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We calculate the effect of gravitational lensing on the parity-odd power spectrum of the cosmic
microwave background (CMB) polarization induced by axionlike particles (ALPs). Several recent works
have reported a tantalizing hint of cosmic birefringence, a rotation of the linear polarization plane of CMB,
which ALPs can explain. In future CMB observations, we can measure cosmic birefringence more
precisely to get insight into ALPs. We find that the lensing effect is necessary to fit the observed EB power
spectrum induced by cosmic birefringence in future CMB observations, including Simons Observatory and
CMB-S4. We also show that the estimated ALPs parameters are biased if we ignore the lensing effect.
Therefore, the lensing correction to the parity-odd power spectra must be included in future high-resolution
CMB experiments.
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I. INTRODUCTION

Cosmic birefringence—a rotation of the linear polariza-
tion plane of cosmic microwave background (CMB) as
they travel through space—is of great interest in recent
cosmology [1]. Cosmic birefringence can be caused by
axionlike particles (ALPs), ϕ, pseudoscalar fields that
interact with photons via the so-called Chern-Simons term:
L ⊃ −gϕFμνF̃μν=4 [2]. Here, g is the photon-axion cou-
pling constant, Fμν is the electromagnetic tensor, and F̃μν is
the Hodge dual of Fμν. During the propagation of photons
through space filled with ALPs, ϕ changes depending on
cosmology and their potential. The net rotation angle is
then given by [3–5]

β ¼ 1

2
g
Z

t0

tLSS

dϕ
dt

dt; ð1Þ

where tLSS and t0 are the time at the last scattering and the
present day. This rotation leads to nonzero parity-odd power
spectra, the temperature-B, and EB correlations [6,7]. By
measuring β from these parity-odd spectra, we can constrain
ALPs models, which determines the evolution of ϕ [8].
ALPs can act as dark matter [9,10] or dark energy [2,11]
and is a possible signature of quantum gravity [12,13].
Therefore, constraining the physical parameters ofALPs can
greatly impact physics.
Several studies have recently reported a tantalizing hint

of cosmic birefringence using the latest CMB polarization
data [14–16]. The latest value of β is 0.342þ0.094

−0.091 deg (1σ),

which excludes β ¼ 0 at 3.6σ level [16]. Constraining β
with higher statistical significance to confirm a nonzero β
will be one of the main goals in ongoing and future CMB
experiments such as LiteBIRD [17], Simons Observatory
(SO) [18], and CMB-S4 (S4) [19]. However, these obser-
vational results assume a constant rotation angle. This
assumption is invalid if ϕ evolves during generating
polarization signals. The evolution of ϕ can significantly
modify the shape of the EB power spectrum [9,20–22]. A
precision measurement of EB spectral shape, thus, provides
detailed information on the dynamics of ϕ, especially
during recombination and reionization epoch.
This paper addresses a crucial effect on the ALPs-

induced cosmic birefringence—the gravitational lensing
effect on CMB. The lensing effect perturbs the trajectory of
CMB photons, distorts the small-scale fluctuations of the
CMB polarization map, and converts part of E-modes into
B-modes (see [23–25] for review). Multiple CMB obser-
vations have detected the lensing effect on the CMB
angular power spectra [26–29], which will be detected
with higher statistical significance in the future. In near-
term and future CMB observations, we need to include the
lensing effect in the theoretical calculation of the CMB
power spectra to constrain cosmology.1

Several previous works, including Refs. [20,21], have
ignored the lensing effect on the calculation of the cosmic

1For measurements of the anisotropic cosmic birefringence,
biases from the lensing effect has been investigated in
Refs. [30,31].
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birefringence when ϕ evolves and the rotation angle has
time dependence. Note that Ref. [32] included the lensing
effect in their calculation of the CMB power spectra
assuming that β evolves linearly in the conformal time,
although their model leads to a negligible time evolution
during recombination. In this paper, we solve the time
evolution of ϕ to accurately predict the ALPs-induced
cosmic birefringence with the lensing effect. Calculating an
accurate EB power spectrum for a given ALPs model, we
show the importance of the lensing effect on ALPs search
with cosmic birefringence.
This paper is organized as follows. Section II reviews the

mechanism of cosmic birefringence and EB power spec-
trum by ALPs. Section III reviews the lensing correction for
the parity-even CMB power spectra following Ref. [33] and
introduces the correction for the parity-odd power spectra.
Section IV shows the EB power spectrum with lensing
correction and its significance in observations. Section V
shows the lensing effect on the ALPs search. Section VI is
devoted to summary and discussion.

