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We investigate the possibility of oscillon formation during the preheating phase of asymmetric
inflationary potentials. We analytically establish the existence of oscillonlike solutions for the Klein-
Gordon equation for a polynomial potential of the form VðϕÞ ¼ 1

2
ϕ2 þ Aϕ3 þ Bϕ4 using the small

amplitude analysis, which naturally arises as a Taylor expansion of the α-attractor E-model for ϕ ≪ Mpl

and α ∼Oð1Þ. We perform a detailed numerical analysis to study the formation of nonlinear structures in
the α-attractor E-model using the publicly available lattice simulation code CosmoLattice for parameters in
the range 10−5 ≲ α≲ 5 × 10−4. We find the backreaction of the field fluctuations onto the evolution of the
homogeneous inflaton condensate to be significant for α≲ 2 × 10−4 for which we observe the formation of
highly nonlinear structures with average equation of state w ≃ 0. These nonlinear structures maybe
interpreted as oscillons, providing evidence that they can form during the inflaton oscillations around an
asymmetric potential and are found to be present for the entirety of the runtime of our simulations,
comprising ≳40% of the total energy density.

DOI: 10.1103/PhysRevD.108.063524

I. INTRODUCTION

Cosmic inflation is at present the leading paradigm that
explains the origin of structure in the Universe through
vacuum quantum fluctuations during such a period of
accelerated expansion of space [1–6]. Through the temper-
ature anisotropies of the cosmic microwave background
(CMB), we can place constraints on inflationary observ-
ables ns and r that help us rule in favor and against various
inflationary models [7–9]. Inflation ends shortly after the
inflaton leaves the slow-roll regime, after which it decays
into the particles of the Standard Model via reheating.
Originally, reheating was studied as a perturbative process
where the inflaton particles decay into other particles
independently, thermalizing the Universe and triggering
the onset of the hot big bang [10–13]. However, this
perturbative picture ignores collective phenomena that can
arise from large and coherent oscillations of the inflaton
about the minimum of the potential. For example, Bose

condensation effects greatly enhance the rate of the inflaton
quanta decay that cannot be captured by perturbative
calculations. Of particular importance is the phenomenon
of parametric resonance (along with tachyonic resonance)
through which perturbations of the inflaton field and other
species can become amplified, leading to copious particle
production [14]—with the field fluctuations growing as
δϕk ∝ eμkt and nk ∝ e2μkt with a characteristic exponent μk
to be defined later. Description of these phenomena
requires a nonperturbative treatment. Such a nonthermal
period of particle production precedes the usual thermal
reheating phase and has been aptly named preheating
[10,15,16]. The period of preheating gives rise to very
interesting nonlinear phenomena that are of great interest to
cosmologists.
Generic nonlinear scalar field theories can exhibit

localized configurations in space which oscillate with time.
Such configurations can be obtained in scalar field theories
with potentials that open up away from (are shallower than)
a quadratic minimum m2ϕ2

2
such that the inflaton feels

the effects of attractive self-interaction as it oscillates about
the minimum. Such localized and dense configurations are
called oscillons [17–21]. These solitonlike phenomena
were first observed in granular and dissipative media
[22,23], which subsequently found their place in the study
of preheating in inflationary dynamics. Initial studies on
oscillons in cosmology were performed in the context of
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cosmological phase transitions [24–26]. In more recent
times, oscillons have been linked to seeding primordial
black holes [27–30] and primordial gravitational waves
[31–37] among other interesting phenomena. More
recently still, oscillons have found their way into the realm
of dark matter, in particular ultralight dark matter (ULDM).
Since oscillons do not have a conserved charge associated
with them, they are not technically stable (they decay
through the emission of radiation [38–41]). Nevertheless,
since these quasistable objects can be extremely long-lived
and, combined with the fact that they can be produced in
large-enough abundances relevant to cosmology, they can
be used to model the formation of nonlinear structure in
ULDM [42–45].
Since oscillon formation requires potentials that are

shallower than a quadratic potential around the minimum,
there are various inflationary models that can be used as a
prototype for their formation. Oscillon formation has been
studied in ϕ6 theories, both analytically and numerically in
Refs. [46–48], where it was shown that their field con-
figuration acquires a flat-top feature around the central
regions of the core. Moreover, it has also been studied in
axion monodromy potentials in Refs. [49–52], hilltop
potentials in Refs. [53,54] and in the α-attractor T-model
in Refs. [55,56]. In Ref. [55], the authors used the T-model
to quantify the differences between n ¼ 1 and n > 1
(where the minima are quadratic and nonquadratic respec-
tively at leading order), leading to quite different field
configurations as end products. They showed that oscillons
can form when n ¼ 1 such that the time-averaged equation
of state parameter hwi → 0. In cases where n > 1, initially
dense transients form which fragment into radiation after a
few e-folds with hwi → 1

3
. However, the question of

whether oscillons can form in asymmetric potentials has
not been addressed adequately in the existing literature.
Unlike their symmetric counterparts, asymmetric potentials
usually do not open up away from the quadratic minimum
on both sides. Hence, the question of whether oscillons do
form in such potentials becomes important since the

oscillating inflaton might only be experiencing the attrac-
tive self-interaction on one side of the minimum. [57]
These differences between symmetric and asymmetric
potentials are illustrated in Fig. 1. Moreover, since there
are only a few well-known asymmetric inflationary poten-
tials (e.g., the Starobinsky model), performing a compre-
hensive study into the matter becomes difficult due to the
limited number of asymmetric potentials available.
However, see Refs. [33,35] for previous studies on oscillon
formation in asymmetric potentials in the context of
production of gravitational waves.
In this paper, we examine the possibility of oscillon

formation (or, more generally, nonlinear structure forma-
tion) in the α-attractor E-model [62,63] using detailed 3D
numerical lattice simulations. It is divided into the follow-
ing sections: in Sec. II, we show that oscillonlike solutions
can exist in a generic asymmetric polynomial potential of
the form VðϕÞ ¼ 1

2
ϕ2 þ Aϕ3 þ Bϕ4 using the method of

small amplitude analysis in (1þ 1)-d. A potential of this
form arises from the small amplitude limit of the E-model
α-attractor [63]. In Sec. III, Floquet analysis is used to
generate the instability chart for inflaton perturbations
during the preheating phase which can be used to demon-
strate the existence of a broad-band resonance region
followed by multiple narrow ones. In Sec. IV we carry
out 3D lattice simulations of the E-model potential and
confirm the formation of nonlinear structures, which can
be interpreted as oscillons. By performing a volume
integral of the overdensities above a certain threshold,
we demonstrate that oscillons can be copiously produced,
constituting over 40% of the total energy, for values of α
in the relevant range. Finally, in Sec. V the consequences
of the smallness of α is discussed—particularly in relation
to the predicted levels of tensor perturbations and the
running of the scalar spectral tilt. There we also comment
on the effects of long-term gravitational clustering and
some simulation specific issues.
In this work, we adopt the mostly negative convention for

the Friedmann-Lemaître-Robertson-Walker (FLRW) metric

FIG. 1. Illustrations of symmetric (left panel) and asymmetric (right panel) potentials near a quadratic minimum where ϕend indicates
the field value where inflation ends and preheating (presumably) begins. While a shallow symmetric potential opens up on both sides of
ϕ ¼ 0, the asymmetric potential does so only for ϕ > 0. Hence, the inflaton feels attractive self-interaction at only one side of the
potential during the oscillations.
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such that ds2 ¼ dt2 − a2ðtÞδijdxidxj, ignoring the effects of
metric perturbations. We also use natural units where c ¼
ℏ ¼ 1 and the reduced Planckmass is denoted as ð8πGÞ−1 ¼
M2

pl which has a numerical value of 2.44 × 1018 GeV.

