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We study the cosmological effects of a Galileon term in scalar-tensor theories of gravity. The subset of
scalar-tensor theories considered are characterized by a nonminimal coupling FðσÞR, a kinetic term with
arbitrary sign Zð∂σÞ2 with Z ¼ �1, a potential VðσÞ, and a Galileon termG3ðσ; ð∂σÞ2Þ□σ. In addition to the
modified dynamics, the Galileon term provides a screening mechanism to potentially reconcile the models
with general relativity predictions inside a Vainshtein radius. Thanks to the Galileon term, the stability
conditions, namely, ghost and Laplacian instabilities, in the branch with a negative kinetic term (Z ¼ −1) are
fulfilled for a large volume of the parameter space. Solving numerically the background evolution and linear
perturbations, we derive the constraints on the cosmological parameters in the presence of a Galileon term
for different combination of the cosmic microwave background data from Planck, baryon acoustic
oscillations measurements from BOSS, and supernovae from the Pantheon compilation. We find that the
Galileon term alters the dynamics of all the studied cases. For a standard kinetic term (Z ¼ 1), we find that
Planck data and a compilation of baryon acoustic oscillations data constrain the Galileon term to small
values that allow screening very inefficiently. For a negative kinetic term (Z ¼ −1), a Galileon term and a
nonzero potential lead to an efficient screening in a physically viable regime of the theory, with a value for
the Hubble constant today which alleviates the tension between its cosmic microwave background and local
determinations. For a vanishing potential, the case with Z ¼ −1 and the Galileon term driving the late
acceleration of the Universe is ruled out by Planck data.
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I. INTRODUCTION

The Lambda cold dark matter (ΛCDM) model is the
standard cosmological model, it provides a remarkably
good fit to most cosmological observations such as the
measurements of cosmic microwave background (CMB)
anisotropies in temperature and polarization [1], baryon
acoustic oscillations (BAO) in the galaxy and cluster
distributions [2,3], cosmic shear measurements of the
galaxy distribution [4,5] and of the CMB [6–9], and
measurements of the luminosity distances of type Ia
supernovae (SN Ia) [10–12]. Nevertheless, in recent years
its enduring success has been threatened by the growing
tension between the inference of H0 within ΛCDM from
the Planck measurement of CMB anisotropy [13] and its

determination with supernovae at low redshift, which has
grown to a maximum level of 5σ with the latest SH0ES
release with SN Ia calibrated using Cepheids [14].
Whereas inferences of H0 from different CMB experi-

ments are very consistent with one another [13,15,16],
different approaches in calibrating SN provide different
estimates and different uncertainties in the determination
of H0, as the latest SH0ES result based on Cepheids is
H0 ¼ 73.04� 1.04 km s−1Mpc−1 at 68% confidence level
(CL) [14], while the latest Carnegie-Chicago Hubble
program estimate, using the tip of the Red Giant Branch
calibration technique, is H0¼69.8�0.8ðstatÞ�1.7ðsysÞ×
kms−1Mpc−1 at 68% CL [17]. These differences in the
local determinations of H0 and their error obviously
affects the tension with the CMB inference in a sta-
tistically significant way and might point to unknown
systematics or uncertainties not properly taken into
account. Nevertheless, this tension that emerged with
the first Planck cosmological release [18] has fueled
interest in models explaining a larger value of H0

compared to ΛCDM [19–25].
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Modified gravity (MG) is one of the most promising
fundamental physics route to reconcile the inference of H0

from the Planck measurement of CMB anisotropy and its
inferred value determined with the calibration of super-
novae at low redshift within ΛCDM model. A simple
mechanism to increase H0 by an evolving gravitational
constant is at play even in the simplest scalar-tensor
models, i.e., induced gravity (IG) (equivalent to the
Brans-Dicke model by a field redefinition). Without the
fine-tuning of parameters, the scalar field regulating
the gravitational strength moves around recombination
because of its coupling to pressureless matter. This
mechanism, which can be also seen as a dynamical and
self-consistent variation in the gravitational constant,
induces a degeneracy between H0 and the nonminimal
coupling of the scalar field to the curvature leading to a
larger H0 compared to ΛCDM [26–34].
Although this mechanism is completely general, the

increase of H0 with respect to ΛCDM depends on the
model and also on the number of additional parameters with
respect to ΛCDM. With Planck DR3 likelihoods, we have
ΔH0 ¼ H0 −HΛCDM

0 ∼2 km s−1Mpc−1 for IG [26,27,32]
and ΔH0∼4 km s−1Mpc−1 for a nonminimally coupled
scalar field with a quartic potential [33], dubbed early
modified gravity, which is among the best solutions to the
H0 tension according to [23].
All the scalar-tensor models of gravity mentioned above

do not have Vainshtein screening and a nearly negligible
chameleon screening due to the coupling to matter. For this
reason, one has to compare the volume of the parameter
space of the nonminimal coupling required to increaseH0 to
the Solar System bounds on the corresponding post-
Newtonian parameters [35]. As for the H0 degeneracy,
also in this case, the comparison is nontrivial and model
dependent. Whereas for the simplest IG models, the Solar
System bounds constrain the nonminimal coupling to values
which do not lead to an appreciable increase ofH0 compared
to ΛCDM [26,27,32], it is sufficient to consider a non-
minimally coupled scalar field to have a large volume of
parameter space where viable models on Solar System scales
can lead to a value of H0 larger than in ΛCDM [28,31].
Early modified gravity is a further step in the construction of
a scalar-tensor viable model on Solar System scales with
largeH0 by adding a self-interaction term which implements
an attractor mechanism towards general relativity (GR) with
a cosmological constant.
In this paper, we instead consider the cosmology of IG,

with the addition of a Galileon term [36–38], whose
purpose is to reconcile the theory with GR on scales below
the so-called Vainshtein radius. We therefore would like to
investigate the implications of the addition of an explicit
term implementing a screening mechanism on the cosmol-
ogy of the simplest scalar-tensor theories of gravity (see
also [39–41] for previous studies with cosmological bounds
on Galileon gravity).

The paper is organized as follows. In Sec. II we describe
the models considered and their background dynamics
together with the stability conditions and the screening
mechanism. In Sec. III we present evolution of the linear
fluctuations, CMB anisotropies, and matter power spec-
trum. Section IV is devoted to the presentation of the
datasets and the details of our Markov chain Monte-Carlo
(MCMC) analysis, joint with the presentation of the results.
We draw our conclusions in Sec. V.

II. THE MODEL

We study the following subclass of Horndeski theories
[37,42–45]:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
½G4ðσÞRþG2ðσ;XÞ þG3ðσ;XÞ□σþLM�

ð1Þ

where jgj is the absolute value of the determinant of the
metric gμν for which we use a ð−þþþÞ signature, σ is a
scalar field, X ≡ −∇μσ∇μσ=2 ¼ −∂μσ∂μσ=2, and □≡
∇μ∇μ is the covariant d’Alambert operator. LM is the
matter Lagrangian which does not depend on the scalar
field σ and it is minimally coupled with the metric g. The
action (1) predicts that gravitational waves travel at the
speed of light [45], consistently with the current measure-
ments [46]. We consider the following form for the G
functions:

G4 ¼ γσ2=2

G3 ¼ −2gðσÞX
G2 ¼ ZX − VðσÞ þ 4ζðσÞX2; ð2Þ

where Z ¼ �1 is the sign of the kinetic term. This
Lagrangian is equivalent to the extension of the Brans-
Dicke (BD) model [47,48] with a Galileon term. In fact with
the field redefinition ϕ ¼ γσ2=2, with γ ¼ Z=ð4ωBDÞ > 0
and Z ¼ �1, the G functions become

G4 ¼ ϕ

G3 ¼ −2fðϕÞχ
G2 ¼ 2

ωBD

ϕ
χ − VðϕÞ; ð3Þ

where χ ≡ −∇μϕ∇μϕ=2 and the relationship between g; ζ
and f is gðσÞ ¼ γσ3fðσÞ; ζðσÞ ¼ σ−1gðσÞ. Therefore, we
refer to the model defined by Eq. (2) as Brans-Dicke
Galileon (BDG), while the model withG2 ¼ ZX − VðσÞ is
the induced gravity Galileon (IGG), as it is the extension
of induced gravity (IG) [49] with a Galileon term
G3 ¼ −2gðσÞX. Therefore even if BD and IG are equiv-
alent, their extensions with Galileon terms are not. In
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particular, IGG corresponds to BDG given by Eq. (2) with,
formally, ζ ¼ 0, but it is not simply a special case of BDG
when ζ ¼ 0. In fact, as described above, in the BDG
model the functions g and ζ are not independent and
setting ζ ¼ 0 would mean setting g ¼ 0 as well.
We study two different versions of BDG and IGG,

relating to the sign of the kinetic term Z:
(i) Standard branch: Z ¼ þ1 in which the kinetic term

has a standard sign. In this branch we consider both
IGG and BDG (IGGst and BDGst, respectively) and
we take VðσÞ and gðσÞ to be power laws of the scalar
field: VðσÞ ¼ λnσ

n, gðσÞ ¼ αmσ
m, for several com-

binations of n and m. In this scenario the potential
dominates the dynamics and provides the acceler-
ation of the expansion of the Universe, while the G3

enters as a small correction to the standard BD
theory.

(ii) Phantom branch: Z ¼ −1 and γ < 1=6, equivalent to
ωBD < −3=2, in which the kinetic term has a
nonstandard sign. In this branch we consider only
BDG with gðσÞ ¼ ασ−1, either with or without a
potential (cosmological constant). If there is no
potential the burden to provide comic acceleration,
a healthy theory and effective screening on small
scales, is on the G3 term [50]. Reinserting the
potential into the theory, both the Galileon term
and the cosmological constant contribute to the
dynamics and give rise to the late-time acceleration
of the Universe. Even if we have a nonzero potential,
the G3 is still able to provide a healthy theory and
effective screening on small scales, where we re-
cover GR.

