sky positions around the injection position. The signal
strength is selected to be marginally above the detection
threshold to ensure the search does not miss a weak signal
due to a coarse sky grid.We investigate both a short-duration
signal OðhoursÞ and a long-duration signal OðmonthsÞ.
We inject both signals at an arbitrarily chosen sky position

9The scaling in Eq. (27) is an approximation and only becomes
exact in the nonrelativistic limit (α ≪ 1). However, it is a good
approximation for all systems considered in this study. [See the
discussion below Eq. (17) for further details.] In addition,
Eq. (27) assumes a randomized polarization angle and neglects
the weak impact from the sky position in this scaling.
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RA ¼ 20 h and Dec ¼ 10 deg, and we search over a 13 ×
13 sky grid centered on the injection position. Table II lists
the detailed injection and search parameters for both signals.
The results are shown in Fig. 12, with L̄=L̄th evaluated at

each sky position plotted as colored contours. The left and
right panels show the short- and long-duration injections,
respectively. The white contour in the right panel marks
where L̄ ¼ L̄th, below which we do not recover the signal.
We call the bright, above-threshold region the effective
point spread function (EPSF) of the signal [105]. In the left
panel, we have L̄ > L̄th over the whole grid.
In the right panel, the EPSF is slightly off-center; i.e., the

maximum L̄ is not found at the injection position. The EPSF
spans a large fraction of the sky, ∼202 deg2. This is the
expected behavior for a search with Tcoh ≲ 1 day, which has
poor sky resolution [105]. If we set Ωsky ≈ 202 deg2, we
would only need Nsky ∼Oð1Þ–Oð10Þ to cover the relevant
sky patch for a search with Tcoh ≲ 1 day, assuming the
source is reasonably well localized within ∼102–103 deg2,
which is easily attainable for an event seen by multiple
detectors. In the left panel, we do not see a clear EPSF
because the signal occurs over a much shorter timescalewith
Tcoh on the order of minutes. This is expected for very short-
duration signals. We use the estimated sky position of the
source to correct for the Doppler modulation due to the
Earth’s motion in the search. Because the modulation
changes little over coherent integration times of ∼10 min,

the detection statistic is generally insensitive to offsets from
the true sky position. While such low sky resolution does
come at the expense of degraded sensitivity, themajor benefit
here is that we do not need a sky grid to follow up a signal
with τGW ≲ 1 day. As demonstrated in the above examples,
the follow-up search for vector bosons targeting a CBC
remnant black hole should be computationally practical,
especially given the efficiency of the Viterbi algorithm.

VI. CONCLUSIONS

In this paper, we explore how GW detectors can be used
to uncover evidence of ultralight vector bosons through a
process known as black hole superradiance. We implement
a search technique for vector bosons around known black
holes based on an HMM tracking scheme similar to the one
used in directed searches for scalar bosons, but with certain
modifications necessary to deal with the more rapidly
evolving signals. We utilize a recently developed waveform
model SuperRad to simulate GW signals from vector-
boson clouds, which allows us to optimize the search
configuration and more accurately estimate its sensitivity.
In this study, we do not take into account any potential

impact of the uncertainty in the signal waveform model on
the search configuration. The methods used here are much
more flexible and less susceptible to model errors com-
pared to, e.g., matched filter techniques. Nevertheless, an
overestimated first time derivative of the emitted GW

FIG. 12. Colored contour of L̄=L̄th as a function of the offset in RA and Dec for a short-duration signal (left) and a long-duration signal
(right). See Table II for the injection parameters. Left: We have L > L̄th in the whole panel. Right: The bright EPSF enclosed within the
white contour marks the region of the sky with L̄ > L̄th where the signal is successfully recovered.

TABLE II. Injection and search parameters used in Fig. 12.

