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The radial direction of the Peccei-Quinn field can drive cosmic inflation, given a nonminimal coupling to
gravity. This scenario has been considered to simultaneously explain inflation, the strong CP problem,
and dark matter. We argue that Peccei-Quinn inflation is extremely sensitive to higher-dimensional
operators. Further combining with the discussion on the axion quality required for solving the strong CP
problem, we examine the validity of this scenario. We also show that after Peccei-Quinn inflation, resonant
amplifications of the field fluctuation is inevitably triggered.
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I. INTRODUCTION

The Peccei-Quinn (PQ) mechanism [1], based on a
global Uð1ÞPQ symmetry, provides a solution to the strong
CP problem by promoting the QCD θ angle to a dynamical
axion field [2,3]. The axion can be interpreted as the phase
of a complex scalar—the PQ field. When the PQ field
settles down to the minimum of a Mexican hat potential,
the Uð1ÞPQ symmetry is spontaneously broken and the
axion plays the role of a pseudo Nambu–Goldstone boson.
Axions also provide a viable candidate for the dark matter
of our universe [4–6].
Cosmology requires an additional scalar field for driving

cosmic inflation, to explain the observed flatness and
homogeneity of the universe, as well as the origin of the
primordial curvature perturbation [7–12]. Here, the radial
component of the PQ field can also serve as the inflaton,
with the help of a nonminimal coupling to gravity [13–17].
This provides an intriguing possibility that the strong CP
problem, dark matter, and inflation are all explained by the
PQ field. (Even more problems can be solved with some
extensions [15].) The PQ inflation scenario also predicts the
value of the tensor-to-scalar ratio as r ≈ 0.004, which can
be tested with upcoming cosmic microwave background
(CMB) experiments such as [18].

The crucial ingredient of the PQ inflation scenario is a
coupling between the PQ field and the Ricci scalar. This
dimension-four interaction, which is expected to exist
from the point of view of an effective field theory in
curved space [19], flattens the potential to realize a slow-
roll [20–23]. In this sense it has many features in common
with the model of [24] where the Higgs field with a
nonminimal gravitational coupling drives inflation. Higgs
inflation requires a very large gravitational coupling in
order to be consistent with both the measurement of the
Higgs self-coupling, and the curvature perturbation ampli-
tude inferred from analyses of the CMB. It has been pointed
out that the large gravitational coupling lowers the cutoff
scale of the effective field theory, making the predictions of
the model unreliable [25–28] (though a counterargument
has been presented in [29]). On the other hand for the PQ
field, its self-coupling is not constrained from experiments
and thus is effectively a free parameter of the model. It can
be chosen to allow for a small gravitational coupling, such
that the cutoff scale is larger than the relevant energy scales
during and after inflation. This has been considered as
another virtue of PQ inflation.1

Here we note that a small gravitational coupling, on the
other hand, requires a large field excursion for the PQ field.
This is easily understood by noting that, with a power-law
potential V ∝ ϕn and in the absence of a nonminimal
coupling to gravity, slow-roll inflation requires super-
Planckian field ranges. The necessity of large field excur-
sions renders the model sensitive to higher-dimensional
operators, which in turn depends on the details of the
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1It was pointed out in [17] that the gravitational coupling also
helps evade the axion quality problem.
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ultraviolet completion of the theory, bringing us back to the
situation similar to Higgs inflation.2 The objective of this
paper is to sharpen this message by evaluating the effects of
higher-dimensional operators on PQ inflation. By calculat-
ing their impact on curvature perturbations and the duration
of inflation, we derive constraints on Planck-suppressed
operators. (See also [30] which performed a similar study
for a Higgs-like real inflaton.)
The ultraviolet sensitivity of PQ inflation is reminiscent of

the so-called axion quality problem [31–33], which is based
on the observation that Uð1ÞPQ-breaking higher-dimensional
operators can spoil the axion as a solution to the strong
CP problem by displacing the axion field from the CP-
conserving vacuum. While this vacuum displacement is an
effect sourced by higher-dimensional operators at low
energies where the PQ field is localized at the potential
minimum, the effects on PQ inflation is at the inflationary
scale where the PQ field is largely displaced from its
minimum. Hence the two effects induced by higher-
dimensional operators have different nature, and we find
that the resulting constraints are complementary to each
other, excluding a wide range of operators when combined.
We also analyze the PQ field dynamics after inflation. It

has been claimed in [13,16] that after PQ inflation ends,
axion dark matter is produced due to the misalignment of
the nearly homogeneous axion field from the vacuum,
and also that the isocurvature fluctuation of the axions is
suppressed by the large PQ field displacement during
inflation [34,35]. On the other hand in the specific
PQ(-like) inflation model of [15], the oscillation of the
inflaton about its origin induces a resonant amplification of
the field fluctuation, which leads to a restoration of the PQ
symmetry. (See [36–43] for related works). The subsequent
symmetry breaking thus yields a highly inhomogeneous
axion field as well as axionic strings, whose decay
contributes to the axion production. Here, one may expect
that Uð1ÞPQ-breaking higher-dimensional operators should
suppress resonant effects, since they can source an angular
momentum to the PQ field and prevent the field from
oscillating violently along its radial direction. However, we
show that with higher-dimensional operators allowed for a
consistent PQ inflation, a resonant amplification of the PQ
field fluctuation is inevitably triggered. Our finding thus
implies that axion production after PQ inflation does not
proceed as in the vanilla vacuum misalignment scenario.
The plan of this paper is as follows. In Sec. II we review

the basic properties of the PQ inflation model. In Sec. III
we derive constraints on higher-dimensional operators by
numerically solving the PQ field dynamics during inflation.

We then analytically derive an approximate expression for
the constraints in Sec. IV. In our calculations we treat PQ
inflation as an effectively single-field model; we justify this
treatment in Sec. V. In Sec. VI we study the PQ field
dynamics after inflation and show that a resonant ampli-
fication of field fluctuations is unavoidable. In Sec. VII we
compare the constraint on higher-dimensional operators
from PQ inflation with that from axion quality arguments.
We then conclude in Sec. VIII. In the main text we focus on
higher-dimensional operators that are suppressed by the
present-day Planck scale, however in Appendix Awe study
operators suppressed by the effective Planck scale during
inflation. In Appendix B we present a detailed analysis of
the axion contribution to the curvature perturbation based
on the δN formalism. In Appendix C we consider a
hypothetical situation where axion dark matter is produced
from a vacuum misalignment after PQ inflation, and
evaluate the axion isocurvature perturbation.

II. REVIEW OF PECCEI-QUINN INFLATION

We consider a PQ field Φ that is coupled to the Ricci
scalar,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
M2

2
þξΦΦ�

�
R−gμν∂μΦ∂νΦ�−VðΦÞ

�
;

ð2:1Þ

with V being a Mexican hat potential,

VðΦÞ ¼ λ

6

�
jΦj2 − f2

2

�
2

; ð2:2Þ

and f is the axion decay constant. The self-coupling
constant λ and gravitational coupling ξ are assumed to
be non-negative. At the symmetry-breaking vacuum, i.e.,
jΦj ¼ f=

ffiffiffi
2

p
, the mass scale M is related to the reduced

Planck mass, MPl ≈ 2.4 × 1018 GeV, by

M2
Pl ¼ M2 þ ξf2: ð2:3Þ

We assume

ξf2 ≪ M2
Pl; ð2:4Þ

so that MPl ≃M. Rewriting Φ in terms of its radial and
phase (axion) directions as

Φ ¼ φffiffiffi
2

p eiθ; ð2:5Þ

where φ ≥ 0, then the above action becomes

2The precise statement is that the PQ field excursion in the
Jordan frame increases with a decreasing nonminimal coupling.
The excursion of the canonically normalized field in the Einstein
frame is larger than 1018 GeV, independently of the value of the
nonminimal coupling.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2 þ ξφ2

2
R −

1

2
gμν∂μφ∂νφ

−
1

2
φ2gμν∂μθ∂νθ − V

�
; ð2:6Þ

with

V ¼ λ

4!
ðφ2 − f2Þ2: ð2:7Þ

Performing a conformal transformation g̃μν ¼ Ω2gμν with
conformal factor

Ω2 ¼ 1þ ξ
φ2

M2
Pl

; ð2:8Þ

one goes to the Einstein frame where the action takes
the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

Pl

2
R̃−

1

2
g̃μν∂μχ∂νχ−

1

2

φ2

Ω2
g̃μν∂μθ∂νθ−U

�
:

ð2:9Þ

HereU ¼ V=Ω4, and χ is an almost canonically normalized
field defined as

dχ ¼ Idφ; I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξð1þ 6ξÞ φ2

M2
Pl

q
1þ ξ φ2

M2
Pl

: ð2:10Þ

Hereafter we carry out the analyses in the Einstein frame,
and consider a flat Friedmann–Robertson–Walker back-
ground, g̃μνdxνdxμ ¼ −dt2 þ aðtÞ2dx2. The Uð1ÞPQ sym-
metry allows the axion to stay fixed to its initial position.
We treat the model as effectively single-field and introduce
the slow-roll parameters in terms of the canonical radial
field as

ϵ ¼ M2
Pl

2

�
1

U
∂U
∂χ

�
2

; η ¼ M2
Pl

U
∂
2U
∂χ2

: ð2:11Þ

When these are both smaller than unity, the radial field
drives slow-roll inflation with its dynamics described by

3Hχ̇ ≃ −
∂U
∂χ

; 3M2
PlH

2 ≃U: ð2:12Þ

Here an overdot denotes a derivative in terms of the
physical time t, and H ¼ ȧ=a is the Hubble rate. The
scalar power spectrum amplitude, scalar spectral index,
and the tensor-to-scalar ratio at some wave number of
interest k� are written respectively as

As≃
U�

24π2M4
Plϵ�

; ns−1≃2η�−6ϵ�; r≃16ϵ�: ð2:13Þ

The subscript � denotes that the quantities are evaluated
when the mode k� exits the Hubble horizon.
Ignoring the decay constant f in the potential (2.7) and

using V ¼ λφ4=4!, the slow-roll parameters are obtained as

ϵ ¼
8
M2

Pl
φ2

1þ ξð1þ 6ξÞ φ2

M2
Pl

;