A. Covariant equations

By varying the action with respect to the metric we
obtain the modified Einstein field equation

Gμν ¼
1

FðσÞ
�
TðMÞ
μν þ TðGÞ

μν þ Z

�
∂μσ∂νσ −

1

2
gμν∂ρσ∂ρσ

�

− gμνVðσÞ þ ð∇μ∇ν − gμν□ÞFðσÞ
�
; ð4Þ

where FðσÞ ¼ γσ2, Gμν ¼ Rμν − 1
2
R is the Einstein tensor

and TðMÞ
μν ¼ − 2ffiffiffi

jg
p δð

ffiffiffiffi
jgj

p
LMÞ

δgμν is the energy-momentum tensor

of matter. TðGÞ
μν is defined as

TðGÞ
μν ¼ −2

n
gðσÞ∇μσ∇νσ□σ −∇ðμσ∇νÞ½gðσÞð∂σÞ2�

þ 1

2
gμν∇ασ∇α½gðσÞð∂σÞ2� − ζðσÞ

2
gμνð∂σÞ4

þ 2ζðσÞ∇μσ∇νσð∂σÞ2
o
; ð5Þ

with ∇ðμσ∇νÞ ¼ 1
2
ð∇μσ∇ν þ∇νσ∇μÞ. It is useful to write

down the trace of the Einstein equation (4), which is

R ¼ 1

F

h
−TðMÞ − TðGÞ þ Zð∂σÞ2 þ 4V þ 3□FðσÞ

i
; ð6Þ

with TðGÞ as

TðGÞ ¼ −2
n
gðσÞð∂σÞ2□σ þ∇μσ∇μ½gðσÞð∂σÞ2�

o
: ð7Þ

Note that TðGÞ does not depend on ζðσÞ.
The equation for the evolution of the scalar field,

obtained by varying the action (1) with respect to the
field, is

□σ½Z−4ζð∂σÞ2�−2gfð□σÞ2−∇μ∇νσ∇μ∇νσ

−∇μσ∇νσRμνgþ4g;σ∇μσ∇νσ∇μ∇νσþg;σσ ð∂σÞ4
−3ζ;σ ð∂σÞ4−4ζðσÞ∇μ½ð∂σÞ2�∇μσþ γσR−V;σ¼ 0: ð8Þ

B. Background evolution

Working in a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe described by the line
element

ds2 ¼ −dt2 þ a2ðtÞdx2; ð9Þ

the Einstein field equations reduce to

3FH2 ¼ ρþ 1

2
Zσ̇2 − 3HḞ þ VðσÞ

þ σ̇3½6gðσÞH − ġðσÞ þ 3ζðσÞσ̇�
≡ ρþ ρσ; ð10Þ

−2FḢ ¼ ρþ pþ Zσ̇2 þ F̈ −HḞ

þ σ̇2½ð6gH − 2g;σ σ̇Þσ̇ þ 4ζσ̇2 − 2gσ̈�
≡ ρþ pþ ρσ þ pσ; ð11Þ

where

ρσ ¼
Z
2
σ̇2 − 3HḞ þ VðσÞ þ σ̇3½6gðσÞH − ġðσÞ þ 3ζðσÞσ̇�;

ð12Þ

pσ ¼
Z
2
σ̇2 −VðσÞþ F̈þ 2HḞ− σ̇4ðg;σ−ζÞ− 2gσ̇2σ̈: ð13Þ

The scalar field equation in the FLRW metric takes
the form:
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σ̈ðZ þ 12gHσ̇ − 4ðg;σ −3ζÞσ̇2Þ − 6γσð2H2 þ ḢÞ þ V;σ

þ 3ZHσ̇ þ 6gð3H2 þ ḢÞσ̇2 þ 12Hζσ̇3

− ðg;σσ −3ζ;σ Þσ̇4 ¼ 0: ð14Þ

Because of the nonminimal coupling between the scalar
field and the Ricci scalar in the Lagrangian, the Newton
constant in the Friedmann equations is replaced byGcosm ¼
ð8πFÞ−1 that now varies with time.
Following the notation of [51] we define the density

parameters for radiation (r), pressureless matter (m), and
the scalar field (σ) as

Ω̃i ¼
ρi

3FH2
≡ ρi

ρcrit
ði ¼ r;m; σÞ: ð15Þ

It is also convenient to define dark energy density and
pressure parameters in a framework which mimics Einstein
gravity at the present time, by rewriting the Friedmann
equations as [51–53]

3F0H2 ¼ ρþ ρDE;

−2F0Ḣ ¼ ρþ pþ ρDE þ pDE; ð16Þ

which leads to

ρDE ¼ F0

F
ρσ þ ρ

�
F0

F
− 1

�
; ð17Þ

pDE ¼ F0

F
pσ þ p

�
F0

F
− 1

�
: ð18Þ

In this way, the effective parameter of state for dark energy
can be defined as wDE ≡ pDE=ρDE. In this context the
density parameters mimicking radiation, matter, and dark
energy (DE) in Einstein gravity are

Ωi ¼
ρi

3F0H2
ði ¼ r;m;DEÞ: ð19Þ

The two definitions in Eqs. (15) and (19) coincide at
z ¼ 0: Ω̃0;i ¼ Ω0;i.

1. Standard branch (Z = 1)

In the standard branch we consider IGG: the
theory without ζðσÞ: G4 ¼ γσ2=2; G2 ¼ X − VðσÞ; G3 ¼
−2gðσÞX. In the region in parameter space that produces a
reasonable cosmological background evolution BDG and
IGG are nearly indistinguishable. For this reason we
restrict ourselves to IGG for Z ¼ 1.
We consider a monomial potential VðσÞ ¼ λnσ

n and
gðσÞ ¼ αmσ

m. For this choice of VðσÞ and gðσÞ the IGG
model presents exact solutions with accelerated expansion
in the absence of matter where the scale factor is aðtÞ ∝ tp,
with n and m related by m ¼ 1 − n, and

p ¼ 2ð−2þ nþ 4β − 4γ þ n2γÞ
ð24β − 16γ þ 20nγ − 8n2γ þ n3γÞ ; ð20Þ

σðtÞ ¼ c0t−2=ðn−2Þ; ð21Þ

where β, defined by α≡ βcn−20 , is a reparametrization of α,
which useful to show that in the limit of α → 0 (β → 0) we
recover the analogous solution found in IG [27].
For n ¼ 4 and n ¼ 2, there are de Sitter solutions

aðtÞ ∝ eHt with a constant H > 0. For n ¼ 4, the solution
found for IG [27]: σ ¼ �H

ffiffiffiffiffiffiffiffiffiffiffiffi
3γ=λ4

p
is still valid in IGG for

every possible form of gðσÞ, as this term does not contribute
under the ansatz σ ¼ constant. For n ¼ 2, when gðσÞ ∝ σ−1,
there are solutions of the form σ ∝ eHtδ, with δ≡ δðα; γ; HÞ.
Its explicit form is

δ¼−1; or δ¼−1− 4γ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4γÞ2þ 48H2γα

p
12H2α

: ð22Þ

For α → 0 these solutions reduce to the ones discussed
in [54]:

δ ¼ −1 or δ ¼ 2γ

1þ 4γ
: ð23Þ

The evolution of the scalar field is shown in the
upper panel of Fig. 1, in the model with a constant
potential VðσÞ ¼ λ0 ≡ Λ and gðσÞ ¼ α, compared with
the analogous IG model with γ ¼ 5 × 10−5. We
consider the rescaled, adimensional quantity α̃ ¼ α×
ðMpc½GeV�−1Þ−2 × ðMPl½GeV�Þ1þm and it can be seen that
the departure from IG is significant for larger α, i.e.,
stronger gravity at early times. Deep in the radiation era
the field is nearly at rest but then it grows steeply (the
larger α the steeper the growth), reaching the value
expected in IG in the matter era and evolving until today
in the same way as it does in IG.
The value of the field at z ¼ 0 is fixed by requiring that

the effective gravitational constant [55,56]

Geff ¼
1

16πG4

�
4G2

4;σ þG4ðG2;X − 2G3;σÞ
3G2

4;σ þG4ðG2;X − 2G3;σÞ
�

ð24Þ

coincide at z ¼ 0 with the measured value of the Newton’s
constant G. For m ¼ 0, the G3 does not contribute to
Eq. (24), as it enters only through the first derivative with
respect to the field, while for m ≠ 0 one can check that the
contribution is negligible due to the redshift evolution of
the scalar field in the matter era and we can therefore use
the IG approximation [57]
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8πGeffðz ¼ 0Þ ¼ 1

γσ20

1þ 8γ

1þ 6γ
ð25Þ

to fix the value of σðz ¼ 0Þ ¼ σ0.
In the bottom plot of Fig. 1 we show the evolution of

density parameters in IGG with a constant potential VðσÞ ¼
Λ and gðσÞ ¼ α. The values of α are chosen large enough to
show the effect of the G3 term in this scenario, which
causes a different evolution of Ω̃r and Ω̃σ in the early
Universe with respect to IG and ΛCDM.
The middle panel of Fig. 1 presents the evolution of the

parameter of state of dark energy wDE defined above; it
tracks the IG behavior at late times but departs from it at
z ≥ 103, in correspondence to the analogous uptick in the
evolution of Ω̃σ . In fact, wDE follows the dominant
component: deep in the radiation epoch it has a value close
to 1=3, then in the matter era it decreases towards zero;
finally, at present epoch, it becomes negative, wDE ≃ −1,
mimicking a cosmological constant. The bump which
approximately occurs in the radiation era corresponds to

the epoch in which the energy density of the field grows and
becomes of the same order of that of radiation. The growth
of Ωσ so early in time is due to inefficient cosmological
Vainshtein screening [58] in this model for the range of
parameters considered.
In Fig. 2 we show the dependence of the background

quantities (σ; wDE; Ω̃i) on the exponent m in the function
gðσÞ ¼ ασm, while keeping γ ¼ 5 × 10−5 and α̃ ¼ 5 × 10−6

fixed, together with the exponent n ¼ 0 in VðσÞ ∝ σn. We
point out that changing m while keeping α̃ fixed modifies
the actual value of α and its dimensions since α̃ ¼
α × ðMpc½GeV�−1Þ−2 × ðMPl½GeV�Þ1þm. We can see from
the figures that for small values of m the time evolution of
the scalar field is suppressed and with that the equation of
state parameter and the density parameters resemble more
those of ΛCDM. For larger values of the exponent m the
scalar field tends to dominate the dynamics both in the early
Universe, reaching equality with radiation at z ¼ 106

for m ¼ 1, and in the late Universe where it mimics a
cosmological constant. This early epoch of scalar field

FIG. 2. Time evolution of the scalar field (top panel), the
equation of state parameter for dark energy (middle panel), and
the density parameters (bottom panel) in IGG standard (Z ¼ 1)
with γ ¼ 5 × 10−5, constant VðσÞ ¼ Λ and gðσÞ ¼ ασm, for
different values of the exponent m and fixed α̃ ¼ 5 × 10−6.