II. SMALL AMPLITUDE ANALYSIS AND
EXISTENCE OF OSCILLONLIKE CORES

Even though oscillons are nonlinear structures and
should be studied in full generality using nonperturbative
techniques and numerical simulations, a great deal of
information about them can be obtained by using the small
amplitude analysis [38,46–48,64–66]. More importantly,
we can use this technique to confirm whether or not a given
scalar potential can admit solutions where the field con-
figurations exhibit oscillonlike cores, which correspond to
solutions of the nonlinear Klein-Gordon equation with
centrally peaked profile oscillating in time. However, since
the small amplitude analysis relies upon an expansion in the
powers of the scalar field, it is only limited to cases where
the amplitude of the scalar field oscillations is much smaller
compared to some mass scale (usually the Planck scale
Mpl). Moreover, oscillons relevant in the field of cosmol-
ogy are usually ones with large amplitude. Hence, the small
amplitude analysis should only serve as a first step at
ascertaining their existence.
We consider the α-attractor E-model potential with

n ¼ 1 [62,63]. For n > 2, the leading order behavior of
the minimum ceases to be quadratic. The E-model potential
can be written as

VðϕÞ ¼ V0

�
1 − exp

�
−λðαÞ ϕ

Mpl

��
2

ð2:1Þ

where λðαÞ ¼ ffiffiffiffiffiffiffiffiffiffi
2=3α

p
. Since Eq. (2.1) is an asymmetric

potential, we can Taylor expand it around the minimum to
derive a polynomial potential that will be easier to studywith
the small amplitude analysis. Expanding it up to Oðϕ4Þ,
we have

UðϕÞ≡ VðϕÞ
m2M2

pl

≈
1

2

�
ϕ

Mpl

�
2

−
λ

2

�
ϕ

Mpl

�
3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
asymmetric

þ 7λ2

24

�
ϕ

Mpl

�
4

ð2:2Þ

Considering a (3þ 1)-d FLRW metric of the form
ds2 ¼ dt2 − a2ðtÞδijdxidxj, we have the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ 1

2
∂μϕ∂

μϕ − VðϕÞ
�

ð2:3Þ

where
ffiffiffiffiffiffi−gp

is the metric determinant and R is the Ricci
scalar. The following scalings are performed which trans-
form the variables ðt; x;ϕÞ into dimensionless quantities:

t̃ ¼ mt, x̃ ¼ mx and ϕ̃ ¼ ϕ=Mpl. With these redefinitions,
and restricting ourselves to (1þ 1)-d in a nonexpanding
universe, the following equation of motion can be derived

∂
2
t̃ ϕ̃ − ∂

2
x̃ϕ̃þ ∂ϕ̃U ¼ 0 ð2:4Þ

Equation (2.4) can be solved order-by-order using a pertur-
bative expansion of ϕ̃ and frequency ω in terms of an
expansion parameter ε. To that end, these variables can be
written down as

ϕ̃ ¼
X∞
n¼1

εnϕ̃ðnÞ ð2:5Þ

ω2ðεÞ ¼ 1þ
X∞
n¼1

εnωðnÞ ð2:6Þ

Furthermore, we rescale the ðt̃; x̃Þ variables to make them ε-
dependent. This is carried out via y ¼ εx̃ and τ ¼ ωðεÞt̃.
With these, we have the following

−ω2
∂
2
τ ϕ̃þ ε2∂2yϕ̃ ¼ ϕ̃ −

3λ

2
ϕ̃2 þ 7λ2

6
ϕ̃3 ð2:7Þ

In the following steps, wework up toOðε3Þ in the expansion
andwewill show that the first correction to the frequencyω is
obtained precisely at this order. Unlike [47], the even powers
of ϕ̃will not vanish since ∂ϕ̃U contains a ϕ̃2 term. The aim is

to be able to express the evolution of each ϕ̃ðnÞ in the form

∂
2
τ ϕ̃ðnÞ þ ϕ̃ðnÞ ¼ F ðnÞ½ϕ̃ðn−1Þ; ∂τϕ̃ðn−1Þ; ∂ϕ̃Uðϕ̃ðn−1ÞÞ� ð2:8Þ

where F n is a forcing term that is a function of the field
variable and its derivatives in the previous order in the
expansion. Since at each order nwe are seeking a differential
equation of the form of a forced harmonic oscillator, we shall
assume that the solutions do not have very strong spatial
dependence. It is trivial to show that, at OðεÞ, the first order
field is a simple harmonic oscillator ∂2τ ϕ̃ð1Þ þ ϕ̃ð1Þ ¼ 0, with a

solution that behaves as ϕ̃ð1Þðτ; yÞ ¼ fðyÞ cos τ þOðε2Þ.
At Oðε2Þ, we have the following

ωð1Þ∂2τ ϕ̃ð1Þ þ ∂
2
τ ϕ̃ð2Þ þ ϕ̃ð2Þ −

3λ

2
ϕ̃2
ð1Þ ¼ 0 ð2:9Þ

The term ∂
2
τ ϕ̃ð1Þ ∼ cos τ is a resonance term which will

produce a term in the solution which grows as τ. Since we
are interested in bounded solutions, we set ωð1Þ ¼ 0.
Solving Eq. (2.9) using the initial conditions ϕ̃ð2Þð0; yÞ ¼
∂τϕ̃ð2Þðτ; yÞjτ ¼ 0, we have

ϕ̃ð2Þðτ; yÞ ¼
λ

4
f2ðyÞð3 − 2 cos τ − cos 2τÞ ð2:10Þ
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Similarly, at Oðε3Þ, the evolution of ϕ̃ is given by

∂
2
yϕ̃ð1Þ−ωð2Þ∂2τ ϕ̃ð1Þ−∂

2
τ ϕ̃ð3Þ−

7λ2

6
ϕ̃3
ð1Þþ3λϕ̃ð1Þϕ̃ð2Þ−ϕ̃ð3Þ ¼0

ð2:11Þ

After simplifying Eq. (2.11), there also turns out to be a
resonance term that needs to be set to zero to obtain
bounded solutions. This results in

