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We study a model of symmetric teleparallel gravity that is able to account for the current accelerated
expansion of the Universe without the need for a dark energy component. We investigate this model by
making use of dynamical system analysis techniques to identify the regions of the parameter space with
viable cosmologies and constrain it using type-Ia supernovae (SnIa) and cosmic microwave background
(CMB) data, and make forecasts using standard siren (SS) events. We conclude that this model is
disfavored with respect to ΛCDM, and forthcoming standard siren events can be decisive in testing the
viability of the model.
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I. INTRODUCTION

The standard model of cosmology, referred to asΛCDM,
provides us with the most accurate description of the
Universe at large scales. However, despite its successes, it
is not devoid of difficulties [1]. One of themost debated of its
shortcomings is the origin of the cosmological constant,
introduced to explain the current accelerated expansion of
the Universe. Also, tensions in the value of the expansion
rate obtained from low-redshift against high-redshift data
motivate the search for alternative descriptions.
Recently, it has been shown that two gravitational

theories equivalent to general relativity (GR) exist, one
based solely on nonmetricity and the other based solely on
torsion. This equivalence is referred to as the geometrical
trinity of gravity [2]. Generalizations of these formulations
have been considered as fðTÞ, the teleparallel gravity, or
fðQÞ, the symmetric teleparallel gravity [3–5]. These
theories are particularly interesting, as even if they only
produce slight deviations from ΛCDM at the background
level [6], they may give rise to signatures in the evolution of
the density perturbations [7] and in the propagation of
gravitational waves [8], potentially being able to solve the
challenges that ΛCDM faces [9–16].
With the development of new techniques in gravitational

wave (GW) astronomy, cosmologists will soon have access
to a new and exciting source of data: standard siren (SS)
events, characterized by the direct measurement of both the

luminosity distance and the redshift of merging compact
objects. Unfortunately, up to the current date, only
GW170817 [17] has been confirmed as a SS event; a
suggested electromagnetic (EM) counterpart to GW190521
[18] was proposed in [19].
In this work, we focus on a model of fðQÞ gravity able to

account for the late-time accelerated expansion of the
Universe without adding a cosmological constant. We
develop a dynamical system analysis in order to look for
regions in parameter space that yield viable cosmologies,
and we constrain this model by making use of both high-
and low-redshift observables—namely, type-Ia supernovae
(SnIa) and the cosmic microwave background (CMB)—
and in addition, we make forecasts using mock catalogs of
SS events made for the Laser Interferometer Space Antenna
(LISA) [20,21] and the Einstein Telescope (ET). An online
repository complementary to this analysis is publicly
available at [22].
This work is organized as follows: In Sec. II, we provide

a brief introduction to the formalism behind fðQÞ cosmol-
ogy and introduce the specific model we will be working
with. In Sec. III, we perform a dynamical system analysis
applied to the model to identify the regions of the phase
space leading to late-time acceleration. In Sec. IV, we
introduce the datasets we use. In Sec. V, we show the
constraints given by the datasets introduced before. Finally,
in Sec. VI, we make an overview of this work.

II. COSMOLOGY IN f ðQÞ
In this work, we consider a theory of modified gravity

based on an arbitrary function of the nonmetricity scalar.
The action for such a theory of gravity reads
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S ¼
Z ffiffiffiffiffiffi

−g
p �

−
c4

16πG
fðQÞ þ Lm

�
d4x; ð1Þ

where Q is the nonmetricity scalar that is defined as [23]

Q¼−
1

4
QαβγQαβγ þ 1

2
QαβγQγβαþ 1

4
QαQα −

1

2
QαQ̃

α; ð2Þ

with Qαμν ¼ ∇αgμν, and the two independent contractions
of the nonmetricity tensor are

Qμ ¼ Qμ
α
α; Q̃μ ¼ Qα

αμ: ð3Þ

When varying the action in Eq. (1) with respect to the
metric, one obtains the field equations [24]