η ¼
12

M2
Pl

φ2 þ 4ξð1þ 12ξÞ − 8ξ2ð1þ 6ξÞ φ2

M2
Pln

1þ ξð1þ 6ξÞ φ2

M2
Pl

o
2

: ð2:14Þ

The amplitudes of the two parameters become unity for
similar field values. We thus roughly estimate the field
value when inflation ends by solving ϵ ¼ 1, giving,

�
φend

MPl

�
2

∼
16

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 8ξÞð1þ 24ξÞp
≃

(
8 for ξ ≪ 10−1;
2ffiffi
3

p
ξ

for ξ ≫ 10−1:
ð2:15Þ

Hence as long as the decay constant satisfies both
f2 ≪ M2

Pl and (2.4), it follows that f
2 ≪ φ2

end. This justifies
our neglecting of f during inflation.
In particular, if the radial field value is large enough

such that

ξ
φ2

M2
Pl

≫ 1; ð2:16Þ

then the slow-roll parameters become

ϵ ≃
8M4

Pl

ξð1þ 6ξÞφ4
; η ≃ −

8M2
Pl

ð1þ 6ξÞφ2
: ð2:17Þ

These satisfy a hierarchical relation of ϵ ≪ jηj ≪ 1, and
using (2.13) we obtain

As ≃
λð1þ 6ξÞφ4�
4608π2ξM4

Pl

; ns − 1 ≃ −
16M2

Pl

ð1þ 6ξÞφ2�
;

r ≃
128M4

Pl

ξð1þ 6ξÞφ4�
: ð2:18Þ

The slow-roll approximations (2.12) in the large-field
regime (2.16) take the forms,

3Hφ̇ ≃ −
λ

6ξ2ð1þ 6ξÞ
M4

Pl

φ
; ð2:19Þ
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H2 ≃
λM2

Pl

72ξ2
: ð2:20Þ

These can be used to obtain the number of e-folds between
the exit of the k� mode and the end of inflation as

N� ¼
Z

tend

t�
dtH ≃

1þ 6ξ

8M2
Pl

ðφ2� − φ2
endÞ; ð2:21Þ

where we assumed the field condition (2.16) to (at least
marginally) hold until the end of inflation. Supposing
φ2� ≫ φ2

end, then (2.18) is rewritten in terms of N� as,

As ≃
λN2�

72π2ξð1þ 6ξÞ ; ns − 1≃−
2

N�
; r≃

2ð1þ 6ξÞ
ξN2�

:

ð2:22Þ

We have also numerically computed the inflationary
predictions and model parameters of PQ inflation, which
are shown in Fig. 1 as functions of ξ. Here λ and φ� are
fixed using the expressions (2.13), such that the scalar
power spectrum amplitude takes the best-fit value As ¼
2.1 × 10−9, and the spectral index lies within the 68% con-
fidence region ns ¼ 0.9649� 0.0042 from the Planck
constraints at the pivot scale k� ¼ 0.05 Mpc−1 [44]. The
initial field velocity φ̇� is fixed from the slow-roll expres-
sion (2.19). The equation of motion of φ and the Friedmann
equation are then numerically solved until the end of

inflation, namely, when −Ḣ=H2 ¼ 1. The axion field θ
is fixed to a constant in this computation. We show in the
plots the values3 of the self-coupling λ, the radial field
values at horizon exit φ� and at the end of inflation φend,
e-folding number N� from when the pivot scale exits the
horizon until the end of inflation, and tensor-to-scalar ratio
r at the pivot scale. The blue solid and dashed lines indicate
values derived from, respectively, the best-fit and 1σ
uncertainty for ns. (These are barely distinguishable in
the log plots for φ� and λ.) The red line in Fig. 1(b) shows
the field at the end of inflation φend, which also barely
depends on the detailed value of ns. In Fig. 1(d) we also
show the observational upper limit r < 0.036 (95% C.L.,
BICEP/Keck [45]) by the orange line.
For ξ≲ 10−4, the model reduces to a simple φ4 inflation

which is strongly disfavored by the Planck data [44]. The
exclusion is explicitly seen in the plots as r exceeding its
upper limit, as well as N� far exceeding 60. At ξ≳ 1, the
values of N� and r approach those of Higgs inflation which
invokes λ ∼ 10−1 and ξ ∼ 104 [24]. Here the central value of
the number of e-folds becomes N� ≈ 56.5. Moreover the
tensor-to-scalar ratio approaches r ≈ 0.004, which can be
tested in upcoming experiments such as [18]. The upper
limit on r requires ξ≳ 10−2.

FIG. 1. Inflationary predictions and model parameters of PQ inflation, as functions of the nonminimal gravitational coupling. Between
the dashed lines the scalar spectral index takes values within the Planck 68% C.L. region ns ¼ 0.9649� 0.0042, with the solid line
corresponding to the central value. In Fig. 1(d) the orange line shows the BICEP/Keck upper limit for r.

3The values of λ and ξ should be considered as those at the
inflation scale. Throughout this paper we ignore the renormal-
ization group running of the couplings during inflation, by
considering the logarithmic corrections to be small.
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With the scale of inflation for this model, and assuming
that inflation is followed by a phase of inflaton oscillation,
and then by radiation domination, the number of infla-
tionary e-folds from the horizon exit of the pivot scale
k� ¼ 0.05 Mpc−1 should satisfy N� ≲ 56; here the upper
limit corresponds to the case of instantaneous reheating.
One sees in Fig. 1(c) that if ns takes a value that is þ1σ
away from the best fit, the upper limit on N� is violated for
any value of ξ.
One can hope to avoid a breakdown of the effective field

theory by choosing a set of sufficiently small couplings λ
and ξ, as shown in Fig. 1(a). However Fig. 1(b) indicates
that for ξ≲ 102, the field value φ� exceeds MPl. It should
also be noted that, independently of ξ, the excursion of the
canonical field (2.10) obeys4 Δχ > MPl. The large field
excursions would make the inflationary predictions sensi-
tive to operators suppressed by MPl. We look into this in
detail in the next section.

III. IMPACT OF HIGHER-DIMENSIONAL
OPERATORS

We now study how the naive picture of PQ inflation
described above is affected by higher-dimensional oper-
ators, and show that such operators need to be strongly
suppressed during inflation.

A. Higher-dimensional operators

We include an operator of dimension 2mþ n in the
Jordan frame such that the potential (2.2) is modified to

VðΦÞ ¼ λ

6

�
jΦj2 − f2

2

�
2

þ Λ −
�
g
jΦj2mΦn

M2mþn−4
Pl

þ H:c:

�
;

ð3:1Þ

with g being a dimensionless and complex constant. We
used MPl as the suppression scale of the operator, by

considering that some new physics must intervene at or
below MPl. One may thus expect jgj≳ 1, however we
will later show that PQ inflation generically requires a
much smaller jgj. Operators that are suppressed instead
by the effective Planck scale ðM2

Pl þ ξφ2Þ1=2 are studied
in Appendix A. See also [25–29] for discussions on the
suppression scales of higher-dimensional operators in the
context of Higgs inflation.
The parameter Λ has mass dimension four and its value

is chosen such that the vacuum energy at the potential
minima vanishes. At leading order in g, its amplitude is of

jΛj ∼ 2jgjM4
Pl

�
fffiffiffi
2

p
MPl

�
2mþn

: ð3:2Þ

We also write the dimension of the operator as

l ¼ 2mþ n; ð3:3Þ

and the coupling as g ¼ jgjeiδ with a real phase δ.
Rewriting the complex scalar as (2.5), the above potential
becomes

V ¼ λ

4!
ðφ2 − f2Þ2 þ Λ − 2jgjM4

Pl

�
φffiffiffi
2

p
MPl

�
l
cosðnθ þ δÞ:

ð3:4Þ

If n ¼ 0 the axion remains massless. On the other hand if
n ≠ 0, the Uð1ÞPQ symmetry is broken and the axion
acquires a mass; the presence of such operators is also
suggested by the breaking of global symmetries due to
quantum gravity [47–49]. In the following we will consider
both PQ-breaking and preserving operators.
The homogeneous equations of motion and the

Friedmann equation in the presence of the higher-dimen-
sional operator are

0¼ χ̈þ 3Hχ̇ þ 1

Ω4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 6ξ2 φ2

M2
Pl

q ��
1þ ξ

f2

M2
Pl

�
λ

6
ðφ2 − f2Þφ−

4ξφΛ
M2

Pl

−Ω2φθ̇2 −
�
lΩ2 − 4ξ

φ2

M2
Pl

�
Ω2φm2

θ

n2
cosðnθþ δÞ

�
;

ð3:5Þ

0 ¼ θ̈ þ 3Hθ̇ þ 2θ̇ φ̇

Ω2φ
þm2

θ

n
sinðnθ þ δÞ; ð3:6Þ

3M2
PlH

2 ¼ χ̇2

2
þ φ2θ̇2

2Ω2
þ 1

Ω4

�
λ

4!
ðφ2 − f2Þ2 þ Λ −

Ω2φ2m2
θ

n2
cosðnθ þ δÞ

�
: ð3:7Þ

4This can also be understood from the Lyth bound [46] for a canonical inflaton, jdχ=dNj ≃ ffiffiffiffiffiffiffi
r=8

p
MPl, combined with the values of r

shown in Fig. 1(d).

ULTRAVIOLET SENSITIVITY OF PECCEI-QUINN INFLATION PHYS. REV. D 108, 063530 (2023)

063530-5



Heremθ represents the mass of the angular direction around
its potential minima, which is defined as

m2
θ ¼

1

φ2Ω2

∂
2V
∂θ2

				
nθþδ¼0

¼ n2jgjM2
Pl

Ω2

�
φffiffiffi
2

p
MPl

�
l−2

: ð3:8Þ

The mass induced by higher-dimensional operators
depends on the inflaton field value. In particular when
the inflaton reaches its potential minimum, the axion mass
becomes m2

θ ≃ n2jgjM2
Plðf=

ffiffiffi
2

p
MPlÞl−2.

