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We construct spherically symmetric equilibrium solutions of the Schršdinger-Poisson (SP) system of
equations with a core-tail structure that could serve as models of fuzzy dark matter (FDM) halos. The core
is assumed to be a solitonic ground state equilibrium configuration of the SP equations, and the tail is
integrated from a transition radius onwards. The total mass of the system parametrizes the family of
solutions and constrains the tail density profile. The tail has a radial velocity profile, whereas the core is
stationary. We investigate the evolution of these equilibrium configurations and find that the tail initially
perturbs the core, and consequently, the whole solution oscillates around a virialized solution that we call
“relaxed,” whose average also has a core-tail structure. We measure the departure of the relaxed
configuration from the equilibrium solution in order to estimate the utility of the latter. We also find
that the core-halo scaling relation of equilibrium configurations has an exponent α ¼ 1=3, whereas relaxed
configurations exhibit a scaling with α ¼ 0.54.
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I. INTRODUCTION

Ultralight bosonic dark matter or fuzzy dark matter
(FDM) is a candidate currently under study because it
shows interesting properties. Its mass is of order
10−23–10−20 eV, which implies a minimum size of the
structures it forms due to its large de Broglie wavelength
(see, e.g., the reviews [1–4]). The state of the art on the
subject involves sophisticated structure formation simula-
tions (e.g., [5–7]), based on the solution of the equations
that rule the dynamics of this type of matter, the
Schrödinger-Poisson (SP) system of equations, that have
captured two essential features of the model, namely, that it
behaves like Cold Dark Matter (CDM) at large scales,
whereas at local galactic scales it forms clumps with a core-
tail structure, where the core is the ground state solution of
the SP system [8,9] and the tail has a Navarro-Frenk-White
(NFW) decay [10].
The characterization of core-tail profiles obtained in

structure formation simulations (SFS) is a subject of current
interest and a garden variety of mass-energy combinations
and scaling relations arise [10]. Modeling core-halo struc-
tures resulting from SFS includes self-consistent construc-
tions of the wave function, that suits the density profiles in
terms of multimode expansion of the wave function
associated to virialized structures, as first seen in [11].
Nevertheless SFS are costly, which makes the study of

galactic phenomenology difficult or unaffordable. For
instance, the construction of a catalog of FDM halos is
limited to the type of profiles obtained in SFS, which
unavoidably cannot have all possible combinations of core-
halo mass ratios, nor all the parameters of the core and
NFW density functions.
In order to overcome this limitation and at the same time

avoid expensive SFS, there are some strategies to construct
core-tail FDM configurations without the need of perform-
ing SMS. One of them consists in the evolution of multi-
core mergers that end up with the desired core-tail type
distribution (e.g., [12]); in the end, the merger of a small
number of halos requires less computer resources than SFS
and therefore the construction of FDM halos is affordable.
Another method consists in the ab initio construction of the
wave function describing a desired density profile, as in
[13], where solutions are constructed with a solitonic core
and the tail consisting of the superposition of modes that
replicate core and tail profiles at will. In the analysis of
[11], a similar multi-mode construction was needed and
constructed with the aim of building virialized structures
that could be compared with density profiles obtained in
SFS simulations. These are strategies that allow the con-
struction of realistic galactic halos, in turn help to study
galactic dynamics avoiding the cost of halos obtained
from SFS.
In this paper we propose a different method to construct

equilibrium core-tail configurations, which are solutions of
the SP system of equations assuming spherical symmetry
and quantum-hydrostatic equilibrium. These configurations
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cover the domain ½0;rmax�¼½0;rt�∪ ½rt;rmax�≔coreregion∪
tail region, where rt is a transition radius between the core
and tail regions. In the core we assume there is a solitonic
solution, and from rt on we integrate the stationary SP
equations assuming some boundary conditions at rt and
rmax. The family of solutions is parametrized by the total
mass of the configuration and the tail density-profile
adjusts itself to fulfill the total mass value.
Non-trivial equilibrium solutions are found for nonzero