Panel Mi½M⊙� χi dH [Mpc] hpeak0 Freq. band [Hz] Tcoh Tobs

Left 60 0.7 600 4.41 × 10−25 165–166 11.8 min 18.1 h
Right 100 0.5 800 5.19 × 10−26 62–63 10.9 h 167.5 d
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frequency ḟGW may lead to a less optimal configuration
(shorter Tcoh) for the search. An underestimated ḟGW may
result in a loss of signal power as, at earlier times, the signal
evolves more quickly than HMM can track. Although we
do not expect this to have any significant impact on the
results here, future analyses may factor in the uncertainty
estimate in the waveform model when available. Future
improvements in the accuracy of the model may also be
used to more finely tune the parameters of the search to
their optimal values.
The computing cost for a given system depends on the

parameter space to be covered and the signal duration but is
generally efficient. For instance, we can track a short-
duration signal with τGW ∼ days in Oð10 minÞ, whereas a
typical long-duration signal with τGW ∼months would take
Oð1 hÞ on a single core computer. A detailed scaling of
computing cost as a function of Tcoh and Tobs can be found
in Ref. [81].
We find that current-generation detectors can reach

vector-boson clouds at Oð1 GpcÞ with our search methods
for astrophysical black holes with 60M⊙ ≲Mi ≲ 600M⊙
and χi ≳ 0.6, corresponding to the boson mass ∼10−13 eV
(see Fig. 9). All CBC events detected by the first three LVK
observing runs were within ∼5 Gpc, with many detected at
distances ≲1 Gpc [5–7]. We expect more events like this
with the upcoming fourth observing run. We also find that
these searches are largely unimpacted by uncertainties in

the sky position (see Sec. V B), making them even more
practical. Search plans are being made to follow up on
promising CBC events. Future-generation detectors, in
addition to enabling searches for scalar bosons, will extend
the reachable parameter space for vector bosons to nearly
all CBC remnant black holes that are detected.

ACKNOWLEDGMENTS

We thank Max Isi for the helpful discussions and
comments. D. J., L. S., S. S., and K.W. acknowledge the
support of the Australian Research Council Centre of
Excellence for Gravitational Wave Discovery (OzGrav),
Project No. CE170100004. N. S. and W. E. acknowledge
support from an NSERC Discovery grant. Research at
Perimeter Institute is supported in part by the Government
of Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province of
Ontario through the Ministry of Colleges and Universities.
This research was undertaken thanks in part to funding
from the Canada First Research Excellence Fund through
the Arthur B. McDonald Canadian Astroparticle Physics
Research Institute. The authors are grateful for computa-
tional resources provided by the LIGO Laboratory and
supported by National Science Foundation Grants
No. PHY-0757058 and No. PHY-0823459. This manu-
script carries LIGO Document No. DCC–P2300081.

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Observation of Gravitational Waves
from a Binary Black Hole Merger, Phys. Rev. Lett. 116,
061102 (2016).

[2] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity
32, 074001 (2015).

[3] F. Acernese et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical
Quantum Gravity 32, 024001 (2014).

[4] T. Akutsu et al., Overview of KAGRA: Detector design
and construction history, Prog. Theor. Exp. Phys. 2021,
05A101 (2021).

[5] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GWTC-1: A Gravitational-Wave
Transient Catalog of Compact Binary Mergers Observed
by LIGO and Virgo During the First and Second Observing
Runs, Phys. Rev. X 9, 031040 (2019).

[6] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GWTC-2: Compact Binary Coalescences
Observed by LIGO and Virgo During the First Half
of the Third Observing Run, Phys. Rev. X 11, 021053
(2021).

[7] R. Abbott et al. The LIGO Scientific Collaboration, the
Virgo Collaboration, and the KAGRA Collaboration,

GWTC-3: Compact binary coalescences observed by
LIGO and Virgo during the second part of the third
observing run, arXiv:2111.03606.

[8] Ya. B. Zel’Dovich, Generation of waves by a rotating
body, Sov. J. Exp. Theor. Phys. Lett. 14, 180 (1971).

[9] C. W. Misner, Interpretation of Gravitational-Wave Obser-
vations, Phys. Rev. Lett. 28, 994 (1972).

