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In this paper we study the production of primordial black holes (PBHs) from inflation in order to
explain the dark matter (DM) in the Universe. The evaluation of the fractional PBHs abundance to DM is
sensitive to the value of the threshold δc and the exact value of δc is sensitive to the specific shape of the
cosmological fluctuations. Different mechanisms producing PBHs lead to different thresholds and hence
to different fractional abundances of PBHs. In this study, we examine various classes of inflationary
models proposed in the existing literature to elucidate the formation of PBHs and we evaluate numerically
the associated threshold values. Having evaluated the thresholds we compute the abundances of PBHs to
DM using the Press-Schecter approach and the peak theory. Given the influence of different power spectra
on the thresholds, we investigate whether these inflationary models can successfully account for a
significant fraction of DM. Moreover, we provide suggested values for the critical threshold. By
examining the interplay between inflationary models, threshold values, and PBH abundances, our study
aims to shed light on the viability of PBHs as a candidate for DM and contributes to the ongoing
discussion regarding the nature of DM in the Universe.
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I. INTRODUCTION

Dark matter (DM) is considered as one of the biggest
problem in cosmology. Recent observations, such as
the detection of gravitational waves emitted by a binary
black hole merger [1–5], have reignited interest in the
possibility that primordial black holes (PBHs) could
constitute a significant fraction of DM. The idea of
PBHs was proposed in the 1970s by Hawking and
Carr [6,7]. The renewed detection of gravitational waves
has revitalized the exploration of the connection between
DM and PBHs.
In particular, there are numerous theoretical studies on

the formation of PBHs from inflationary models, such as
Refs. [8–42]. According to these studies an enhancement
in the power spectrum at small scales can lead to PBHs
formation, which could explain a significant fraction
of DM (or even the whole DM) in the Universe.
Many of these models are based on single field inflation
with a near inflection point in the scalar potential, such as
those of Refs. [11–23]. The drawback of these models is
that a lot of fine-tuning in the underlying parameters is
required. Other models with two-field inflation have been
proposed [8,24–30]. For instance, hybrid models have
been intensely studied in the literature [9,10,31,32]. The
formation of PBHs in the majority of these models takes
place in the radiation dominated epoch. In our study we
only consider this class of models.

The formation of PBHs occurs when a cosmological
perturbation collapses to a black hole if its amplitude δ
exceeds a certain threshold value δc. Early analytical
estimates of δc were based on a simplified Jeans length
approximation, which gives δc ∼ w, where w is the equa-
tion of state [43]. More recent studies have refined this
value by incorporating the theory of general relativity,
obtaining δc ∼ 0.4 in the radiation dominated era [44].
However, this analytical computation provides only a lower
bound because it does not account for nonlinear effects.
Full numerical relativistic simulations are required to fully
capture these effects, which recent studies have shown to be
dependent on the initial curvature profile, with 0.4 ≤ δc ≤
2=3 [45–52]. Significant progress has been made in under-
standing the mechanism of PBH formation through detailed
spherically symmetric numerical simulations that incorpo-
rate a non-linear approach [53–63].
It was previously remarked that the threshold for PBHs

formation depends on the specific mechanism of inflation
and the properties of the collapsing object, such as its mass,
size, and initial density profile [47,53–55,59,64,65]. In
addition to that, the abundances of DM from PBHs are
extremely sensitive to the threshold and the exact value of
the peak. In other words, the shape of the power spectrum
leads to a different threshold and hence to a different
abundance of PBHs to DM [46]. In the aforementioned
inflationary models an acceptable value of the threshold is
used and the fact that the critical threshold is depended on
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the shape of the power spectrum was neglected. As the
evaluation of the fractional abundance of PBHs is crucial
depended on the threshold and this threshold depends on the
power spectrum, we believe that it should be tested that
these models can indeed explain a significant fraction of
DM. Therefore, as the exact value of the threshold has an
important role in the calculation, it can lead to either ruling
out or not inflationary models for producing PBHs as DM.
In this study we evaluate numerically the threshold

for some classes of inflationary models presented in the
literature. Specifically, we study the thresholds for the case
of two inflation model with a noncanonical kinetic term [8],
the case of hybrid model [9,10] and the case of a single field
with an inflection point [18]. Having these values for the
threshold we evaluate the abundance of PBHs to DM.
Instead of having an acceptable value for the threshold, we
evaluate numerically these thresholds for each case. The
advantage of these three models is that they allow the
calculation of the evaluation of the critical threshold for just
one parameter. One parameter dependence is needed in
order to avoid a complicated numerical evaluation of the
threshold from a power spectrum of a given model. Other
models provided in the literature with same shapes of the
power spectrum may not lead to one-to-one comparison of
the shape and the critical threshold, as many parameters can
change the results. However, the results of the critical value
can be applied to the other models with similar shape of
power spectrum. In this study, we can conclude if these
models can predict a significant fraction of DM and we can
propose a value for the threshold for those models.
The layout of this paper is as follows: in Section II we

present the basic aspects for the threshold δc. In Sec. III we
show the evaluation of δc for a given power spectrum. In
Sec. IV we present the calculation of the abundances of
PBHs. In Sec. V we present the application of the previous
analysis to inflationary models and especially to two field
models, hybrid models and models with an inflection point.
Finally, we draw our conclusions in Sec. VI.