radial velocity of the FDM in the tail region, which
compromises their stability. In order to study the effects
of the tail velocity we evolve the equilibrium solutions and
find that after an initial transient the density redistributes
and forms a new configuration that we call relaxed
solution, because it results from the evolution of an
equilibrium solution that is somehow in a tense equilibrium
state. The relaxed solution oscillates near a virialized state
and in average it also has the core-tail structure. This is not
a new effect, it also happens in many-multimode solutions
constructed in [13], where the assumption of stationarity is
only an approximation allowing the construction of initial
states, although after evolution the configuration evolves
and relaxes around a new redistributed configuration that
oscillates in time.
A further analysis includes the rotation curve (RC)

associated to both equilibrium and relaxed configurations.
We measure how the RC of the latter departs from that of
the former. We find that the departure is of a few percent
even for core-halo mass ratios of order ∼0.2, which
corresponds to tail dominating configurations, and while
more core-dominating configurations are the departure
should be even smaller.
Finally, another property we explore is the core-halo

scaling relation, and find that equilibrium solutions obey
the scaling with an exponent α ∼ 1=3, whereas relaxed
solutions are better fitted with α ∼ 0.54, consistently with
previous analyses and formation processes.
The paper is organized as follows. In Sec. II we describe

the construction of the solutions, in Sec. III we show how
these evolve and their average behavior. Finally in Sec. IV
we draw some conclusions.

II. SOLUTIONS

The SP equations in dimensionless units describing the
dynamics of the bosonic dark matter is written as

i∂tΨ ¼ −
1

2
∇2Ψþ VΨ; ð1Þ

∇2V ¼ jΨj2 − hjΨj2i; ð2Þ

where

hjΨj2i ¼ 1

VD

Z
D
jΨj2d3x; ð3Þ

is the average mass density, calculated in the numerical
spatial domain D with volume VD. We translate this system
into the quantum-hydrodynamic version in the Madelung
frame by using thewave function transformationΨ ¼ ffiffiffi

ρ
p

eiS

[14], so that the system (1) and (2) reduces to equations for
mass density ρ and phase of the wave function S:

∂tρþ ∇ · ðρv⃗Þ ¼ 0; ð4Þ

∂tSþ 1

2
jv⃗j2 þQþ V ¼ 0; ð5Þ

∇2V ¼ ρ − hρi; ð6Þ

where v⃗ ≔ ∇S is interpreted as thevelocity vector field of the
quantum fluid subject to the influence of the quantum

potential Q ¼ − 1
2

∇2 ffiffi
ρ

pffiffi
ρ

p and the gravitational potential V

sourced by the density ρ itself.
Assuming spherical symmetry and time-independence of

density, we use the ansatz for the phase Sðt; rÞ ¼
−V0tþ S̄ðrÞ, where r is the radial coordinate, and the
system reduces to the following set of ordinary differential
equations:

1

r2
d
dr

ðr2ρvÞ ¼ 0; ð7Þ

1

2
v2 þQþ V ¼ V0; ð8Þ

1

r2
d
dr

�
r2
dV
dr

�
¼ ρ − hρi; ð9Þ

where the radial velocity is v ≔ dS̄
dr. The solitonic core of

structures found in simulations [5,6], in average coincides
with ground state equilibrium solutions constructed assum-
ing v ¼ 0 and asymptotic isolation hρi ¼ 0 as described in
[15], which are equivalent to those in the Schrödinger
frame [8,9]. These solutions are approximated with the
solitonic density profile obtained empirically from structure
formation simulations [5,6]:

ρcoreðrÞ ¼ ρ0;core

�
1þ 0.091

�
r
rc

�
2
�
−8
; ð10Þ

where V0 ≈ 0.6922, ρ0;core ≈ 2.9208r−4c with rc ≈ 1.3073.
Similarly to the construction in [11], we separate the

domain into two regions. For the solution of system (7)–(9)
in the domain r∈ ½0; rmax�, we consider the central core
region r∈ ½0; rt�, rt < rmax with the density profile (10),
whereas in the subdomain r∈ ½rt; rmax� that we call the tail
region, there will be a density profile resulting from a
numerical integration. We call rt the transition radius
between core and tail. Since the core density is prescribed
by Eq. (10), one only has to solve the system (7)–(9) in the
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tail region r∈ ½rt; rmax�, which written as a first order
system reads:

