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In the context of the discrepancies between the early and late universe, we emphasize the importance of
independent measurements of the cosmic curvature in the late universe. We present an investigation of the
model-independent measurement of the cosmic curvature parameter Ωk in the late universe with the latest
Hubble parameter HðzÞ measurements and type Ia supernovae (SNe Ia) data. For that, we use two
reconstruction methods, the Gaussian process (GP) and artificial neural network (ANN) methods, to
achieve the distance construction from HðzÞ data. Our analysis reveals that the GP method provides the
most precise constraint on Ωk, with a constraint precision of ξðΩkÞ ¼ 0.13, surpassing recent estimations
using similar methods. The GP method consistently indicates a preference for a flat universe at the 2σ
confidence level. Moreover, we find that the choice of reconstruction method influences the estimation of
Ωk. The ANN reconstruction method exhibits higher sensitivity to the addition of BAOHðzÞ data, resulting
in comparable constraint precision to the GP method. A discrepancy exists between the best-fit values
obtained by these two reconstruction methods, indicating their dependence on the reconstruction approach.
However, we anticipate that with the improvement of sample size and precision of observationalHðzÞ data,
the estimation of Ωk using this approach will become more robust and reliable.
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I. INTRODUCTION

After nearly a century of cosmological research, a
standard cosmological model, the Λ cold dark matter
(ΛCDM) model with six base parameters, was established,
whose validity has been verified by almost all current
observational data [1–5], especially by the Planck-satellite
data with breathtaking precision [6,7]. However, as the
precision of the observational data increases, some anoma-
lies among different measurements of some key cosmo-
logical parameters are shaking our confidence in the
standard cosmological model [7–14]. The most compelling
ones appear to be the tension of the Hubble constant H0

between the value inferred from the Planck-satellite data
and the one inferred from the nearby type Ia supernovae
(SNe Ia) data calibrated by the distance ladder, which has
become a serious crisis for cosmology [15–28]. As far as
the second anomaly is concerned, the S8 parameter, a
combination of the amplitude of matter density fluctuations
and the matter density, is significantly lower in recent

cosmic shear surveys than that expected according to the
Planck data best fit ΛCDM model [29].
In addition, recently, an enhanced lensing amplitude in

cosmic microwave background (CMB) power spectra
from Planck 2018 data also presents another serious
challenge to the standard cosmological model [7,12,14].
This effect could be explained naturally by a closed
universe. However, the prevailing and very successful
inflationary theory predicts a flat universe, and the obser-
vations also support a flat universe. For instance, the
combination of CMB power spectra data and baryon
acoustic oscillation (BAO) data puts a stringent constraint
on the cosmic curvature parameter Ωk under ΛCDM,
strongly supporting a flat universe [3,6,7,30]. As a result,
most cosmological research has long assumed a flat
universe. However, the discovery of a closed universe at
more than 3.4σ confidence level, preferred by the enhanced
lensing amplitude in Planck 2018 data, suggests that this
assumption may not be taken for granted [12,14]. What is
worse is that the H0 and S8 tensions will be exacerbated
when the possibility of a closed universe is considered,
implying there may be even larger discordances hidden
behind the assumption of a flat universe [12,13]. For a*Corresponding author: zhangxin@mail.neu.edu.cn
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comprehensive and detailed discussion on this topic, we
recommend the reader to refer to Refs. [30–46]
In fact, all of these crises arise from the measurement

inconsistencies between the early and late universe, andpoint
to the fact that the cracks have appeared in the standard
ΛCDMmodel. It is time to reconfirmwhat we once knew for
sure. In this paper, we aim to thoroughly investigate whether
the spatial geometry of our universe is open, flat, or closed
with a cosmological model-independent method. This is not
only in response to the crisis mentioned above but also
because the spatial curvature of the universe is a significant
issue that is deeply relevant to many fundamental questions
in modern cosmology, such as the evolution of the universe
and the property of the dark energy. The spatial geometry of
the universe is usually described by the cosmic curvature
parameter Ωk, i.e.,Ωk > 0,Ωk ¼ 0, and Ωk < 0 correspond
to an open, flat, and closed universe, respectively. In order to
tackle the crisis arising from the measurements of cosmic
curvature, a necessary approach is to use a cosmological
model-independent method to confirm the value ofΩk in the
late universe. Recently, great progress has been made in this
regard.
So far, many cosmological model-independent methods