[10] A. A. Starobinskii, Amplification of waves during reflec-
tion from a rotating “black hole”, Sov. Phys. JETP 37, 28
(1973).

[11] Steven Detweiler, Klein-Gordon equation and rotating
black holes, Phys. Rev. D 22, 2323 (1980).

[12] Richard Brito, Vitor Cardoso, and Paolo Pani, Super-
radiance: New frontiers in black hole physics, Lect. Notes
Phys. 906, 1 (2015).

[13] Asimina Arvanitaki and Sergei Dubovsky, Exploring the
string axiverse with precision black hole physics, Phys.
Rev. D 83, 044026 (2011).

[14] Asimina Arvanitaki, Masha Baryakhtar, and Xinlu Huang,
Discovering the QCD axion with black holes and gravi-
tational waves, Phys. Rev. D 91, 084011 (2015).

[15] R. D. Peccei and Helen R. Quinn, CP Conservation in the
Presence of Pseudoparticles, Phys. Rev. Lett. 38, 1440
(1977).

DANA JONES et al. PHYS. REV. D 108, 064001 (2023)

064001-18

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevLett.28.994
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440


[16] R. D. Peccei and Helen R. Quinn, Constraints imposed by
CP conservation in the presence of pseudoparticles, Phys.
Rev. D 16, 1791 (1977).

[17] Steven Weinberg, A New Light Boson?, Phys. Rev. Lett.
40, 223 (1978).

[18] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky,
Nemanja Kaloper, and John March-Russell, String axi-
verse, Phys. Rev. D 81, 123530 (2010).

[19] Mark Goodsell, Joerg Jaeckel, Javier Redondo, and
Andreas Ringwald, Naturally light hidden photons in
LARGE volume string compactifications, J. High Energy
Phys. 11 (2009) 027.

[20] Bob Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett.
166B, 196 (1986).

[21] Joerg Jaeckel and Andreas Ringwald, The low-energy
frontier of particle physics, Annu. Rev. Nucl. Part. Sci. 60,
405 (2010).

[22] Rouven Essig et al., Working group report: New light
weakly coupled particles (2013), https://www.osti.gov/
biblio/1306469.

[23] Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and
Edward Witten, Ultralight scalars as cosmological dark
matter, Phys. Rev. D 95, 043541 (2017).

[24] Prateek Agrawal, Naoya Kitajima, Matthew Reece,
Toyokazu Sekiguchi, and Fuminobu Takahashi, Relic
abundance of dark photon dark matter, Phys. Lett. B
801, 135136 (2020).

[25] Marco Fabbrichesi, Emidio Gabrielli, and Gaia
Lanfranchi, The Physics of the Dark Photon (Springer
International Publishing, New York, 2021).

[26] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and
Constantinos Skordis, Modified gravity and cosmology,
Phys. Rep. 513, 1 (2012).

[27] Oscar J. C. Dias, Giuseppe Lingetti, Paolo Pani, and Jorge
E. Santos, Black hole superradiant instability for massive
spin-2 fields, arXiv:2304.01265.

[28] Hirotaka Yoshino and Hideo Kodama, Gravitational radi-
ation from an axion cloud around a black hole: Superradiant
phase, Prog. Theor. Exp. Phys. 2014, 043E02 (2014).

[29] Hirotaka Yoshino and Hideo Kodama, Probing the string
axiverse by gravitational waves from Cygnus X-1, Prog.
Theor. Exp. Phys. 2015, 061E01 (2015).

[30] Asimina Arvanitaki, Masha Baryakhtar, Savas
Dimopoulos, Sergei Dubovsky, and Robert Lasenby, Black
hole mergers and the QCD axion at Advanced LIGO, Phys.
Rev. D 95, 043001 (2017).

[31] Richard Brito, Shrobana Ghosh, Enrico Barausse,
Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine
Klein, and Paolo Pani, Stochastic and Resolvable Gravi-
tational Waves from Ultralight Bosons, Phys. Rev. Lett.
119, 131101 (2017).