ρ0tail ¼ utail; ð11Þ

u0tail ¼ 4

�
V tail þ

1

2
v2tail − V0

�
ρtail ð12Þ

−
2utail
r

þ u2tail
2ρtail

; ð13Þ

V 0
tail ¼

Mtail

r2
; ð14Þ

M0
tail ¼ r2ρtail; ð15Þ

S̄0tail ¼ vtail; ð16Þ

where 0 ≔ d
dr and vtail ¼ A

r2ρtail
is the velocity at the tail

region, with A constant, as suggested by the condition in
Eq. (7). For the integration we impose the following
boundary conditions at the two ends:

ρtailðrtÞ ¼ ρcoreðrtÞ;
utailðrtÞ ¼ ucoreðrtÞ;
V tailðrtÞ ¼ VcoreðrtÞ;
MtailðrtÞ ¼ McoreðrtÞ;
S̄tailðrtÞ ¼ 0;

MtailðrmaxÞ ¼ Mmax;

where Vcore andMcore correspond to the solution of Poisson
equation (9) with density (10). Notice that the spatial part of
the phase S̄ is continuous at rt, but it is not required to be
differentiable, this implies that v in general has a disconti-
nuity at rt. Moreover, the subsystem (11)–(16) is invariant
under the change of sign in the velocity v except by
Eq. (16), this implies that two solutions can be constructed
that satisfy the boundary conditions, one with inward and
another one with outward radial velocity.
We solve these equations using the shooting method with

a fourth-order Runge-Kutta integrator that searches for the
value of A, starting with an initial guess until the condition
MtailðrmaxÞ ¼ Mmax is fulfilled within a tolerance. The
results are the radial density profile at the tail, its radial
velocity field and the gravitational potential.
Once the system (11)–(16) has been solved, it is possible

to write down the wave function in the whole core-tail (CT)
domain as follows:

ΨCTðt; rÞ ≈

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcoreðrÞ

p
e−V0it r < rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρtailðrÞ

p
e−V0itþiS̄tailðrÞ r ≥ rt:

ð17Þ

Some illustrative examples used as workhorses are the
following. If the transition radius is rt ¼ 3.5rc ≈ 4.58 in
units of the system of equations, a value consistent with
those in [6], assuming three values of the total mass
to be Mmax ¼ 10, 20, 40, and using the domain with
rmax ¼ 100, the shooting parameter converges to the
values A≈�8.61×10−2, �1.51×10−1, and �2.08 × 10−1

respectively.
In order to have an idea of what these three solutions

represent physically, we show a particular example with
units. Coordinates and mass are converted from dimension-
less units into physical units according to the rule:

r → rSr;

t → tSt;

M → MSM; ð18Þ

where tS ¼ mBr2S
ℏ and MS ¼ ℏ2

4πGm2
BrS

are the scale factors for

time and mass, respectively. These scale factors are
expressed in terms of rS, which is an arbitrarily chosen
length scale factor, mB represents the boson mass, ℏ is
Planck’s constant and G Newton’s gravitational constant.
Other scale factors can be derived from these ones, such as
the density scale factor ρS ¼ MS=r3S and the velocity scale
factor vS ¼ rS=tS.
In order to use typical scales in a galaxy, let us consider a

scale length of rS ¼ 1.714 kpc and a boson mass of
mB ¼ 10−23 eV=c2. Using these values, the scale factors
for time and mass are tS ¼ 14.97 Myr and MS ¼
5
4π × 109M⊙. Additionally, the scale factors for density
and velocity are ρS ¼ 7.901 × 107M⊙=kpc3 and vS ¼
112.0 km=s. Using these particular scale factors for the
three example caseswithMmax ¼ 10, 20, 40, the transformed
total masses correspond to 4πMmax ¼ 5 × 1010, 1011,
and 2 × 1011M⊙ and the core radius takes the value
rc ≈ 2.241 kpc.
In Fig. 1 we show the density profile of these three