have been proposed to determine the cosmic curvature
parameter Ωk [9,47–54], in which a popular and effective
method is applying the distance sum rule in the combina-
tion of strong gravitational lensing (SGL) and SNe Ia
observations to constrain Ωk [55]. Subsequently, this
method has been fully implemented with the combination
of SGL and other distance indicators, such as intermediate
luminosity quasars and gravitational waves [9–11,56].
However, while it is true that this method is independent
of cosmological models, Qi et al. [57] found that it is
dependent on the mass distribution model of lens galaxies
and is also affected by the classification of SGL data
according to the lens velocity dispersion. To obtain an
unbiased and precise estimate Ωk in this way, it is crucial to
accurately characterize the mass distribution of lens gal-
axies for each SGL sample, but this is still a long way off.
Another popular model-independent method to deter-

mineΩk is originally proposed to test the homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
metric [51]. This method is derived from the theoretical
expression between cosmological distance and the Hubble
parameter HðzÞ, in which the cosmic curvature is involved.
In reverse, the cosmic curvature could be estimated under
the assumption of the FLRW metric. Subsequently, this
estimation of Ωk is implemented in several works in the
light of new data and different statistical methods [58–60].
In most of these works, the Gaussian process, a non-
parametric reconstruction technique, is widely used to
reconstruct a smooth curve of HðzÞ so that the distance
at any redshift can be calibrated. Recently, Wang et al.
[48,49] presented an alternative nonparametric approach
based on the artificial neural network (ANN) for recon-
structing a function from observational data, which also has

been used in cosmological research, including the estima-
tion of Ωk.
In view of the importance of the cosmic curvature and the

advances in sample size and precision of observational
data, this paper aims to thoroughly investigate the extent to
which the cosmic curvature parameter can be constrained in
the late-universe by using the available observational data
and various reconstruction techniques. We will employ the
latest Pantheonþ compilation of SNe Ia containing 1701
SNe Ia light curves and 60HðzÞ data obtained by two
different observation methods to constrain the cosmic
curvature parameter with two nonparametric approaches,
GP and ANN.

II. DATA AND METHODOLOGY

We dedicate this section to describing the methodology
and two observational datasets used in this paper.

A. Data: SNe Ia sample

We use the SNe Ia Pantheonþ compilation containing
1701 light curves of 1550 unique in redshift range 0.001 <
z < 2.26 [61]. Compared to the original Pantheon compi-
lation [62], the sample size of Pantheonþ compilation has
greatly increased, and the treatments of systematic uncer-
tainties in redshifts, peculiar velocities, photometric cali-
bration, and intrinsic scatter model of SNe Ia also have been
improved. It should be noted that not all the SNe Ia in the
Pantheon are included in the Pantheonþ compilation.
In this paper,wemake use of two different SNe Ia samples.

Since the sensitivity of peculiar velocities is very large at low
redshift (z < 0.008) as shown in Fig. 4 of Ref. [61], which
may lead to biased results, we adopt the processing treat-
ments used by Ref. [61], namely, remove the data points in
redshift range z < 0.01. For convenience, we still call this
dataset as Pantheonþ. In addition, the Pantheonþ dataset
compiled by Ref. [61] also includes the recent Cepheid host
distance anchors released by SH0ES (SNe, H0, for the
equation of state of dark energy)Collaboration that facilitates
constraints on both the standardized absolute magnitude of
the SNe IaM and H0. Here, we also use this SNe Ia dataset
and call it as Pantheonþ&SH0ES.
While it is true that, in principle, the combination of

HðzÞ data with SNe Ia data can provide constraints on Ωk,
the inclusion of the SH0ES Cepheid calibration plays a
crucial role in our analysis for several reasons. First, the
determination of H0 is highly sensitive to the constraint on
Ωk in our analysis. By combining the SH0ES Cepheid
calibration, we benefit from an independent and remark-
ably precise measurement of H0, which significantly
enhances the accuracy of determining Ωk. Second, the
SH0ES Cepheid data allow for the calibration of the
absolute magnitude of SNe Ia, providing a valuable anchor
for cosmological distance measurements. This calibration
is instrumental in achieving more reliable distance esti-
mates. Finally, the synergy achieved by combining multiple
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independent probes, such as the SH0ES Cepheid data,
HðzÞ, and SNe Ia, facilitates a more robust and compre-
hensive determination of Ωk, minimizing potential biases
and yielding more confident results.
For each SN Ia, the observed distance module is given by