II. THE THRESHOLD δc

In this section we introduce the threshold of PBHs.
Generally, the threshold for PBHs is determined by the
density fluctuations in the early Universe, which can
collapse under their own gravity to form black holes if
they exceed a certain threshold value.
The PBHs are formed from cosmological fluctuations

after reentering the horizon. Under the assumption of
spherical symmetry, the spacetime metric on the super-
horizon scales can be given as

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − KðrÞr2 þ r2dΩ2

�
¼ −dt2 þ aðtÞ2 expð2ζðr̂ÞÞ½dr̂2 þ r̂2dΩ2� ð1Þ

where aðtÞ is the scale factor and K and ζðrÞ are the
conserved comoving curvature perturbations defined at the
superhorizon scales. Combining these expressions we have:

KðrÞr2 ¼ −r̂ζ0ðr̂Þð2þ r̂ζ0ðr̂ÞÞ: ð2Þ

and the coordinates r and r̂ are connected as follows:

r ¼ r̂ exp ðζðr̂ÞÞ
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − KðrÞr2
p ¼ exp ðζðr̂ÞÞdr̂: ð3Þ

As shown in [47,53–55,59] the shape of cosmological
perturbations is related to the K and ζðrÞ and so they are
related to the power spectrum PR. In other words, different
scalar power spectrum profiles can result in varying
thresholds.
The energy density profile is defined from:

δρ

ρb
≡ρðr; tÞ− ρbðtÞ

ρbðtÞ
¼ fðwÞ

�
1

aH

�
2
�
KðrÞþ r

3
K0ðrÞ

�
ð4Þ

where H is the Hubble parameter, ρb is the mean back-
ground energy density and fðwÞ is

fðwÞ ¼ 3ð1þ wÞ=ð5þ 3wÞ ð5Þ

with w is the equation of state w ¼ p=ρ.
The criterion to define the PBHs formation can be given

at the peak of the compactification function, which is
defined as follows:

C≡ 2
δM

Rðr; tÞ ð6Þ

where R is the areal radius and δM ¼ Mðr; tÞ −Mbðr; tÞ. M
is the Misner-Sharp mass and Mbðr; tÞ ¼ 4πρbR3=3. If we
define the expansion parameter ε as follows

ε ¼ 1

aðtÞrmHðtÞ ¼
1

aðtÞr̂m expðζÞHðtÞ ð7Þ

one can express the compactification function C at the
leading order Oðε3Þ of the gradient expansion of Misner-
Sharp equations as follows [49,55,66,67]:

C ≃ fðwÞKðrÞr2 ¼ fðwÞð1 − ½1þ r̂ζ0ðr̂Þ�2Þ: ð8Þ

The expression of energy density profile is valid if ε ≪ 1.
Finally, the threshold δc is equivalent to the peak value of
the compactification function, δc ¼ Cðr̂mÞ. Fluctuations
with amplitude δm bigger than the threshold, δm > δc, can
collapse to form PBHs, otherwise fluctuations with δm <
δc cannot lead to PBHs formation.
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Having the assumption of spherically symmetric
perturbation we define the dimensionless shape parameter
q [47,48] as:

q ¼ −
C00ðrmÞrm2

4CðrmÞ
: ð9Þ

and in terms of r̂ it takes the form:

q ¼ −
C00ðr̂mÞr̂2m

4Cðr̂mÞð1 − Cðr̂mÞ
fðwÞ Þ

: ð10Þ

This parameter is characterized from the width of the peak
of the compactification function. We remark here that
different profiles with same parameter q have the approxi-
mated same threshold δc in the case of radiation epoch [48].

III. THE ESTIMATION OF THE THRESHOLD

There is a number of works where an analytical
expression for the threshold δc was studied [7,45,48]. In
our study we use this of Ref. [48]. In this section, we
summarize the evaluation of the threshold for a given scalar
power spectrum PR. As we remarked previously, the shape
of the power spectrum leads to a different threshold. This
analysis is presented in Refs. [45–49].
In general, the power spectrum is given by