∂
2fðyÞ
∂y2

þ ωð2ÞfðyÞ þ λ2f3ðyÞ ¼ 0 ð2:12Þ

To obtain solutions which are localized and decay to zero at
spatial infinity, one requires the condition ωð2Þ < 0. Also,
deriving the first integral of motion (conserved energy) [67]
and imposing conditions of localized solutions, we obtain

a2 ≡ ωð2Þ ¼
λ2

2
f20 ð2:13Þ

Moreover, integration of the conserved energy equation
yields the oscillon core profile [shown in Fig. 2]

fðyÞ ¼
ffiffiffi
2

p a
λðαÞ ½1 − tanh2ð−ayÞ�1=2 ¼ f0sech

�
f0ffiffiffiffiffiffi
3α

p y

�
ð2:14Þ

Hence, up to Oðϵ2Þ, the solution can be written as

ϕ̃oscðτ; yÞ ¼ εfðyÞ cos τ þ ε2
λ

4
f2ðyÞ

× ð3 − 2 cos τ − cos 2τÞ þOðε3Þ ð2:15Þ

with y ¼ εx̃ and τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2a2

p
t̃. Since ε is a small

expansion parameter, it can be chosen such that
ε≡Φ0=Mpl. As a result, we can write

ϕoscðτ; yÞ ¼ ΦðyÞ
�
cos τ þ λ

4

ΦðyÞ
Mpl

ð3 − 2 cos τ − cos 2τÞ
�

þOðε3Þ ð2:16Þ

where εMplfðyÞ ¼ ΦðyÞ. Hence, the solution ϕosc

describes spatially localized profiles which display tempo-
ral variations with combinations of the frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2a2

p
m ≈ ð1 − ε2

λ2f2
0

4
Þm, indicating toward the

possibility of oscillon formation in such an asymmetric
potential. However, we must remember that this is only an
approximation and one needs to verify the existence of such
nonlinear objects through lattice simulations which is the
goal of the succeeding sections. Furthermore, these calcu-
lations only considered one spatial dimension and
neglected the effects of expansion. For instance, it can
be shown that in d ≥ 2, the energy associated with the
oscillon solution decays due to the presence of a friction
term [46]

∂yE ¼ −
d − 1

y
ð∂yfÞ2 ð2:17Þ

We note that for a general potential of the form
VðϕÞ ¼ 1

2
ϕ2 þ Aϕ3 þ Bϕ4, solutions admitting an oscillon

profile may only appear for a range of values in the
parameter space of A and B. One can show that, in general

fðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16

3ΓðA; BÞ

s
sechðyÞ ð2:18Þ

for a ¼ 1, such that

ΓðA; BÞ ¼ 20A2 − 8B ð2:19Þ

For a real solution for fðyÞ, we require that ΓðA; BÞ > 0,
which restricts the possible values for A and B. Although
we have shown that oscillonlike solutions exist for an
asymmetric potential, it does not necessarily mean that the
inflaton condensate fragments and forms oscillons during
preheating. We further note that Eq. (2.2) does not perfectly
capture details of the E-model, especially in relation to its
plateau region for ϕ > 0. If we use the field value at the end
of inflation as the initial condition for the preheating stage,
it can be observed that the values of the potentials are
within agreeable limits when α ∼Oð1Þ and the difference
in the values of VðϕÞ increases sharply for lower values of
α. This is shown in Fig. 3. In what follows, we perform a
detailed 3D lattice study on the E-model in pursuit of
oscillon formation. For the reasons stated above, we will
not use the Taylor expanded potential in the lattice
simulations.

FIG. 2. Oscillon core profile obtained from the 4th-order
expansion of the E-model potential for different values of λðαÞ.
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III. INSTABILITY BANDS OF THE E-MODEL

Parametric resonance plays a crucial role in governing
the growth of perturbations during inflationary preheating
[15,16]. As a result, it is important to identify the existence
of instability bands in the parameter space of comoving
modes k and the field amplitude and to study the trajectory
of modes as they pass through the instability bands due to
their time evolution. A linear stability analysis of inflaton
perturbations δϕk can be performed using Floquet theory.
In the next subsections, Floquet theory is introduced and
applied to the E-model to identify the instability bands of
the model.

A. Linear stability analysis and Floquet theory

Before applying Floquet theory, we can study the
inflaton fluctuations at the linear order in perturbation
theory and search for instability bands. This analysis can be
carried out with or without the inclusion of metric pertur-
bations. Specializing to the case were metric perturbations
are absent, we consider the inflaton Klein-Gordon equation
ϕ̈þ 3Hϕ̇ − ∇2

a2 ϕþ ∂ϕV ¼ 0 and linearize it around scalar
fluctuations ϕðt; xÞ ¼ ϕðtÞ þ δϕðt; xÞ, obtaining the fol-
lowing equation for the perturbations

δϕ̈þ 3Hδϕ̇þ ∂ϕϕVðϕÞδϕ −
∇2

a2
δϕ ¼ 0 ð3:1Þ

or, in Fourier space

δϕ̈k þ 3Hδϕ̇k þ ∂ϕϕVðϕÞδϕk þ
k2

a2
δϕk ¼ 0 ð3:2Þ

with Bunch-Davies vacuum conditions δϕk ¼ 1=ða ffiffiffiffiffi
2k

p Þ
and δϕ̇k ¼ −iðk=aÞδϕk. If we consider, to leading order,
that the minimum of VðϕÞ is quadratic, then the inflaton
oscillates about it such that ϕðtÞ ¼ ϕ0ðtÞ cosðmtÞ. Ignoring
cosmic expansion for the moment (for which ϕ0 becomes

time independent) and setting a ¼ 1, Eq. (3.2) takes the
form of a parametric oscillator [68]

δϕ̈k þ ½k2 þ ∂ϕϕVðϕðtÞÞ�δϕk ¼ 0 ð3:3Þ

with the term k2 þ ∂ϕϕV serving as the time-dependent
frequency ω2

kðtÞ. When metric perturbations were included,
the mode equation would take the form

δϕ̈k þ ω2
kðtÞδϕk ¼ 4δϕ̇kΨ̇ − 2Ψ∂ϕV|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

metric perturbations

ð3:4Þ

where Ψ is the Bardeen potential. Second order differential
equations of these forms are also known as the Hill’s
differential equation [69–71] and, according to Floquet
theorem, they admit solutions of the form

δϕkðtÞ ¼ eμktPðþÞðtÞ þ e−μktPð−ÞðtÞ ð3:5Þ

The quantities μk in the exponents are called Floquet
exponents and they describe how the modes grow or decay
with time. The functions Pð�ÞðtÞ are periodic functions
with the same period of oscillation as the background field.
The μk are complex in general and those modes with
RðμkÞ > 0 correspond to growing solutions [72]. For
purely imaginary exponents, the modes are oscillatory.
The utility of Floquet theory lies in the fact that one can
map such “zones of instability” in the form of a Floquet
chart. Such a chart comprises of bands of instability in the
form of broad and narrow resonance bands.
Apart froma few simple cases, theFloquet exponents need

to be computed numerically. However, there exists a rela-
tively straightforward approach using which the Floquet
exponents can be numerically calculated [15,16,58].We start
by expressing Eq. (3.3) as a system of coupled differential
equations in matrix form

FIG. 3. Comparisons of the E-model and 4th-order polynomial potentials for α ¼ 1 (left panel) and 0.1 (right panel). The gray vertical
lines correspond to the field values where inflation ends and, hence, preheating commences. This figure aims to show that the Taylor
expansion should really be used to model the E-model potential when α ∼Oð1Þ.
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δΦ̇ðtÞ ¼ UðtÞδΦðtÞ ð3:6Þ

where δΦðtÞ ¼ ½δϕk; δπk�T and δπk ¼ δϕ̇k. The matrix UðtÞ
is given by

UðtÞ ¼
�

0 1

−k2 − ∂ϕϕV 0

�
ð3:7Þ

Next, the time periodT of the oscillation is determined. If the
potential is symmetric, this is as simple as performing the
integral