μSN ¼ mB −MB; ð1Þ

where mB is the observed magnitude in the rest-frame
B-band. The theoretical distance modulus μth is defined as

μth ¼ 5 log10

�
DLðzÞ
Mpc

�
þ 25; ð2Þ

where DLðzÞ is the luminosity distance associated with the
cosmological parameters. Constraining cosmological
parameters is implemented by minimizing the χ2 function:

−2 lnðLÞ ¼ χ2 ¼ ΔDTC−1
statþsystΔD; ð3Þ

where D is the SNe Ia distance-modulus residuals com-
puted as

ΔD ¼ μSN − μth; ð4Þ

and Cstatþsyst is the covariance matrix including both
statistical and systematic errors, which could be found in
the website,1 as well as the SH0ES Cepheid host-distance
covariance matrix.

B. Data: Hubble parameter measurements

The Hubble parameterHðzÞ describes the expansion rate
of the universe, and its observation is an important probe
for exploring dark energy and the evolution of the universe.
In general, there are two ways to measure HðzÞ. One is
obtained by calculating the differential ages of galaxies,
which is called cosmic chronometer (CC). We denote this
HðzÞ data obtained by this method as CC HðzÞ [63–68].
Another is inferred from the baryon acoustic oscillation
(BAO) peak in the galaxy’s power spectrum. For conven-
ience, we call this HðzÞ as BAO HðzÞ [69–80]. We have
compiled the latest 32 CC HðzÞ data points in Table I and
28 BAO HðzÞ data points in Table II. In this paper, we
preferentially use CC HðzÞ data to constrain Ωk, and then
employ the total HðzÞ data [CC HðzÞþ BAO HðzÞ].
Considering the importance of properly accounting for
the correlations between data points, in our analysis, we use
the publicly available CC covariance tool2 to estimate the
covariance matrix for the CC data [65,66,68,81]. This
allows us to appropriately incorporate the correlations and
uncertainties associated with the CC measurements into our
analysis. Furthermore, we have reanalyzed the results by

considering the updated CC covariance and have found
consistent results, reinforcing the robustness of our find-
ings. The covariance matrix of the CC data is computed as

Covij ¼ Covstatij þ Covsysij ; ð5Þ

where Covstatij is the statistical errors. The systematic
uncertainties Covsysij encompass various effects associated
with the determination of physical properties of galaxies,
such as stellar metallicity and potential contamination from
a young component. These effects are uncorrelated for
objects at different redshifts. For a more comprehensive
understanding of the origin and modeling of systematic
errors in the CC data, we refer readers to Ref. [81].

C. Reconstruction method: Gaussian process

There is an integral between the Hubble parameter and
the luminosity distance. In order to calibrate the distance

TABLE I. The CC Hubble parameter HðzÞ measurements and
their errors σHðzÞ at redshift z obtained from the differential age
method.

Index z HðzÞ [Mpc] σHðzÞ [Mpc] Reference

1 0.07 69.0 19.6 [63]
2 0.1 69.0 12.0 [64]
3 0.12 68.6 26.2 [63]
4 0.17 83.0 8.0 [64]
5 0.1797 81.0 5.0 [65]
6 0.1993 81.0 6.0 [65]
7 0.2 72.9 29.6 [63]
8 0.27 77.0 14.0 [64]
9 0.28 88.8 36.6 [63]
10 0.3519 88.0 16.0 [65]
11 0.3802 89.2 14.1 [66]
12 0.4 95.0 17.0 [64]
13 0.4004 82.8 10.6 [66]
14 0.4247 93.7 11.7 [66]
15 0.4293 91.8 5.3 [66]
16 0.4497 99.7 13.4 [66]
17 0.47 89.0 49.65 [67]
18 0.4783 80.9 9.0 [66]
19 0.48 97.0 60.0 [64]
20 0.5929 110.0 15.0 [65]
21 0.6797 98.0 10.0 [65]
22 0.7812 88.0 11.0 [65]
23 0.8754 124.0 17.0 [65]
24 0.88 90.0 40.0 [64]
25 0.9 117.0 23.0 [64]
26 1.037 113.0 15.0 [65]
27 1.3 168.0 17.0 [64]
28 1.363 160.0 33.6 [68]
29 1.43 177.0 18.0 [64]
30 1.53 140.0 14.0 [64]
31 1.75 202.0 40.0 [64]
32 1.965 186.5 50.4 [68]