B. Constraints from number of e-folds

Higher-dimensional operators change the tilt of the
inflaton potential, which in turn affects the number of
inflationary e-folds N. We compute N by numerically
solving the set of equations (3.5)–(3.7), from the time when
the pivot scale k� exits the horizon until the end of inflation
at −Ḣ=H2 ¼ 1. The scalar power spectrum amplitude
and spectral index are fixed to the central values As ¼
2.1 × 10−9 and ns ¼ 0.965; we impose this condition
by evaluating the observables using the slow-roll expres-
sions (2.13) with V given by (3.4), and choosing the values
of λ and φ� accordingly.5

We also use the slow-roll approximations to fix the
field velocities at the horizon exit of the pivot scale,
namely, (2.12) for the radial field and

3Hθ̇ ≃ −
m2

θ

n
sinðnθ þ δÞ ð3:9Þ

for the axion. The solution (3.9) assumes m2
θ ≪ H2. In

particular for n ¼ 0, the right-hand side vanishes and thus
the axion is fixed to a constant value during inflation. On
the other hand if m2

θ ≳H2, the axion does not follow (3.9),
but quickly becomes stabilized at one of its potential
minima. Hence instead of treating θ� as a free parameter,
we write it as

nθ� þ δ ¼ ðnθi þ δÞ exp
�
−
m2

θ�
H2�

�
; ð3:10Þ

in terms of an “initial” angle θi, which represents the axion
field value a few e-foldings before the pivot scale exits the
horizon. Ifm2

θ� ≪ H2� then θ� ≃ θi, while ifm2
θ� ≫ H2� then

nθ� þ δ is effectively zero independently of the value of θi.
We also note that for m2

θ� ≫ H2�, the parametrization (3.10)
combined with (3.9) yields θ̇� ≃ 0, corresponding to an
axion at rest in a minimum. Hence (3.9) and (3.10) allow us

to systematically analyze the range of possibilities arising
from higher-dimensional operators.
Since the inflationary dynamics is insensitive to the

precise values of f and Λ, we are thus left with five free
parameters: jgj, l, n, nθi þ δ, and ξ. In Fig. 2 we show
constraints on higher-dimensional operators in the jgj-l
plane. (We performed computations also for fractional l.)
As a rough guide, we require the number of e-folds from
when the pivot scale k� exits the horizon until the end
of inflation, to lie within the range6 50 ≤ N� ≤ 60. The
regions on the right sides of the lines are excluded since
there the number of e-folds N� is either larger than 60 or
smaller than 50, and/or As and ns cannot simultaneously
take the observed values. In each line the nonminimal
coupling is taken as ξ ¼ 10−1 (blue), 1 (green), 10 (yellow),
102 (orange), 103 (red). Each of these are further classified
by whether the Uð1ÞPQ is broken or conserved, and whether
cosðnθi þ δÞ is positive (if n ≠ 0 this corresponds to

FIG. 2. Constraints on the coupling constant jgj and dimension
l of higher-dimensional operators in PQ inflation, from the
requirement that the scalar power spectrum amplitude and
spectral index match with observations, and the Planck pivot
scale exits the horizon 50 to 60 e-folds before inflation ends.
The allowed regions are on the left of the curves. The colors
denote different values for the nonminimal coupling ξ. The other
parameters are taken as n ¼ 1 and θi þ δ ¼ π − 0.5 (solid),
n ¼ 0 and δ ¼ π − 0.5 (dotted), n ¼ 1 and θi þ δ ¼ 0.5
(dashed), n ¼ 0 and δ ¼ 0.5 (dashed); the last two cases overlap
and thus are shown by the same dashed lines. The dotted lines
overlap with the solid in most part of the plot. The requirement of
very small values for jgj manifests the extreme sensitivity of PQ
inflation to Planck-suppressed higher-dimensional operators.

5We will show that higher-dimensional operators significantly
affect N for fixed values of As and ns. This is equivalent to saying
that for a fixed N, the values of As and ns are highly sensitive to
the operators.

6Note that N� ≤ 60 yields a conservative constraint, as the
actual upper limit is smaller; see discussions at the end of Sec. II.
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starting close to a minimum of the axion potential) or
negative (close to a hilltop); we took the combinations of
n ¼ 1 and θi þ δ ¼ π − 0.5 (solid), n ¼ 0 and δ ¼ π − 0.5
(dotted), n ¼ 1 and θi þ δ ¼ 0.5 (dashed), n ¼ 0 and
δ ¼ 0.5 (dashed). The last two cases are both shown by
the same dashed lines since they overlap in the plot.
Moreover, the dotted lines overlap with the solid in most
part of the plot.
As one increases jgj, the number of e-folds basically

increases (decreases) from the base value N� ≈ 56.5 for
positive (negative) values of cosðnθi þ δÞ, which can be
understood from the potential (3.4) being flattened (steep-
ened) by the higher-dimensional operator. In the plot,
the dashed lines for cases with nθi þ δ ¼ 0.5 show
where N� ¼ 60; on the left of these lines are the regions
where 56.5 ≤ N� < 60. The dotted lines for n ¼ 0 and
δ ¼ π − 0.5 show where N� ¼ 50, with the regions on the
left giving 50 < N� ≤ 56.5. On the other hand, the solid
lines for n ¼ 1 and θi þ δ ¼ π − 0.5 consist of multiple
constraints; we look into this case in detail in the following
subsection. (However the reader interested primarily in the
general behavior of the constraints may go straight to
Sec. IV upon first reading.)
In our computations we only included one higher-

dimensional operator as shown in (3.1). In the presence
of a tower of operators, a consistent PQ inflation can be
achieved if all operators satisfy the constraints of Fig. 2;
here it should be noted that even if operators with different
dimensions cancel each other at some particular value of φ,
as the field rolls the operators will become non-negligible.
The constraints thus indicate that even operators with
very high dimensions need to be strongly suppressed.
We remark that there is the possibility that multiple
higher-dimensional operators conspire to realize a com-
pletely different but flat potential at large field values.
However we do not pursue such directions since in this
paper we are interested in providing discussions that do not
rely on the details of the ultraviolet completion.

C. Constraints around the hilltop

If the higher-dimensional operator breaks Uð1ÞPQ and
gives a sufficiently large axion mass, then even if the
axion is initially placed near a potential hilltop (i.e.,
cosðnθi þ δÞ < 0), it would roll down to the vicinity of
a minimum by the time the pivot scale exits the horizon (i.e.
cosðnθ� þ δÞ > 0). This is the reason why in Fig. 2 some
of the solid lines (n ¼ 1 and θi þ δ ¼ π − 0.5) connect the
dotted lines (n ¼ 0 and δ ¼ π − 0.5, thus cos δ < 0) to the
dashed lines (nθi þ δ ¼ 0.5, thus cosðnθ� þ δÞ > 0).
On the solid lines with ξ≲ 1 (blue and green) the axion

mass is sufficiently small such that the axion barely rolls,7

hence the lines overlap with the dotted and show where

N� ¼ 50. On the solid lines with ξ≳ 10 (yellow, orange,
and red), the axion can roll away from the hilltop region,
and as a consequence the lines exhibit kinks. (The red line
has a kink at l ≈ 22, which is not seen in the displayed
area.) For these lines, the segments above the kinks are set
by N� ¼ 50, while the segments right below the kinks arise
from not being able to produce the observed values for As
and ns, and further below the kinks are set by N� ¼ 60.
In Fig. 3 we zoom into the regions where the various

constraints meet, for cases with n ¼ 1. The combined
constraints are shown with the same color scheme and
line patterns as in Fig. 2: ξ ¼ 10 (yellow), 102 (orange),
with θi þ δ ¼ 0.5 (dashed), π − 0.5 (solid). Here we further
show the contour lines for the values of N� (black dashed)
and m2

θ�=H
2� (brown dotted). On the right of the black solid

lines are the regions where there is no combination of
(λ, φ�) that simultaneously yield As ¼ 2.1 × 10−9 and
ns ¼ 0.965. (The black solid lines are not smooth because
of the limited numerical resolution.) In Figs. 3(a) and 3(c)
where θi þ δ ¼ 0.5, as jgj increases the e-folding number
simply increases from its base value N� ¼ 56.5. On the
other hand, in Figs. 3(b) and 3(d) where θi þ δ ¼ π − 0.5,
the e-folding number decreases when m2

θ�=H
2� ≲ 0.1, while

it instead increases when m2
θ�=H

2� ≳ 0.1 due to the axion
rolling down to the vicinity of a minimum. Moreover, the
contour lines of N� hit the region where the higher-
dimensional operator prevents As and ns from simulta-
neously taking the observed values. One sees that the
kink in the combined constraint corresponds to where the
N� ¼ 50 contour hits this no-go region. The constraint for
ξ ¼ 103 has a similar structure, except for that the kink
appears beyond the parameter range displayed in Fig. 2.
In order to see the emergence of the no-go regions, in

Fig. 4 we show the combinations of φ� and λ that are
solutions to As ¼ U�=24π2M4

Plϵ� (shown as dashed lines)
and ns − 1 ¼ 2η� − 6ϵ� (solid lines). The observed values of
As and ns are simultaneously realized at the intersection of
the dashed and solid lines, whose position is indicated by
a dot. Lines and dots with different colors correspond to
different values of jgj. Moreover, n and nθi þ δ are varied in
the four panels, while the rest of the parameters are fixed to
l ¼ 8 and ξ ¼ 102. Looking at Fig. 4(d) in which n ¼ 1 and
θi þ δ ¼ π − 0.5, as jgj increases the intersection eventually
disappears at around jgj ¼ 2.5 × 10−8 and one enters the
no-go region; this is also seen directly in Fig. 3(d). The
disappearance of the intersection is also seen in Fig. 4(c) in
which n ¼ 1 and θi þ δ ¼ 0.5, however this happens for
values of jgj that give N� > 60; hence the no-go region
appears in Fig. 3(c) on the right side of the orange line.8

One sees in Fig. 4(d) that as jgj increases from zero, the
value of φ� at the intersection point first decreases (as is the

7We later explicitly show in (4.14) that the maximum allowed
value of m2

θ=H
2 increases with ξ.