II. COSMIC BIREFRINGENCE

In this section, we follow Ref. [21] to introduce cosmic
birefringence and its impact on CMB observables, includ-
ing the case where the approximation of the constant
birefringence angle is not valid due to the time evolution
of ϕ.

A. Constant rotation

If the time evolution of ϕ is negligible during recombi-
nation, the linear polarization plane of all CMB polariza-
tion generated at the recombination is rotated by the same
constant angle given in Eq. (1). The rotation angle is simply
proportional to the difference between the field values at
present and that at the recombination. The rotation of the
linear polarization plane by a constant angle, β, then
modifies the Stokes Q and U parameters observed at a
line-of-sight direction, n̂, as2

Poðn̂Þ ¼ e2iβPðn̂Þ; ð2Þ

where we define P≡Qþ iU and the superscript o denotes
observables after the rotation. The Stokes parameters are
transformed to E- and B-modes as [34,35]

Elm � iBlm ¼ −
Z

d2n̂�2Y
�
lmðn̂Þ½Q� iU�ðn̂Þ; ð3Þ

where �2Ylm is the spin-2 spherical harmonics. Substituting
Eq. (2) into Eq. (3), we obtain

Eo
lm ¼ Elm cosð2βÞ − Blm sinð2βÞ; ð4Þ

Bo
lm ¼ Elm sinð2βÞ þ Blm cosð2βÞ: ð5Þ

Consequently, the angular power spectra of CMB polari-
zation are given by

CEE;o
l ¼ CEE

l cos2ð2βÞ þ CBB
l sin2ð2βÞ; ð6Þ

CBB;o
l ¼ CEE

l sin2ð2βÞ þ CBB
l cos2ð2βÞ; ð7Þ

CEB;o
l ¼ 1

2
ðCEE

l − CBB
l Þ sinð4βÞ: ð8Þ

Here, we ignore the intrinsic correlation between E- and
B-modes. From these three relations, we obtain [36]

CEB;o
l ¼ 1

2
ðCEE;o

l − CBB;o
l Þ tanð4βÞ: ð9Þ

We can estimate β from observations with the above
equation. We note that, in reality, the overall instrumental
miscalibration angle, α, further rotates the polarization
plane [37–40]. Thus, β is degenerate with α, and we need
other polarization sources to calibrate α, such as Galactic
foregrounds [41], an astrophysical source [42], and an
artificial polarization source [43] to calibrate α and break
this degeneracy.

B. ALPs-induced cosmic birefringence

Approximation of a constant angle is invalid if ϕ changes
during the recombination or reionization epoch. For exam-
ple, if values of ϕ at the recombination and reionization
epochs differ, polarization generated at these epochs could
be rotated by different β. To include the time evolution of ϕ,
we must simultaneously solve the Boltzmann equation for
CMB polarization and the evolution equation of ϕ.
The Boltzmann equation for the CMB photons with

cosmic birefringence is given by [9,32,44,45]

�2Δ0
P þ iqμ�2ΔP

¼ aneσT

�
−�2ΔP þ

ffiffiffiffiffiffi
6π

5

r
�2Y20ðμÞΠðη; qÞ

�

� igϕ0
�2ΔP: ð10Þ

Here, �2ΔP is the Fourier coefficient of Q� iU and is the
function of the conformal time, η, the magnitude of the
Fourier wave vector, q, and the cosine of the angle between
the Fourier wave vector and line-of-sight direction, μ. We
also introduce the scale factor, a, the electron number
density, ne, the cross-section of the Thomson scattering, σT ,
and the polarization source term,Π, introduced in Ref. [34].
The prime denotes the conformal time derivative. The
evolution equation of ϕ is given by