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
fQPαμ

νÞ þ
1

2
δμνf

þ fQPμαβQναβ ¼
8πG
c4

Tμ
ν; ð4Þ

where fQ represents the partial derivative of fðQÞ with
respect to Q. Pαμν, referred to as the nonmetricity con-
jugate, is defined as

Pα
μν ¼ −

1

2
Lα

μν þ
1

4
ðQα − Q̃αÞ − 1

4
δαðμQνÞ; ð5Þ

where Lα
μν is the disformation tensor

Lλ
μν ¼

1

2
gλβð−Qμβν −Qνβμ þQβμνÞ: ð6Þ

We use the coincident gauge to specify the affine con-
nection [3,23,25] and restrict our analysis to a flat,
homogeneous and isotropic universe, described by the
FLRW metric

ds2 ¼ −c2dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð7Þ

where aðtÞ is the scale factor of the universe, and t is
cosmic time t. Under these assumptions, the nonmetricity
scalar defined in Eq. (2) simplifies to [24]

Q ¼ 6H2; ð8Þ

where H ¼ ȧ=a is the Hubble function. Considering a
universe permeated by a perfect fluid composed of both
matter and radiation, the modified first Friedmann equation
reads [24]

6fQH2 −
1

2
f ¼ 8πGðρm þ ρrÞ: ð9Þ

As stated in [26], the covariant derivative of the stress-
energy momentum tensor is still zero, meaning that each

component of the fluid obeys the standard continuity
equation

ρ̇þ 3
ȧ
a

�
ρþ P

c2

�
¼ 0; ð10Þ

where P stands for pressure. This means that the scaling for
each component is the same as in ΛCDM, and we can
rewrite Eq. (9) as

2QfQ − f
Q0

¼ Ωm

a3
þ Ωr

a4
; ð11Þ

whereΩi ¼ 8πGρi;0=3H2
0 and E≡H=H0, with the index 0

denoting the value of that quantity today.
This modification of gravity also changes the equation of

motion for the propagation of gravitational waves [24]:

h̄00A þ 2Hð1þ δðzÞÞh̄0A þ k2h̄A ¼ 0; ð12Þ

where A ¼ ×;þ represent the polarizations of the GWs.
The previous equation differs from the case of ΛCDM by
an additional friction factor, δðzÞ, that for an fðQÞ model
takes the form

δðzÞ ¼ d ln fQ
2Hdη

: ð13Þ

Following [8], this leads to a modification to the luminosity
distance for a GW event, such that

dGWðzÞ ¼

ffiffiffiffiffiffiffiffi
fð0ÞQ

fQ

vuut dLðzÞ; ð14Þ

where fð0ÞQ is the function fQ computed at the present day
and dLðzÞ is the standard luminosity distance function.

A. f ðQÞ cosmological model

In this work, we consider a model that differs from the
standard interpretation of gravity—i.e., GR, for which
fðQÞ ¼ Q—by taking a multiplicative exponential term
of the form [27]

fðQÞ ¼ QeλQ0=Q; ð15Þ

where λ is a constant; however, it is not a free parameter. As
we will see in Sec. III, λ is related to the abundance of
matter today and has to be positive for a viable universe.
By making use of Eq. (8), we can see that the extra

multiplicative term in this model is an exponential that is
inversely proportional to the Hubble function. Given that
the Hubble function increases with redshift, this model
exponentially approaches the case where fðQÞ ¼ Q, mean-
ing that it has GR as a limit case at early times.
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Inserting the specific form of fðQÞ into Eq. (11), we
obtain the modified first Friedmann equation for this
model, which reads

ðE2 − 2λÞeλ=E2 ¼ Ωmð1þ zÞ3 þ Ωrð1þ zÞ4; ð16Þ

where EðzÞ≡HðzÞ=H0.
As hinted before, this model falls back to GR in the limit

of high redshifts. For z ≫ 1, Eq. (16) is approximately
equal to

E2 ≈Ωmð1þ zÞ3 þ Ωrð1þ zÞ4 þ λ; ð17Þ

which corresponds to a ΛCDM universe with ΩΛ ¼ λ,
where its effect is negligible at these early times. When
evaluated today ðE2 ≈ 1Þ, Eq. (16) reduces to