TðϕinÞ ¼ 2

Z
ϕin

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕinÞ − 2VðϕÞp ≡ 2Tð1=2Þ ð3:8Þ

whereTð1=2Þ is the period of a half oscillation.However, if the
potential is asymmetric, as in the present case, the time period

cannot be calculated using the expression above. For odd
potentials, one can show that T takes the following form

T ¼ TðþÞ þ Tð−Þ

¼
Z

ϕin

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕinÞ − 2VðϕÞp þ

Z
0

ϕf

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕfÞ − 2VðϕÞp

ð3:9Þ
whereϕf is the amplitude towhich the field rises on theϕ < 0
side of the potential that can be determined using
energy considerations, namely VðϕfÞ ¼ VðϕinÞ. The time
period can also be calculated using the solution of the
background evolution. Now, using a set of orthogonal initial

conditions fδϕð1Þ
k ð0Þ ¼ 1; δπð1Þk ð0Þ ¼ 0g and fδϕð2Þ

k ð0Þ¼ 0;

δπð2Þk ð0Þ¼ 1g, Eq. (3.3) is evolved from t ¼ 0 toT. Then, the
Floquet exponents are calculated by

Rðμð�Þ
k Þ ¼ 1

T
ln

�
1

2
ðδϕð1Þ

k þ δπð2Þk Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδϕð1Þ

k − δπð2Þk Þ2 þ 4δϕð2Þ
k δπð1Þk

q �
ð3:10Þ

such that

RðμkÞ ¼ max ½Rðμð�Þ
k Þ� ð3:11Þ

In Eq. (3.10), all the quantities are evaluated at t ¼ T.
Hence, the calculation of the instability bands for para-
metric resonance essentially involves evolving these mode
functions using orthogonal initial conditions and searching
for the existence of RðμkÞ > 0. When evaluated for an
entire grid of ðk;ϕinÞ, the instability regions of the para-
metric oscillator can be mapped out, which typically
display banded structures.

B. Results for the E-model

We now consider parametric resonance occurring in
the α-attractor E-model. The potential can be written down
as follows

VðϕÞ ¼ 3

4
αm2M2

pl

�
1 − e

−
ffiffiffi
2
3α

p
ϕ

Mpl

�
2

ð3:12Þ

The overall constant being V0 ¼ 3
4
αm2M2

pl reflects the fact

that the potential, at leading order, resembles m2ϕ2

2
. Since the

background and mode evolution equations can be made
dimensionless, the only relevant parameter in the potential
is α. It is important to note that inflaton potentials with a

FIG. 4. Left panel: the effective mass squared m2
eff (blue) and the E-model potential (red) are shown for α ¼ 10−4. The red shaded

region indicates the field values for which m2
eff < 0. In the plateau region, the effective mass is still negative but asymptotically

approaches zero. Right panel: the homogeneous background evolution of the field is shown where the red shaded portions indicate the
regions where the field oscillations enter the tachyonic instability regimes. As the field amplitude decays due to expansion, the inflaton is
unable to access the tachyonic instability regime after a fixed time has passed.
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plateau generally exhibit tachyonic instability where the
effective mass squaredm2

eff becomes negative [73,74]. This
is also true for the E-model potential which possesses a
plateau at large ϕ. For the E-model, it can be shown that

m2
eff ≡ ∂ϕϕV < 0 when ϕ >

ffiffiffiffi
3α
2

q
0.693Mpl. This is shown

in Fig. 4. In the left panel we have plots of m2
eff (solid blue)

and VðϕÞ (solid red) where we see that m2
eff < 0 extends

throughout the plateau, becoming prominent near the
plateau’s edge.[75] The homogeneous field evolution is
shown in the right panel. There we observe that during
oscillations, ϕ repeatedly enters and exits the tachyonic
instability region for a few cycles, before cosmic expansion
dampens out the amplitude. A detailed study of tachyonic
preheating in plateau inflation can be found in Ref. [76].
In Fig. 5 the variation of the Floquet exponents is shown

for two different field values while in Fig. 6, the Floquet
charts for the E-model are plotted for α ¼ 5 × 10−4 and 10−4

[77]. They show the existence of a broad instability band for
k≲ 0.5m and a series of narrower ones for higher values of k.
Since the physical wave number in an expanding universe is

k=aðtÞ, for a given amplitude, the Fourier modes will trace
out a path in the instability chart andwill pass through one or
several of these instability bands. Specifically, if the poten-
tial is quadratic near the minimum, one finds ϕðtÞ ∝
a−3=2ðtÞϕin and kphysðtÞ ∝ a−1ðtÞ. For example, a small k-
mode can exhibit strong growth as it passes through the
broad resonance band as it evolves through time, eventually
decreasing as it moves out the band. Likewise, a larger k-
mode can initially pass through several of the narrow bands
before entering the broad resonance band at late times. The
evolution of the k-modes are shown by the white lines in the
instability chart. The crossing of these bands with time can
qualitatively explain how the power spectrum PδϕðkÞ of the
fluctuations should evolve. In particular, one should expect
the following

(i) For comoving modes which are k≲ 0.5m, there
should be a sharp enhancement in PδϕðkÞ at rela-
tively early times. We use the word “relatively” to
emphasize the fact that the modes do not start out
in the broad resonance band at t ¼ 0. However,
these are the first modes to experience the strong

FIG. 5. Variation of the Floquet exponent as a function of k at two different values of the field amplitude. The gray shaded region
indicates the broad resonance regime which will be pronounced for 0.02≲ ϕ=Mpl ≲ 0.03 for α ¼ 10−4.

FIG. 6. Floquet charts for the E-model with α ¼ 5 × 10−4 (left panel) and α ¼ 10−4 (right panel) with the color bar denoting the real

part of the Floquet exponent RðμkÞ
m . The charts show the existence of a broad instability band for k≲ 0.5m, where ½RðμkÞ

m �max ∼ 0.40, and
several narrower ones for larger k. The white flow lines show how the physical k-modes pass through different resonance bands as they
evolve.
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amplification in the perturbations since the kphys
corresponding to these comoving modes evolve
through to the broad resonance regime the earliest.

(ii) Larger comoving k-modes can experience slight
enhancements at early times due to the passage of
the corresponding kphys through the narrow reso-
nance bands. At later times, when they enter the
broad resonance band, the amplification of these
modes will be significantly enhanced and we should
expect the peak, which is initially centered at small
k, to be shifted to larger k values.

This will be explored in detail in the next section where
lattice simulation results are interpreted.

IV. LATTICE RESULTS

Herewe present the results of 3D lattice simulations on the
E-model for different values of α. There are a number of
publicly available lattice codes that can be used for studying
preheating dynamics—LATTICEEASY [78], DEFROST [79],
HLATTICE [80] and PYCOOL [81] to name a few. We use
the publicly available lattice code CosmoLattice [82,83] for our
3D simulations. In this section, we first discuss numerical
simulation setup and then move on to analyzing the simu-
lation results. Finally, we discuss whether or not the non-
linearities observed from the E-model can be interpreted as
oscillons.