1https://github.com/PantheonPlusSH0ES/DataRelease.
2https://gitlab.com/mmoresco/CCcovariance.
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using the HðzÞ data, it is necessary to reconstruct a
smooth curve of HðzÞ with a nonparametric reconstruc-
tion technique firstly. Here, we briefly introduce the GP
method that allows us to reconstruct a function from data

straightforwardly without any parametric assumption. We
adopt the GAPP Python code widely used in cosmology to
implement the GP method [48,82–90]. In this process, it is
assumed that the value of the reconstructed function fðzÞ
evaluated at two different points z and z̃ are connected by a
covariance function kðz; z̃Þ, and it only depends on two
hyperparameters σf and l. Although there are various and
effective forms of the covariance function, according to the
analysis in Seikel and Clarkson [86], the squared expo-
nential form with the Matérn ðν ¼ 9=2Þ covariance func-
tion can lead to more reliable results than all others. So we
take it here, and its expression is

kðz; z̃Þ ¼ σ2f exp

�
−
3jz − z̃j

l

��
1þ 3jz − z̃j

l
þ 27ðz − z̃Þ2

7l2

þ 18jz − z̃j3
7l3

þ 27ðz − z̃Þ4
35l4

�
: ð6Þ

Here, the hyperparameter l represents the characteristic
length scale, indicating the distance over which significant
changes occur in the function fðzÞ. The hyperparameter σf
represents the typical change or variation in the observed
data. The values of two hyperparameters are optimized by
the GP itself via the observational data. It is important to
note that the optimization of these two hyperparameters is
performed independently of the fitting process for the
cosmological parameters. The reconstructed functions of
HðzÞ for the two cases, CC HðzÞ and total HðzÞ, are shown
in Fig. 1.

D. Reconstruction method:
artificial neural network

Here, we use the ANN method based on REFANN [49]
Python code to reconstruct a function of HðzÞ from data,
which also has been widely used in cosmology [87,91].

TABLE II. The BAO Hubble parameter measurements HðzÞ
and their errors σHðzÞ at redshift z obtained from the radial BAO
method.

Index z HðzÞ [Mpc] σHðzÞ [Mpc] Reference

1 0.24 79.69 2.99 [69]
2 0.3 81.7 6.22 [70]
3 0.31 78.17 4.74 [71]
4 0.34 83.80 3.66 [69]
5 0.35 82.70 8.40 [72]
6 0.36 79.93 3.39 [71]
7 0.38 81.50 1.90 [73]
8 0.40 82.04 2.03 [71]
9 0.43 86.45 3.68 [69]
10 0.44 84.81 1.83 [71]
11 0.48 87.79 2.03 [71]
12 0.51 90.40 1.90 [73]
13 0.52 94.35 2.65 [71]
14 0.56 93.33 2.32 [71]
15 0.57 96.80 3.40 [74]
16 0.59 98.48 3.19 [71]
17 0.6 87.90 6.10 [75]
18 0.61 97.30 2.10 [73]
19 0.64 98.82 2.99 [71]
20 0.73 97.30 7.00 [75]
21 0.978 113.72 14.63 [76]
22 1.23 131.44 12.42 [76]
23 1.526 148.11 12.71 [76]
24 1.944 172.63 14.79 [76]
25 2.3 224.00 8.00 [77]
26 2.33 224.00 8.00 [78]
27 2.34 222.00 7.00 [79]
28 2.36 226.00 8.00 [80]

FIG. 1. Left: The reconstructions ofHðzÞ from CCHðzÞ data by using GP (red region) and ANN (blue region). The shaded region and
the solid line denote the 1σ confidence level errors and the best-fit values of reconstruction, respectively. The black points with error bars
represent the observed CC HðzÞ data. Right: Same as the left panel but for the total HðzÞ data.
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The ANN method, completely driven by data, allows us to
reconstruct a function from any kind of data without
assuming a parametrization of the function. The optimal
ANN model of reconstructing functions we used is the
same as that selected by Wang et al. [49], which has
one hidden layer with 4096 neurons total. The recon-
structed functions of HðzÞ from the ANN are also shown
in Fig. 1.
We can see that the confidence region reconstructed from