representative solutions. The density has the core profile
(10) for r < rt, whereas for r ≥ rt the dotted lines corre-
spond to the solution in the tail zone of Eqs. (11)–(16). The
density profile shows the typical oscillations of excited
eigenmodes with l ¼ 0 explored in [13]. The resulting
density profile admits a fitting with the NFW function:

ρtailðrÞ ¼
ρ0;NFW

r
Rs
ð1þ r

Rs
Þ2 ; ð19Þ
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where ρ0;core and Rs are free parameters that are specified
individually for each halo, in our case for each core-
tail solution. In the three illustrative cases, the fitting values
in dimensionless units are ρ0;tail ¼ 3.0 × 10−2; 4.3 × 10−2;
5.3 × 10−2 andRs ¼ 4.387, 4.399, 4.548 forMmax ¼ 10, 20,
and 40 respectively.
In physical units, for the three specific examples,

the parameters would take the values ρ0;core¼2.37×106;
3.40×106;4.19M⊙=kpc3, andRs≈7.519, 7.540, 7.795 kpc,
obtained multiplying by the appropriate factors ρS and rS.
After this parenthesis that illustrate how our core-halo
solutions can be associated to galactic scales, we continue
our discussion in dimensionless units with the three work-
horse solutions illustrated here.
Notice that the matter in the tail region has a finite

velocity given by vtail ¼ A
r2ρtail

. The resulting solution in the
whole domain is thus a stationary core surrounded by a tail
with a shelled structure (see ρ in Fig. 1). Unlike in [11,13]
the target of the solution is not the NFW profile, but Mmax.
This is a convenient aspect, because automatically we have
a core-halo mass ratio as a possible target. Concerning the
dependence of the solution on rmax, since the tail, with its

oscillations never becomes zero, then the mass contained in
a volume within spheres of different rmax will be different.
We verified that as long as the mean density is the same for
different rmax, the solution is the same. In addition to the
density in Fig. 1, we also show the rotation curve (RC) of
the solutions constructed with the formula

vRCðrÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

McoreðrÞ=r
p

r < rt;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MtailðrÞ=r

p
r ≥ rt:

ð20Þ

Notice the trend of bigger total mass Mmax for higher
rotation velocities. These three cases exemplify the effect of
Mmax on the density profile and therefore on the rota-
tion curve.
We now look into the effects of the transition radius rt. In

Fig. 2 we show the results of three solutions with
rt ¼ 2.5rc, 3.0rc, and 3.5rc, an admissible range according
[10,16], and slightly bigger than the 2rc used in [13], while
this time we fix the target total mass to Mmax ¼ 50

(2.5 × 1011M⊙ in the units conversion example above).
The core density is basically unaffected, whereas the tail
density is different in the shell structure. Since the differ-
ence in the tail density profile is small, rotation curves are
also very similar for the three values of the transition radius.
The results of Figs. 1 and 2 imply that the rotation curves
only depend significantly on the target total mass Mmax of
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FIG. 2. Top: density profile of the solutions with rt ¼ 2.5rc,
3.0rc, and 3.5rc for the massMmax ¼ 50. Bottom: rotation curves
of the three solutions. This result indicates that rt does not affect
the tail profile as long as the total mass is the same.