FIG. 1. Time evolution of the scalar field (top panel), the
equation of state parameter for dark energy (middle panel), and
the density parameters (bottom panel) in IGG standard (Z ¼ 1)
with γ ¼ 5 × 10−5, constant VðσÞ ¼ Λ and gðσÞ ¼ α, for differ-
ent values of α̃.
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domination also delays the matter radiation equality that
happens at z < 104, with Ω̃r ¼ Ω̃m ≃ 0.1, and leads to two
different epochs in which Ω̃m is equal to the density
parameter of the scalar field. One of these epochs is the
beginning of the matter era, around z ≃ 10−3, and one is
the onset of the late-time acceleration of the expansion of
the Universe in which the field dominates the dynamics
once again.

2. BDG phantom

In the phantom branch we study BDG with gðσÞ ¼ ασ−1

and ζðσÞ ¼ σ−1gðσÞ, because, for this choice, it was shown
in [50] that, for a null potential and in absence of matter and
radiation, ρ ¼ p ¼ 0, there is a self-accelerating solution
with Ḣ ¼ Q̇ ¼ 0, with Q ¼ σ̇=σ. This solution satisfies

y≡ Q
H

¼ γ
−4� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−32 − 6Z=γ
p
Z þ 8γ

; ð26Þ

and it is real for Z ¼ −1 and γ < 3=16 (equivalent to
ωBD < −4=3), for which Eqs. (10) and (14) give

H2 ¼ γ

α

3þ 6yþ y2=ð2γÞ
2y3ð3þ 2yÞ : ð27Þ

For a full study of the theory with Λ ¼ 0, which exactly
respects Eq. (27), see Appendix A.
Inspired by these analytical solutions, we study an

intermediate case always considering gðσÞ ¼ ασ−1 and
reinserting the potential. In doing so we obtain a theory
that has a ΛCDM limit. In order to provide the late-time
cosmic acceleration the parameters α and Λ should be fine-
tuned, and the procedure is the following: we pick a value for
α and use a shooting algorithm on the cosmological constant
to obtain, in a flat Universe,Ω0;DEðΛ; αÞ ¼ 1 −Ω0;m −Ω0;r.
In this way the burden to provide the late-time acceleration
of the expansion of the Universe is shared between the
potential and the Galileon term. Today’s value of the scalar
field is such that the Planck mass is

M2
Plðz ¼ 0Þ≡ γσ20 ¼ 1: ð28Þ

We do not set σ0 following Eqs. (25) or (24) because, due to
the Vainshtein screening mechanism, the theory reduces to
GR at small scales, in the sense that the post-Newtonian
parameters are those of GR and the gravitational constant on
small scales is GN ¼ Gcosm [59]. In this way, thanks to the
screening mechanism we recover GR with the correct value
of the gravitational constant on small scales today (see
Sec. II D for details). In the following, instead of working
directly with the parameter α, we use α̃ defined previously,
rescaled by a factor 108: α̃8 ≡ 10−8α̃. All the plots and the
MCMC constraints will be expressed as a function of 1=α̃8.

The reason for using the inverse of α̃ is that the ΛCDM limit
is obtained when α̃ → ∞ð1=α̃ → 0Þ.
In the top panel of Fig. 3 we show the evolution of the

scalar field with redshift as a function of 1=α̃8: for larger
values of this parameter the field starts at a lower initial
value and it grows more steeply in the late Universe to reach
its value at z ¼ 0 fixed by the requirement γσ20 ¼ 1.
Contrary to the standard branch where the field started to
evolve deep in the radiation era, here the field is frozen
approximately until the epoch in which the σ energy density
starts to grow. This is a manifestation of the cosmological
Vainshtein screening mechanism [58]. The fact that the field
is frozen means that for a large portion of the history of the
Universe we have a gravitational constant which is effec-
tively constant but different from the value measured here
on Earth today. In the bottom panel of Fig. 3 we show the
evolution of the density parameters and it can be seen
that already for 1=α̃8 ¼ 0.1 the background expansion in
this model is indistinguishable from ΛCDM. Only for more

FIG. 3. Time evolution of the scalar field (top panel), the
equation of state parameter for dark energy (middle panel,) and
the density parameters (bottom panel) in BDG phantom (Z ¼ −1)
with γ ¼ 5 × 10−5, constant VðσÞ ¼ Λ and gðσÞ ¼ ασ−1, for
different values of 1=α̃8.
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extreme values we see departures from ΛCDM as the
growth of the dark energy density is delayed and then
steeper for 1=α̃8 ¼ 0.4. This behavior is confirmed also
by the time evolution of wDE that approaches and reaches
the value −1 earlier for smaller values of 1=α̃8; while
for the larger values we observe a phantom behavior with
wDE < −1 and wDE ≠ −1 today, reaching −1 eventually in
the future. In this scenario, therefore, the ΛCDM limit is
approached when 1=α̃8 → 0. This is the reason why we are
considering the inverse of α as a parameter: in the Markov
chain Monte-Carlo analysis we will sample on 1=α̃8 in
order to have the ΛCDM limit at zero and not at infinity, as
we would if we had sampled on α.

C. Stability conditions in the phantom branch

When the sign of the kinetic term in the Lagrangian is
nonstandard, i.e., Z ¼ −1, and G3 ¼ 0, scalar-tensor the-
ories can suffer from ghost and Laplacian instabilities.
Ghost instabilities occur when the sign of the kinetic term is
negative in the second-order action for perturbations of the
Horndeski action, whereas Laplacian instabilities occur
when the speed of sound squared becomes negative [60]. In
general, the theory in Eq. (1) is free from ghost and
Laplacian instabilities if [60,61]

qs ≡ 4G4fG2X þ 2G3σ þ σ̇½ðG2XX þG3XσÞσ̇
− 6G3XH�g þ 3ð2G4σ þG3Xσ̇

2Þ2 > 0; ð29Þ

c2s ≡ ½4G2XG4þ 8G3σG4þð6G2
4σ −G3Xσ̇

2Þð2G2
4σ þG3Xσ̇

2Þ
− 8G4ðG3Xσ̈þ 2G3XHσ̇þG3Xσσ̇

2Þ�=qs > 0; ð30Þ

where Giσ; GiX indicate the derivative of the ith G function
with respect to the scalar field and the kinetic term,
respectively. From Eqs. (29) and (30), it can be seen that
even IG with Z ¼ −1 and 0 < γ < 1=6 (ωBD < −3=2)—a
region of the parameter space which would contain other-
wise a ghost—can be stable thanks to the addition of the G3

term in the Lagrangian. This is fully confirmed by Fig. 4
where we show Eqs. (29) and (30) as functions of redshift
for the BDG in the phantom branch. Both conditions
are satisfied at all times for the values of 1=α̃8 we have
considered.
Note, however, that in BDGph the speed of sound of

scalar perturbations can become temporarily superluminal
for large values of 1=α̃8 at redshifts close to the transition to
dark energy domination, as can be seen in the bottom panel
of Fig. 4. This was first noticed in [50] for the case Λ ¼ 0
and it could potentially put a constraint on the value of 1=α̃8.
If a theory with superluminal propagation is viable or not is
still a controversial issue: some authors claim it is not
problematic [62,63], others argue the opposite [64–66]. We
choose conservatively to not impose any theoretical prior
c2s ≤ 1 in our MCMC analysis. Note that the stability
conditions in the tensor sector are automatically satisfied

by the choice of our Lagrangian and parameters: the regime
γ > 0 we consider ensures that the cosmological Planck
mass and the square of the tensor speed of sound are
positive.