[32] Richard Brito, Shrobana Ghosh, Enrico Barausse,
Emanuele Berti, Vitor Cardoso, Irina Dvorkin, Antoine
Klein, and Paolo Pani, Gravitational wave searches for
ultralight bosons with LIGO and LISA, Phys. Rev. D 96,
064050 (2017).

[33] Masha Baryakhtar, Robert Lasenby, and Mae Teo, Black
hole superradiance signatures of ultralight vectors, Phys.
Rev. D 96, 035019 (2017).

[34] Kelvin H. M. Chan and Otto A. Hannuksela, Extracting
ultralight boson properties from boson clouds around post-
merger remnants, arXiv:2209.03536.

[35] Vitor Cardoso, Óscar J. C. Dias, Gavin S. Hartnett,
Matthew Middleton, Paolo Pani, and Jorge E. Santos,
Constraining the mass of dark photons and axionlike
particles through black-hole superradiance, J. Cosmol.
Astropart. Phys. 03 (2018) 043.

[36] Daniel Baumann, Horng Sheng Chia, and Rafael A. Porto,
Probing ultralight bosons with binary black holes, Phys.
Rev. D 99, 044001 (2019).

[37] Otto A. Hannuksela, Kaze W. K. Wong, Richard Brito,
Emanuele Berti, and Tjonnie G. F. Li, Probing the exist-
ence of ultralight bosons with a single gravitational-wave
measurement, Nat. Astron. 3, 447 (2019).

[38] Jun Zhang and Huan Yang, Gravitational floating orbits
around hairy black holes, Phys. Rev. D 99, 064018 (2019).

[39] William E. East, Superradiant instability of massive vector
fields around spinning black holes in the relativistic
regime, Phys. Rev. D 96, 024004 (2017).

[40] William E. East and Frans Pretorius, Superradiant Insta-
bility and Backreaction of Massive Vector Fields Around
Kerr Black Holes, Phys. Rev. Lett. 119, 041101 (2017).

[41] Roger Penrose, Gravitational collapse: The role of general
relativity, Nuovo Cimento Rivista Serie 1, 252 (1969).

[42] William H. Press and Saul A. Teukolsky, Floating orbits,
superradiant scattering and the black-hole bomb, Nature
(London) 238, 211 (1972).

[43] Jacob D. Bekenstein, Extraction of energy and charge from
a black hole, Phys. Rev. D 7, 949 (1973).

[44] Sam R. Dolan, Instability of the massive Klein-Gordon
field on the Kerr spacetime, Phys. Rev. D 76, 084001
(2007).

[45] William E. East, Massive Boson Superradiant Instability
of Black Holes: Nonlinear Growth, Saturation, and
Gravitational Radiation, Phys. Rev. Lett. 121, 131104
(2018).

[46] Ken K. Y. Ng, Salvatore Vitale, Otto A. Hannuksela, and
Tjonnie G. F. Li, Constraints on Ultralight Scalar Bosons
within Black Hole Spin Measurements from the LIGO-
Virgo GWTC-2, Phys. Rev. Lett. 126, 151102 (2021).

[47] R. Abbott et al. (The LIGO Scientific Collaboration, the
Virgo Collaboration, and the KAGRA Collaboration), All-
sky search for gravitational wave emission from scalar
boson clouds around spinning black holes in LIGO O3
data, Phys. Rev. D 105, 102001 (2022).

[48] Cristiano Palomba et al., Direct Constraints on Ultra-Light
Boson Mass from Searches for Continuous Gravitational
Waves, Phys. Rev. Lett. 123, 171101 (2019).

[49] Vladimir Dergachev and Maria Alessandra Papa, Sensi-
tivity Improvements in the Search for Periodic Gravita-
tional Waves Using O1 LIGO data, Phys. Rev. Lett. 123,
101101 (2019).

[50] R. Abbott et al. (KAGRA, LIGO Scientific and VIRGO
Collaborations), Search for continuous gravitational wave
emission from the Milky Way center in O3 LIGO-Virgo
data, Phys. Rev. D 106, 042003 (2022).