A. CosmoLattice setup and parameters

Lattice simulations work with dimensionless variables.
In terms of the dimensionless variables as t̃ ¼ mt, x̃ ¼ mx
and ϕ̃ ¼ ϕ

Mpl
, the inhomogeneous inflaton Klein-Gordon

equation to be solved takes the form

̈ϕ̃ −
∇̃2

a2
ϕ̃þ 3

ȧ
a
˙̃ϕþ ∂ϕ̃Ṽ ¼ 0 ð4:1Þ

where the redefined potential now reads

Ṽðϕ̃Þ ¼ 3

4
α

�
1 − e−

ffiffiffi
2
3α

p
ϕ̃

�
2

ð4:2Þ

In order to consistently solve the preheating dynamics, one
must also account for the background expansion of
space through the Friedmann and Raychaudhuri equations,
given by

H2 ≡
�
ȧ
a

�
2

¼ 1

3M2
pl

hEK þ EG þ EVi ð4:3Þ

ä
a
¼ 1

3M2
pl

h−2EK þ EVi ð4:4Þ

where EK, EG, and EV are the kinetic, gradient and potential
energies associated with the inflaton field and h· · ·i

represents spatial averaging. CosmoLattice, like most other
lattice codes, does not take into account the effects of
metric perturbations arising from the Bardeen potential
Ψðt; xÞ, because of which we cannot study the nonlinear-
ities arising from gravitational clustering on longer time-
scales. As previously mentioned, the only free parameter
involved in this model is α. The initial field values for the
lattice simulations are chosen such that they correspond to
the point in field space where inflation ends ðϕendÞ, which
depends on the choice of α. For each value of α, the initial
field values are chosen such that constraints on inflationary
observables are satisfied—namely the CMB normalization
Pζ ¼ 2.1 × 10−9 at the pivot scale k⋆ ¼ 0.05 Mpc−1, the
scalar spectral index ns ≈ 0.965 and the scalar-to-tensor
ratio r < 0.036 [7,8,84]. These details are presented in
Appendix A.
The numerical simulations are performed for the following

parameters and corresponding initial conditions for the
homogeneous field Table I summarizes the different choices
of α used in the simulations along with the corresponding
initial value for the field ϕin. With an inflationary excursion
corresponding to 55 e-folds since the pivot scale becomes
superhorizon, we find that the mass scale for this model is set
to m ≈ 1.27 × 10−5Mpl, which does not change irrespective
of the value of α. Themain results of this workwere obtained
from simulations with lattice size N ¼ 2563 and k̃IR ¼ 0.05
(here k̃IR is the minimum infrared cut-off [85] for the
reciprocal lattice) while some results pertaining to longer
time evolution, mainly the time evolution of the equation of
state (EoS) parameter, were obtained with N ¼ 1283.
Moreover, the time integration was carried out using the
2nd-order velocity-Verlet (VV2) algorithm available in
CosmoLattice. Higher order VV algorithms can also be used.
However, we found no quantitative difference in the outputs
of the spatially averaged quantities and, as a result, VV2 is a
perfectly reasonable choice for a time integrator in terms of
accuracy and speed.We do note that, at least for the E-model,
there will be significant numerical differences for lower
resolution grids, starting from N ¼ 643, with the solutions
displaying overshooting at around t̃ ∼ 50. Hence, we rec-
ommend that the smallest grid size with which the simu-
lations are to be carried out should be N ¼ 1283.
It should also be of interest to analytically check whether

fragmentation of the inflaton condensate occurs for the
chosen parameters. In Refs. [28,86,87], bounds on the

TABLE I. The different choices of the parameter α along with
the corresponding ϕin.

α ϕin½Mpl� ϕin½GeV�
5 × 10−4 0.109 2.65 × 1017

10−4 0.058 1.42 × 1017

10−5 0.023 5.57 × 1016
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parameters of α-attractor T and E-models for inflaton
fragmentation were derived. For an asymmetric potential
of the form VðϕÞ ¼ 1

2
m2ϕ2 − Aϕ3, it was found that

A >
400

9
ffiffiffiffiffiffi
6π

p
�
m2

Mpl

��
0.1
rA

�
≈ 5.78

�
m2

Mpl

��
0.1
rA

�
ð4:5Þ

where rA ≈ 0.1. This can be used provide bounds on the
value of α necessary for fragmentation. One finds that

α≲ 5 × 10−3
�
rA
0.1

�
2

ð4:6Þ

Hence, according to this analytical estimate, we should be
able to observe inflaton fragmentation for all the three
parameters listed in Table I.

B. Backreaction from inhomogeneous dynamics

From Eq. (4.1), we notice that the presence of the −∇̃2ϕ̃
term can play an important role in the time evolution of the
volume averaged field. Although not significant during the
slow-roll phase of inflation, the inhomogeneities can,
nevertheless, become very important during the preheating
phase, leading to potentially significant backreactions on
the oscillating homogeneous inflaton. Hence, if we scan
through the parameter α, we may be able to find a point
where ϕ̃ loses its oscillatory nature when the gradient term
kicks in, indicating the onset of backreaction from growing
perturbations. In Ref. [55], it was found that backreaction is
significant in α-attractor models forM ≪ Mpl, which in the
present case corresponds to α ≪ 1.
In Fig. 7, the evolution of the spatially averaged field and

energy components are shown for parameters α ¼ 10−3,

FIG. 7. The evolution of volume averaged fields and energies for α ¼ 10−3 (top), 10−4 (middle) and 10−5 (bottom) respectively. The
plots show how, with decrease in α, the ϕ̃ field goes from being oscillatory to a loss of oscillatory nature within t ¼ 100 m−1, suggesting
efficient backreaction.
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10−4 and 10−5 in descending order. Since the amount of
backreaction is dependent on the strength of the field
fluctuations, one tell-tale way of identifying it would to
look for the point in time where the gradient energy
becomes comparable to the kinetic and potential energies.

In other words, ð∇̃ ϕ̃Þ2 ∼ ˙̃ϕ
2
; Ṽðϕ̃Þ. From the top panel in

Fig. 7, we see that EG always provides a negligible
contribution to the total energy. As a result, there is no
noticeable backreaction and the field keeps oscillating with
decreasing amplitude. On the other hand, in the middle and
bottom panels, we see EG approaching OðEKÞ and OðEVÞ
which, consequently, appears as a backreaction on the
evolution of ϕ̃. This can be seen in the loss of the oscillatory
nature of the field at around t ¼ 100 m−1, from which point
ϕmaintains a steady decay. Although it may not be feasible
to exactly pin down the value of α for which backreaction
cannot be neglected, we find that by narrowing down the
range between 5 × 10−4 and 10−4, it is possible to infer
when the backreaction starts becoming prominent. For this,
we refer to Fig. 8 where the spatially averaged fields for
α ¼ 2.5 × 10−4 and 2 × 10−4 are plotted. Although we
observe that oscillatory nature of both parameters get
suppressed beyond t ¼ 100 m−1, it is for α < 2 × 10−4

that this effect starts becoming prominent. Hence, the
inflaton evolution can be described as a progression of
the following stages (for relevant values of α)
(1) Oscillations—During this period the inflaton main-

tains its coherent oscillatory nature, and hence the
inhomogeneities, being negligible, have not started
affecting the dynamics.