D. Screening

The scalar degree of freedom in scalar-tensor theories of
gravity can leave imprints also on scales which have
detached from the cosmological expansion where devia-
tions from GR are strongly constrained. Thus, a theory of
MG should have either small deviations from GR on Solar
System scales or be equipped with a screening mechanism.
The Vainshtein screening is a mechanism that operates in
theories with a self-interaction of the form X□σ, like the
models considered in this paper: around local sources the
nonlinear interactions lead to the decoupling of the scalar
field from the remaining degrees of freedom within the so-
called Vainshtein radius rV . For scales r < rV , the theory of
gravity reduces to GR: the post-Newtonian parameters are
those of GR and the gravitational constant on small scales is
GN ¼ Gcosm [59].
As it was demonstrated in [59], the Vainshtein mecha-

nism cannot suppress the cosmological evolution of the
scalar field: the mechanism is not able to determine the
coupling constant of the theory (Newton gravitational
constant or σ0). The cosmological evolution of the scalar

FIG. 4. Stability conditions: ghost instability (top panel),
Laplacian instability (bottom panel) for BDG in the phantom
branch (Z ¼ −1) with γ ¼ 5 × 10−5, constant VðσÞ ¼ Λ and
gðσÞ ¼ ασ−1, for different values of 1=α̃8.
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field sets the value of the coupling constant of GR today
and on small scales. For this reason, for models with
effective Vainshtein screening, we fix σ0 according to
Eq. (28) in our background evolution.
The Vainshtein radius, which is the radius within which

the theory reduces to GR, in a cosmological background,
for a spherical astronomical object of mass δM, is given
by [59]

rV ¼ ðBCμ=H2Þ1=3; ð31Þ

where μ ¼ δM=ð16πG4Þ, and B and C are functions of the
Hordenski functions Gis:

B≡ 4β0
α0 þ 2α1α2 þ α22

; ð32Þ

C≡ α1 þ α2
α0 þ 2α1α2 þ α22

; ð33Þ

where

αiðtÞ≡ Ai

GT
; β0ðtÞ≡ B0

GT
; ð34Þ

with

β0 ≡ α1
2
þ α2ð≠ 0Þ; ð35Þ

and

F T ≡ 2G4 ≡ GT ð36Þ

E ≡ 2XG2X −G2 − 6Xσ̇HG3X þ 2XG3σ

− 6H2G4 − 6Hσ̇G4σ ð37Þ

P ≡G2 þ 2XðG3σ þ σ̈G3XÞ þ 2ð3H2 þ 2ḢÞG4

þ 2ðσ̈ þ 2Hσ̇ÞG4σ þ 4XG4σσ ð38Þ

Θ ≔ σ̇XG3X þ 2HG4 þ σ̇G4σ; ð39Þ

A0 ≡ Θ̇
H2

þ Θ
H

− GT − 2
ĠT

H
−
E þ P
2H2

; ð40Þ

A1 ≡ 1

H
ĠT þ GT − F T; ð41Þ

A2 ≡ GT −
Θ
H
; ð42Þ

B0 ≡ −
X
H
σ̇G3X: ð43Þ

In Fig. 5 we show the cosmological evolution of the
Vainshtein radius for an object with δM ¼ M⊙, for BDG

in the phantom branch. The screening is effective and the
Vainshtein radius starts growing for z≲ 10, reaching rV⊙ ≳
90 pc today, successfully recovering GR in the Solar
System.We do not present Vainshtein radius in the standard
branch since the screening is not effective and the
Vainshtein radius is very small. This is the reason why
σ0 is fixed using Eq. (25) in the background evolution in the
standard branch.

III. LINEAR PERTURBATIONS AND CMB
ANISOTROPIES

In the synchronous gauge the perturbed FLRW metric is
to first order

ds2 ¼ a2ðτÞ½−d2τ þ ðδij þ hijÞdxidxj� ð44Þ

where τ is the conformal time, x the spatial comoving
coordinate, and hij is the metric perturbation.
From this point on, we move in Fourier space for the

calculation of the perturbed quantities. The scalar mode of
hij, following the conventions of Ref. [67], can be
expressed as a Fourier integral:

hijðτ;xÞ ¼
Z

d3ke{k·x
"
k̂ik̂jhðτ;kÞ

þ
�
k̂ik̂j −

δij
3

�
6ηðτ;kÞ

#
ð45Þ

where k̂i ≡ ki=k with k≡ jkj and h≡ δijhij is the Fourier
transform of trace of hijðτ;xÞ. The scalar field perturbation
δσ is, in this notation,

δσðτ;xÞ ¼
Z

d3ke{k·xδσðτ;kÞ: ð46Þ

FIG. 5. Screening: Vainshtein radius for the sun in BDG
phantom (Z ¼ −1) with γ ¼ 5 × 10−5, constant VðσÞ ¼ Λ and
gðσÞ ¼ ασ−1, for different values of 1=α̃8.
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A. The perturbed Einstein and scalar field equations

Following [67] we use the definitions of the velocity
potential θ and the anisotropic stress perturbation Θ

ðρ̄þ p̄Þθ≡ {kiδT0
i ; ð47Þ

ðρ̄þ p̄ÞΘ≡ −
�
k̂ik̂j −

δij
3

�
Σi
j; ð48Þ

Σi
j ≡ Ti

jTi
j − δij

Tk
k

3
; ð49Þ

to write down the perturbed Einstein equations in the
following form:

k2η −
1

2
Hh0 ¼ −

a2

2
ðδρ̃þ δρ̃ðGÞÞ; ð50Þ

k2η0 ¼ a2

2

�
ðρ̃þ P̃Þθ̃ þ ðρ̃ðGÞ þ P̃ðGÞÞθ̃ðGÞ

�
; ð51Þ

h00 þ 2Hh0 − 2k2η ¼ −3a2ðδP̃þ δP̃ðGÞÞ; ð52Þ

h00 þ 6η00 þ 2Hðh0 þ 6η0Þ − 2k2η ¼ −3a2ðρ̃þ P̃ÞΘ̃; ð53Þ

where a tilde denotes the effective perturbations defined in
Appendix B. The equation for the evolution of the scalar
field fluctuation in Fourier space is

δσ00 ¼ δG̃

Z þ 6γ þ 2σ0
a2 ½3gð2H − σ0

σ Þ þ σ0ð6ζ − 2g;σÞ�
; ð54Þ

where the explicit expression for δG̃ can be found in
Appendix B.
In Eqs. (50)–(53) we distinguished explicitly between

the quantities coming from IG and the ones arising from the
Galileon term to make as manifest as possible the reduction
of IGG and BDG to the IG equations of [68,69] when
gðσÞ ¼ ζðσÞ ¼ 0.

B. Imprints on CMB anisotropies
and large scale structure

In order to obtain the predictions for the CMB anisotropy
angular power spectra and the matter power spectrum we
have used an extension of the code CLASSig [26] which
includes the models studied in our paper. The basis for this
code is the publicly available Einstein-Boltzmann solver
CLASS1 [70].
In Fig. 6 we show the deviations in the temperature (TT)

and E-mode polarization (EE) CMB angular power spectra
with respect to ΛCDM, whereas in Fig. 7 we show how the
CMB lensing potential angular power spectrum and the
total linear matter power spectrum at redshift z ¼ 0 differ in
these theories with respect to the standard model. In the top

FIG. 6. Relative differences with respect to ΛCDM of CMB TT (left panels) and EE (right panels) power spectrum. Top panel: IGG
standard with γ ¼ 5 × 10−5; VðσÞ ¼ Λ; gðσÞ ¼ α; bottom panel: BDG phantom with γ ¼ 5 × 10−5; VðσÞ ¼ Λ and gðσÞ ¼ ασ−1.

1https://lesgourg.github.io/class_public/class.html
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panels of Figs. 6 and 7 we have IGG in the standard branch,
while in the bottom panels we show BDG phantom with
potential VðσÞ ¼ Λ.
We note how in the standard branch there are small

effects in the TT power spectrum at at low multipoles,
resulting in an ISW effect extremely similar to the one
observed in ΛCDM. This behavior is common to all the
spectra in IGG at low multipoles, for which the differences
with respect to GR are small. The departure from ΛCDM is
more evident on the scales of the acoustic peaks in TT and

on smaller scales, where, due to the modification of gravity
around the time of recombination, the contribution of the
scalar field shifts and enhances the peaks of the power
spectrum.
On the contrary, in the model with Z ¼ −1 we can

observe large departures from ΛCDM at low multipoles in
TT, due to the interplay of G3 and the ISW effect [38,40].
We show the relative difference in the ISW contribution to
the TT angular power spectrum in Fig. 8.
For the BDG in the phantom branch, while we see

differences on all scales in all power spectra of Figs. 6 and
7, due to the presence of the cosmological constant, it is
clear that as 1=α̃8 gets smaller we recover the predictions of
ΛCDM and there is therefore room to provide a good fit to
the data even with 1=α̃8 ≠ 0 but small.
The differences in the matter power spectrum with

respect to the standard model, presented in the right panels
of Fig. 7, are interesting targets for upcoming large scale
structure data such as DESI,2 Euclid,3 or Vera Rubin
observatory,4 which will significantly tighten constraints
on these models.

FIG. 8. Relative differences with respect to ΛCDM of the ISW
contribution to the CMB TT angular power spectrum for BDG
phantom with γ ¼ 5 × 10−5; VðσÞ ¼ Λ and gðσÞ ¼ ασ−1.

FIG. 7. Relative differences with respect to ΛCDM in CMB lensing potential power spectrum (left panels) and matter power spectrum
(right panels). Top panel: IGG standard with γ ¼ 5 × 10−5; VðσÞ ¼ Λ; gðσÞ ¼ α; bottom panel: BDG phantom with γ ¼
5 × 10−5; VðσÞ ¼ Λ and gðσÞ ¼ ασ−1.

2https://www.desi.lbl.gov
3https://www.esa.int/Science_Exploration/Space_Science/

Euclid
4https://www.vro.org/, https://www.lsst.org/
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IV. CONSTRAINTS FROM COSMOLOGICAL
OBSERVATIONS

In this section, we present the constraints on the cosmo-
logical parameters of the models studied: IGG in the
standard branch (IGGst) and BDG in the phantom branch
with a potential (BDGph). In the following results the
potential is always given by a VðσÞ ¼ Λ, while the function
gðσÞ is a constant in the standard branch and gðσÞ ¼ ασ−1

for Z ¼ −1. Note that in the following we consider only
IGG in the standard branch since, for the same range of
parameters, BDG gives exactly the same results.