2Strictly speaking, the CMB polarization is also generated
during reionization. If the field values at reionization are close to
that at recombination, Eq. (2) is still valid.
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ϕ00 þ 2
a0

a
ϕ0 þ a2m2

ϕϕ ¼ 0; ð11Þ

for the ALP potential of VðϕÞ ¼ m2
ϕϕ

2=2.
To derive the CMB angular power spectra from �2ΔP,

we expand the Fourier coefficients as [34]

�2ΔPðη0; q;μÞ≡−
X
i

i−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p

× ½ΔE;lðqÞ � iΔB;lðqÞ��2Yl0ðμÞ: ð12Þ

The angular power spectra from these E- and B-modes are
then given by

CXY
l ¼ 4π

Z
dðln qÞPsðqÞΔX;lðqÞΔY;lðqÞ; ð13Þ

where PsðqÞ is the dimensionless power spectrum of the
primordial scalar curvature, and X and Y denote either E or
B. A solution of Eq. (10) provides the exact shape of CEB

l
defined in Eq. (13).
Ref. [21] developed a code, BIREFCLASS, by modifying

the public Boltzman solver, CLASS [46], to solve Eqs. (10)
and (11). However, BIREFCLASS neglected the gravitational
lensing effect, which substantially changes the shape of
CEB
l at high-l as we show in this paper.

III. GRAVITATIONAL LENSING EFFECT

We compute the gravitational lensing correction to the
parity-odd power spectra. To derive the formula for
the lensed parity-odd power spectra, we closely follow
the curved-sky nonperturbative approach developed by
Ref. [33]3 but keep the parity-odd power spectra in the
calculation. We first review the derivation of the non-
perturbative lensing correction to the temperature power
spectrum. Then, we derive the lensing correction to the
polarization power spectra, including parity-odd power
spectra.

A. Temperature fluctuations

The temperature power spectrum is generally written in
terms of the two-point correlation function as

CΘΘ
l ¼ 2π

Z
1

−1
dðcos γÞξðγÞdl00ðγÞ: ð14Þ

Here, dlmm0 ðγÞ is the Wigner d-function, ξðγÞ is the
correlation function for a given temperature map, Θðn̂Þ,
defined as ξðγÞ ¼ hΘðn̂1ÞΘðn̂2Þi, and γ is an angle4

between two arbitrary unit vectors n̂1 and n̂2:
cos γ ≡ n̂1 · n̂2. The bracket, h� � �i, denotes the ensemble
average.
Let us include the lensing correction to Eq. (14). We first

define the coordinates as shown in Fig. 1. We put n̂1 along
the z-axis and n̂2 in the x-z plane. When considering
gravitational lensing, the CMB photons observed in the
direction, n̂1, come from a displaced direction,
n̂01 ¼ n̂1 þ ∇Ψ, on the last scattering surface, where ∇ is
the covariant derivative on the unit sphere, and Ψ is the
lensing potential. Similarly, the CMB photons observed in
the direction, n̂2, come from n̂02 ¼ n̂2 þ ∇Ψ on the last
scattering surface. The temperature fluctuations observed
in n̂i (i ¼ 1, 2), Θ̃ðn̂iÞ, are equivalent to Θðn̂0iÞ ¼
Θðn̂i þ ∇ΨÞ. The correlation function for the lensed
temperature fluctuations is then given by

ξ̃ðγÞ ¼ hΘ̃ðn̂1ÞΘ̃ðn̂2Þi ¼ hΘðn̂01ÞΘðn̂02Þi: ð15Þ

Here and after, we use a tilde for lensed quantities. Using
the spherical harmonic transform, this lensed correlation
function is expressed in terms of the unlensed power
spectrum as

ξ̃ðγÞ ¼
X
lmm0

CΘΘ
l dlmm0 ðγÞhY�

lmðα1;ψ1ÞYlm0 ðα2;ψ2Þi; ð16Þ

FIG. 1. The coordinates we use for the lensing calculation of
CMB angular power spectrum. The x0-z0 plane is obtained by
rotating the x-z plane around the y-axis by an angle γ. α1 and ψ1

are the azimuthal and polar angles of n̂01 in the x-y-z coordinates,
respectively, while α2 and ψ2 are those of n̂02 in the x0-y-z0

coordinates, respectively.