E2 ≈ e−λΩmð1þ zÞ3 þ e−λΩrð1þ zÞ4 þ 2λ; ð18Þ

which corresponds once again to a ΛCDM universe, but
now with ΩΛ ¼ 2λ and a correction in the relative abun-
dance of matter and radiation. We note that, in the absence
of matter fields, ρm ¼ ρr ¼ 0, we obtain a de Sitter universe
with λ ¼ 1=2.
If we insert the form of the function fðQÞ into Eq. (14),

then we obtain the luminosity distance function for this
specific model, which now reads

dGWðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ

1 − λ=E2

s
e

λ
2
ð1−1=E2ÞdLðzÞ: ð19Þ

This model was originally proposed in [27], where it was
shown to be statistically equivalent to ΛCDM for tests
using low-redshift measurements. Additionally, it has been
shown to pass big bang nucleosynthesis constraints [28].

III. DYNAMICAL SYSTEM ANALYSIS

In order to perform our dynamical systems analysis, we
can start by rewriting Eq. (16) as

1 ¼ e−λ=E
2

E2

�
Ωm

a3
þΩr

a4

�
þ 2λ

E2
: ð20Þ

Defining the quantities

x1≡ Ωm

E2eλ=E
2

a3
; x2≡ Ωr

E2eλ=E
2

a4
; x3≡ 2λ

E2
; ð21Þ

where x1 is related to the evolution of the matter density in
the universe, x2 to the radiation density, and x3 to the
parameter λ, they satisfy

x1 þ x2 þ x3 ¼ 1: ð22Þ

This equation shows that one of our coordinates in phase
space is fully determined by the value of the other two. As
such, without loss of generality, we choose to work with x1
and x2 alone.
Differentiating both x1 and x2 with respect to the number

of e-folds, N ¼ ln a, we obtain

x01 ¼ −x1
�
ð1þ x1 þ x2Þ

E0

E
þ 3

�
; ð23Þ

x02 ¼ −x2
�
ð1þ x1 þ x2Þ

E0

E
þ 4

�
; ð24Þ

where the prime denotes the derivative with respect to N,
and the ratio E0=E can be expressed as a function of both x1
and x2 by

E0

E
¼ −ð3x1 þ 4x2Þ

2 − ðx1 þ x2Þ þ ðx1 þ x2Þ2
: ð25Þ

A. Fixed points

For this dynamical system, we find three distinct fixed
points. Their locations and corresponding stability is
presented in Table I.
Fixed point I corresponds to a λ-dominated regime and is

the only stable fixed point in our system. It is located at x1,
x2 ¼ 0, corresponding to

E2 ¼ 2λ; ð26Þ
and therefore it only exists if λ is positive.
By integrating the previous equation, we obtain the

evolution of the scale factor as a function of time:

a ¼ e
ffiffiffiffi
2λ

p
H0t; ð27Þ

meaning that we have an exponential expansion, corre-
sponding to a point of eternal inflation.
The fixed point II corresponds to a matter-dominated

regime located at x1 ¼ 1 and x2 ¼ 0, implying that λ ¼ 0.
It is a saddle node with attracting trajectories along the
direction of fixed point III. Setting λ ¼ 0 in Eq. (15), we
have fðQÞ ¼ Q, corresponding to the GR limit—more
specifically, a cold dark matter (CDM) universe, since this
model does not include a cosmological constant.
As for fixed point III, it corresponds to a radiation-

dominated regime and is located at x1 ¼ 0 and x2 ¼ 1. It is
an unstable node, and like fixed point II, it is located in a

TABLE I. Fixed points and corresponding stability for the
dynamical system.