A. Methodology and datasets

We study these models first with CMB data only and we
extend the analysis to other datasets when necessary in
order to constrain a parameter within our prior or when the
model is not ruled out by CMB alone and the results are
interesting enough justify the study with additional like-
lihoods. We perform a Markov chain Monte Carlo analysis
using the publicly available sampling code MontePython-
v35 [71,72] connected to the aforementioned extension of
CLASSig [26]. For the sampling, we use the Metropolis-
Hastings algorithm with a Gelman-Rubin [73] conver-
gence criterion R − 1 < 0.01. The reported mean values
and uncertainties on the parameters, together with the
contour plots, have been obtained using GetDist6 [74]. We
make use of CMB data in temperature, polarization, and
lensing from Planck Data Release 3 [6,75]. We consider
the Planck baseline likelihood (hereafter P18) which is
composed by the Plik likelihood on high multipoles,
l > 30, the commander likelihood on the lower multi-
poles for temperature and SimAll for the E-mode polari-
zation [75], and the conservative multiple range,
8 < l < 400, for the CMB lensing. As complementary
data to Planck, we use BAO data from the post-
reconstruction measurements from BOSS DR12 [76];
low-z BAO measurements from SDSS DR7, 6dF, and
MGS [77,78]; Lyα BAO measurements from eBOSS
DR14, and a combination of those [79–81]. Hereafter
we call this combination of datasets simply BAO. For the
BDGph model, on top of BAO, we will also consider the
combination of P18 with the Pantheon catalog of SN Ia in
the redshift range 0.01 < z < 2.3 [82]7 (hereafter SN)
using a prior on the supernovae peak absolute magnitude
MB [83] [hereafter p(M)] of

MB ¼ −19.2435� 0.0373 mag: ð55Þ

We sample on six standard parameters: ωb, ωc, H0, τreio,
ln ð1010AsÞ, ns, and the modified gravity parameters, in
particular

(i) For IGGst we sample on α̃ at fixed γ ¼ 5 × 10−5.
(ii) For BDGph we sample on 1=α̃8 with fixed

γ ¼ 5 × 10−5.
In addition to the cosmological parameters, we sample on
the nuisance and foreground parameters of the P18 like-
lihoods and, when considering the Phanteon dataset, on
MB. In our analysis we assume two massless neutrino with
Neff ¼ 2.0328 and a massive one with fixed minimummass
mν¼ 0.06 eV. As in [27], we fix the primordial 4He mass
fraction Yp taking into account the different value of the
effective gravitational constant during big bang nucleosyn-
thesis, and the baryon fraction, ωb, tabulated in the public
code PArthENoPE [84,85].
Moreover, for each run we compute the best-fit values,

obtained minimizing the χ2 following the methods of [23],
and quote the difference in the model χ2 with respect to the
ΛCDM one, i.e. Δχ2 ≡ χ2 − χ2ΛCDM. Thus, negative values
of Δχ2 indicate an improvement in the fit with respect to
ΛCDM. We also compute the Akaike information criterion
(AIC) [86] of the extended model M relative to that of
ΛCDM: ΔAIC ¼ Δχ2 þ 2ðNM − NΛCDMÞ, where NM is
the number of free parameters of the model.

B. Results

1. Induced gravity Galileon standard

For IGGst we present the results obtained by considering
n ¼ m ¼ 0; γ ¼ 5 × 10−5, with α allowed to vary. We show
the P18 results for this model in Fig. 9 and Table I, with a
comparison toΛCDMand IGwith γ ¼ 5 × 10−5. We obtain
a tight constrain on the Galileon term, i.e., α̃ < 2.5 × 10−6 at
95%CLwith P18 data. This result shows howCMBdata are
sufficient to strongly constrain IGG around IG. All the
contours for the other parameters overlap with the IG ones.
The marginalized mean and uncertainty for the Hubble

constant H0½km s−1Mpc−1� at 68% CL is 67.72� 0.54
without any hint at a possible reduction of the Hubble
tension, as there is no significant increase either in the mean
or in the uncertainty with respect to the ΛCDM value of
67.36� 0.54 [13], or the IGst value 67.64� 0.54 (when
γ ¼ 5 × 10−5 is fixed in the MCMC). When combining
BAO with P18 we obtain tighter constraints but the same
qualitative behavior (Tables I and II).
The cosmological constraints from P18 and P18þ BAO

on α̃ allow a Vainshtein mechanism to occur only at
subparsec scale for an object of a solar mass.

2. Brans-Dicke Galileon phantom

For this model in the phantom branch with a cosmo-
logical constant, we add BAO to P18 data in order to
constrain the parameter 1=α̃8 within our prior range,

5https://github.com/brinckmann/montepython_public
6https://getdist.readthedocs.io/en/latest/
7https://github.com/dscolnic/Pantheon
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1=α̃8 ¼ 108=α̃∈ ½0; 0.4�. Current CMB data are indeed not
enough to constrain this seven parameter model with γ
fixed. The presence of the cosmological constant helps in
providing posterior distributions closer to ΛCDM and
similar values for most of the cosmological parameters
with the exception of H0: due to the shape of the posterior
in the plane 1=α̃8-H0 (see Fig. 10), higher values of the
Hubble constant compared to the ΛCDM ones are allowed
(as it happens for nonminimally coupled scalar fields with
standard kinetic terms due to the degeneracy γ-H0). The
marginalized mean and uncertainty for the Hubble constant
H0½km s−1Mpc−1� at 68% CL using the combination P18þ
BAO (Table II) is 69.1þ0.9

−1.3 . For the same dataset, IG
phantom with γ ¼ 5 × 10−5 fixed at the same value
considered here for BDGph gives 67.62� 0.42, while it
gives 67.20þ0.68

−0.55 when γ is a free parameter. Thus, BDGph
can raise the value of the Hubble constant relatively to IGph
and it reduces the Hubble tension to a significance of 2.5σ.
This result motivates our further analysis using the

Pantheon catalog with the addition of a prior on the peak
absolute magnitude of SN Ia as in [87]. We present the

outcomes of this analysis in Table III and Fig. 11. When
considering this dataset the Hubble tension has a signifi-
cance of only 1.7σ in BDGph, as the marginalizedmean and
uncertainty at 68% CL is H0¼ 70.58�0.97 kms−1Mpc−1.
The corresponding values in IGph, with γ ¼ 5 × 10−5 and γ
free to vary in the MCMC are, respectively, 68.15� 0.52
and 68.07� 0.56. This means that the Galileon term is not
only necessary to avoid instabilities present in IGph (see
Sec. II C) but it also plays an important role in alleviating the
Hubble tension. Using this dataset we obtain Δχ2 ¼ −8.5
and ΔAIC ¼ −6.5, showing a weak preference for
the model with respect to ΛCDM while in all other cases
there is no significant improvement, if any, with respect
to ΛCDM.
We would also like to emphasize another aspect of our

findings in terms of the Vainshtein radius. We obtain
1=α̃8 ¼ 0.23þ0.06

−0.05 at 68% CL with P18þ SNþ pðMÞ; this
means that we see high statistical significance for 1=α̃8 ≠ 0,
and consequently a Vainshtein radius of Oð100Þ pc for a
solar mass. This is in contrast with the case P18þ BAO
where 1=α̃8 is consistent with zero at 1σ and we only have

TABLE I. Constraints on the main parameters (at 68% CL unless otherwise stated) considering Planck 2018 data
alone for IGG standard (Z ¼ 1) with γ ¼ 5 × 10−5; VðσÞ ¼ Λ; gðσÞ ¼ α, IGG standard with γ ¼ 5 × 10−5; VðσÞ ¼
Λ and ΛCDM.

IGGst IGst ΛCDM

102ωb 2.242� 0.014 2.240� 0.014 2.237� 0.015
ωcdm 0.1200� 0.0012 0.1200� 0.0012 0.1200� 0.0012
H0 ½km s−1 Mpc−1� 67.72� 0.54 67.64� 0.54 67.36� 0.54
lnð1010AsÞ 3.044� 0.014 3.046� 0.014 3.044� 0.014
ns 0.9647� 0.0044 0.9662� 0.0041 0.9649� 0.0042
τreio 0.0545� 0.0073 0.0546� 0.0075 0.0544� 0.0073
106α̃ < 2.5 (95% CL) � � � � � �
γ 5 × 10−5 5 × 10−5 � � �
Δχ2 0.2 0.2 � � �
ΔAIC 2.2 0.2 � � �

FIG. 9. Marginalized 68% and 95% CL 2D regions using CMB data alone (P18). IGG standard (Z ¼ 1) with γ ¼ 5 × 10−5; VðσÞ ¼
Λ; gðσÞ ¼ α in green; IG standard with γ ¼ 5 × 10−5; VðσÞ ¼ Λ, in orange and ΛCDM in blue.
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an upper limit 1=α̃8 < 0.28 at 95% CL, perfectly consistent
with the ΛCDM limit of the theory.