the ANN is larger than that reconstructed from the GP
method, which may be due to the basic logic and nature of
these two techniques. One potential explanation for the
observed discrepancy is the variance in the underlying
assumptions and modeling approaches of GP and ANN.
The GP method focuses on reconstructing a smooth
function based on the covariance between data points,
prioritizing the overall structure and correlations in the
data. On the other hand, ANN approximates the underlying
function using interconnected artificial neurons, allowing it
to capture complex nonlinear relationships. These inherent
differences in modeling techniques can lead to variations in
how the methods handle noise, outliers, and subtle features
in the data, resulting in divergent reconstructions for HðzÞ.
Additionally, the training and optimization processes
employed by GP and ANN can contribute to the observed
discrepancy. The selection of hyperparameters, such as the
kernel function in GP or the network architecture in ANN,
can significantly impact the models’ flexibility and gener-
alization capabilities. Variations in the hyperparameter
selection and training strategies may introduce sensitivities
and biases that influence the inferred values of HðzÞ.
Furthermore, it is important to acknowledge that GP and
ANN have distinct strengths and limitations. GP excels at
capturing uncertainties and estimating smooth functions,
while ANN is effective in modeling complex nonlinear
relationships. These inherent differences in methodology
can contribute to the observed discrepancies in the recon-
structed values of HðzÞ.
In addition, the reconstructed values of Hubble constant

[Hðz ¼ 0Þ] by these two methods are also different, which
is sensitive to the constraint on Ωk as we will see later.

E. Methodology for estimation of Ωk

In the framework of the FLRW metric, the comoving
distance DCðzÞ is defined as

DCðzÞ ¼ c
Z

z

0

dz0

Hðz0Þ ; ð7Þ

where c is the speed of light. With a reconstructed smooth
function of HðzÞ, a smooth function of DCðzÞ could be
calculated by integrating the function HðzÞ, and its con-
fidence region also could be obtained by integrating the
error of HðzÞ. Furthermore, the luminosity distance DL
could be obtained by DC via

DL

ð1þ zÞ ¼

8>>><
>>>:

c
H0

1ffiffiffiffi
Ωk

p sinh
h ffiffiffiffiffiffi

Ωk
p

DC
H0

c

i
Ωk > 0;

DC Ωk ¼ 0;

c
H0

1ffiffiffiffiffiffiffi
jΩK j

p sin
h ffiffiffiffiffiffiffijΩk

p jDC
H0

c

i
Ωk < 0:

ð8Þ

Note that in this calculation, the value of H0 is adopted
from the reconstructed value of Hðz ¼ 0Þ. The uncertainty
of DL could be obtained by

σDL
¼

8>>><
>>>:

ð1þ zÞ cosh
h ffiffiffiffiffiffiffiffiffijΩkj
p

DC
H0

c

i
σDC

for Ωk > 0;

ð1þ zÞσDC
for Ωk ¼ 0;

ð1þ zÞ cos
h ffiffiffiffiffiffiffiffiffijΩkj
p

DC
H0

c

i
σDC

for Ωk < 0:

ð9Þ

The distance modulus reconstructed fromHðzÞ data μH can
be further obtained by Eq. (2). Finally, the cosmic curvature
parameter Ωk could be estimated by minimizing the χ2

function of Eq. (3). Here, the uncertainty of reconstructed
distance modulus σμH should be added to the covariance
matrix as a systematic error via

ðCstatÞii ¼ ðCSN
statÞii þ σ2μH;i: ð10Þ

We constrain the cosmological parameters using the EMCEE

Python module based on the Markov Chain Monte Carlo
analysis [92]. There are two free parameters, Ωk and the
SNe Ia absolute magnitude MB.

III. RESULTS AND DISCUSSIONS

Here, we combine two types of HðzÞ data, two types of
SNe Ia data, and two reconstruction methods to make a
thorough investigation of the cosmic curvature. All the
constraint contours of Ωk and MB are shown in Figs. 2–3
and the best-fit values with 1σ confidence level are listed
in Table III.
In Fig. 2, we present the constraints on Ωk and MB

obtained from the CC HðzÞ data in different scenarios. It is
evident that there are differences between the contours
derived from the two reconstruction methods. Specifically,
concerning the GP method, the values of MB constrained
from both the Pantheonþ and Pantheonþ&SH0ES data-
sets are almost identical, which means the addition of
SH0ES data is not helpful to the constraint on MB. As for
Ωk, the estimations from Pantheonþ and Pantheonþ
&SH0ES both favor a closed universe, while remaining
consistent with a flat universe at the 2σ confidence level.
Moreover, we find an intriguing finding that the inclusion
of SH0ES data does not appear to significantly impact the
precision of the Ωk constraint.
Regarding the ANN method, we find that the uncertain-