1e-05

0.0001

0.001

0.01

0.1

1

rt 10 100

�

r

core
Mmax = 10
Mmax = 20
Mmax = 40

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 rt 20 40 60 80 100

v R
C

r

Mmax = 10
Mmax = 20
Mmax = 40

FIG. 1. Top: density profile of the solutions with total mass
Mmax ¼ 10, 20, 40 and rmax ¼ 100. For r < rt the profile is
solitonic. Outside, for r ≥ rt, dotted lines correspond to the
profile obtained for the equilibrium solutions, whereas the solid
lines are the fittings of ρtail using the NFW formula (19) that
better fit the tail region. Bottom: rotation curves corresponding to
the three solutions, where the trend of higher velocity for bigger
mass can be noticed.
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the system and not on the transition radius rt that separates
core from tail.
Discontinuity of v. The phase S̄ is continuous at rt,

however its derivative is not due to the condition (16). We
show the real and imaginary parts of the wave function of
the solution in Fig. 3, knowing that Ψ ¼ ffiffiffi

ρ
p

eiS, where ρ
and S are the solutions of the system (11)–(16) for the case
with Mtailð100Þ ¼ 10. It can be observed that there is a
nondifferentiability at the sphere of radius rt where core
and tail are matched. One would feel tempted to avoid this
problem by manipulating the phase of the wave function of
the solitonic coreΨðr; tÞ ¼ eiωtψðrÞ, with ω the eigenvalue
of the ground state equilibrium solution [9], and one could
manipulate the phase with an appropriate t so that ImðΨÞ is
nonzero with the appropriate continuity at r ¼ rt. However
this would automatically imply that the phase S inside the
core is nonzero, and it would mean that the velocity there
would be nonzero as well, which is inconsistent with
stationarity of solitonic solutions [15].
Once we have seen that Mmax is the most influential

parameter on the solutions, we collect information that
depends on its value. We set rt ¼ 3.5rc and construct a
bundle of solutions for Mmax ∈ ½5; 50�. In Fig. 4 we show
the dependency of the constant A as function of the
boundary condition Mtailðrmax ¼ 100Þ ¼ Mmax, where the
curve follows a logarithmic profile.

III. EVOLUTION

As found in [13] for multimode solutions, there is an
intrinsic tension between the assumption of stationarity and
the result of the evolution. In or case, knowing that the
velocity in the tail is nonzero, it is expected that the motion
will affect the properties of the equilibrium solution. For the
study of evolution we interpolate our wave function ΨCT
(17), into a 3D domain, where we solve the fully time-
dependent equations in the Schrödinger frame (1) and (2)
using the code CAFE described in [17,18].

A. Numerical methods for the evolution

The evolution is carried out in a discrete domain described
with Cartesian coordinates Dd ¼ fðxi; yj; zkÞ∈D ¼
½xmin; xmax� × ½ymin; ymax� × ½zmin; zmax�jxi ¼ xmin þ ih; yj ¼
ymin þ jh; zk ¼ zmin þ khg where i; j; k ¼ 0; 1;…; N − 1,
h ¼ ðxmax − xminÞ=ðN − 1Þ is the spatial resolution and N
is the number of points along each spatial direction, whereas
time is discretized with tn ¼ nΔt where Δt is the temporal
resolution and n ¼ 0; 1;…; Nt with Nt the number of
evolution time steps. The system is evolved using the
Crank-Nicolson time-average, which is written as

�
1þ 1

2
iΔtĤnþ1

�
Ψnþ1 ¼

�
1 −

1

2
iΔtĤn

�
Ψn; ð21Þ

where Ψn ¼ Ψðtn; x⃗Þ and Ĥn ¼ − 1
2
∇2 þ Vn is the

Hamiltonian operator at time tn. For the solution of this
equation, we split kinetic and potential energies in a scheme
called “kick-drift-kick” step splitting:

Ψnþα ¼ 1 − 1
4
iΔtVnþ1=2

1þ 1
4
iΔtVnþ1=2 Ψ

n; ð22Þ

Ψnþβ ¼ F−1
�
1 − 1

4
iΔtk2

1þ 1
4
iΔtk2

F ðΨnþαÞ
�
; ð23Þ
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FIG. 3. At the top/bottom we show the real/imaginary part of
the wave function. Notice the nondifferentiability at rt ¼ 3.5rc
for the target massMtailð100Þ ¼ 10. This condition is the result of
joining the core solution in the region r < rt with the tail solution
in the region r ≥ rt.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5  15  25  35  45

|A
|

Mmax

numerical
fit profile

FIG. 4. Constant A as function of Mmax obtained from the
shooting method and the fitting with a log function.
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Ψnþ1 ¼ 1 − 1
4
iΔtVnþ1=2