V. CONCLUSIONS

We have studied the cosmological effects of a model
where a scalar field, σ, with a coupling to the Ricci scalar of
the type FðσÞ ¼ γσ2, has a cubic Galileon term of the form
ασmð∂σÞ2□σ. Since the extensions of IG and BD with a
Galileon term are not equivalent, theories up to a field
redefinition, differing by a term 4ζðσÞX2 in the Lagrangian,
we have studied the two models separately: IGG and BDG.
This Galileon term leads to the Vaishtein mechanism

which can screen gravity, potentially reconciling the
theory with GR inside the so-called Vainshtein radius
also for values of the coupling to the Ricci scalar—or of
the Brans-Dicke parameter ωBD—which evade the Solar
System constraints. Moreover, thanks to the presence of

the Galileon term, the theory is free of ghost and Laplacian
instabilities even for a noncanonical sign of the kinetic
term in the Lagrangian. We have therefore considered the
theory (2) in the two branches called, respectively, the
standard (Z ¼ 1) and phantom (Z ¼ −1) branches, where
Z enters the kinetic term in the Lagrangian as ZX,
with X ¼ −∇μσ∇μσ=2.
We have shown that the Galileon term leads to important

cosmological effects in all the cases considered. In this
paper we have computed the theoretical predictions for
cosmological observables such as the CMB anisotropy and
matter power spectra. We have also compared these
predictions with observations by restricting the analysis
to fixed γ and m, if not otherwise stated.
For a standard kinetic term, we find an instability in the

radiation dominated era due to the presence of the Galileon
term. This instability is dissipated in the subsequent matter
dominated era, during which the Galileon term becomes

TABLE II. Constraints on the main parameters (at 68% CL unless otherwise stated) considering the combination P18þ BAO for IGG
standard (Z ¼ 1) with gðσÞ ¼ α, IG standard and phantom (Z ¼ −1) with γ ¼ 5 × 10−5 fixed, IG phantom with γ free to vary, BDG
phantom with gðσÞ ¼ ασ−1 and ΛCDM. In all cases unless otherwise specified γ ¼ 5 × 10−5 and VðσÞ ¼ Λ.

IGGst BDGph IGst IGph γ ¼ 5 × 10−5 IGph ΛCDM

102ωb 2.245� 0.014 2.244� 0.014 2.244� 0.013 2.245� 0.013 2.245� 0.014 2.244� 0.013
ωcdm 0.11940� 0.00096 0.11966� 0.00097 0.11937� 0.00093 0.11910� 0.00093 0.11884� 0.00099 0.11925� 0.00094
H0 ½km s−1 Mpc−1� 67.97� 0.44 69.1þ0.9

−1.3 67.91� 0.42 67.62� 0.42 67.20þ0.68
−0.55 67.75� 0.43

lnð1010AsÞ 3.047� 0.014 3.045� 0.014 3.048� 0.014 3.048þ0.014
−0.015 3.048� 0.015 3.049� 0.014

ns 0.9662� 0.0041 0.9678� 0.0038 0.9676� 0.0036 0.9675� 0.0037 0.9671� 0.0038 0.9675� 0.0037
τreio 0.0562� 0.0073 0.0543� 0.0073 0.0563� 0.0071 0.0568þ0.0068

−0.0077 0.0575� 0.0075 0.0568� 0.0072

106α̃ < 2.2 (95% CL) � � � � � � � � � � � � � � �
1=α̃8 � � � < 0.28 (95% CL) � � � � � � � � � � � �
γ 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 < 0.00047 (95% CL) � � �
Δχ2 −0.1 −1.1 −0.1 0.2 0 � � �
ΔAIC 1.9 0.9 −0.1 0.2 2 � � �

FIG. 10. Marginalized 68% and 95% CL 2D regions, using the combination P18þ BAO. BDG phantom (Z ¼ −1) with γ ¼
5 × 10−5; gðσÞ ¼ ασ−1 in red, IGph and IGph with fixed γ ¼ 5 × 10−5, respectively, in green and orange; in all cases VðσÞ ¼ Λ. ΛCDM
in blue.
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subleading, and then eventually the scalar field energy
density is no more negligible contributing to the accel-
eration of the Universe. We find that the CMB anisotropy
pattern is sensitive to the dissipation of the instability in the
matter era. This effect constrains the Galileon term to be
small close to the CMB last scattering surface.
In the branch Z ¼ −1 we have considered only BDG for

the sake of simplicity. The phenomenology of a kinetic term
with a negative sign—corresponding to a BD theory in the
parameter range ωBD < 0—is rather different. First, the
presence of a Galileon term leads to an healthy theory for all
the values of γ, i.e., for any negative value of ωBD, therefore
rescuing the range ωBD < −3=2 which would contain a
ghost in the BD theory with no Galileon term. The Galileon
term leads to a dynamics very different from the corre-
sponding branch of induced gravity, by freezing the scalar
field for most of the matter dominated era and releasing it at
lower redshift.

In the standard branch, Planck 2018 and BAO data
constrain the amplitude of the Galileon parameter as
α̃ < 2.2 × 10−6 at 95% CL (Table II) for IGG with
γ ¼ 5 × 10−5, m ¼ 0, and a constant term Λ as a potential.
The constraints for BDG in the standard branch are
identical to the ones of IGG; we have therefore reported
them only once for IGG. The cosmological constraint on α̃
allows a Vainshtein mechanism to occur only at subparsec
scale for an object of a solar mass. Summarizing, for a
standard kinetic term, we have therefore found tight
constraints on the Galileon term and resulting posterior
probabilities for cosmological parameters very similar to
those of IG.
For BDG with Z ¼ −1 and a constant term Λ as a

potential, we have found that Planck 2018 and BAO data
constrain H0 ¼ 69.1þ0.9

−1.3 km s−1 Mpc−1 at 68% CL and
α̃−1 < 0.281 × 10−8 at 95% CL, for γ ¼ 5 × 10−5 and m ¼
−1 (Table II and Fig. 10). The addition of a Galileon term in
the phantom branch is therefore crucial to obtain a value of

FIG. 11. Marginalized 68% and 95% CL 2D regions, using the combination P18þ SNþ pðMÞ. BDG phantom (Z ¼ −1) with
γ ¼ 5 × 10−5; gðσÞ ¼ ασ−1 in red, IGph and IGph with fixed γ ¼ 5 × 10−5 respectively in green and orange; in all cases VðσÞ ¼ Λ.
ΛCDM in blue.

TABLE III. Constraints on the main parameters (at 68% CL unless otherwise stated) considering the combination
P18þ SNþ pðMÞ for IG phantom (Z ¼ −1) with γ ¼ 5 × 10−5 fixed and free to vary, BDG phantom with γ ¼
5 × 10−5; gðσÞ ¼ ασ−1 and ΛCDM. In all cases VðσÞ ¼ Λ.

BDGph IGph γ ¼ 5 × 10−5 IGph ΛCDM

102ωb 2.253� 0.014 2.256� 0.014 2.257� 0.014 2.256� 0.014
ωcdm 0.1190� 0.0012 0.1180� 0.0011 0.1180� 0.0011 0.1181� 0.0011
H0 ½km s−1 Mpc−1� 70.58� 0.97 68.15� 0.52 68.07� 0.56 68.31� 0.50
lnð1010AsÞ 3.046� 0.015 3.053� 0.015 3.054� 0.015 3.054þ0.014

−0.016
ns 0.9699� 0.0040 0.9703� 0.0041 0.9702� 0.0041 0.9705� 0.0040
τreio 0.0555� 0.0077 0.0602þ0.0076

−0.0085 0.0608� 0.0079 0.0602þ0.0072
−0.0083

1=α̃8 0.23þ0.06
−0.05 � � � � � � � � �

γ 5 × 10−5 5 × 10−5 < 0.00022 (95% CL) � � �
Δχ2 −8.5 1.1 0 � � �
ΔAIC −6.5 1.1 2 � � �
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H0 larger than ΛCDM. We have therefore a modified
gravity model which leads to a value of H0 larger than in
ΛCDM with a screening of Oð100Þ pc for a solar mass, as
desired. By adding the Pantheon dataset with a prior on the
supernovae peak absolute magnitude MB ¼ −19.2435�
0.0373 mag, we find H0 ¼ 70.58� 0.97 km s−1 Mpc−1

and α̃−1 ¼ 0.23þ0.06
−0.05 × 10−8 at 68% CL, always for γ ¼

5 × 10−5 and m ¼ −1 (Table III and Fig. 11). As it happens
for the degeneracy between H0 and γ in IG [88], the SH0ES
measurement pulls H0 along the degeneracy with α−1. By
adding a Galileon term, the theory inherits also character-
istics of a late model in increasingH0. In addition, the value
and the posterior of S8 are unchanged with respect to
ΛCDM, not aggravating the so-called σ8 tension [89].
We have also analyzed the theoretical predictions of the

model introduced by Silva and Koyama [50] in which there
is no potential and the late-time acceleration is driven
exclusively by the Galileon term. This particular model is
physically viable and provides screening on Solar System

scales. We have shown that it leads to CMB predictions
which are at odds with the Planck data, with a Δχ2 ¼ 30.6
with respect to ΛCDM. Therefore, although theoretically
interesting because the acceleration is not driven by an
effective cosmological constant, the model is ruled out by
observations.
In conclusion, we have shown how a Galileon term leads

to rather nontrivial cosmological effects to the simplest
scalar-tensor theories of gravity. It can lead simultaneously
to a value of H0 larger than in ΛCDM and to effective
screening for a large volume of parameter space. It is
therefore interesting to find that another term in the
Horndeski Lagrangian can lead to a value larger then the
ΛCDM one, as previously found for the basic evolving
Newton’s constant in [26–28,31–33,68,69,87,88]. A more
general exploration of the parameter space of this theory in
which the speed of gravitational waves is c without any fine
tuning, by allowing to vary simultaneously the coupling to
the Ricci scalar, γ, and the Galileon term is in progress.

FIG. 13. Stability conditions: ghost instability (top panel),
Laplacian instability (middle panel). Vainshtein radius for a solar
mass spherical object (bottom panel) BDG in the phantom branch
(Z ¼ −1), without potential, gðσÞ ¼ α=σ, for different values of γ.

FIG. 12. Time evolution of the scalar field (top panel), the
equation of state parameter for dark energy (middle panel) and
the density parameters (bottom panel) in BDG phantom (Z ¼ −1)
with no potential and gðσÞ ¼ ασ−1, for different values of γ.
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APPENDIX A: BDG IN THE PHANTOM
BRANCH WITH Λ= 0

In this appendix we study the model, introduced in [50],
that exactly respects the solution (27), considering it as a
limiting case of BDGph when Λ ¼ 0. We discuss the
background evolution, including stability conditions and
the Vainshtein screening of the theory, CMB anisotropies,
and matter power spectrum and the constraints on the
model coming from CMB observations.