Point Type x1 x2 Stability Eigenvalues

I λ-dominated 0 0 Stable ð−4;−3Þ
II Matter-dominated 1 0 Saddle ð3;−1Þ
III Radiation-dominated 0 1 Unstable (4, 1)
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region where λ ¼ 0, meaning that it is in the GR limit
with fðQÞ ¼ Q.

B. Trajectories

Solving the equations of motion [Eqs. (23) and (24)]
numerically, we obtain the trajectories in phase space
presented in Fig. 1. From this figure, we can see the
existence of three disjoint regions related with the sign of λ:
(1) λ > 0: Region colored in light blue, corresponding

to the triangle x1 þ x2 < 1. This is where the stable
fixed point I is located, therefore leading all trajec-
tories inside this region toward a universe in eternal
inflation.

(2) λ ¼ 0: Region in light brown, corresponding to the
line x1 þ x2 ¼ 1 and a CDM universe. In this region,
the trajectories flow from the unstable fixed point III,
corresponding to a radiation-dominated epoch, to-
wards the saddle fixed point II, corresponding to a
matter-dominated epoch.

(3) λ < 0: Region in dark blue, corresponding to the
plane x1 þ x2 > 1. It has no fixed points, and all
trajectories diverge towards infinity, with E asymp-
totically approaching zero.

In order to agree with the observations of an expanding
Universe, the value of λ must be positive. This is what was
obtained in Ref. [27], where this model was constrained
using SnIa, baryonic acoustic oscillations, cosmic chro-
nometers, and redshift space distortions.

Qualitatively, the previous dynamical system is similar to
a ΛCDM universe where the value of the cosmological
constant can be positive, negative, or zero [29]. However, in
ΛCDMwith a negative cosmological constant, the universe
eventually collapses into a big crunch.

C. Computing the value of λ

In order to compute the value of λ, we evaluate Eq. (16)
at the present day, obtaining�

λ −
1

2

�
eλ−1=2 ¼ −

Ωm þΩr

2
ffiffiffi
e

p : ð28Þ

This equation only possesses a solution provided that
Ωm þ Ωr ≤ 2e−1=2. This is not immediately ensured,
because the sum of the densities is not necessarily equal
to 1. The two possible solutions for λ are

λ0 ¼
1

2
þW0

�
−
Ωm þΩr

2e1=2

�
; ð29Þ

λ−1 ¼
1

2
þW−1

�
−
Ωm þ Ωr

2e1=2

�
; ð30Þ

whereW0 andW−1 are the main and the −1 branches of the
Lambert function, respectively.
We discard the solution λ−1, since it only provides

negative values for λ. Additionally, we see that λ0 takes
negative values when Ωm þ Ωr > 1; hence, for λ to be
positive, the sum of these densities must be smaller than or
equal to 1 as in ΛCDM.

IV. DATASETS

Throughout this work, we make use of two different
sources of observational data, SnIa and CMB, and of mock
catalogs for SS events generated for the LISA space
mission and ET.

A. Type-Ia supernovae

We use SnIa to provide low-redshift constraints for this
model. The dataset of SnIa used is the Pantheon sample
[30], with the corresponding data publicly available in [31].
For performance reasons, the binned sample of this dataset
was used.
The relationship between the apparent magnitude and the

luminosity distance is given by

m ¼ M þ 5 log

�
dLðzÞ
Mpc

�
þ 25; ð31Þ

where M is the bolometric magnitude. In order to avoid
degeneracies and unwanted parameters, we followed the
procedure presented in [32], where a marginalization was

FIG. 1. Stream plot of the phase space for the dynamical system
where fixed point I (stable) is represented in green, fixed point II
(saddle) is in orange, and fixed point III (unstable) is in red. The
light blue marks the region where λ > 0, the light brown region
corresponds to λ ¼ 0, and the dark blue region corresponds
to λ < 0.
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performed on both H0 and the bolometric magnitude.
The likelihood for the SnIa reads

L ¼ exp

�
−
1

2

�
A −

B2

C

��
; ð32Þ

where A, B, and C are defined as

A ¼
Xn
i¼1

Δ2ðziÞ
σ2ðziÞ

; B ¼
Xn
i¼1

ΔðziÞ
σ2ðziÞ

; C ¼
Xn
i¼1

1

σ2ðziÞ
;

ð33Þ

with σðzÞ representing the error for each SnIa measurement
at redshift zi, and where

ΔðziÞ ¼ mðobsÞðziÞ − 5 log

�
H0

c
dLðziÞ

�
ð34Þ

is the difference between the observed magnitude mðobsÞ
and the H0-independent luminosity distance.