8Values of φ� and λ are derived in (4.9) and (4.10) up to linear
order in g, however we note that the no-go region emerges where
the g-expansion breaks down.
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case in Fig. 4(b) for δ ¼ π − 0.5), and then turns to
increase (as in Figs. 4(a) and 4(c) for nθi þ δ ¼ 0.5).
This nonmonotonic behavior is due to m2

θ�=H
2� approach-

ing unity and forcing the axion to roll down to the vicinity
of a minimum, as was shown in Fig. 3(d). Finally, we
should comment on the second branch of intersections
seen in Figs. 4(a), 4(c), and 4(d). As jgj increases the
solutions in the two branches approach each other, and
merge right before one enters the no-go region. We have
ignored this second branch, since it appears at values of φ�
larger than those in the first branch, and hence tends to
yield N� that is too large.

IV. ANALYTIC ARGUMENTS

We now analytically derive an approximate expression
for the constraints in Fig. 2, by evaluating the modulation of

the number of e-folds by higher-dimensional operators. For
this purpose we can ignore the time evolution of the axion
and fix it to a constant value at θ ¼ θ�, as we will later
verify. For the equation of motion of the radial field (3.5)
and the Friedmann equation (3.7), we assume them to be
approximated respectively by the slow-roll expressions
(2.19) and (2.20). The necessary conditions for this can
be obtained by comparing the approximations and their
derivatives with the full equations, which gives

M2
Pl

ξφ2
;

m2
θφ

2

n2H2M2
Pl

;
ξf2

M2
Pl

;
ξjΛj

λφ2M2
Pl

≪ 1: ð4:1Þ

Upon deriving these conditions, we assumed l to be larger
than four but at most of order ten, and cosine factors to be
of order unity. The smallness of the first term corresponds

FIG. 3. Detailed view of Fig. 2, zooming in on regions where different constraints meet. The black dashed contours show values ofN�,
and the brown dotted show m2

θ�=H
2�. All the results are for n ¼ 1, while ξ and θi þ δ are varied in each panel. The combined constraints

are shown with the same color scheme (yellow/orange) and line patterns (solid/dashed) as in Fig. 2. On the right of the black solid lines,
As and ns cannot simultaneously take the observed values.
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to the large-field condition (2.16), and the third term is
equivalent to the condition (2.4). Given that Λ is chosen
as (3.2), then the forth term being small follows from the
smallness of the other quantities. The smallness of the
second term is imposed by the requirement that the second
line of (3.5) is negligible; let us name this parameter as,

κ ¼ m2
θφ

2

n2H2M2
Pl

≃
72jgjξ

λ

�
φffiffiffi
2

p
MPl

�
l−2

: ð4:2Þ

Here upon moving to the far right-hand side, we used (2.20)
and the definition of the axion mass (3.8).
In order to evaluate the effect of the higher-dimensional

operator on the number of e-folds, let us go beyond the
leading-order approximations (2.19) and (2.20) by includ-
ing terms that explicitly depend on g. Under the slow-roll
conditions (4.1), one can check that the most relevant
g-dependent term in the full Eqs. (3.5) and (3.7) is the
second line of (3.5). Hence instead of (2.19), let us use

3Hφ̇ ≃ −
λ

6ξ2ð1þ 6ξÞ
M4

Pl

φ

�
1 −

6ðl − 4Þξjgj
λ

�
φffiffiffi
2

p
MPl

�
l−2

cosðnθ� þ δÞ
�
; ð4:3Þ

which combined with (2.20) gives

dN ¼ H
φ̇
dφ ≃ −

1þ 6ξ

4M2
Pl

φdφ

�
1þ 6ðl − 4Þξjgj

λ

�
φffiffiffi
2

p
MPl

�
l−2

cosðnθ� þ δÞ
�
: ð4:4Þ

FIG. 4. Combinations of φ� and λ that satisfy As ¼ U�=24π2M4
Plϵ� (dashed lines) and ns − 1 ¼ 2η� − 6ϵ� (solid lines). The observed

values As ¼ 2.1 × 10−9 and ns ¼ 0.965 are simultaneously realized at the intersections of the dashed and solid lines, which are indicated
by the dots. Different colors correspond to different values of jgj. Values of n and nθi þ δ are varied in the four panels. The other
parameters are fixed to l ¼ 8 and ξ ¼ 102.
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Here we note that the time evolution of θ affects (3.5)
and (3.7) through terms proportional to either θ̇2 or
m2

θθ̇ sinðnθ þ δÞ. Given that the axion velocity is sourced
by the higher-dimensional operator, we expect θ̇ ∝ m2

θ ∝ g.

Hence the evolution of θ affects the e-folding number at
quadratic order in g, and this justifies setting θ to a constant.
Supposing the condition (4.1) to hold throughout infla-

tion and integrating (4.4) gives

N� ≃ ð1þ 6ξÞ
�

φ2�
8M2

Pl

þ 3ðl − 4Þ
l

ξjgj
λ

�
φ�ffiffiffi
2

p
MPl

�
l
cos ðnθ� þ δÞ

�
; ð4:5Þ

where we have neglected terms that depend on the field
value at the end of inflation. The first term in curly
brackets is the leading contribution which was derived
in (2.21). The second term represents the correction from
the higher-dimensional operator; this can either increase
or decrease N� depending on the sign of cosðnθ� þ δÞ, as
discussed in Sec. III B.
We further fix φ� and λ in terms of the scalar power

spectrum amplitude and spectral index, as was done in the
numerical study in the previous section. Expanding the
slow-roll results for the observables (2.13) up to linear
order in g gives

As ≃
λð1þ 6ξÞφ4�
4608π2ξM4

Pl

þ ðl − 4Þð1þ 6ξÞjgj
96π2

×

�
φ�ffiffiffi
2

p
MPl

�
lþ2

cos ðnθ� þ δÞ; ð4:6Þ

ns − 1 ≃ −
16M2

Pl

ð1þ 6ξÞφ2�
−
24ðl − 4Þ2ξjgj
ð1þ 6ξÞλ

×

�
φ�ffiffiffi
2

p
MPl

�
l−4

cos ðnθ� þ δÞ: ð4:7Þ

Here we obtained each term in the right-hand sides at
leading order inM2

Pl=ξφ
2�, and neglected terms containing f

and Λ. These equations can be solved for φ� and λ. Let us
expand the quantities in powers of g,

φ� ¼ φ�0 þ φ�1 þ � � � ; λ ¼ λ0 þ λ1 þ � � � ; ð4:8Þ
where the numbers in the subscript represent orders of g.
Then at the zeroth order we get

φ�0 ≃
4MPlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − nsÞð1þ 6ξÞp ;

λ0 ≃ 18π2Asð1 − nsÞ2ξð1þ 6ξÞ; ð4:9Þ

as also shown in Fig. 1 for ξ≳ 10−2. At linear order,

φ�1 ≃
ðl − 4Þ2

48
φ�0κ�0 cos ðnθ� þ δÞ;

λ1 ≃ −
ðl − 2Þðl − 4Þ

12
λ0κ�0 cos ðnθ� þ δÞ; ð4:10Þ

where κ�0 is as shown in the far right-hand side of (4.2), but
with the replacements φ → φ�0 and λ → λ0.
Substituting (4.9) and (4.10) into (4.5), we obtain up to

linear order in g,

N� ≃
2

1 − ns

�
1þ ðl − 2Þ2ðl − 4Þ

24l
κ�0 cos ðnθ� þ δÞ

�
:

ð4:11Þ
In the absence of higher-dimensional operators, the
e-folding number is given by9 N� ≃ 2=ð1 − nsÞ ≈ 57
for ns ¼ 0.965. The leading correction by the higher-
dimensional operator is controlled by the parameter κ;
this arises from both the first term of (4.5) through the
correction to φ�, as well as the second term. For the
e-folding number to lie within the range 50 < N� < 60,
the higher-dimensional correction should be at most ∼10%.
This imposes

ðl − 2Þ2ðl − 4Þ
24l

κ�0 ≲ 10−1; ð4:12Þ

where we assumed the cosine factor to be of order unity.
Rewriting κ�0 in terms of observables using (4.9), one
obtains an upper bound on jgj as

jgj ≲ 10−1
48π2lAsð1 − nsÞ
ðl − 2Þ2ðl − 4Þ

�ð1þ 6ξÞð1 − nsÞ
8

�
l=2
;

∼ 10−9
l

ðl − 2Þ2ðl − 4Þ
�
1þ 6ξ

230

�
l=2
: ð4:13Þ

Here, upon moving to the second line we used As ¼
2.1 × 10−9 and ns ¼ 0.965.
In Fig. 5, the analytic upper bound (4.13) is shown as

black solid lines for different values of ξ, overlaid with the
numerical bounds from Fig. 2. The analytic estimate is seen
to reproduce well the numerical results. The tilt of the
bound in the l- log jgj plane is predominantly set by the sign
of log½ð1þ 6ξÞ=230�; this factor derives from the ratio
φ�=

ffiffiffi
2

p
MPl in (4.2). For ξ≲ 40, the bound on jgj becomes

9The actual e-folding number is shifted to N� ≈ 56.5 as
reported in Sec. II, mainly due to deviations from slow-roll
toward the end of inflation.
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stronger with increasing l. This reflects the fact that
such values of ξ require field excursions of φ� > MPl
(see also Fig. 1), rendering the system particularly sensitive
to higher-dimensional operators.
Using the analytic bound on jgj, we can also derive an

upper bound for the axion mass during inflation. Rewriting
its ratio to the Hubble rate as m2

θ�=H
2� ¼ n2κ�M2

Pl=φ
2�,

approximating φ� and κ� by their zeroth order values, and
using (4.9), (4.12), and ns ¼ 0.965, one obtains

m2
θ�

H2�
≲ 10−2

n2lð1þ 6ξÞ
ðl − 2Þ2ðl − 4Þ : ð4:14Þ

This expression explicitly shows that the maximum mass-
Hubble ratio allowed within a consistent PQ inflation
increases with ξ, as was seen in Fig. 3.