3See also the first nonperturbative calculation by Ref. [47] in
the flay-sky approximation.

4In this paper, we assign γ instead of β used in Ref. [33] to
avoid confusion with the rotation angle β of cosmic birefringence.
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where Ylm is the spherical harmonics, and α1, ψ1, α2, ψ2

characterize the directions of n̂01 and n̂02 as summarized in
Fig. 1. As shown in Ref. [33], the last component,
AlðγÞ≡ hY�

lmðα1;ψ1ÞYlm0 ðα2;ψ2Þi, in Eq. (16) is expressed
as a function of the lensing-potential power spectrum, CΨΨ

l
(see Eq. (38) of Ref. [33] for details).
Finally, we obtain the lensed power spectrum by sub-

stituting Eq. (16) into Eq. (14):

C̃ΘΘ
l ¼ 2π

X
l0mm0

Z
1

−1
dðcos γÞCΘΘ

l0 dl00ðγÞdl
0
mm0 ðγÞAl0 ðγÞ ð17Þ

The lensed power spectrum is expressed as a weighted
integration of the unlensed power spectrum.

B. Polarization

Next, we derive the lensing correction to the parity-odd
power spectra.
We first describe the relationship between the correlation

function and angular power spectra involving polarization,
CEE
l , CBB

l , CEB
l , CΘE

l , and CΘB
l . The correlation functions

involving polarization are defined as [33]:

ξþðγÞ≡ hP�ðn̂1ÞPðn̂2Þi; ð18Þ
ξ−ðγÞ≡ hPðn̂1ÞPðn̂2Þi; ð19Þ

ξXðγÞ≡ hΘðn̂1ÞPðn̂2Þi: ð20Þ

The relations between the above correlation functions and
the power spectra are given by [48]5:

CEE
l þ CBB

l ¼ 2π

Z
1

−1
dðcos γÞξþðγÞdl22ðγÞ; ð21Þ

CEE
l − CBB

l þ 2iCEB
l ¼ 2π

Z
1

−1
dðcos γÞ

× ξ−ðγÞdl2;−2ðγÞ; ð22Þ

CΘE
l þ iCΘB

l ¼ −2π
Z

1

−1
dðcos γÞξXðγÞdl20ðγÞ: ð23Þ

Next, we compute the lensed correlation function.
Substituting P̃ ¼ Q̃� Ũ into Eqs. (18)–(20) and employ-
ing Eq. (3) to transform the Stokes parameters to the E- and
B-modes, we find

ξ̃þðγÞ ¼
X
lmm0

ðCEE
l þ CBB

l Þdlmm0 ðγÞAþ
l ðγÞ; ð24Þ

ξ̃−ðγÞ¼
X
lmm0

ðCEE
l −CBB

l þ2iCEB
l Þdlmm0 ðγÞA−

l ðγÞ; ð25Þ

ξ̃XðγÞ ¼ −
X
lmm0

ðCΘE
l þ iCΘB

l Þdlmm0 ðγÞAX
l ðγÞ; ð26Þ

where we keep parity-odd terms and define

Aþ
l ðγÞ≡ he2iψ1þ2Ylmðα1;ψ1Þþ2

Y�
lm0ðα2;ψ2Þe−2iψ2i; ð27Þ

A−
l ðγÞ≡ he−2iψ1

−2Ylmðα1;ψ1Þþ2
Y�
lm0ðα2;ψ2Þe−2iψ2i; ð28Þ

AX
l ðγÞ≡ hYlmðα1;ψ1Þþ2Y

�
lm0 ðα2;ψ2Þe−2iψ2i: ð29Þ

The quantities, Aþ
l ðγÞ, A−

l ðγÞ, and AX
l ðγÞ, are expressed in

terms of the lensing-potential power spectrum whose
explicit form is found in Eqs. (54)–(56) of Ref. [33].
Finally, substituting the lensed correlation functions, ξ̃þ,

ξ̃−, and ξ̃X, into Eqs. (21) and (22), we obtain the following
expressions for the lensed power spectra:

C̃EE
l þ C̃BB

l ¼ 2π
X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× ðCEE
l0 þ CBB

l0 ÞAþ
l0 ðγÞdl22ðγÞ; ð30Þ

C̃EE
l − C̃BB

l þ 2iC̃EB
l

¼ 2π
X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× ðCEE
l0 − CBB

l0 þ 2iCEB
l0 ÞA−

l0 ðγÞdl2;−2ðγÞ; ð31Þ

C̃ΘE
l þ iC̃ΘB

l ¼ 2π
X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× ðCΘE
l0 þ iCΘB

l0 ÞAX
l0 ðγÞdl20ðγÞ: ð32Þ

These results match those derived in Ref. [32]. Now, we
have three equations for five unknown components, C̃EE

l ,
C̃BB
l , C̃EB

l , C̃ΘE
l , and C̃ΘB

l . When the parity symmetry of the
universe is conserved, the parity-odd components, CEB

l ,
CΘB
l , C̃EB

l , and C̃ΘB
l , vanishes. Then, we have three

equations for three unknown components and obtain the
well-known results [33]:

C̃EE
l þ C̃BB

l ¼ 2π
X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× ðCEE
l0 þ CBB

l0 ÞAþ
l0 ðγÞdl22ðγÞ; ð33Þ

C̃EE
l − C̃BB

l ¼ 2π
X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× ðCEE
l0 − CBB

l0 ÞA−
l0 ðγÞdl2;−2ðγÞ; ð34Þ

C̃ΘE
l ¼ 2π

X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× CΘE
l0 AX

l0 ðγÞdl20ðγÞ: ð35Þ
5Our convention of U has the opposite sign to that in Ref. [48].

This leads to the opposite sign in the imaginary part compared to
Ref. [48].
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When parity symmetry is violated by, e.g., cosmic bire-
fringence, the parity-odd components do not vanish. In this
case, taking the imaginary component of Eqs. (30)–(32),
we obtain the expression for the lensed parity-odd power
spectra:

C̃EB
l ¼ 2π

X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× CEB
l0 A−

l0 ðγÞdl2;−2ðγÞ; ð36Þ

C̃ΘB
l ¼ 2π

X
l0mm0

Z
1

−1
dðcos γÞdl0mm0 ðγÞ

× CΘB
l0 AX

l0 ðγÞdl20ðγÞ: ð37Þ

We find that Eqs. (36) and (37) are almost the same as
Eqs. (34) and (35), respectively. This means that the lensing
effect on CEB

l and CΘB
l are the same as that on CEE

l − CBB
l

and CΘE
l , respectively. These lensing corrections can be

applied to CEB
l or CΘB

l induced by ALPs because the
correction is commutable to the calculation of the
Boltzmann equation, including the ALPs-induced cosmic
birefringence [32,49].
Since the parity-even and parity-odd components are

completely separated into the real and imaginary parts,
respectively, the lensing effect does not mix the parity-even
and parity-odd components, i.e., the lensing conserves the
parity symmetry. This fact is consistent with the result for
the flat-sky ΘB power spectrum [50]. Therefore, gravita-
tional lensing alone cannot explain the measured EB power
spectrum from the WMAP and Planck data [14–16].

IV. LENSED POWER SPECTRUM
OF COSMIC BIREFRINGENCE

We now present the numerical results of the ALPs-
induced EB power spectrum with the lensing correction.
We also show the importance of the lensing effect on the
ALPs parameter search in future experiments. We do not
show the results for theΘB power spectrum since its signal-
to-noise is much lower than that of the EB power spectrum.
We choose the same cosmological parameters adopted
in Ref. [21].

CLASS implements the lensing correction to only the
parity-even power spectra following Eqs. (33)–(35) and is
not able to compute the lensed parity-odd power spectra.
Thus, we include the lensing corrections, Eqs. (36) and (37),
to the parity-odd spectra in BIREFCLASS.
Figure 2 shows the unlensed and lensed EB power

spectra in the blue and red lines formϕ ¼ 10−28 eV. All the
angular power spectra are multiplied by T2