B. Cosmic microwave background radiation

In order to assess the behavior of this model at high
redshifts, we condense the information provided by the
CMB into what are known as the shift parameters [33]:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωb þΩc

p H0

c
rðz�Þ; ð35Þ

la ¼ π
rðz�Þ
rsðz�Þ

; ð36Þ

ωb ¼ Ωbh2; ð37Þ

where Ωm ¼ Ωb þΩc is the sum of the baryonic and dark
matter densities, rðzÞ is the comoving distance

rðzÞ ¼
Z

z

0

c
HðzÞ dz; ð38Þ

and rsðzÞ is the comoving sound horizon

rsðzÞ ¼
Z

∞

z

csðzÞ
HðzÞ dz; ð39Þ

with csðzÞ being the sound speed as a function of redshift:

csðzÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ R̂b=ð1þ zÞÞ
q ; ð40Þ

where R̂b is given by

R̂b ¼ 31; 500Ωbh2
�
TCMB

2.7 K

�
−4
; ð41Þ

with the temperature of the CMB being taken
as TCMB ¼ 2.7255 K.
We can compute the value of the redshift of photon

decoupling surface, z�, as [34]

z� ¼ 1048

�
1þ 0.00124

ðΩbh2Þ0.738
�
½1þ g1ðΩmh2Þg2 �; ð42Þ

where g1 and g2 are

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ−0.763

; ð43Þ

g2 ¼ 0.560½1þ 21.1ðΩbh2Þ1.81�−1: ð44Þ

Besides the shift parameters, we fix the value of ωr ¼ Ωrh2

to ωr ¼ 4.15 × 10−5.
We consider a Gaussian likelihood of the form

L ¼ exp
�
−
1

2
x⃗TC−1x⃗

�
; ð45Þ

where x⃗ ¼ ðla − lðexpÞa ; R − RðexpÞ;ωb − ωðexpÞ
b Þ is the vector

formed by the theoretical prediction and the measurements
of the three quantities defined above. C−1 is the inverse of
the covariance matrix. Both the observational values and
the covariance matrix were taken from the Planck 2018
TTþ lowE release [35,36].

C. Standard sirens

Even though this model of fðQÞ quickly recovers GR as
the redshift increases, the GW luminosity distance, pre-
sented previously in Eq. (19), is not identical to the standard
luminosity distance function. Due to the lack of con-
straining power coming from current SS events, we instead
rely on forecast data in order to assess the potential that
current and future GW observatories will have in con-
straining this model.
To generate the mock catalogs of SS events, we took the

procedure presented in [37], where mock catalogs for the
Laser Interferometer Gravitational-Wave Observatory
(LIGO), LISA, and the ET were developed. In short, the
authors took the theoretical expected distribution of
observed SS events and the expected error for each
measurement for a given observatory, and, assuming a
ΛCDM cosmological model in agreement with SnIa,
generated catalogs of SS events consisting of a redshift
z, the value of the luminosity distance dGWðzÞ, and its
corresponding error σðzÞ.
For this analysis, we considered two distinct cases: an ET

catalog, with 1000 events, and a LISA catalog, with 15
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events and a constraining power corresponding to the
median of the generated catalogs in the previously men-
tioned article. We considered mock catalogs for LIGO but
did not use them here, as the events provided do not place
substantial constraints.
We consider a standard Gaussian likelihood for this

dataset of the form

L ¼ exp

�
−
1

2

XN
i¼0

�
dðobsÞGW ðziÞ − dGWðziÞ

σðziÞ
�2�

; ð46Þ

where σðziÞ represents the error of the measurement of the
SS events with redshift zi with the corresponding observed

luminosity distance dðobsÞGW ðziÞ, and N represents the number
of SS events in each catalog.