1. Background evolution, stability
conditions, and screening

In the absence of the cosmological constant, in order to
describe today’s acceleration of the expansion of the
Universe, the parameter α should be fine-tuned, this is
done by solving Eq. (27) for α and using it as an initial
guess for a shooting algorithm that fixes the value of α to
produce the desired ΩDE ¼ 1 −Ωm − Ωr, given the density

parameters of matter and radiation as inputs. With α fixed by
the requirement of cosmic acceleration, the only free
parameter of the theory is γ, resulting therefore in a theory
that can provide cosmic acceleration without a cosmological
constant, with as many free parameters as the BD model.
Today’s value of the scalar field is such that it satisfies

Eq. (28). See Secs. II B 2 and II D for details on why we do
not need to set σ0 following Eqs. (25) or (24) thanks
the Vainshtein screening mechanism, but we still need to
respect the condition MPl ¼ 1 today. The evolution of the
scalar field with redshift is plotted in the top panel of
Fig. 12. The field is frozen deep in the radiation era and it
starts to grow at very late times reaching the value required
by consistency with GR on small scales today. In the figure
we normalized the field to its value at z ¼ 0 which is
different depending on the chosen value of γ, since γσ20 ¼ 1.
Departures from ΛCDM are evident already at the

background level, especially in the matter era and in the
field dominated era. In fact, during the matter era, before
the equality with DE, we observe, from the bottom panel of
Fig. 12, Ω̃σ becoming slightly negative. This effect is more
prominent for larger values of γ. At the time when Ω̃σ is
decreasing and becoming negative, the corresponding ΩDE

in the ΛCDM model is already growing; therefore, a
steeper growth of Ω̃σ is needed in order to reach the
ΛCDM value today and for the matter-dark energy equality
to happen more or less at the same redshift. We emphasize
that Ω̃σ < 0 is not a problem from the physical point of

FIG. 14. Relative differences with respect to ΛCDM for BDG phantom (Z ¼ −1) without potential and gðσÞ ¼ ασ−1, for different
values of γ. CMB TT (top left), EE (top right), lensing potential (bottom left) and linear matter power spectra (bottom right).
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view: this parameter simply describes the contribution of
the scalar field to the total expansion rate when the
Friedmann equations are recast in a form that resembles
Einstein gravity [52,53].
The evolution of the parameter of state of DE wDE from

the middle panel of Fig. 12 is also interesting, as it presents a
phantom behavior wDE < −1 in correspondence to Ω̃σ

becoming negative and growing back to dominate the
energy content of the Universe. This behavior is more
prominent for a smaller value of γ for which the dip tends to
be deeper andwDE reaches lower values. The parameterwDE

today is slightly different from −1 and it eventually reaches
−1 in the future, as shown in [50].
The top panel of Fig. 13 shows the evolution of the

stability conditions (29) and (30) with redshift. The con-
ditions are satisfied for all the values of γ considered,
thanks to the Galileon term. This term is also responsible
for effective screening on small scales through the
Vainshtein screening mechanism that allows the theory
to reduce to GR within the so-called Vainshtein radius.
Thus, within this radius the post-Newtonian parameters
are those of GR. The time evolution of the Vainshtein

FIG. 15. Marginalized joint 68% and 95% CL regions 2D parameter space using P18 data alone. In orange BDG phantom (Z ¼ −1)
without potential, gðσÞ ¼ ασ−1 and ΛCDM in blue.
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radius (31) for a celestial body of a solar mass is shown in
the bottom panel of Fig. 13: the screening is effective and
rV⊙ ∼Oð100Þ pc today for all the values of γ studied.

2. CMB anisotropies and matter power spectrum

As we saw in Sec. III, the interplay of the G3 and the
ISW effect can result in an enhancement of the power
spectrum on large scales [38,40]. For this reason, in Fig. 14
we can observe very large departures from ΛCDM at the
largest scales in TT, due to the enhanced ISW effect. It is
worth pointing out that as there is no potential, the curves
do not flatten out towards zero for smaller γ, this is due to
the fact that without a cosmological constant there is not a
ΛCDM limit, as already discussed in Sec. II. So, while this
model provides late-time cosmic acceleration without a
cosmological constant, it shows large differences with
respect to ΛCDM at the level of CMB and matter power
spectra; this is a disadvantage for differences > 30% when
comparing the predictions against the data, since ΛCDM
fits Planck data quite well.

3. Constraints from cosmological observations

As we saw, this is the most extreme of the models
considered, as it has no cosmological constant and there-
fore no ΛCDM limit and it cannot reproduce the CMB and
LSS theoretical prediction of ΛCDM; this put it at a
disadvantage when it is tested against data, and a Δχ2 ¼
30.6 when considering P18 confirms it. While this com-
pletely rules out the model, there is a feature that is worth
highlighting in addition to the theoretical appealing char-
acteristic of providing cosmic acceleration without a

cosmological constant: it raises the Hubble constant to
H0 ¼ 79.57� 0.67 km s−1Mpc−1. While this result is still
far from alleviating the tension, the ability to produce a
Hubble constant larger than the SH0ES value [14] is quite
interesting and it might be worth to construct and inves-
tigate similar models that, while retaining this ability,
might provide a better fit to the data. The results for the
model are shown in Fig. 15 and Table IV.

APPENDIX B: LINEAR PERTURBED
EQUATIONS

Here we summarize the definition of the coefficients
appearing in the perturbed Einstein and scalar field
equations:

δρ̃≡ δρm
γσ2

−
h0σ0

a2σ
−

2

a2

�
δσ

σ

�
a2ρm
γσ2
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σ02
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TABLE IV. Constraints on the main parameters (at 68% CL
unless otherwise stated) considering Planck 2018 data alone for
BDG phantom (Z ¼ −1) without potential and gðσÞ ¼ ασ−1.

P18

102ωb 2.266� 0.015
ωcdm 0.1165� 0.0012
H0 ½km s−1 Mpc−1� 79.57� 0.67
ln 1010As 2.9979þ0.0093

−0.013
ns 0.9776� 0.0041
τreio < 0.0475 (95% CL)
γ < 7.70 × 10−7 (95% CL)

Δχ2 30.6
ΔAIC 32.6

ANGELO G. FERRARI et al. PHYS. REV. D 108, 063520 (2023)

063520-18



δP̃ðGÞ ≡ 1

γa4
σ02

σ2

�
δσ

σ
½2ð2g − g;σσÞðσ00 −Hσ0Þ þ σ02ð2g;σ − g;σ;σσ − 2ζ þ ζ;σσÞ�

− δσ0
�
2g;σσ0 − 4Hgþ 2g

σ00

σ0
þ 4ζσ0

�
− 2gδσ00

�
; ðB6Þ

ðρ̃þ P̃ÞΘ̃≡ ðρm þ PmÞΘ
γσ2

þ 1

3a2

�
4k2δσ
σ

þ 2ðh0 þ 6η0Þ σ
0

σ

�
; ðB7Þ

δG̃≡ a2ðδρm − 3δPmÞ
ð1þ 6γÞσ −

h0

2a2

�
a2σ0ðZ þ 6γÞ þ 2gσ0

�
3Hσ0 −

σ02

σ
þ 2gσ00

�
þ 4ζσ03

�
− h00g

σ02

a2

þ 1

a2
δσ

�
a4
�
3Pm − ρm

σ2
−
4V
σ2

þ 4V;σ

σ
− V;σσ þ ðZ þ 6γÞ

�
σ02

σ2
− k2

��

þ g

�
2k2

�
σ02

σ
− 2Hσ0 − 2σ00

�
− 6

σ02

σ2
σ00
�
− 4k2ζσ02 þ g;σσ0

�
6σ00

�
σ0

σ
− 2H

�
− 2σ0

�
3H0 þ σ02

σ2

��

− 12σ02ζ;σσ00 þ 2g;σσσ02
�
σ02

σ
− 2Hσ0 þ 2σ00

�
− 3ζ;σσσ

04 − g;σσσσ04
�

þ 1

a2
δσ0

�
a2
�
−2ðZ þ 6γÞ

�
Hþ σ0

σ

��
þ 12g

�
σ00
�
σ0

σ
−H

�
−H0σ0

�
− 24ζσ0σ00

þ 4g;σσ0
�
2
σ02

σ
− 3Hσ0 þ 2σ00

�
− 12ζ;σσ

03 þ 4g;σσσ03
�
: ðB8Þ

[1] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. I. Overview and the cosmological legacy of Planck,
Astron. Astrophys. 641, A1 (2020).

[2] S. Alam et al. (eBOSS Collaboration), Completed SDSS-IV
extended Baryon Oscillation Spectroscopic Survey: Cos-
mological implications from two decades of spectroscopic
surveys at the Apache Point Observatory, Phys. Rev. D 103,
083533 (2021).

[3] A.Veropalumbo, F.Marulli, L.Moscardini,M.Moresco, and
A. Cimatti, An improved measurement of baryon acoustic
oscillations from the correlation function of galaxy clusters at
z ∼ 0.3, Mon. Not. R. Astron. Soc. 442, 3275 (2014).

[4] M. Asgari et al. (KiDS Collaboration), KiDS-1000 cosmol-
ogy: Cosmic shear constraints and comparison between two
point statistics, Astron. Astrophys. 645, A104 (2021).

[5] T. M. C. Abbott et al. (DES Collaboration), Dark Energy
Survey Year 3 results: Cosmological constraints from
galaxy clustering and weak lensing, Phys. Rev. D 105,
023520 (2022).

[6] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VIII. Gravitational lensing, Astron. Astrophys. 641,
A8 (2020).