(2) Transition—This is a relatively brief period during
which the enhanced field fluctuations begin to
backreact on the oscillating inflaton condensate,
although not strong enough to completely quench
the oscillations. It is during this period that the
gradient energy EG starts growing appreciably to-
ward OðEKÞ and OðEVÞ.

(3) Backreaction—This is the stage where the enhanced
field fluctuations backreact onto the background
evolution efficiently, thereby significantly changing
its dynamics. As such, the inflaton evolution is no
longer oscillatory. Moreover, The backreaction also
shuts off the enhancement of the field fluctuations,
eventually leading to a truncation in the growth ofEG.

C. Power spectra and nonlinear structure formation

We now consider the growth of perturbations, comparing
the lattice data for the power spectrum of inflaton fluctua-
tions PδϕðkÞ with our expectations from the linear analysis
presented in Sec. III. In Fig. 9, the power spectra for the
field fluctuations are shown for parameters α ¼ 10−4 (left
panel) and 10−5 (right panel) with the color bar indicating
the passage of time from t ¼ 0 to 500 m−1. The solid black
lines represent the power spectrum at t ¼ 0. In the figures
we see that the smaller modes ðk≲ 0.5mÞ are the first to get
excited since, according to the Floquet charts, these
correspond to the physical k-modes which enter the broad
resonance band first. Subsequently, the peaks become
broader, being shifted toward larger k-modes since these
are the ones that enter the broad resonance regime at later
times—after the low k-modes have already passed through.
Next we study the spatial configurations of inhomoge-

neities. CosmoLattice is able to generate 3D data for the
energies EK, EV, and EG inHDF5 files which can be used to
calculate the spatial distribution of nonlinear structures by
computing the density contrast δρ

ρ̄ .[88] In particular, we

refer to Figs. 10 and 11 for α ¼ 10−4 and 10−5 respectively.
The plots are arranged as follows

(i) The three rows of the figures are density contrast
snapshots at three different times—namely t ¼
150 m−1, 450 m−1 and 950 m−1.

(ii) In each row, there are two columns. The left column
shows a 2D contour plot for δρρ̄ at a fixed time with an

FIG. 8. This figure demonstrates that backreaction effects become prominent for α ≤ 2 × 10−4. The solid lines and dash-dotted lines

represent ϕ̃ and
ffiffiffiffiffiffiffiffi
δϕ̃2

p
respectively. The evolution of the field can be roughly divided into three parts—(i) oscillations, (ii) transition and

(iii) backreaction where we observe during the transition period the size of fluctuations becomes of the order of the field value.
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FIG. 9. Power spectra of field fluctuations for α ¼ 10−4 (left panel) and α ¼ 10−5 (right panel) are shown in the figure with the
colorbar representing the progression of time. The solid black lines correspond to the initial power spectra. In these plots k̃ ¼ k=am.

FIG. 10. The density contrast δρ
ρ̄ across a 2D slice (left panel) and the 3D energy isosurfaces for δρ

ρ̄ ¼ 5 (right panel) are shown here
for α ¼ 10−4 with N ¼ 2563 grid points. The top, middle and bottom panels represent t ¼ 150 m−1, 450 m−1 and 950 m−1 respectively.
The color bars next to the 2D slices represent the density contrast magnitude and boxes have physical size L ¼ 125.6 m−1. The sides of
these grids and boxes are in comoving lengths with the spatially shrinking overdensities representing oscillons of fixed physical size.
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appropriate color bar. On the other hand, the right
column shows a 3D isosurface plot for regions
where the overdensities exceed 5 times the mean
energy density, i.e., δρ ¼ 5ρ̄.

We observe, through the 2D and 3D plots of the over-
densities, the existence of highly nonlinear structures that
form through the instabilities and subsequent growth of the
scalar field perturbations. We note that the grid lengths here
do not correspond to the actual comoving lengths of the
system but the 256 grid points in each Nx, Ny, and Nz.
Moving from t ¼ 150 m−1 to t ¼ 950 m−1, it is seen that
these structures shrink. Since the 3D lattices are in comoving
units, the shrinking is consistent with the formation of
overdensities of constant physical size (see Appendix B).
With the passage of time, most of these density fluctuations

(or hot spots) in the 2D slices average around 10 times the
mean density with a few isolated peaks. Qualitatively, we
also observe differences in the nonlinearities inα ¼ 10−4 and
10−5 where, in the latter, such regions start out in elongated
configurations before fragmenting into separate lumps.
However, whether or not these nonlinear structures can be
considered as oscillons is a matter that needs to be inves-
tigated further. This can be studied by observing the long-
termbehavior of the EoS andwhether or notw → 0, inwhich
case the nonlinear structures can be interpreted as oscillons.
We recall that the spatially averaged EoS is defined as

w̃ ¼ P̃
ρ̃
¼

˙̃ϕ
2
=2 − ð∇̃ ϕ̃Þ2=6a2 − Ṽ

˙̃ϕ
2
=2þ ð∇̃ ϕ̃Þ2=2a2 þ Ṽ

ð4:7Þ

FIG. 11. The density contrast δρρ̄ across a 2D slice (left panel) and the 3D energy isosurfaces for δρ
ρ̄ ¼ 5 (right panel) are shown here for

α ¼ 10−5 with N ¼ 2563 grid points. The top, middle and bottom panels represent t ¼ 150 m−1, 450 m−1 and 950 m−1 respectively. The
colorbars next to the 2D slices represent the density contrast magnitude and boxes have physical size L ¼ 125.6 m−1. The sides of these
grids and boxes are in comoving lengths with the spatially shrinking overdensities representing oscillons of fixed physical size.
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Furthermore, since theEoS rapidly oscillates compared to the
Hubble scale, we also perform a time-average (a moving-
average) which we denote by hw̃Ti. Using the virial theorem,
we can show that the time and spatially averaged EoS
behaves as follows [55]

hw̃iT ¼
1

3
þ 2

3

ðn − 2Þ
ðnþ 1Þ þ hð∇̃ ϕ̃Þ2=a2iT

hṼiT

ð4:8Þ

for potentials which areV ∝ ϕ2n near their minimawhich, in
the absence of inhomogeneities, yields the famous result
hw̃iT ¼ ðn − 1Þ=ðnþ 1Þ (see Ref. [89]). However, numeri-
cal simulations indicate that for all n > 1, contrary to the
homogeneous case, the average EoS turns out to be
hw̃iT → 1=3. In any case, the inflaton fluctuations do not
behave like pressureless matter for n > 1. If the gradient
energy always plays a significantly subdominant role such
that EG ≪ EV, then hw̃iT ≃ 0 for n ¼ 1, indicating a matter-
dominated stage. For the n ¼ 1 case of the E-model, the
leading order behavior of the potential is quadratic, hencewe
expect the averageEoS to be close to zero at early timeswhen
the backreaction effects are negligible.
We expect small deviations from hw̃iT ¼ 0 at intermediate