V. VALIDITY OF SINGLE-FIELD
APPROXIMATION

In the previous sections we have treated PQ inflation as
effectively a single-field model and computed the scalar
perturbation, which was then compared to observational
results to fix the model parameters. We now verify the
validity of the single-field approximation by estimating the
contribution of the axion field to the perturbation.
Let us evaluate scalar perturbations in the spatially flat

gauge [50],

ζ ¼ H
ρ̇
δρ ≃

H
ρ̇
ðUφδφþUθδθÞ; ð5:1Þ

where ρ is the background energy density and δρ is the
density perturbation. In the far right-hand side we ignored
terms containing spacetime derivatives of the fields and
expanded the potential energy at linear order in the field
fluctuations, with Uφ ¼ ∂U=∂φ and Uθ ¼ ∂U=∂θ. We can
then go to Fourier space and write the scalar power
spectrum as

PζðkÞ ≃
�
H
ρ̇

�
2

ðU2
φPδφðkÞ þ U2

θPδθðkÞÞ; ð5:2Þ

where Pδφ and Pδθ are the power spectra of the field
fluctuations, and we ignored cross-correlations between
δφ and δθ.10

The time derivative of the background density is evalu-
ated using the continuity equation as,

ρ̇

H
¼ −3

�
I2φ̇2 þ φ2

Ω2
θ̇2
�
≃ −

1

3H2

�
U2

φ

I2
þΩ2U2

θ

φ2

�
: ð5:3Þ

The factors I2 and φ2=Ω2 are respectively the coefficients
of the kinetic terms of φ and θ in the Einstein frame
action (2.9). Upon moving to the far right-hand side
we assumed both fields to slow-roll, namely, to follow
3Hφ̇ ≃ −Uφ=I2 and 3Hθ̇ ≃ −UθðΩ2=φ2Þ. We also evaluate
the power spectra of the field fluctuations at the wave mode
k�, when the mode exits the horizon, as

Pδφ�ðk�Þ ≃
1

I2

�
H
2π

�
2
				
�
; Pδθ�ðk�Þ ≃

Ω2

φ2

�
H
2π

�
2
				
�
: ð5:4Þ

Combining (5.2)–(5.4) with the slow-roll approximation
for the Friedmann equation 3M2

PlH
2 ≃ U, we obtain the

scalar power spectrum at the horizon exit of the wave
mode k� as

Pζ�ðk�Þ ≃
I2U3

12π2M6
PlU

2
φ

�
1þ I2Ω2

φ2

U2
θ

U2
φ

�−1				
�
: ð5:5Þ

The expression in front of the parentheses is equivalent
to the single-field result of (2.13). The contribution from
the axion kinetic term θ̇2 through ρ̇ [cf., (5.3)], and the
axion fluctuation Pδθ [cf., (5.4)], both yield corrections to
the scalar power spectrum of order:

α ¼ I2Ω2

φ2

U2
θ

U2
φ

				
�
: ð5:6Þ

FIG. 5. Analytic bound (4.13) on higher-dimensional operators
shown in black solid lines, compared with the numerical bounds
from Fig. 2.

10The interaction between θ and the almost canonical χ
through the axion’s kinetic term is suppressed at ξφ2 ≫ M2

Pl
[cf., (2.9)], while that through the higher-dimensional operator is
suppressed by the coupling g.
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Focusing on the large-field regime ξφ2� ≫ M2
Pl,

and ignoring g corrections in Uφ, the quantity α is
approximated by

α ≃
n2ð1þ 6ξÞ

144
κ2� sin2ðnθ� þ δÞ; ð5:7Þ

where κ� is as shown in the far right-hand side of (4.2) but
with the replacement φ → φ�. This shows that for instance
with n ¼ 1, κ� ≲ 0.1, and ξ≲ 0.1, the contribution by the
axion to the scalar power is of α≲ 10−4. One may expect
from (5.7) that the axion contribution increases with ξ,
however a large ξ also enhances m2

θ�=H
2� and reduces the

system to an effective single-field, as we see below.
In Fig. 6 we show the values of α as defined in (5.6) by

magenta contours in the jgj-l plane. All the results are for

n ¼ 1, while the values of ξ and θi þ δ are varied in each
panel. (Note that in the Uð1ÞPQ-symmetric case, i.e., n ¼ 0,
the axion field fluctuations do not source curvature per-
turbations.) Upon plotting α, we replaced θ� in the
definition (5.6) with θi, which amounts to ignoring the
axion rolling before the horizon exit of the pivot scale.
This is because if m2

θ� ≪ H2�, as assumed in the above
discussions, then it follows from (3.10) that θ� ≃ θi. On the
other hand, if m2

θ� ≳H2�, the analyses above break down;
however in such cases the axion does not obtain super-
horizon field fluctuations, and thus it cannot source
cosmological perturbations in the first place. To also
examine such cases, we show in the plots the values of
m2

θ�=H
2� as brown dotted contours. Both α and m2

θ�=H
2�

increase with jgj. We assess the contribution from the axion
to the scalar power spectrum to exceed ∼1% when both

FIG. 6. (Un)importance of multi-field effects in PQ inflation. The pink shaded regions show where the axion field affects the scalar
power spectrum by more than 1%. The magenta solid contours show the axion’s contribution to the scalar power, and the brown dotted
show values of m2

θ�=H
2�. All the results are for n ¼ 1, while ξ and θi þ δ are varied in each panel. Overlaid are constraints on higher-

dimensional operators as shown in Fig. 2. On the right of the black solid lines, As and ns cannot simultaneously take the observed values.
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α≳ 0.01 and m2
θ�=H

2� < 0.5 are satisfied; these regions are
shown in pink.
Overlaid in the plots are the bounds on higher-

dimensional operators from Fig. 2, for ξ ¼ 10 (yellow),
102 (orange), with dashed lines for θi þ δ ¼ 0.5 and solid
lines for θi þ δ ¼ π − 0.5. The black solid line denotes the
left edge of the no-go region where the observed values of
As and ns cannot be simultaneously realized (cf. Sec. III C).
Some parts of the bounds on higher-dimensional operators,
which we have derived using the single-field approxima-
tion, are seen to run through the pink regions. Here the
exact position of the bounds are subject to corrections from
multifield effects. However we remark that these corre-
spond to very small parts in the displayed area of Fig. 2, and
in particular that the ranges of jgj over which the bounds
pass through the pink regions are less than about one order
of magnitude. Other parts of the bounds for ξ ¼ 10 and 102

in Fig. 2 do not cross the pink regions. For ξ ¼ 103, the
range of jgj over which the bounds cross the pink regions
are even smaller than the cases shown in Fig. 6. The bounds
for ξ ¼ 10−1 and 1 do not enter the pink regions at all,
as one expects from (5.7). Hence we conclude that PQ
inflation is well approximated as single-field in most of the
parameter space, and moreover, that multi-field effects alter
our bounds on higher-dimensional operators by no more
than an order of magnitude.
We should remark that in the above discussions we

evaluated the curvature perturbation at the time when the
mode k� exits the horizon. However the curvature pertur-
bation can evolve outside the horizon in the presence of
isocurvature modes. This effect is analyzed in Appendix B
using the δN formalism, where it is shown that the final
contribution from the axion to the curvature spectrum is
comparable to or smaller than α given in (5.6). Hence the
regions in parameter space where the axion’s contribution
exceeds 1% is actually even smaller than shown in Fig. 6.
Let us also comment that, when we consider the axion

to slowly roll, we are implicitly assuming the quantum
fluctuation (5.4) to be smaller than the classical rolling
over a Hubble time, i.e., P1=2

δθ� ≪ jθ̇�jslow−roll=H�. We have
checked that this condition actually holds within the
displayed regions of Fig. 6. On the other hand, the
quantum fluctuation can dominate as one moves to even
smaller jgj, larger l, or n ¼ 0. However by combining (5.4)
with (2.16), (2.20), and (4.9), the quantum fluctuation is
estimated to be of

P1=2
δθ� ∼ 10−7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξ

p
; ð5:8Þ

which is much smaller than unity, unless ξ is extremely
large. Hence we expect that our main conclusion that the
axion sources negligible curvature perturbation remains
valid even when the axion dynamics is governed by the
quantum fluctuation. Likewise, we expect the main con-
clusions of the other sections that invoke axion slow-roll

not to be altered by the domination of the quantum
fluctuation.