0, where T0 ¼
2.7255 × 106 μK is the CMB mean temperature. The
amplitude of the EB power spectrum scales with AEB ≡
gϕini=2 where ϕini is an initial field value [21]. We choose
AEB so that the EB power spectrum reproduces the effective

birefringence angle of β ¼ 0.34 deg as defined in Eq. (18)
of Ref. [21].6 The lensing effect smears the acoustic peaks
at small angular scales (high-l), while the changes at large-
angular scales (low-l) are negligible. The typical displace-
ment by lensing is a few arcminutes, and lensing mainly
distorts the small-scale structure of CMB fluctuations. We
also check other mass cases and find that the lensing effect
generally mixes different multipoles and smears the acous-
tic peaks in the power spectrum.
Next, to see the importance of the lensing effect on EB

power spectrum in future observations, we compare the
difference between CEB

l and C̃EB
l with the observational

errors for the LiteBIRD-like, SO-like, and S4-like exper-
imental configurations. We compute the observational error
on the EB power spectrum per multipole as

ðσEBl Þ2 ¼ C̃EE;obs
l C̃BB;obs

l þ ðC̃EB
l Þ2

fskyð2lþ 1Þ ; ð38Þ

where C̃EE;obs
l and C̃BB;obs

l are the observed E- and B-mode
power spectra, respectively. fsky is a fraction of the sky
which each experiment is supposed to observe. The
observed power spectra are calculated as a sum of the
lensed signal, C̃XX

l , and noise power spectra, Nl. We
assume a simple white noise spectrum with a beam-
deconvolution effect for each experiment (e.g., [51]):

Nl ≡
�
σp
T0

π

10800

�
2

exp

�
lðlþ 1Þ
8 ln 2

�
θ ×

π

10800

�
2
�

ð39Þ

where σp is the noise level in the polarization map in the
unit of μK-arcmin, and θ is the FWHM of a Gaussian beam
in the unit of arcmin. We summarize these parameters in
Table I for each experiment. For LiteBIRD, we only
consider the low-l region because of the limited angular

FIG. 2. Unlensed (blue) and lensed (red) EB power spectra
induced by the ALPs with a mass of mϕ ¼ 10−28 eV.

6Reference [21] used β ¼ 0.35; deg. In this paper, we choose a
slightly different value; β ¼ 0.34; deg following the latest value
by Ref. [16].
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resolution. For SO and S4, we focus on the high-l region
because the large-angular scales are contaminated by
atmospheric noise in ground-based observations. The
minimum and maximum multipole of the power spectrum
used in our analysis, lmin and lmax, are also summarized in
Table I.
Figures 3–5 show the unlensed (blue points) and lensed

(red points) power spectra with the observational error bars

for each experiment when mϕ ¼ 10−28 eV. For each
experiment, the multipole range given in Table I is divided
into 50 equally-sized bins. The red error bars show the
expected statistical uncertainty of the EB power spectrum
for each experiment. The lensing effect on the EB power
spectrum is negligible at low-l, and the difference between
CEB
l and C̃EB

l is much smaller than the error bars for
LiteBIRD. On the other hand, the difference is comparable
to the error bars for SO and is much larger than the error
bars for S4. Thus, we must include the lensing effect on the
EB power spectrum in future ground-based observations to
probe cosmic birefringence.

V. LENSING EFFECT ON ALPs SEARCH

In this section, we perform a more quantitative analysis
to show the importance of the lensing effect on probing
cosmic birefringence.
We first show the impact on the ALPs parameter search

with a similar forecast setup to Ref. [21]. They considered a
set of three free parameters for the ALPs search,
p ¼ ðmϕ; A≡ AEB=A0.34°

EB ; αÞ. Here, mϕ is the mass of
ALPs, A0.34°

EB is the value of gϕini=2 which reproduces
the effective birefringence angle of 0.34 deg, and α is the
instrumental miscalibration angle. For a given mock data of
the EB spectrum computed with fiducial parameters,
CEB;fid
l , they evaluated the following chi-square for each p7:

χ2ðpÞ≡ Xlmax

l¼lmin

½CEB;fid
l − CEB

l ðpÞ�2
ðσ̄EBl Þ2 ; ð40Þ

where σ̄EBl is the error of Eq. (38) but without ðC̃EB
l Þ2 in the

numerator. The error contour is then obtained by computing
the following posterior distribution:

TABLE I. The experimental configuration for future experi-
ments we consider. The “SO” and “S4” correspond to the wide-
field large-aperture telescopes of the Simons Observatory and
CMB-S4, respectively.