[7] B. D. Sherwin, A. van Engelen, N. Sehgal, M.
Madhavacheril, G. E. Addison, S. Aiola et al., Two-season
Atacama Cosmology Telescope polarimeter lensing power
spectrum, Phys. Rev. D 95, 123529 (2017).

[8] W. L. K. Wu et al., A measurement of the cosmic microwave
background lensing potential and power spectrum from
500 deg2 of SPTpol temperature and polarization data,
Astrophys. J. 884, 70 (2019).

[9] O. Darwish et al., The Atacama Cosmology Telescope: A
CMB lensing mass map over 2100 square degrees of sky
and its cross-correlation with BOSS-CMASS galaxies,
Mon. Not. R. Astron. Soc. 500, 2250 (2020).

[10] A. G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and a
cosmological constant, Astron. J. 116, 1009 (1998).

[11] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements of Ω and Λ from 42 high redshift
supernovae, Astrophys. J. 517, 565 (1999).

[12] A. Carr, T. M. Davis, D. Scolnic, D. Scolnic, K. Said, D.
Brout, E. R. Peterson, and R. Kessler, The Pantheonþ
analysis: Improving the redshifts and peculiar velocities of
Type Ia supernovae used in cosmological analyses, Pub.
Astron. Soc. Aust. 39, e046 (2022).

[13] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); Astron. Astrophys. 652, C4(E) (2021).

[14] A. G. Riess et al., A comprehensive measurement of the
local value of the Hubble constant with 1 km s−1 Mpc−1

uncertainty from the Hubble space telescope and the SH0ES
team, Astrophys. J. Lett. 934, L7 (2022).

COSMOLOGICAL EFFECTS OF THE GALILEON TERM IN … PHYS. REV. D 108, 063520 (2023)

063520-19

https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1093/mnras/stu1050
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1103/PhysRevD.95.123529
https://doi.org/10.3847/1538-4357/ab4186
https://doi.org/10.1093/mnras/staa3438
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1017/pasa.2022.41
https://doi.org/10.1017/pasa.2022.41
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.3847/2041-8213/ac5c5b


[15] S. Aiola et al. (ACT Collaboration), The Atacama Cosmol-
ogy Telescope: DR4 maps and cosmological parameters, J.
Cosmol. Astropart. Phys. 12 (2020) 047.

[16] L. Balkenhol et al. (SPT-3G Collaboration), Constraints on
ΛCDM extensions from the SPT-3G 2018 EE and TE power
spectra, Phys. Rev. D 104, 083509 (2021).

[17] W. L. Freedman et al., The Carnegie-Chicago Hubble
program. VIII. An independent determination of the Hubble
constant based on the tip of the red giant branch, Astrophys.
J. 882, 34 (2019).

[18] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XVI. Cosmological parameters, Astron. Astrophys.
571, A16 (2014).

[19] L. Knox and M. Millea, Hubble constant hunter’s guide,
Phys. Rev. D 101, 043533 (2020).

[20] E. Di Valentino et al., Snowmass2021—Letter of interest
cosmology intertwined II: The Hubble constant tension,
Astropart. Phys. 131, 102605 (2021).

[21] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.
Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm
of the Hubble tension—a review of solutions, Classical
Quantum Gravity 38, 153001 (2021).

[22] L. Perivolaropoulos and F. Skara, Challenges for ΛCDM:
An update, New Astron. Rev. 95, 101659 (2022).

[23] N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J.
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Starobinsky, and C. Umiltà, Scalar-tensor theories of grav-
ity, neutrino physics, and the H0 tension, J. Cosmol.
Astropart. Phys. 10 (2020) 044.

[33] M. Braglia, M. Ballardini, F. Finelli, and K. Koyama, Early
modified gravity in light of the H0 tension and LSS data,
Phys. Rev. D 103, 043528 (2021).

[34] B.-H. Lee, W. Lee, E. O. Colgáin, M. M. Sheikh-Jabbari,
and S. Thakur, Is localH0 at odds with dark energy EFT?, J.
Cosmol. Astropart. Phys. 04 (2022). 004.

[35] B. Bertotti, L. Iess, and P. Tortora, A test of general relativity
using radio links with the Cassini spacecraft, Nature
(London) 425, 374 (2003).

[36] A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a
localmodification of gravity, Phys.Rev.D79, 064036 (2009).

[37] C. Deffayet, G. Esposito-Farese, and A. Vikman, Covariant
Galileon, Phys. Rev. D 79, 084003 (2009).

[38] T. Kobayashi, H. Tashiro, and D. Suzuki, Evolution of linear
cosmological perturbations and its observational implica-
tions in Galileon-type modified gravity, Phys. Rev. D 81,
063513 (2010).

[39] A. Barreira, B. Li, C. Baugh, and S. Pascoli, The observa-
tional status of Galileon gravity after Planck, J. Cosmol.
Astropart. Phys. 08 (2014) 059.

[40] J. Renk, M. Zumalacarregui, and F. Montanari, Gravity at
the horizon: On relativistic effects, CMB-LSS correlations
and ultra-large scales in Horndeski’s theory, J. Cosmol.
Astropart. Phys. 07 (2016) 040.

[41] N. Frusciante, S. Peirone, L. Atayde, and A. De Felice,
Phenomenology of the generalized cubic covariant Galileon
model and cosmological bounds, Phys. Rev. D 101, 064001
(2020).

[42] G.W. Horndeski, Second-order scalar-tensor field equations
in a four-dimensional space, Int. J. Theor. Phys. 10, 363
(1974).

[43] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, From k-
essence to generalised Galileons, Phys. Rev. D 84, 064039
(2011).

[44] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, General-
ized G-inflation: Inflation with the most general second-
order field equations, Prog. Theor. Phys. 126, 511 (2011).

[45] R. Kase and S. Tsujikawa, Dark energy in Horndeski
theories after GW170817: A review, Int. J. Mod. Phys. D
28, 1942005 (2019).

[46] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM,
INTEGRAL Collaborations), Gravitational waves and
gamma-rays from a binary neutron star merger:
GW170817 and GRB 170817A, Astrophys. J. Lett. 848,
L13 (2017).

[47] P. Jordan, Schwerkraft und Weltall: Grundlagen der theor-
etischen Kosmologie, Die Wissenschaft (F. Vieweg, 1955),
https://books.google.it/books?id=snJTcgAACAAJ.

[48] C. Brans and R. H. Dicke, Mach’s principle and a relativistic
theory of gravitation, Phys. Rev. 124, 925 (1961).

[49] A. Zee, Broken-Symmetric Theory of Gravity, Phys. Rev.
Lett. 42, 417 (1979).

[50] F. P. Silva and K. Koyama, Self-accelerating universe in
Galileon cosmology, Phys. Rev. D 80, 121301 (2009).

[51] F. Finelli, A. Tronconi, and G. Venturi, Dark energy,
induced gravity and broken scale invariance, Phys. Lett.
B 659, 466 (2008).

[52] D. F. Torres, Quintessence, superquintessence and observ-
able quantities in Brans-Dicke and nonminimally coupled
theories, Phys. Rev. D 66, 043522 (2002).

ANGELO G. FERRARI et al. PHYS. REV. D 108, 063520 (2023)

063520-20

https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1103/PhysRevD.104.083509
https://doi.org/10.3847/1538-4357/ab2f73
https://doi.org/10.3847/1538-4357/ab2f73
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1103/PhysRevD.101.043533
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1016/j.newar.2022.101659
https://doi.org/10.1016/j.physrep.2022.07.001
https://doi.org/10.1016/j.physrep.2022.07.001
https://doi.org/10.1007/s00159-021-00137-4
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1088/1475-7516/2015/08/017
https://doi.org/10.1088/1475-7516/2015/08/017
https://doi.org/10.1088/1475-7516/2016/05/067
https://doi.org/10.1103/PhysRevD.100.103524
https://doi.org/10.1103/PhysRevD.100.103524
https://doi.org/10.1088/1475-7516/2020/11/024
https://doi.org/10.1088/1475-7516/2020/11/024
https://doi.org/10.1103/PhysRevD.102.023523
https://doi.org/10.1103/PhysRevD.102.023529
https://doi.org/10.1103/PhysRevD.102.023529
https://doi.org/10.1088/1475-7516/2020/10/044
https://doi.org/10.1088/1475-7516/2020/10/044
https://doi.org/10.1103/PhysRevD.103.043528
https://doi.org/10.1088/1475-7516/2022/04/004
https://doi.org/10.1088/1475-7516/2022/04/004
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.1103/PhysRevD.79.064036
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.81.063513
https://doi.org/10.1103/PhysRevD.81.063513
https://doi.org/10.1088/1475-7516/2014/08/059
https://doi.org/10.1088/1475-7516/2014/08/059
https://doi.org/10.1088/1475-7516/2016/07/040
https://doi.org/10.1088/1475-7516/2016/07/040
https://doi.org/10.1103/PhysRevD.101.064001
https://doi.org/10.1103/PhysRevD.101.064001
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1142/S0218271819420057
https://doi.org/10.1142/S0218271819420057
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://books.google.it/books?id=snJTcgAACAAJ
https://books.google.it/books?id=snJTcgAACAAJ
https://books.google.it/books?id=snJTcgAACAAJ
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRevLett.42.417
https://doi.org/10.1103/PhysRevLett.42.417
https://doi.org/10.1103/PhysRevD.80.121301
https://doi.org/10.1016/j.physletb.2007.11.053
https://doi.org/10.1016/j.physletb.2007.11.053
https://doi.org/10.1103/PhysRevD.66.043522


[53] R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky,
Scalar-tensor models of normal and phantom dark energy, J.
Cosmol. Astropart. Phys. 09 (2006) 016.

[54] A. Cerioni, Cosmological perturbations in generalized
theories of gravity, Ph.D. thesis, Alma Mater Studiorum
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