ties of the two parameters (i.e., Ωk and MB) obtained from
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this approach are larger than those derived from the GP
method. This discrepancy can be traced back to the left
panel of Fig. 1, where we notice that the confidence region
of HðzÞ reconstructed by the ANN is notably broader
compared to that reconstructed using the GP method.
Additionally, as mentioned previously, the reconstructed
values of the Hubble constant [Hðz ¼ 0Þ] from these two
methods are also different, which subsequently influences
the constraint on MB as evident from the distinct contours
observed in Fig. 2 for the GP and ANN methods.
Concerning the estimation of Ωk, we find that not only
do the uncertainties become larger when compared to the
results obtained from the GP method, but the best-fit values
also tend to favor an open universe, while remaining
consistent with a flat universe within the 2σ confidence
level. Additionally, the addition of SH0ES data does not
appear to significantly affect the constraint precision of Ωk
in the context of the ANN method.
Now, let’s focus on the Total HðzÞ data, which has a

sample size nearly twice as large as the CC HðzÞ data. In

Fig. 3, we present the 1D and 2D marginalized probability
distributions of Ωk and MB obtained from this dataset.
For the GP method, regarding the constraints on Ωk, we

find a shift in the best-fit values compared with CC HðzÞ
data, now leaning toward a positive value, indicating support
for an open universe, but the estimate from Pantheonþ
&SH0ES is still consistent with a flat universe at 2σ
confidence level. This change demonstrates that the addition
of the BAO HðzÞ observational data influences the estima-
tion of Ωk using this approach. Despite the total HðzÞ data
having nearly twice the sample size of the CCHðzÞ data, we
find that the constraint precision of Ωk is not notably
improved compared to that derived from the CC HðzÞ data.
In the case of the ANN reconstruction method, we find a

substantial improvement in the constraints on both Ωk and
MB when using the total HðzÞ data compared to the results
obtained from the CCHðzÞ data. The constraints onΩk and
MB have improved by approximately twice, indicating that
the ANN method is more sensitive to the addition of the
BAO HðzÞ data. This sensitivity allows for better con-
straints on the cosmological parameters when incorporating
the larger sample size provided by the Total HðzÞ data.
Regarding Ωk, both of the best-fit values from the two

FIG. 3. Same as Fig. 2, but for Total HðzÞ data.FIG. 2. The constraints with the 1σ and 2σ confidence level
on the cosmic curvature Ωk and the SNe Ia absolute magnitude
MB from two types of SNe Ia dataset (Pantheonþ and
Pantheonþ&SH0ES) and with two reconstruction methods
(GP and ANN), respectively, in the case of CC HðzÞ data.

TABLE III. The constraint results of Ωk and MB with 1σ confidence level for various datasets and reconstruction methods.

HðzÞ data type Parameters GP Pantheonþ GP Pantheonþ&SH0ES ANN Pantheonþ ANN Pantheonþ&SH0ES

CC HðzÞ Ωk −0.17� 0.13 −0.23� 0.13 0.51þ0.27
−0.24 0.46� 0.25

MB −19.310� 0.007 −19.304� 0.007 −19.382� 0.013 −19.378� 0.012

Total HðzÞ Ωk 0.34� 0.13 0.26� 0.13 −0.18� 0.13 −0.27� 0.13
MB −19.500� 0.006 −19.494� 0.005 −19.353� 0.006 −19.3465� 0.006
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SNe Ia datasets favor a closed universe, while remaining
consistent with a flat universe within the 2σ confidence level.

IV. CONCLUSION

Currently, the measurement inconsistencies between the
early and late universe, such as the tensions in the Hubble
constant, the S8 parameter, and the cosmic curvature
parameter, have raised questions about the validity of the
standard cosmological model, i.e., the ΛCDM model. In
this paper, we highlight the importance of determining
the cosmic curvature parameter Ωk and aim to make a
thorough investigation for the model-independent meas-
urement of Ωk in the late universe with the observational
data and statistical tools available to us. Therefore, we
consider two types of HðzÞ datasets (CC HðzÞ data and
total data), two types of SNe Ia datasets (Pantheonþ and
Pantheonþ&SH0ES), and two reconstruction methods
(GP method and ANN method).
The GP method has yielded the most precise constraint

on Ωk, with a constraint precision of ξðΩkÞ ¼ 0.13 for any
combination of data, surpassing the recent measurements
of Ωk using similar methods [48,58–60]. Overall, the
estimations obtained through the GP method consistently
support a flat universe at the 2σ confidence level.