LiteBIRD SO S4

σp [μK-arcmin] 2 6 1
θ [arcmin] 30 1 1

fsky 0.7 0.4 0.4
lmin 2 100 100
lmax 500 2500 2500

FIG. 3. Comparison of the lensing effect with the observational
error bars for LiteBIRD. The blue and red points denote the
unlensed and lensed power spectra with the multipole binning,
respectively. Only the low-l region is shown.

FIG. 4. Same as Fig. 3 but for SO. Only the high-l region is
shown.

FIG. 5. Same as Fig. 4 but for S4.

7This form for χ2 is motivated by the fact that the cross-power
spectrum of the harmonic coefficients is distributed as a Gaussian
[52,53].
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PpostðpÞ ∝ exp

�
−
1

2
χ2ðpÞ

�
exp

�
−

α2

2σ2α

�
: ð41Þ

Here, the second exponential function is a prior distribution
for α, and we choose σα ¼ 0.1 deg for our baseline
calculation, which the future CMB experiments would
achieve [54–56].
We repeat the same calculation above but with the lensed

EB power spectrum for χ2:

χ2ðpÞ ¼
Xlmax

l¼lmin

½C̃EB;fid
l − C̃EB

l ðpÞ�2
ðσEBl Þ2 ; ð42Þ

where C̃EB;fid
l denotes the mock data with lensing. We

compute the posterior distribution of Eq. (42) with a set
of fiducial parameters, mϕ ¼ 10−28 eV, A ¼ 1, and
α ¼ 0 deg. We find that including the lensing changes
the error contour only slightly. This means that the
parameter constraints mostly come from the statistical
uncertainty, σEBl . Our result shows that the forecast by
Ref. [21], where the unlensed power spectrum is used,
would be close to those obtained with the lensing
corrections.
However, in practice, we need the lensing correction to

the EB power spectrum for the ALPs search because
observed data are lensed. Thus, we test how well the
unlensed EB spectrum fits the lensed EB spectrum. To
quantify this, let us introduce

χ̂2AðpÞ≡
Xlmax

l¼lmin

½C̃EB;fid
l − fAC̃EB

l ðpÞþ ð1−AÞCEB
l ðpÞg�2

ðσEBl Þ2 ;

ð43Þ

where A is a parameter expressing the degree of lensing;
the fitting model is lensed (unlensed) ifA ¼ 1 (A ¼ 0). We
compute the minimum value of χ̂2AðpÞ for A ¼ 0 and
obtain8:

Δχ2 ¼ min
p
χ̂2A¼0ðpÞ −min

p;A
χ̂2AðpÞ: ð44Þ

We then derive a p-value ofΔχ2 assuming thatΔχ2 obeys a
χ2 distribution with 1 degree of freedom. This analysis is
motivated by the fact that Δχ2 is considered as a likelihood
ratio for two models where the null model fixesA ¼ 0with
three parameters, p, and the alternate model varies A with
four parameters, p and A. For such a nested case, Δχ2
would approximately obey the χ2 distribution where its
degree of freedom is equivalent to the difference in the
number of free parameters between the two models.
We find that the p-value from the above Δχ2 is 0.76 for

LiteBIRD. On the other hand, Δχ2 ¼ 30 and 953 for SO
and S4, respectively, and the corresponding p-values are
close to zero. The deviation by the lensing effect is not
significant for LiteBIRD. On the other hand, for SO and S4,
the unlensed power spectrum does not fit an observed
(lensed) power spectrum. This means we should not use the
unlensed power spectrum to analyze SO and S4 data.
The estimated parameters are biased if we force our-

selves to use the unlensed power spectrum. To quantify the
bias caused by the use of the unlensed power spectrum, we
prepared the lensed EB power spectra as mock data and fit
this data with the unlensed EB power spectrum.
Specifically, we compute