[51] Sylvia J. Zhu, Masha Baryakhtar, Maria Alessandra Papa,
Daichi Tsuna, Norita Kawanaka, and Heinz-Bernd

METHODS AND PROSPECTS FOR GRAVITATIONAL-WAVE … PHYS. REV. D 108, 064001 (2023)

064001-19

https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1088/1126-6708/2009/11/027
https://doi.org/10.1088/1126-6708/2009/11/027
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1146/annurev.nucl.012809.104433
https://doi.org/10.1146/annurev.nucl.012809.104433
https://www.osti.gov/biblio/1306469
https://www.osti.gov/biblio/1306469
https://www.osti.gov/biblio/1306469
https://www.osti.gov/biblio/1306469
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1016/j.physletb.2019.135136
https://doi.org/10.1016/j.physletb.2019.135136
https://doi.org/10.1016/j.physrep.2012.01.001
https://arXiv.org/abs/2304.01265
https://doi.org/10.1093/ptep/ptu029
https://doi.org/10.1093/ptep/ptv067
https://doi.org/10.1093/ptep/ptv067
https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevLett.119.131101
https://doi.org/10.1103/PhysRevLett.119.131101
https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevD.96.064050
https://doi.org/10.1103/PhysRevD.96.035019
https://doi.org/10.1103/PhysRevD.96.035019
https://arXiv.org/abs/2209.03536
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1038/s41550-019-0712-4
https://doi.org/10.1103/PhysRevD.99.064018
https://doi.org/10.1103/PhysRevD.96.024004
https://doi.org/10.1103/PhysRevLett.119.041101
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1038/238211a0
https://doi.org/10.1038/238211a0
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1103/PhysRevLett.121.131104
https://doi.org/10.1103/PhysRevLett.121.131104
https://doi.org/10.1103/PhysRevLett.126.151102
https://doi.org/10.1103/PhysRevD.105.102001
https://doi.org/10.1103/PhysRevLett.123.171101
https://doi.org/10.1103/PhysRevLett.123.101101
https://doi.org/10.1103/PhysRevLett.123.101101
https://doi.org/10.1103/PhysRevD.106.042003


Eggenstein, Characterizing the continuous gravitational-
wave signal from boson clouds around Galactic isolated
black holes, Phys. Rev. D 102, 063020 (2020).

[52] Ling Sun, Richard Brito, and Maximiliano Isi, Search for
ultralight bosons in Cygnus X-1 with Advanced LIGO,
Phys. Rev. D 101, 063020 (2020).

[53] Leo Tsukada, Thomas Callister, Andrew Matas, and
Patrick Meyers, First search for a stochastic gravita-
tional-wave background from ultralight bosons, Phys.
Rev. D 99, 103015 (2019).

[54] Leo Tsukada, Richard Brito, William E. East, and Nils
Siemonsen, Modeling and searching for a stochastic
gravitational-wave background from ultralight vector bo-
sons, Phys. Rev. D 103, 083005 (2021).

[55] Maximiliano Isi, Ling Sun, Richard Brito, and Andrew
Melatos, Directed searches for gravitational waves from
ultralight bosons, Phys. Rev. D 99, 084042 (2019).

[56] Nils Siemonsen and William E. East, Gravitational wave
signatures of ultralight vector bosons from black hole
superradiance, Phys. Rev. D 101, 024019 (2020).

[57] Joao G. Rosa and Sam R. Dolan, Massive vector fields on
the Schwarzschild spacetime: Quasi-normal modes and
bound states, Phys. Rev. D 85, 044043 (2012).

[58] Paolo Pani, Vitor Cardoso, Leonardo Gualtieri, Emanuele
Berti, and Akihiro Ishibashi, Perturbations of slowly
rotating black holes: Massive vector fields in the Kerr
metric, Phys. Rev. D 86, 104017 (2012).

[59] Valeri P. Frolov, Pavel Krtouš, David Kubizňák, and Jorge
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