It is worth noting that the estimation of Ωk in this
study is influenced by the choice of reconstruction
method. The ANN reconstruction method exhibits
higher sensitivity to the addition of HðzÞ data. By
combining the BAO HðzÞ data, the constraint precision
based on the ANN method becomes comparable to that
obtained using the GP method. However, a discrepancy
exists between the best-fit values obtained by these two
reconstruction methods, indicating a dependence on the
reconstruction approach. As a consequence, the method
employed in this study to evaluate Ωk may be less
robust due to its sensitivity to the reconstruction
method. Nevertheless, we expect that with the improve-
ment of sample size and precision of observational HðzÞ
data, the estimation of Ωk using this approach will
become more robust and reliable.

ACKNOWLEDGMENTS

This work was supported by the National SKA
Program of China (Grants Nos. 2022SKA0110200 and
2022SKA0110203), and the National Natural Science
Foundation of China (Grants Nos. 12205039, 11975072,
11835009, and 11875102).

[1] Adam G. Riess et al. (Supernova Search Team Collabora-
tion), Observational evidence from supernovae for an
accelerating universe and a cosmological constant, Astron.
J. 116, 1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of Ω and Λ from 42 high redshift
supernovae, Astrophys. J. 517, 565 (1999).

[3] D. N. Spergel et al. (WMAP Collaboration), First
year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: Determination of cosmological parameters,
Astrophys. J. Suppl. Ser. 148, 175 (2003).

[4] Max Tegmark et al. (SDSS Collaboration), Cosmological
parameters from SDSS and WMAP, Phys. Rev. D 69,
103501 (2004).

[5] Kevork Abazajian et al. (SDSS Collaboration), The second
data release of the Sloan digital sky survey, Astron. J. 128,
502 (2004).

[6] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[7] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); 652, C4(E) (2021).

[8] Adam G. Riess, Stefano Casertano, Wenlong Yuan,
Lucas M. Macri, and Dan Scolnic, Large magellanic
cloud Cepheid standards provide a 1% foundation for the
determination of the Hubble constant and stronger

evidence for physics beyond ΛCDM, Astrophys. J. 876,
85 (2019).

[9] Jing-Zhao Qi, Jia-Wei Zhao, Shuo Cao, Marek Biesiada,
and Yuting Liu, Measurements of the Hubble constant and
cosmic curvature with quasars: Ultracompact radio structure
and strong gravitational lensing, Mon. Not. R. Astron. Soc.
503, 2179 (2021).

[10] Jing-Zhao Qi, Yu Cui, Wei-Hong Hu, Jing-Fei Zhang, Jing-
Lei Cui, and Xin Zhang, Strongly lensed type Ia supernovae
as a precise late-Universe probe of measuring the Hubble
constant and cosmic curvature, Phys. Rev. D 106, 023520
(2022).

[11] Meng-Di Cao, Jie Zheng, Jing-Zhao Qi, Xin Zhang, and
Zong-Hong Zhu, A new way to explore cosmological
tensions using gravitational waves and strong gravitational
lensing, Astrophys. J. 934, 108 (2022).

[12] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph
Silk, Planck evidence for a closed universe and a possible
crisis for cosmology, Nat. Astron. 4, 196 (2019).

[13] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph
Silk, Investigating cosmic discordance, Astrophys. J. Lett.
908, L9 (2021).

[14] Will Handley, Curvature tension: Evidence for a closed
universe, Phys. Rev. D 103, L041301 (2021).