V. CONSTRAINTS

A. Bayesian inference methodology

We performed a Bayesian analysis using Markov chain
Monte Carlo (MCMC) methods. We use PyStan [38], a Python

interface to Stan [39], a statistical programming language
that implements the No-U-turn sampler, a variant of the
Hamiltonian Monte Carlo. The output was then analyzed
using the GetDist [40] and ArviZ [41] Python packages that
allow for an exploratory analysis of Bayesian models.
For each run, we executed at least four independent

chains, each with at least 2500 samples on the posterior
distribution and at least 2500 warm-up steps. To ensure that
the chains converged, we used the R̂ diagnostic, a con-
vergence test introduced in [42]. This diagnostic indicates
how well the different chains are mixed together and
whether they have converged. We have only used samples
that have R̂ ≤ 1.05, where R̂ ¼ 1 represents perfect
convergence.
The initial values are randomly sampled from a Gaussian

distribution with a mean around the expected value and a
standard deviation of order 10% of the corresponding mean
for each parameter.
We considered weakly informative priors on each

parameter, specifically a Gaussian distribution centered
on the expected value with a standard deviation 2 orders of
magnitude larger. This ensures a quasiflat prior around the
region of interest.

B. Results and discussion

Using the methodology described in the previous sub-
section, we used the datasets presented in Sec. IV to
constrain both the fðQÞ model under study and ΛCDM.
Starting with the constraints onΛCDM, the corner plot is

presented in Fig. 2, and the best-fit values with the
corresponding 1σ region are presented in Table II.
From Fig. 2, we can see that in ΛCDM there is an

agreement in the value of Ωm for all datasets, with LISA

showing higher error bars when compared to the other
datasets. As for the value of h, there is a slight disagreement
between the CMB and the SS mock catalogs, given that the
mock catalogs used, constructed in [37], had h ¼ 0.7 as the
fiducial value.
For the fðQÞ model, the corner plot is presented in

Fig. 3, and the best-fit values, with the corresponding 1σ
region, are presented in Table III. We can immediately see
that there are tensions in both Ωm and h in this model.
The best-fit value we obtained for Ωm using SnIa is

consistent with the analysis made in [27] that also includes
baryonic acoustic oscillations and cosmic chronometers.
The value Ωm ≃ 0.335 differs from the one obtained for
ΛCDM, Ωm ≃ 0.285—not surprisingly, given that the low
redshift [Eq. (18)] includes a multiplicative factor e−λ.
On the other hand, the SnIa value for Ωm is in tension

with the value we obtain using CMB. This happens because
the CMB takes into account a cumulative effect from high
to low redshifts, thus considering both limits [Eqs. (17)
and (18)].
We observe that the Ωm values of SnIa and SS are also in

tension. It is true that both observables probe the same low-
redshift regime; however, their luminosity distances are
different due to the modified gravity factor seen in Eq. (19).
This extra factor fully explains the tension between the two

FIG. 2. Constraints set by SnIa, CMB shift parameters,
and forecast SS events for the ET, and a median LISA catalog
for ΛCDM.

TABLE II. Best fit and 1σ error set by SnIa, CMB, and forecast
SS events for LISA and the ET, for ΛCDM.

SnIa CMB LISA ET

Ωm 0.285� 0.012 0.300� 0.009 0.304þ0.035
−0.048 0.290� 0.017

h � � � 0.684� 0.007 0.694� 0.016 0.699� 0.006
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measurements and can be seen as a direct test of the
existence of a modified gravity term. We have verified that
the tension in Ωm between the SS events and SnIa
disappears, removing this correction from the luminosity
distance of GWs. This analysis shows that comparing
future SS events with standard candles can be decisive
in testing modified gravity models using low-redshift
observables alone.
As in the case of the SnIa and CMB, we also expect to

see a tension arising between the GW observables and the
CMB. This tension, however, depends on the specific
choices for the fiducial values used in the SS mock data.
In this instance, we can see a clear tension between the
measurements of h, but comparable values for Ωm. This
latter result is just a coincidence occurring for this par-
ticular choice of h, and is unlikely to be a general feature.