χ2ðpÞ ¼
Xlmax

l¼lmin

½C̃EB;fid
l − CEB

l ðpÞ�2
ðσEBl Þ2 : ð45Þ

We assume mϕ ¼ 10−28 eV, A ¼ 1, and α ¼ 0 deg for the
mock data. Since the lensing effect is unimportant on large-
angular scales, the bias is negligible compared to the error
contour for LiteBIRD. In the SO case, although the
unlensed power spectrum does not fit the lensed power
spectrum, the bias is not significant compared to the 2σ
error contour. For S4, we show the result in Fig. 6. The
shaded pale and dark blue regions indicate the 1σ and 2σ
uncertainties. The red point is the fiducial value. The
fiducial values are outside the error contour. We also check
the dependence on the prior on α by increasing σα to
0.5 deg. The size of the error contour only increases along
the degeneracy direction, and the true value is still well
outside of the 2σ error contour. The estimated parameters
are substantially biased when we use more sensitive data
such as S4 to analyze cosmic birefringence.

FIG. 6. Error contours of the ALPs parameters estimated with
the unlensed power spectrum for a theoretical prediction. The
pale and dark blue areas show 1σ and 2σ regions, respectively. We
marginalize over α. The red dot corresponds to the fiducial value.
The dashed line shows the values of jgϕini=2j and mϕ, which
roughly explain β ¼ 0.34 deg when regarding it as a constant
rotation.8The second term, minp;A χ̂2AðpÞ, is zero by definition.
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VI. SUMMARY AND DISCUSSION

We explored the effect of lensing on the ALPs-induced
parity-odd power spectra by improving BIREFCLASS [21].
We showed that the lensing effect smears the peaks in the
EB power spectrum at high-l. We found that the modifi-
cation by the lensing effect is much larger than the
observational errors for SO and S4 at small angular scales.
In contrast, the lensing effect is negligible for LiteBIRD.
We also explored how the ignorance of the lensing effect in
the parameter search leads to a bias and found that the bias
is not negligible compared to the error bar for S4. For SO
and S4, the lensing effect should be included to fit the
observed EB power spectrum.We conclude that we need an
accurate theoretical prediction incorporating the lensing
correction for ALPs searches with cosmic birefringence in
future high-l CMB observations.
We have shown that the lensing smears the peaks of CEB

l
at high-l. This modification to CEB

l is unlikely to be
produced by other physical effects, including cosmic
birefringence and changes in cosmological parameters.
On the other hand, instrumental systematics could modify
the EB power spectrum, which mimics the lensing effect.
For example, the pointing error also distorts the polariza-
tion map in the same way as lensing. However, the typical
pointing error is expected to be at a few arcseconds for
future CMB observations (e.g., [57,58]). Since the typical
lensing displacement is at a few arcminutes, the impact of
the pointing error on the EB power spectrum would be
much smaller than that of lensing.
The beam systematics also lead to a modification in the

small-scale CMB anisotropies where lensing is important.
A measured EB power spectrum at high-l could have a bias
due to imperfect knowledge of the beam. However, the
beam systematics also affect all the other CMB power
spectra. The temperature and E-mode power spectra have
much larger signal-to-noise than the EB power spectrum.
Thus, the beam uncertainties are constrained by the temper-
ature and E-mode power spectra so that their impact on the
EB power spectrum is negligible.

In this work, we focused on the lensing correction to CEB
l

and CΘB
l in the context of ALPs. The lensing correction to

the parity-odd power spectra does not depend on the model
of the unlensedEB power spectrum and is also important for
cosmic birefringence sourced from other physical origins,
including primordial cases, e.g., [50,59–63]. Note that
Refs. [64,65] recently studied the cosmic birefringence
from the early dark energy model where the lensing effect
on the EB power spectrum was included using our code.
When writing this paper, Ref. [66] explores cosmic bire-
fringence induced by the α-attractor and the rock ‘n’ roll
field models where the lensing correction is adopted. The
lensing correction to the parity-odd power spectra is neces-
sary for studying cosmic birefringence at high-l.
In the coming few years, BICEP [67], Simons Array

[68], and ACT [69] will analyze new observational data
containing CMB polarization. Looking further into the
future, LiteBIRD [17], SO [18], and S4 [19] will provide
profoundly sophisticated data. The code developed in this
paper will be useful to constrain cosmic birefringence from
these data.
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