times because of a nonvanishing contribution arising from
the gradient energy. Observing the plots on the right panel of
Fig. 7, it is evident that EG is not completely negligible
compared to EV. As a result, for such intermediate times, we
expect the average EoS to be very small, but nonzero
nonetheless. However, since EG falls off faster than EV with
time, the averageEoS is expected to asymptotically approach
that of pressureless matter. In Fig. 12, the average EoS are
plotted for the two α parameters. In the plots, the transparent
red curves represent only the spatially averaged EoS w̃while
the solid red ones include a further time average. It is clear
that the nonlinearities that form from preheating behave as
pressureless matter which, nevertheless, contains a non-
negligible fraction that can constitute of components other
thanmatter. This is evident from the fact that hw̃iT, within the
provided range, has a small positive value. Moreover, the

average EoS for α ¼ 10−5 is slightly larger in this range and
can be understood from how the gradient energy behaves for
this parameter. Regardless of this, there is evidence that hw̃iT
should approach zero if a longer-term time evolution is
considered since the EG curve diverges away from the one
for EV. These nonlinearities can be regarded as oscillons
characterized by a spherically symmetric profile ϕoscðt; rÞ
peaked at the center andmonotonically decaying to zero away
from the center. Such profiles should be similar to the secant-
type oscillon profiles derived using the small amplitude
analysis in Sec. II.
Finally, we can estimate the fraction of the energy

density fosc locked in oscillons. A simple prescription
for calculating it is given by [49]

fosc ≡ Eosc

Etot
¼

R
δρ≳2ρ̄ d3xρðx; tÞR

d3xρðx; tÞ ð4:9Þ

where, in the numerator, the 3D energy distribution is
integrated for points where the density contrast exceeds
two. Since the 3D data are over a 2563 grid, a straightforward
volume integral can prove to be computationally taxing.
However, the integrals can be solved very efficiently using a
straightforward Monte Carlo integration implementation.
With Monte Carlo integration, the integrand

I ¼
Z

d3xρðx; tÞ ð4:10Þ

can be converted to

I ≈ V
1

N

XN
i¼1

ρðxi; tÞ ð4:11Þ

where V is the volume of the lattice and the sum is over a
uniform sampling of points in the lattice. Evaluating the
integrals for the two parameters,we summarize the results for
fosc in Fig. 13. They indeed demonstrate that there is very
little nonlinear structure formation before the onset of
backreaction, at which point fosc abruptly shoots up to

FIG. 12. The plots show the evolution of the spatially averaged EoS w̃ for α ¼ 10−4 (left panel) and α ¼ 10−5 (right panel). The solid
red lines are obtained by performing a moving average of w̃, over a suitably defined window, that we define as a time-average hw̃iT. The
results of these plots have been generated for N ¼ 1283.
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60%. After this initial rise, the fraction decays to a constant
value such that fosc ≳ 40% for both parameters. The differ-
ence between the values of fosc can be explained by the
choice of the threshold for the density contrast since the way
the overdensities cluster may be different in the two
parameters. Moreover, we can study the 2D overdensity
plots for another possible answer. In Figs. 10 and 11, we
observe that, although the hotspots are similar in distribution,
theones forα ¼ 10−4 featuremore prominent peaks at certain
locations compared to α ¼ 10−5. Although not conclusive
why there should be different oscillon fractions arising from
these two parameters, these provide two possible explan-
ations upon examination of the results. Furthermore, it is
possible that the increased abundance of oscillons observed in
Fig. 13, as the efficiency of oscillon production is lowered due
to backreaction effects, might be related to the inadequateUV
resolution of our simulations. This is also indicated by the fact
that there is a kinklike feature at late times (around k̃ ≃ 6) in
thepower-spectraof field fluctuations, as canbe seen inFig. 9.
We are keen on carrying out a detailed investigation into these
issues in a future project.

V. DISCUSSION

We have shown that oscillons can form during the
preheating stage of an asymmetric inflationary potential
like the α-attractor E-model. In particular, we have dem-
onstrated that backreaction of field fluctuations onto the
homogeneous field evolution becomes significant for α ≲
2 × 10−4 leading to the formation of highly inhomogeneous
field configurations composed of a significant fraction of
long-lived oscillons. This does not imply that oscillons (and
other nonlinearities) cannot form for larger values of α and,
in fact, they can. However, the fractional energy density of
the oscillons will be subdominant and the preheating
dynamics will be dominated by the coherently oscillating
inflaton condensate, given the fact that backreaction effects

do not kick in for larger values of α. In this such a scenario
we can leverage long-term gravitational effects. Using the
linearly perturbed Einstein equations, we can show that the
Bardeen potential is given by

Ψk ¼
3

2

�
aH
k

�
2

δk ð5:1Þ

where δk is the Fourier transform of the density contrast.
Typically for δk ≪ 1 and k ≫ aH, Ψk ≈ 0 at early times.
Nevertheless, one can still expect the formation of nonlinear
structure at late times due to thegravitational amplification of
metric fluctuations. As briefly mentioned before, the pres-
ence of metric perturbations has important consequences for
the growth of δϕk, so much so that even for VðϕÞ ∼ ϕ2, for
which inflaton self-interaction is absent, Eq. (3.4) takes the
form of the Mathieu equation, which is not the case in the
absence of metric fluctuations. With this metric preheating
phenomenon, it has been shown that small scale perturba-
tions are susceptible to parametric resonance which re-enter
the horizon during reheating and which are also larger than a
characteristic scale given by

ffiffiffiffiffiffiffiffiffiffi
3Hm

p
[59,60,90]. The effect of

gravitational clustering on oscillon formation in this param-
eter space will be explored in a future work.
It is important to note that the lattice simulation results

may change upon further refinement of the lattice size. For
the majority of this work, the results reflect the use of
N ¼ 2563, k̃IR ¼ 0.05 and k̃UV ¼ 4 (ultraviolet cutoff). It is
entirely possible that a finer lattice size (N ¼ 5123 or
10243) might reveal interesting details about nonlinear
structure formation hitherto unseen, although we do not
anticipate very large deviations away from the results that
have been presented here. As an example, the observation
that fosc is less for α ¼ 10−5 may have arisen from a lack of
resolution in the 3D grids and one may conjecture that
refining the grid can reveal finer details and create better
parity between the two parameters.
Furthermore, one should also question whether such low

values of α perform well with CMB constraints arising
from Planck and BICEP/Keck. In the large-N limit, and for
α ≤ 1 the α-attractors exhibit the following universality
class for the CMB observables ns and r [62,63]

ns ≃ 1 −
2

N
; r ≃

12α

N2
ð5:2Þ

where N ¼ N⋆ − Nend denotes the number of e-folds of
expansion in between the Hubble-exit epoch of the CMB
pivot scale N⋆ and the end of inflation Nend. For α≲Oð1Þ
andN ¼ 55, the α-attractors provide very robust predictions
for such inflationary observables. For example, for α ¼ 1
(coinciding with the traditional Starobinsky potential) and
N ¼ 55, one finds that ns ≈ 0.964 and r ≈ 0.004, which are
in excellent agreement with current CMB constraints [7,8].
However, α-attractors can also produce negligibly small
levels of tensor fluctuations depending on the smallness of