VI. CONCLUSIONS

We studied an fðQÞ modification of gravity that
accounts for the late-time accelerated expansion of
the Universe without adding a cosmological constant.
This modification has the same number of free parameters
as the standard ΛCDM model; albeit, the propagation of

tensorial perturbations introduces a change in the lumi-
nosity distance of GWs.
We used a dynamical system analysis to reveal the

existence of three fixed points and three disjoint regions
in the phase space defined by the sign of the parameter λ. For
λ < 0, we identified a region characterized by trajectories
where EðzÞ → 0 as the scale factor increases. When λ ¼ 0,
we recover a CDM universe with a radiation followed by a
matter epoch. When λ > 0, the stable fixed point corre-
sponds to a regime of eternal inflation, meaning that this case
can lead to a viable universe with a late-time accelerated
expansion without an explicit cosmological constant.
First, we constrained this model using SnIa, recovering

the value of Ωm obtained previously in [27], where other
low-redshift observations were also used. This value is, not
surprisingly, different from the best fit found for a ΛCDM,
given the factor e−λΩm in the modified Friedmann
equation (18).
We made an independent constraint using high-redshift

measurements from CMB and verified that the best-fit
value for Ωm is in tension with the value obtained with
SnIa. We conclude that this is a manifestation of differing
high- and low-redshift limits of the model, which CMB
takes into account but SnIa does not. In order to keep the
attractive features of this model at low redshifts, the form of
fðQÞ needs to be somehow modified at high redshifts to
make it consistent with CMB data.
As is, the current data disfavor this model already at the

background level. This is a common feature in models of
modified gravity that depart from ΛCDM. fðTÞ and fðQÞ
models can be shown to be equivalent in FLRW, whereas
fðRÞ models, though being formally distinguishable, must
in practice have a similar cosmological evolution. In
particular, fðRÞ models have their free parameters strongly
constrained to be very close to the ΛCDM limit [43], which
seems also to be the case for fðTÞ and fðQÞ [16,44,45].
Finally, we used mock catalogs of SS constructed with

ΛCDM as the fiducial model. As expected, the modified
luminosity distance for gravitational waves raises a tension
with the SnIa results, implying that in the future, this feature
will immediately discriminate this model from ΛCDM.
Although current data (CMB and SnIa) already disfavor

this model, this study provides a working example of how
future SS events, measured both by LISA and the ET, will
play a fundamental role when testing models of modified
gravity using low-redshift data alone.

ACKNOWLEDGMENTS

The authors are thankful to Fotis Anagnostopoulos for
the fruitful discussions. The authors acknowledge support
from Fundação para a Ciência e a Tecnologia via the
following projects: No. UIDB/04434/2020 & No. UIDP/
04434/2020, No. CERN/FIS-PAR/0037/2019, No. PTDC/
FIS-OUT/29048/2017, COMPETE2020: No. POCI-01-
0145-FEDER-028987 & FCT: No. PTDC/FIS-AST/
28987/2017, No. PTDC/FIS-AST/0054/2021, No. EXPL/
FIS-AST/1368/2021.

FIG. 3. Constraints set by SnIa, CMB shift parameters, and
forecast SS events for the ET and the median case for LISA, for
the model of fðQÞ presented in Eq. (15).

TABLE III. Best fit and 1σ error set by SnIa, CMB, and forecast
SS events for LISA and the ET, for the model of fðQÞ under
study.

SnIa CMB LISA ET

Ωm 0.335� 0.012 0.262� 0.008 0.270þ0.029
−0.039 0.257� 0.016

h � � � 0.732� 0.008 0.689� 0.009 0.699� 0.006
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