VI. PARAMETRIC RESONANCE

After inflation, the PQ field begins to oscillate around
the vacuum. The oscillatory background can give rise to
resonant amplifications of the field fluctuation, which
would impact the post-inflation cosmology including
reheating and axion dark matter production. One may
expect that Uð1ÞPQ-breaking higher-dimensional operators
can source an angular momentum to the PQ field and
suppress resonant effects. However we now show that a
resonant amplification is actually inevitably triggered after
PQ inflation.
Let us focus on the first oscillation of the radial field after

the end of inflation. With the oscillation timescale being
comparable to or shorter than the Hubble time, and the
radial field bounded by φ ≤ φend, we ignore the expansion
of the universe as well as higher dimensional operators.11

Hence the Uð1ÞPQ symmetry is unbroken and the PQ field’s
angular momentum is conserved, which we write as
L ¼ φ2θ̇. The equation of motion of the radial direction
can be written as

φ̈ ¼ −V 0
effðφÞ; ð6:1Þ

where the effective potential is

VeffðφÞ ¼ VðφÞ þ L2

2φ2
; ð6:2Þ

with V given in (2.7). This system has another conserved
quantity, which is the energy density: ρ ¼ φ̇2=2þ VeffðφÞ.
It is convenient to introduce dimensionless parameters as

u ¼ φ2

f2
; Q ¼

ffiffiffi
6

λ

r
jLj
f3

; E ¼ 4!ρ

λf4
: ð6:3Þ

Then the field value that minimizes the effective potential is
obtained by solving V 0

eff ∝ u3 − u2 −Q2 ¼ 0 as

umin ¼
1

3
f1þ FðQÞ1=3 þ FðQÞ−1=3g;

FðQÞ ¼ 2þ 27Q2 þ 3Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ 81Q2

p
2

: ð6:4Þ

When the effective mass of the radial field,
m2

φ ¼ V 00ðφÞ ¼ ðλ=6Þð3φ2 − f2Þ, varies with a timescale
shorter than 1=mφ, then adiabaticity is violated and the

11It was claimed in [51] that a nonminimal gravitational
coupling enhances a nonperturbative decay of the inflaton. Here
we show that resonant effects are triggered even without the
nonminimal coupling.
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PQ field fluctuations are amplified (on wave modes
typically of ∼mφ) [36,52–54]. As a measure of adiabaticity,
let us evaluate the quantity ṁφ=m2

φ, the square of which is
written as

�
ṁφ

m2
φ

�
2

¼ Eu − uðu − 1Þ2 − 2Q2

6


u − 1

3

�
3

: ð6:5Þ

One necessary condition for the PQ mode functions to
evolve adiabatically is that this quantity be smaller than
unity at the minimum (6.4) of the effective potential. If
Q ≪ 1, the adiabaticity parameter at u ¼ umin can be
expanded in Q as�
ṁφ

m2
φ

�
2

min
¼

�
9

16
þOðQ2Þ

�
E −

9

8
Q2 þOðQ4Þ: ð6:6Þ

This is smaller than unity for E≲ 16=9. On the other hand
if Q ≫ 1, then expanding in 1=Q yields�
ṁφ

m2
φ

�
2

min
¼

�
1

6
Q−4=3 þOðQ−2Þ

�
E −

1

2
þOðQ−2=3Þ;

ð6:7Þ
which is smaller than unity for

Q≳
�
E
9

�
3=4

: ð6:8Þ

The special case of Q ¼ ðE=3Þ3=4 leads to ðṁφ=m2
φÞ2min ¼

OðQ−2=3Þ ≪ 1; here the PQ field rotates in the complex
plane with an almost circular orbit at φ ≃ φmin.
The potential and kinetic energies at the end of inflation

are related by

VðφendÞ ¼ ðφ̇2 þ φ2θ̇2Þend: ð6:9Þ
This yields ρ ¼ ð3=2ÞVðφendÞ, and by also using φ2

end ≫ f2

we find

E ≃
3

2

�
φend

f

�
4

≫ 1: ð6:10Þ

Hence from the discussions around (6.7), the adiabaticity
condition jṁφ=m2

φjmin < 1 is satisfied only if Q is as large
as (6.8). From (6.9) it also follows that the ratio between the
kinetic energy of the angular direction and the potential
energy at the end of inflation is bounded as

R ¼ φ2θ̇2

2VðφÞ
				
end

≤ 0.5: ð6:11Þ

From (6.10), one finds that this energy ratio R is related to
the dimensionless angular momentum as

Q ≃
�
2

27

�
1=4

E3=4R1=2 ð6:12Þ

The condition (6.8) thus requires R to lie within the range:

0.1≲ R ≤ 0.5: ð6:13Þ

We stress that this is a necessary but not a sufficient
condition for adiabaticity during the oscillations.
Let us now estimate the size of R by supposing that the

angular field slow-rolls during inflation along the potential
sourced by higher-dimensional operators as (3.9). Then the
angular velocity at the end of inflation is estimated, using
also Ω2

end ∼ 1, as

3Hendθ̇end∼−njgjM2
Pl

�
φendffiffiffi
2

p
MPl

�
l−2

sinðnθendþδÞ; ð6:14Þ

with the Hubble rate obtained using (6.9) as

Hend ≃
ffiffiffiffiffi
λ

48

r
φ2
end

MPl
: ð6:15Þ

Further plugging (2.15) and (4.9) respectively into φend and
λ, as well as using the upper bound (4.13) on jgj and
j sinðnθend þ δÞj ≤ 1, one arrives at

R≲

8>><
>>:

10−3

ξ2
n2l2

ðl−2Þ4ðl−4Þ2


1−ns
2

�
l−2 ≲ 10−9 n2

ξ2
for ξ ≪ 10−1;

10−1ξ n2l2

ðl−2Þ4ðl−4Þ2

 ffiffi

3
p ð1−nsÞ

4

�
l−2 ≲ 10−7n2ξ for ξ ≫ 10−1:

ð6:16Þ

Upon going to the far right-hand sides, we used
ns ¼ 0.965, and also that the expressions are maximized
at l ¼ 5. The upper limit in the first line increases with
decreasing ξ, however ξ≳ 10−2 is required for the model

not to reduce to a φ4 inflation (cf. Fig. 1); this constrains R
to be much smaller than 10−1. From the second line one
may except R to increase with ξ, however this upper limit
cannot always be saturated for large ξ, as we will soon see.
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We also numerically computed R as defined in (6.11),
whose values are shown in the jgj-l plane in Fig. 7. All
the results are for n ¼ 1, while ξ and θi þ δ are varied in
each panel. The magenta contours show values of
log10 R. Also shown are brown dashed contours for
the values of m2

θ�=H
2�, constraints on higher-dimensional

operators from Fig. 2, and black lines denoting the left
edge of the no-go region where As and ns cannot
simultaneously take the observed values. For ξ ¼ 10,
the maximum value of R is of 10−8 in Fig. 7(a) and 10−6

in Fig. 7(b), realized close to the lower right corner
where the yellow line hits the lower edge of l ¼ 5. These
maximum values roughly match with that given in the
second line of (6.16). On the other hand for ξ ¼ 102, the
maximum R is of 10−9 in Fig. 7(c) and 10−7 in Fig. 7(d),
which are significantly smaller than the upper limit of
(6.16). This is because in the lower right corners of these

plots, m2
θ�=H

2� becomes of order unity and thus the axion
rolls down to its potential minimum, suppressing the
axion velocity jθ̇j compared to the value m2

θ=3nH which
was used for deriving (6.16).
We have thus seen that, independently of ξ, the energy

ratio R is generally much smaller than the minimum value
of 10−1 required in (6.13) for adiabaticity. We therefore
conclude that a nonadiabatic evolution of the field fluc-
tuation is inevitably triggered after PQ inflation.

VII. AXION QUALITY

After inflation, the higher-dimensional operators can
also drive the axion field away from the CP-conserving
vacuum and invalidate the PQ mechanism as a solution to
the strong CP problem [31–33]. This is often referred to as
the axion quality problem. Let us compare the necessary

FIG. 7. Ratio R between the angular kinetic energy and potential energy at the end of PQ inflation. The magenta contours show values
of log10 R, and the brown dotted contours show m2

θ�=H
2�. All the results are for n ¼ 1, while ξ and θi þ δ are varied in each panel.

Overlaid are constraints on higher-dimensional operators as shown in Fig. 2. On the right of the black solid lines, As and ns cannot
simultaneously take the observed values.
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suppression of higher-dimensional operators from this
perspective, with the constraints derived in the previous
sections.
With a coupling to gluons ðg2s=32π2ÞNDWθGG̃ where

NDW is a positive integer (the so-called domain wall
number), the axion obtains a potential at temperatures
below the QCD scale of the form,

VðθÞ ¼ m2
QCDf

2

N2
DW

½1 − cosðNDWθÞ� −
m2

θf
2

n2
cos ðnθ þ δÞ:

ð7:1Þ

Here we have taken the CP-conserving vacuum as θ ¼ 0
modulo 2π=NDW without loss of generality, and mQCD is
the mass arising from QCD nonperturbative effects given
by [55,56],

mQCD ≃ 5.7 μeV
�
1012 GeV
f=NDW

�
: ð7:2Þ

mθ is the mass induced by the higher-dimensional operator
after the radial field has stabilized to the minimum of the
Mexican hat potential, given by (3.8) with φ ¼ f.
The axion at the minimum of the potential (7.1) needs

to satisfy jNDWθminj≲ 10−10 (modulo 2π) as implied by
experimental bounds on the neutron electric dipole
moment [57,58]. This requirement imposes

NDW

n
m2

θ

m2
QCD

j sin ðnθmin þ δÞj≲ 10−10: ð7:3Þ

Supposing j sinðnθmin þ δÞj ∼ 1, then this translates into a
bound on jgj as

jgj≲ 10−88
NDW

n

� ffiffiffi
2

p
MPl

f

�l

: ð7:4Þ

In Fig. 8 the axion quality constraint (7.4) is shown in the
jgj-l plane as the black lines, for the parameter choice of
NDW ¼ n with f ¼ 1012 GeV (solid) and f ¼ 1010 GeV
(dashed). The constraint (4.13) from the consistency of PQ
inflation is overlaid, with the same color scheme based on
the value of ξ as in Fig. 2. The axion quality constraint
becomes weaker for smaller f, while the inflationary
constraint becomes weaker for larger ξ (although a larger
ξ on the other hand lowers the cutoff of the effective
field theory). The PQ field can drive inflation and solve
the strong CP problem in the colored regions where both
constraints are satisfied: With ξ ¼ 10−1 this happens only
in the blue region, for ξ ¼ 1 the region expands to include
green, for ξ ¼ 10 it further expands to yellow, etc.
The light-colored regions indicate the shift of the axion
quality constraint as f is varied between 1012 GeV
and 1010 GeV.