FIG. 13. The fraction of energy contained in oscillons fosc is
shown as a function of time. The fraction attains a non-negligible
value from the onset of backreaction, then decays to a constant
value which it maintains.
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the value of α, which can have major implications for the
running of the scalar spectral index αs. We recall that the
running of the scalar spectral index is defined as

PζðkÞ ¼ Aðk⋆Þ|fflffl{zfflffl}
2.1×10−9

�
k
k⋆

�
ns−1þ1

2
αs ln ðk=k⋆Þþ···

ð5:3Þ

αs ≡ dns
d ln k

����
k¼k⋆

ð5:4Þ

being currently constrained to αs ¼ −0.006� 0.013. In
Ref. [91] it was shown that inflationary models described
by the first two slow-roll parameters are now excluded with
the latest BICEP3/Keck [84,92] bounds on r. With the latest
data, the analysis found a posterior distribution PðNÞ
preferring N ≳ 80 with the two-term slow-roll hierarchy.
The situation can be ameliorated by considering the first three
slow-roll parameters. However, with this, very low values of
r in asymptotically flat potentials result in a relatively large
running of the scalar spectral index, but are still within
current observational bounds on αs.

VI. CONCLUSIONS

In this paper, we investigated whether oscillons can form
in an asymmetric inflationary potential—a question which
has not been adequately addressed in the existing literature.
We used the α-attractor E-model as a representative
asymmetric potential. Using a 4th-order Taylor expansion
of the E-model potential, we analytically demonstrated the
existence of oscillonlike solutions with a secant-type core.
However, the existence of such oscillonlike solutions is not
a sufficient condition for oscillon formation and, consid-
ering the fact that the 4th-order expression only really
works well for α ∼Oð1Þ, a full 3D lattice treatment is
necessary to verify the formation of nonlinear objects.
We performed a detailed lattice study during preheating

in the E-model for three different values of α where we
showed that effects of backreaction become significant for
α≲ 2 × 10−4. This occurs due to a sharp rise in the field’s
gradient energy which begins to modify the evolution of
the oscillating inflaton condensate significantly. In the
relevant parameter space, localized and highly nonlinear
structures were seen to be formed which maintain roughly
constant physical sizes as the universe expands in time.
Moreover, the average EoS reveal that they are in fact
close to being matterlike (with some non-negligible
fraction of the energy being locked into radiative modes
which tends to vanish in the asymptotic future. With these
in mind, we conclude that indeed a significant amount of
oscillons form in this particular example of an asymmetric
potential for α≲ 2 × 10−4. In relation to the estimate given
by Eq. (4.6) found in Ref. [87], it is seen that the onset of
backreaction occurs for much smaller values of α,
although it does manage to exclude a large portion of
the parameter space.

We bear in mind, however, that we have restricted
ourselves to only studying the scalar field fluctuations
and gravitational influences arising from metric perturba-
tions have been ignored. As mentioned in Sec. V, for values
of α where self-resonance is not as efficient, one can look
forward to long-term gravitational effects on the system and
the eventual formation of nonlinearities in larger propor-
tions than those formed solely from self-resonance. Such a
study will be performed in a future work using full
numerical relativity [93]. Moreover, larger values of α will
imply larger values of r which will be more favorable in
terms of CMB constraints. This is not to say that a very
small value of r poses any serious problems. However, as
seen in Ref. [91], very small values of r point toward
somewhat larger values of the running of scalar spectral
index αs which can impinge on current CMB constraints.
Additionally, we note that oscillons, though long-lived, are
metastable and they eventually decay on longer timescales.
We intend to carry out a thorough analysis of oscillon decay
in our upcoming paper, focusing on possible astrophysical
and cosmological implications both in the case of the
inflaton field and ultralight scalar dark matter.

Data Availability Statement: This work is entirely
theoretical and has no associated data. The data files for
the lattice simulations (with the exception of the 3D
configuration files) and other codes can be found in the
following GitHub repository: [94].
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APPENDIX A: DERIVING CosmoLattice

PARAMETERS FROM INFLATIONARY
OBSERVABLES

Here we use CMB constraints on inflationary observ-
ables to derive the parameters and initial homogeneous
field configurations for CosmoLattice. With an E-model
potential of the form

VðϕÞ ¼ 3

4
αm2M2

pl

�
1 − e

−
ffiffiffi
2
3α

p
ϕ

Mpl

�
2

ðA1Þ

the first slow-roll parameter ϵV can be used to determine the
field value at the end of inflation, which serves as the initial
condition for the simulations. Using the fact that

ϵV ¼ M2
pl

2

�
∂ϕV

V

�
2

ðA2Þ

we solve for ϵV ¼ 1 to obtain
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ϕend

Mpl
¼

ffiffiffiffiffiffi
3α

2

r
ln

�
1þ 2ffiffiffiffiffiffi

3α
p

�
ðA3Þ

The mass scale m is determined through the CMB normali-
zation at the pivot scale k⋆ which requires the field value ϕ⋆
for some prescribed number of observable e-folds. In the
slow-roll regime, the total number of e-folds is given by

Nðϕ⋆Þ ¼
1

M2
pl

Z
ϕ⋆

ϕend

V
∂ϕV

dϕ ðA4Þ

¼ 1

4

h
3α

	
e

ffiffiffi
2
3α

p
x⋆ − e

ffiffiffi
2
3α

p
xend



−

ffiffiffiffiffiffi
6α

p
ðx⋆ − xendÞ

i
ðA5Þ

where x ¼ ϕ
Mpl

and xend is determined using Eq. (A3). Using

55 e-folds as a reference number for observable e-folds, the
value of ϕ⋆ can be determined as a function of α. Finally, the
value of m can be set using the CMB normalization of
the primordial power spectrum at k⋆. In slow-roll

Pζ⋆ ≈
V3

12π2ð∂ϕVÞ2M6
pl

ðA6Þ

such that

m
Mpl

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128π2Pζ⋆

3α2

s
z⋆

ðz⋆ − 1Þ2 ðA7Þ

where Pζ⋆ ¼ 2.1 × 10−9 and z⋆ ¼ exp ð
ffiffiffiffi
2
3α

q
ϕ⋆
Mpl

Þ.

APPENDIX B: PHYSICAL SIZES
OF OVERDENSITIES

In Sec. IV C we mentioned that the nonlinearities that
develop maintain constant physical sizes. This can be
demonstrated by using the fact that

L̃physðt̃Þ ¼ aðt̃ÞL̃ ¼
�
t̃
t̃0

�
2=3

L̃ ðB1Þ

where the appropriate scale factor for the matter-dominated
epoch has been used. In Fig. 14, the 2D slices of the
overdensities are shown for α ¼ 10−4 at four different times
where we have zoomed into a 300 × 300 subset of the
overall grid. In the plots, the lengths of the grids have been
scaled to reflect the physical sizes of the overdensities and it
can be seen that, on average, the nonlinear patches maintain
roughly constant physical sizes.

FIG. 14. 2D slices of the 3D energy isosurfaces are shown here for α ¼ 10−4 at different times, where t̃ ¼ 600 (top left), 700 (top
right), 800 (bottom left) and 900 (bottom right) respectively.
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