[15] Adam G. Riess, Stefano Casertano, Wenlong Yuan, J.
Bradley Bowers, Lucas Macri, Joel C. Zinn, and Dan
Scolnic, Cosmic distances calibrated to 1% precision with

MODEL-INDEPENDENT MEASUREMENT OF COSMIC CURVATURE … PHYS. REV. D 108, 063522 (2023)

063522-7

https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/377226
https://doi.org/10.1103/PhysRevD.69.103501
https://doi.org/10.1103/PhysRevD.69.103501
https://doi.org/10.1086/421365
https://doi.org/10.1086/421365
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.1093/mnras/stab638
https://doi.org/10.1093/mnras/stab638
https://doi.org/10.1103/PhysRevD.106.023520
https://doi.org/10.1103/PhysRevD.106.023520
https://doi.org/10.3847/1538-4357/ac7ce4
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.3847/2041-8213/abe1c4
https://doi.org/10.3847/2041-8213/abe1c4
https://doi.org/10.1103/PhysRevD.103.L041301


Gaia EDR3 parallaxes and Hubble space telescope pho-
tometry of 75 milky way cepheids confirm tension with
ΛCDM, Astrophys. J. Lett. 908, L6 (2021).

[16] Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca
Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F.
Mota, Adam G. Riess, and Joseph Silk, In the realm of the
Hubble tension—a review of solutions, Classical Quantum
Gravity 38, 153001 (2021).

[17] Sunny Vagnozzi, New physics in light of theH0 tension: An
alternative view, Phys. Rev. D 102, 023518 (2020).

[18] Xin Zhang, Gravitational wave standard sirens and cosmo-
logical parameter measurement, Sci. China Phys. Mech.
Astron. 62, 110431 (2019).

[19] YiDong Xu and Xin Zhang, Cosmological parameter
measurement and neutral hydrogen 21 cm sky survey with
the Square Kilometre Array, Sci. China Phys. Mech. Astron.
63, 270431 (2020).

[20] Miao Li, Xiao-Dong Li, Yin-Zhe Ma, Xin Zhang, and
Zhenhui Zhang, Planck constraints on holographic dark
energy, J. Cosmol. Astropart. Phys. 09 (2013) 021.

[21] Jing-Zhao Qi and Xin Zhang, A new cosmological probe
using super-massive black hole shadows, Chin. Phys. C 44,
055101 (2020).

[22] Kyriakos Vattis, Savvas M. Koushiappas, and Abraham
Loeb, Dark matter decaying in the late universe can relieve
the H0 tension, Phys. Rev. D 99, 121302 (2019).

[23] Jing-Fei Zhang, Jia-Jia Geng, and Xin Zhang, Neutrinos and
dark energy after Planck and BICEP2: Data consistency
tests and cosmological parameter constraints, J. Cosmol.
Astropart. Phys. 10 (2014) 044.

[24] Rui-Yun Guo, Jing-Fei Zhang, and Xin Zhang, Can the H0

tension be resolved in extensions to ΛCDM cosmology?
J. Cosmol. Astropart. Phys. 02 (2019) 054.

[25] Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, and Xin
Zhang, Search for sterile neutrinos in holographic dark
energy cosmology: Reconciling Planck observation with the
local measurement of the Hubble constant, Phys. Rev. D 96,
043520 (2017).

[26] Rui-Yun Guo and Xin Zhang, Constraints on inflation
revisited: An analysis including the latest local measurement
of the Hubble constant, Eur. Phys. J. C 77, 882 (2017).

[27] Li-Yang Gao, Ze-Wei Zhao, She-Sheng Xue, and Xin
Zhang, Relieving the H 0 tension with a new interacting
dark energy model, J. Cosmol. Astropart. Phys. 07 (2021)
005.

[28] Li-Yang Gao, She-Sheng Xue, and Xin Zhang, Dark energy
and matter interacting scenario can relieve H0 and S8
tensions, arXiv:2212.13146.

[29] Catherine Heymans et al., KiDS-1000 Cosmology: Multi-
probe weak gravitational lensing and spectroscopic galaxy
clustering constraints, Astron. Astrophys. 646, A140
(2021).

[30] Jordan Stevens, Hasti Khoraminezhad, and Shun Saito,
Constraining the spatial curvature with cosmic expansion
history in a cosmological model with a nonstandard sound
horizon, J. Cosmol. Astropart. Phys. 07 (2023) 046.

[31] George Efstathiou and Steven Gratton, The evidence for a
spatially flat universe, Mon. Not. R. Astron. Soc. 496, L91
(2020).

[32] Sunny Vagnozzi, Eleonora Di Valentino, Stefano Gariazzo,
Alessandro Melchiorri, Olga Mena, and Joseph Silk, The
galaxy power spectrum take on spatial curvature and cosmic
concordance, Phys. Dark Universe 33, 100851 (2021).

[33] Sunny Vagnozzi, Abraham Loeb, and Michele Moresco,
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