In the plane of log jgj and l, the tilt of the axion quality
bound is given by logð ffiffiffi

2
p

MPl=fÞ, while that of the infla-
tionary bound is predominantly given by logð ffiffiffi

2
p

MPl=φ�Þ
[see discussions below (4.13)]. The latter is smaller since
φ� ≫ f. As a consequence the axion quality bound is more
sensitive to l, while the inflationary bound is more sensitive
to jgj. The two bounds are thus complementary to each
other, and exclude a large parameter region of higher-
dimension operators when combined. It should also be
noted that, while the axion quality bound only constrains
Uð1ÞPQ-breaking operators (n ≠ 0), the inflationary bound
applies to general higher-dimensional operators independ-
ently of whether they break the Uð1ÞPQ.

VIII. CONCLUSIONS

The PQ inflation scenario is sensitive to the ultraviolet
completion of the theory for a wide range of values for the
nonminimal gravitational coupling ξ, since a large ξ entails
a low cutoff of the effective field theory, while a small ξ
requires a large inflaton field excursion. In this paper we

FIG. 8. Combined constraints on the coupling constant jgj and
dimension l of higher-dimensional operators for the PQ field to
drive inflation and solve the strong CP problem. The black lines
show the axion quality constraint on Uð1ÞPQ-breaking operators,
for f ¼ 1012 GeV (solid) and f ¼ 1010 GeV (dashed). The other
lines show constraints on generic operators from the consistency
of PQ inflation, with the colors denoting different values of the
nonminimal coupling ξ. The colored regions show where both
constraints are satisfied; for ξ ¼ 10−1 this happens only in the
blue region, for ξ ¼ 1 the region expands to include green, for
ξ ¼ 10 it further expands to yellow, etc. The light-colored regions
indicate the shift of the axion quality constraint as f decreases
from 1012 GeV to 1010 GeV.
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studied the latter effect and demonstrated that the predic-
tions of the scenario is very sensitive to Planck-suppressed
higher-dimensional operators. We showed in particular that
for PQ inflation to produce the appropriate number of
e-folds and curvature perturbations that match with obser-
vations, the coupling constant of an operator of dimension l
suppressed by MPl in the Jordan frame is bounded as

jgj≲ 10−9
l

ðl − 4Þðl − 2Þ2
�
1þ 6ξ

230

�
l=2
: ð8:1Þ

For instance with ξ ¼ 1, a dimension-five Planck-
suppressed operator needs to be further suppressed by a
coupling as small as jgj≲ 10−13, with the constraint
becoming more severe with increasing dimension.
Our constraint based on the consistency of PQ inflation

is similar in spirit to the axion quality argument which
constrains Uð1ÞPQ-breaking higher-dimensional operators
by requiring the axion to be able to solve the strong CP
problem. However the resulting constraints are quite differ-
ent, since the former is a high-energy/large-field effect,
while the latter is low-energy/small-field. Moreover, the
constraint from PQ inflation applies to generic higher-
dimensional operators, independently of whether they
break the Uð1ÞPQ symmetry. In other words, even if the
Uð1ÞPQ symmetry is protected for some reason, PQ
inflation is vulnerable to higher-dimensional corrections.
The inflationary and axion quality constraints are comple-
mentary to each other, and when combined exclude a large
parameter space of higher-dimensional operators, as
depicted in Fig. 8.
Based on the constraint on higher-dimensional operators,

we further showed that the oscillation of the PQ field after
inflation inevitably triggers resonant amplifications of the
field fluctuations. It remains to be analyzed whether this
necessarily leads to a restoration of the PQ symmetry, in
which case topological defects will later form when the
symmetry becomes broken again. Such studies require
numerical simulations, which we leave for the future.
Here we simply note that in order to fully understand
the cosmology after PQ inflation including the reheating
process, possible formation of axion strings and domain
walls, as well as the production of axion dark matter, it is
crucial to ascertain the impact of parametric resonance. Our
analyses can also be extended to other axion scenarios that
make use of higher-dimensional operators, such as [59–61].
We should remark that most of the analyses in this paper

neglect interactions between the PQ field and other matter
fields, whose inclusion will be necessary for understanding
the reheating process. Matter couplings may also modify
the PQ field dynamics during/after inflation, and alter
our results. Another important direction for further study
is to seek for ultraviolet completions that control higher-
dimensional operators. See, e.g., [62,63] for attempts for
realizing high-scale inflation. It would be interesting to

study if such constructions exist also for the PQ inflation
scenario.
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APPENDIX A: EFFECTIVE PLANCK-
SUPPRESSED OPERATORS

In this appendix we suppose that quantum gravity
corrections give rise to higher-dimensional operators sup-
pressed by the effective Planck scale in the Jordan frame,
namely, operators of the form (3.1) but with MPl replaced
by ðM2

Pl þ ξφ2Þ1=2. This scale at large fields becomes linear
in the field as ≃

ffiffiffi
ξ

p
φ, and thus the operators reduce to

the form

−
jgj

2ð2ξÞl2−2 φ
4 cosðnθ þ δÞ: ðA1Þ

This merely has the effect of shifting the PQ self-
coupling by

Δλ ¼ −
12jgj
ð2ξÞl2−2 cosðnθ þ δÞ: ðA2Þ

PQ inflation would hence match with observations in the
presence of such operators, given that the effective coupling
λeff ¼ λþ Δλ takes an appropriate value.
On the other hand, if one wishes to make reliable

predictions of PQ inflation without detailed knowledge
of quantum gravity, then Δλ needs to be small enough such
that it has little effect on the cosmological observables.
When fixing the other parameters, the self-coupling is
related to the spectral index as λ ∝ ðns − 1Þ2, cf. (4.9).
Hence a shift in λ affects ns by

Δns
ns − 1

≃
Δλ
2λ

: ðA3Þ

Combining with (A2), approximating the cosine to unity,
and substituting (4.9) into λ, we obtain

jgj ∼ 3π2

2
Asð1 − nsÞjΔnsjð1þ 6ξÞð2ξÞl2−1

≲ 10−12ð1þ 6ξÞð2ξÞl2−1: ðA4Þ

Upon moving to the second line we substituted
As ¼ 2.1 × 10−9, ns ¼ 0.9649, and also required the shift
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in ns to be smaller than the Planck 1σ uncertainty [44],
i.e., jΔnsj < 0.0042. For ξ≲ 0.1, this bound indicates that
effective-Planck-suppressed operators should be further
suppressed by couplings as small as jgj ≲ 10−12. On the
other hand at ξ≳ 104, the second line is of order unity or
larger for l ≥ 5 and hence the suppression by the effective
Planck scale alone renders the operators negligible.

APPENDIX B: DETAILED COMPUTATION
OF MULTIFIELD EFFECTS

We compute the contribution from the axion field to the
curvature perturbation by using the δN formalism [64–67]
to take into account the evolution of the perturbation
outside the horizon. The analysis in this appendix is close
to that presented in [68].
The power spectrum of the curvature perturbation can

be written in terms of field derivatives of the e-folding
number as

Pζðk�Þ ≃
�
∂N�
∂φ�

�
2

Pδφ�ðk�Þ þ
�
∂N�
∂θ�

�
2

Pδθ�ðk�Þ; ðB1Þ

where we expanded the perturbation in terms of field
fluctuations up to linear order, and ignored cross-
correlations between the radial and angular fluctuations.
Pδφ� and Pδθ� denote the power spectra of the field
fluctuations on the initial flat slice when the wave mode k�
exits the horizon.
Let us focus on PQ inflation in the large-field regime. In

particular, we assume the conditions laid out in (4.1), plus
m2

θ ≪ H2 to hold throughout inflation. Then the equations
of motion (3.5), (3.6), and the Friedmann equation (3.7) are
approximated by the slow-roll expressions (2.19), (2.20),
and (3.9), respectively. Moreover, the power of the field
fluctuations at horizon exit are [cf. (5.4)],

Pδφ�ðk�Þ ≃
ξ

1þ 6ξ

�
φ�
MPl

�
2
�
H�
2π

�
2

;

Pδθ�ðk�Þ ≃
ξ

M2
Pl

�
H�
2π

�
2

: ðB2Þ

The infinitesimal variation of the e-folding number is
written using (2.19) and (2.20) as

dN ≃ −
1þ 6ξ

4

φdφ
M2

Pl

; ðB3Þ

hence the radial contribution to the curvature power
spectrum is obtained as

�
∂N�
∂φ�

�
2

Pδφ� ≃
ξð1þ 6ξÞ

16

φ4�
M6

Pl

�
H�
2π

�
2

: ðB4Þ

Rewriting H� using (2.20), this reproduces the expression
for As in (2.18).
Considering inflation to end when the radial field

approaches some field value φend which is independent
of θ�, then it is convenient to express the evolution of the
angular field in terms of the radial field. Combining (2.19)
and (3.9) gives

dθ
dφ

≃
6ξ2ð1þ 6ξÞ

nλ
φm2

θ

M4
Pl

sinðnθ þ δÞ; ðB5Þ

which can be integrated to yield,

tan

�
nθþδ

2

�
≃ tan

�
nθ�þδ

2

�
exp

�
G
2
ðxl−2−xl−2� Þ

�
: ðB6Þ

Here we have introduced

x ¼ φffiffiffi
2

p
MPl

; G ¼ 12n2

l − 2

ξð1þ 6ξÞjgj
λ

: ðB7Þ

Following similar prescriptions as in Sec. IV, one finds
that under the conditions (4.1) and m2

θ ≪ H2, the leading
correction to the expression (B3) for dN from terms that
explicitly12 depend on θ yields (4.4), but with the replace-
ment θ� → θ. (Unlike in Sec. IV, here we are not limiting
ourselves to corrections linear in g, and hence the
axion is allowed to roll.) Then N� can be obtained by
integrating this expression over φ� ≥ φ ≥ φend, noting
that θ is a function of φ as given in (B6). In particular,
its θ�-derivative is written as

∂N�
∂θ�

≃
ðl − 2Þðl − 4Þ

2n
G
Z

xend

x�
dxxl−1

×
tan



nθ�þδ

2

�n
1þ tan2



nθ�þδ

2

�o
eGðxl−2−xl−2� Þn

1þ tan2


nθ�þδ

2

�
eGðxl−2−xl−2� Þ

o
2

: ðB8Þ

In terms of this quantity, the ratio of the contributions to the
curvature power spectrum from the angular and radial fields
is written as