1þ 1
4
iΔtVnþ1=2 Ψ

nþβ; ð24Þ

where the potential at time tn is obtained as

Vn ¼ −F−1
�
F ðjΨnj2 − hjΨnj2iÞ

k2

�
; ð25Þ

where Vnþ1=2 ¼ ðVnþ1 þ VnÞ=2 and

FfΨngðk⃗Þ ≔
Z
all space

Ψnðx⃗Þeik⃗·x⃗d3x; ð26Þ

is the Fourier transform, F−1 its inverse, k⃗ the wave number
vector and k ¼ jk⃗j its magnitude. The calculation of the
Fourier Transform and its inverse uses the Fast Fourier
Transform (fft) and its inverse (ifft), suitable for periodic
boundary conditions that are imposed on functionsΨ and V.
We use a periodic domain because it prevents matter from
escaping to infinity as discussed in [18] and used in [13].

B. Diagnostics

In order to monitor the evolution of the system we
calculate the total mass defined asM ¼ R

D jΨj2d3x, in order
to verify the behavior the of energy, we calculate the kinetic
energy K ¼ − 1

2

R
DΨ�∇2Ψd3x and the potential energy

W ¼ 1
2

R
D VjΨj2d3x, which are useful to obtain the total

energy K þW and the virilization function 2K þW.
Configurations evolved. We use the same three equi-

librium solutions described above, withMmax ¼ 10, 20, 40
and transition radius at rt ¼ 3.5rc, whose density pro-
files are those in Fig. 1. The simulation is carried out in
two spatial domain sizes, small D ¼ ½−20; 20�3 and big
D ¼ ½−40; 40�3, using spatial resolutions 40=63 and
80=127, respectively. The temporal domain is t∈ ½0; 600�
and time resolution is Δt ¼ 0.1 in all cases. We want to
stress the importance of the domain size in this type of
simulations, because its effects are barely discussed. In [18]
we elaborate about the effects of domain size on simu-
lations of various scenarios when using periodic boundary
conditions, chief among them the fact that the matter
outside a core redistributes differently in different domain
sizes. This is why density and interference patterns deve-
loped in the small big domains are necessarily different. We
use two box sizes precisely to demonstrate that average
density and average RCs do not vary significantly.
In order to have an idea of the domain solution in

physical units, for the boson mass and length scale used
above for illustration, small and big numerical domains are
cubic boxes of side 68.56 and 137.12 kpc respectively. The
time domain on the other hand translates 600 dimensional
units into 8.984 Gyr.
In Figs. 5 and 6 we show snapshots of jΨj2 at initial time

and t ¼ 600, for the evolution of the three solutions with

Mmax ¼ 10, 20, 40, illustrating the development of the
system in the small and big domains. The dynamics is
triggered by the initial radial velocity of the matter at the
tail region that perturbs the core and redistributes itself due
to the periodic boundary conditions, which produces the
typical interference observed in simulations of structure
formation simulations and collisions of multiple cores
[5,6,18,19].
In Fig. 7 we present the evolution of some scalars as

function of time, at the left/right we show diagnostics using
the small/big domain. The first row shows evolution of the
mass, which is conserved during the evolution. The second
row displays the total energy as function of time, which
after an initial transient the total energy remains approx-
imately constant over time. The third row depicts the
quantity 2K þW, which is initially zero but then increases
due to the initial transient, then it starts oscillating near
zero, which indicates that the configuration tends to
approach a virialized state again that we call the relaxed
configuration. Finally, the fourth row shows the density at
the origin as function of time, which after the initial