β ¼ ð∂N �=∂θ�Þ2Pδθ�
ð∂N �=∂φ�Þ2Pδφ�

≃
16

1þ 6ξ

�
MPl

φ�

�
4
�
∂N�
∂θ�

�
2

: ðB9Þ

Here, upon moving to the far right-hand side we used (B2)
and (B4).
In order to analytically compute the integral in (B8),

let us for the moment focus on the case of

12In principle the axion can also affect N through terms that
only depend on φ by modulating the radial field dynamics;
however we consider such effects to be negligible.
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jnθ� þ δj ≪ 1: ðB10Þ

Then by expanding the integrand up to linear order in
ðnθ� þ δÞ, one can perform the integral and obtain

∂N�
∂θ�

≃
l − 4

4n
Ge−Gx

l−2�

�
xlE− 2

l−2
ð−Gxl−2Þ

�
x�

xend

ðnθ� þ δÞ;

ðB11Þ

where

EpðzÞ ¼ zp−1
Z

∞

z

e−y

yp
dy ðB12Þ

is the generalized exponential integral. The argument Gxl−2

in (B11) is, under the conditions (4.1), approximated by

Gxl−2 ≃
1þ 6ξ

6ðl − 2Þ
m2

θ

H2

φ2

M2
Pl

¼ n2ð1þ 6ξÞ
6ðl − 2Þ κ; ðB13Þ

where κ is defined in (4.2). Let us further assume this to
be sufficiently small such that Gxl−2 ≪ 1, and expand the
generalized exponential integral using [69]

EpðzÞ ¼ zp−1Γð1 − pÞ −
X∞
s¼0

ð−zÞs
s!ð1 − pþ sÞ ; ðB14Þ

which is valid for jphzj ≤ π. Keeping terms up to s ¼ 0

order, and further using e−Gx
l−2� ≃ 1 and xl� ≫ xlend, we

arrive at

FIG. 9. Contribution of the axion to the curvature perturbation amplitude evaluated from β (green contours) which takes into account
the evolution of the perturbation outside the horizon, and α (magenta contours) which ignores the evolution. The brown dotted contours
show values of m2

θ�=H
2�. Constraints on higher-dimensional operators are taken from Fig. 2. On the right of the black solid lines, As and

ns cannot simultaneously take the observed values. All the results are for n ¼ 1.
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∂N�
∂θ�

≃ −
ðl − 2Þðl − 4Þ

4nl
Gxl�ðnθ� þ δÞ: ðB15Þ

This approximate expression starts at linear order in g,
and ignores the axion rolling; the same result can also be
obtained by taking a θ�-derivative of the e-folding number
derived in (4.5). We thus obtain

β ≃
n2ðl − 4Þ2ð1þ 6ξÞ

144l2
κ2�ðnθ� þ δÞ2 ≃ ðl − 4Þ2

l2
α: ðB16Þ

Hereα is the relative contribution to the curvature perturbation
from the angular field which was derived in (5.7) by ignoring
the evolution of the perturbations outside the horizon.
We show in Fig. 9 the values of β as given in (B9),

by numerically computing the integral (B8) to evaluate
∂N�=∂θ�. However, here we have replaced θ� with θi, for
the same reason as described below (5.7). The contours for
β are shown in green. The other lines are the same as in
Fig. 6: contours of α in magenta, contours of m2

θ�=H
2� in

brown dotted, the edge of the no-go region in black, and the
constraints on higher-dimensional operators with the same
color scheme in Fig. 2. All the results are for n ¼ 1, while ξ
and θi þ δ are varied in each panel. One sees that β < α
generically holds in regions where m2

θ�=H
2� ≪ 1. In par-

ticular, as expected from the relation (B16), β is smaller
than α by about two orders of magnitude at l ¼ 5, while
their difference shrinks toward larger l. On the other hand,
in regions where m2

θ�=H
2� ∼ 1, the angular field’s super-

horizon fluctuations get suppressed and their actual con-
tribution to the curvature perturbation becomes smaller
than α or β. Hence we conclude that the regions in
parameter space where the angular contribution exceeds
1%, namely, where both β ≥ 10−2 and m2

θ�=H
2� ≪ 1 are

satisfied, are actually even smaller than shown in Fig. 6.
Before ending this appendix, we remark that upon

using the δN formalism, one should consider the e-folding
number up to a final uniform-density slice when the
curvature perturbation has approached a constant. In the
above discussions we have simply computed the e-folding
until the end of inflation, and also assumed the radial field
value φend when inflation ends to be independent of the
initial conditions φ� and θ�. If the end of inflation and/or
the post-inflation expansion history are also affected by φ�
and θ�, then the curvature perturbation would continue to
evolve after inflation [70,71].

APPENDIX C: AXION ISOCURVATURE
IN VACUUM MISALIGNMENT SCENARIO

We showed in Sec. VI that a resonant amplification of the
PQ field fluctuation is triggered after inflation, which is
likely to render the axion field highly inhomogeneous.
However in this appendix, we assume that somehow the
amplification is suppressed, and moreover that the PQ
symmetry is not restored after inflation, such that axion

dark matter is produced through the conventional vacuum
misalignment scenario. We compute the axion isocurvature
perturbation in this hypothetical situation and derive con-
straints on the model parameters.
The relic abundance of axions produced via vacuum

misalignment is [72]

Ωθh2 ≈ 0.1ðNDWθ�Þ2
�

f=NDW

1012 GeV

�
7=6

; ðC1Þ

where the CP-conserving vacuum is taken as θ ¼ 0,
and NDW is the domain wall number. We have assumed
m2

θ ≪ H2 to hold throughout inflation, and also that the
initial misalignment angle satisfies jNDWθ�j < 1 such
that the QCD potential in (7.1) is approximated by a
quadratic.13 We suppose that the axions make up the entire
dark matter, i.e., Ωθh2 ≈ 0.1. This sets a direct relation
between θ� and f through the above equation.
Since the angle θ� acquires super-horizon fluctuations

during inflation, axions obtain isocurvature perturbations as
δΩθ=Ωθ ≃ 2δθ�=θ�, up to linear order in the angular
fluctuations. The isocurvature power spectrum is thus
written, using (5.4), as

Pisoðk�Þ ≃
1

θ2�

Ω2�
φ2�

H2�
π2

: ðC2Þ

Here Ω2� is the conformal factor at φ ¼ φ� and should not
be confused with the axion relic abundance Ωθ. Using (C1)
to rewrite θ� in terms of f, one obtains

Pisoðk�Þ ≈ N2
DW

�
f=NDW

1012 GeV

�
7=6Ω2�

φ2�

H2�
π2

: ðC3Þ

The last factor is determined by the inflationary observ-
ables. In particular for large fields, ξφ2� ≫ M2

Pl, one can
plug (2.20) and (4.9) respectively into H� and λ to obtain

Ω2�
φ2�

H2�
π2

≃
Pζðk�Þð1 − nsÞ2ð1þ 6ξÞ

4
: ðC4Þ

Considering the k� dependence of (C2) to be small and
also ignoring cross-correlations between δθ and δφ, the
axion isocurvature is almost scale-invariant and uncorre-
lated with curvature perturbations. Parametrizing the power
spectrum as PisoðkÞ=PζðkÞ ¼ βisoðkÞ=f1 − βisoðkÞg, this
kind of cold dark matter isocurvature is constrained by
Planck [44] as βisoðk�Þ < 0.038 (95% C.L.) at k� ¼
0.05 Mpc−1. Imposing this constraint on (C3), and sub-
stituting (C4) and ns ¼ 0.965, we obtain an upper bound on
the axion decay constant,

13It is also assumed that the axion begins to oscillate during
radiation domination, at temperatures above the QCD scale. This
amounts to requiring f=NDW ≲ 1017 GeV.
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f ≲ 1014 GeV

N5=7
DWð1þ 6ξÞ6=7

: ðC5Þ

We derived this result assuming ξφ2� ≫ M2
Pl; however can

check that the small ξ limit of this expression matches with
the bound in the minimal φ4-inflation regime at small ξ, at
the order-of-magnitude level. The upper bound originates
from the fact that a larger f requires a smaller θ� for a
fixed relic abundance, which in turn leads to a larger
isocurvature.14 We also remark that for arbitrary ξ, the
bound (C5) is stronger than the condition (2.4) we have
been assuming throughout this paper. In Fig. 10 we show
the upper bound on f as a function of ξ by the red line.
Here the factor Ω2�H2�=φ2� is numerically computed as was
done for Fig. 1. In addition to using the aforementioned
values for the observables, in the plot we further
set NDW ¼ 1.
It should be noted that the above discussions break down

at f=NDW < 1012 GeV, for which jNDWθ�j > 1 is required
for the axions to make up the entire dark matter. In this
regime the full axion potential needs to be taken into
account, and its departure from a quadratic increases the
relic abundance compared to (C1) [72,73], and moreover
significantly enhances the axion isocurvature compared to
(C2) [74–76]. Each of these effects makes the upper bound
on f more stringent than (C5). The isocurvature hence
becomes large at both large f in a quadratic axion potential,
as well as at small f in an anharmonic potential.15 Since the

anharmonic enhancement of the isocurvature becomes
particularly strong at f=NDW ≲ 1010 GeV [76], in Fig. 10
we show f ¼ 1010 GeV by the green line as a rough lower
bound below which anharmonic effects produce isocurva-
ture beyond the observational limit. Note that the upper
bound (C5) with NDW ¼ 1 becomes of 1010 GeV at
ξ ∼ 103; this sets an absolute upper limit for ξ.
In the plot we also show in orange the lower limit

ξ≳ 10−2, which derives from the observational limit on the
tensor-to-scalar ratio, cf. Fig. 1(d). This, together with the
upper and lower limits for f, leave us with the red region as
the allowed parameter space for the scenario where PQ
inflation is followed by a vacuum misalignment.
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