FIG. 5. Snapshots of the density jΨj2 at times t ¼ 0 and 600
for the evolution of equilibrium configurations with boundary
conditions Mmax ¼ 10 (top), 20 (middle), and 40 (bottom)
using transition radius rt ¼ 3.5rc. The spatial domain is
D ¼ ½−20; 20�3.
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transient oscillates regularly. The initial transient is due to
the fact that we set the constant A to be positive, thus the tail
velocity points toward the core, which produces an incom-
ing flow, compresses the core initially and the evolution is
followed by the expansion and stabilization around a virial
state. Notice that the bigger the value ofMmax the bigger the
amplitude of oscillations of central density and 2K þW.
The reason is that for bigger Mmax the tail is more massive
and therefore at initial time the momentum transferred to
the core is bigger, which adds a bigger perturbation to the
system.

C. Equilibrium solution vs relaxed solution

1. Density

We investigate the utility of equilibrium configurations
by studying their evolution and assessing how much the
matter distribution deviates from the initial profile. In Fig. 8
we show the density of the equilibrium configurations with

continuous lines and the average of relaxed configurations
with dashed lines. On the left column the results correspond
to the small domain D ¼ ½−20; 20�3, and on the right in the
big domain D ¼ ½−40; 40�3. The three rows correspond to
Mmax ¼ 10, 20, and 40, respectively. The differences
between the equilibrium and relaxed profiles are greater
for largerMmax. This can be explained because according to
Fig. 4, the shooting target constant A is a growing function
of Mmax, and hence vtail increases as A grows. Moreover,
the bigger the Mmax the bigger the mass of the tail and
therefore the momentum carried by the tail grows with total
mass and stronger the kick. In the end, the density and
rotation curves of the relaxed configuration deviate more
from the equilibrium solution for larger Mmax.

FIG. 6. Snapshots of the mass density at times t ¼ 0 and 600
for the evolution of equilibrium configurations with boundary
conditions Mmax ¼ 10 (top), 20 (middle), and 40 (bottom) are
shown with transition radius of rt ¼ 3.5rc. The spatial domain is
D ¼ ½−40; 40�3.
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FIG. 7. Scalars monitored during the evolution in the small
domain D ¼ ½−20; 20�3 (left column) and big domain D ¼
½−40; 40�3 (right column). In the first row, the mass as function
of time that shows preservation. In the second row, the total
energy shows an initial transient and afterwards remains approx-
imately constant. In the third row, the quantity 2K þW illustrates
how the system is initially virialized, gets distorted during the
initial transient and later on it oscillated near a virialized state. In
the fourth row the central density shows that initially the
configuration collapses, then expands and approaches a value
close to its initial value.
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2. Rotation curves

We also analyze RCs of equilibrium and relaxed
configurations. Figure 9 displays the rotation curves in
the left column for the small domain and the right column
for the large domain. The top, middle, and bottom panels
correspond to the initial data corresponding to our solutions
with Mmax ¼ 10, 20, and 40, respectively. The black lines
represent the rotation curve of equilibrium configurations,
whereas the dashed lines are the average in time RCs of the
relaxed configurations. At the bottom we show the relative
deviation between the two. Notice also that the deviation is
bigger for the bigger values of Mmax.

D. Core-halo scaling relation

This relation between various scalars of a configuration
is expressed in a relation between the core mass Mcore, the
total mass of the system, in our case that of the core-tail
system M ¼ Mmax, and the total energy of the system E:

Mcore

M
¼ βΞα; ð27Þ

where β is some constant, Ξ ¼ jEj
M3 ð ℏ

GmÞ2 in physical units,

and Ξ ¼ ð4πÞ2 jEj
M3 in code units. The exponent α has been

found to have different values, depending on the method
used to arrive at the core-tail configurations.
The CT solutions constructed in this paper have a scaling

such that α ∼ 1=3 as illustrated in Fig. 10. This behavior is
consistent with the core-halo scaling relation found in [6]
from the collision of many solitons randomly distributed
and consistent also with the collision of many solitons
under specific conditions in [12]; it is also consistent with
the exponent found in [20,21] resulting from the spherical
collapse.
The core-halo scaling relation is expected to change for

the relaxed solution as consequence of the initial kick of the
velocity field of the tail on the core, as seen in Fig. 7.
During the evolution the value ofMcore changes in time due
to oscillations of the core and M is domain size dependent
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FIG. 8. In these plots, continuous/dashed lines correspond to
the density of equilibrium/relaxed configurations. The left
column shows the density when using the small domain
D ¼ ½−20; 20�3, and the right one displays the results using
the big domain D ¼ ½−40; 40�3. The first, second, and third rows
correspond to the cases withMmax ¼ 10, 20, and 40, respectively.
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FIG. 9. In these plots, continuous/dashed lines correspond to
the RCs of equilibrium/relaxed configurations. The left column
shows the density when using the small domain D ¼ ½−20; 20�3,
and the right one displays the results using the big domain
D ¼ ½−40; 40�3. The first, second, and third rows correspond to
the cases withMmax ¼ 10, 20, and 40, respectively. At the bottom
row we plot the relative difference between the RC for the
equilibrium and relaxed configurations. In physical units, for the
example worked out in the text, one has to multiply vRC by
112 km=s and r by 1.714 kpc.
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because in the small domain ½−20; 20�3 the portion ofMmax
that fits within the domain is smaller than the portion in the
big domain ½−40; 40�3. Analogously, the integration of
energy is also domain size dependent. The results in
Fig. 10 for the relaxed configurations indicate the initial
equilibrium configurations evolve toward a set of configu-
rations that scalewith α ¼ 0.54 independently of the domain
size. In order to comparewith other analyses, we note that the
range of Mc=M values in Fig. 10 is within 10−2–10−1, one
order of magnitude below the studies of multimergers in
[6,12] based on multimerger scenarios, whereas our range
intersects with values for binarymerger based studies in [22].
It is also important to note that this α holds for the scaling
relations in, e.g., [6,12,22,23], and is not the exponent of
scaling relations in, e.g., [24], where α ∼ 0.5 from SFS, or in
[10], where also a different scaling relation is used.

IV. CONCLUSIONS

We have constructed core-tail solutions of the SP system
with spherical symmetry. The family of solutions is para-
metrized by the total mass of the configuration Mmax.
While the core is stationary, like ground state equilibrium

solutions, the tail has a nonzero velocity. When these

solutions evolve, they evolve and accommodate around a
relaxed configuration that oscillates around a virialized
state. The average density of these relaxed configurations
preserves the core-tail structure although with a devi-
ation from the profile of initial equilibrium solutions.
This deviation is bigger for the bigger total mass of the
system Mmax.
The motivation to construct these equilibrium solutions

is that they may serve as realistic halo models, simpler than
those constructed with large superposition of modes in [13]
and much simpler than those obtained in SFS. However,
between the initial equilibrium solutions and relaxed
solutions, the latter seem to be the more consistent with
those observed in SFS [24] and multisoliton mergers
[6,19]; unfortunately they need evolution and thus are
not as cheap anymore. This fact restricts the original
optimistic applicability of easy-to-construct large catalogs
of equilibrium solutions that could be used to fit rotation
curves. Nevertheless, equilibrium solutions are similar to
relaxed ones for small Mmax, a regime where equilibrium
solutions can be used due to their similarity to relaxed ones.
In our examples, differences between equilibrium and
relaxed configurations are small for Mmax as big as 10, a
case where the core-halo mass ratio is of order ∼0.2,
namely, scenarios where the tail well dominates over the
core. All cases with smaller Mmax include bigger core-halo
mass ratios, meaning that the core dominates and therefore
the influence of the tail is even smaller, which implies
equilibrium and relaxed solutions are even more similar.
Finally, we also study the core-halo scaling relation. We

found that equilibrium solutions scale with exponent
α ¼ 1=3, whereas the sample used to illustrate the evolu-
tion of equilibrium configurations decay into a set that
scales with exponent α ¼ 0.54.
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