PRðkÞ ¼
k3

2π2
jRj2 ð11Þ

with R the curvature perturbation and k is the comoving
wave number. A concise analysis of the power spectrum
evaluation will be presented later. In this section we follow
the steps of Ref. [49] in order to obtain the threshold δc for a
given power spectrum. An equivalent analysis is presented
in Ref. [45].
In order to obtain the threshold, one should consider the

two point correlation function as:

gðr̂Þ ¼ 1

σ20

Z
∞

−∞

dk
k
sinðkr̂Þ
kr̂

PRðkÞ: ð12Þ

with

σ20 ¼
Z

∞

−∞
dk

PRðkÞ
k

: ð13Þ

The Eq. (12) connects the scalar power spectrum PR with
the two point correlation function.
As a first step in the calculation of the δc, we should

locate the maximum value of the compactification function
r̂m. The value of r̂m can be obtained by the root of the
following equation:

ζ0ðr̂mÞ þ r̂mζ00ðr̂mÞ ¼ 0 ð14Þ

where μ is the amplitude of curvature fluctuation and it is
given as follows:

μ ¼ ζðr̂Þ=gðr̂Þ ð15Þ

or

μ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Cðr̂mÞ=fðwÞ

p
− 1

g0ðr̂mÞr̂m
: ð16Þ

The critical amplitude, μc, is obtained at CðrmÞ ¼ δc.
In order to obtain the threshold we define the function

Gðr̂mÞ ¼
g0ðr̂mÞ − r̂2mg000ðr̂mÞ=2

g0ðr̂mÞ
: ð17Þ

The threshold δc can be given from the following
expressions:

q¼GðrmÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−δcðqÞ=fðwÞ
p 1

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δcðqÞ=fðwÞ

p Þ ð18Þ

where δc is given:

δc ¼
4

15
e−1=q

q1−5=2q

Γ
�

5
2q

�
− Γ
�

5
2q ;

1
q

� : ð19Þ

The dimensionless parameter q given in Eq. (18) is the
shape parameter and it is defined as the shape around
the peak of the compactification function given previously
in Eq. (9). The Eq. (19) is an analytical expression to
calculate the threshold δc as a function of the shape
parameter q in radiation era [48]. Finally, Γ is the incom-
plete gamma function.

IV. THE PBHs PRODUCTION

Until now, we have introduced the evaluation of the
thresholds δc. As we study the possibility of PBHs to
explain the DM, we introduce the evaluation of the fraction
of PBHs to DM, fPBH. In this section we summarize the
calculation of fPBH.
The present abundance of PBHs is given by the integral:

fPBH ¼
Z

d lnM
ΩPBH

ΩDM
ð20Þ

and the fractional abundance of PBHs to DM is
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ΩPBH

ΩDM
¼βðMPBHðkÞÞ

8×10−16

�
γ

0.2

�
3=2
�
gðTfÞ
106.75

�−1=4�MPBH

10−18g

�
−1=2

;

ð21Þ

where β is the mass fraction of Universe to collapse to
PBHs, γ is the correction factor which depends on the
gravitational collapse, MPBH is the mass of PBHs and gðTfÞ
is the effective number of degrees of freedom when the
PBHs are produced. The mass of PBHs, MPBH, is asso-
ciated with the mass inside the Hubble horizon as:

MPBH ¼ γMH ¼ γ
4

3
πρH−3 ð22Þ

where ρ is the energy density of the Universe during the
collapse. The MPBH is given as

MPBH ¼ 1018
�

γ

0.2

��
gðTfÞ
106.75

�−1=6� k
7 × 1013 Mpc−1

�
−2
g:

ð23Þ

We choose γ ¼ 0.8 and g� ¼ 106.75 [43].
The variance of curvature perturbation σδ is related to the

power spectrum by the following expression:

σ2δðMPBHðkÞÞ ¼
4ð1þ wÞ2
ð5þ 3wÞ2

Z
dk0

k0

�
k0

k

�
4

PRðk0ÞW̃2

�
k0

k

�
ð24Þ

and for the ith spectral momentum the smoothed density is
give as:

σ2i ðMPBHðkÞÞ¼
4ð1þwÞ2
ð5þ3wÞ2

Z
dk0

k0

�
k0

k

�
4

ðk0Þ2iPRðk0ÞW̃2

�
k0

k

�
ð25Þ

where the equation of state, w, in radiation dominated
epoch is equal to 1=3. W̃ðk0kÞ is the Fourier transform of the
window function. In the following we assume a Gaussian
window function.
The fraction β can be evaluated with the Press Schecter

approach (PS) [68] or with the peak theory (PT) [46,69–71].
In PS approach the mass fraction, βPS, is given by the
probability that the overdensity δ is above a certain thresh-
old of collapse, denoted as δc. To estimate the probability
of PBHs formation and establish a connection between
the collapse threshold and the power spectrum, we make the
assumption that curvature perturbations can be described by
Gaussian statistics. This assumption allows us to analyze the
formation probability of PBHs and investigate how it relates
to the characteristics of the power spectrum. The fraction
βPS for this approach reads as:

βPSðMPBHÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2δðMÞ
p Z

∞

δc

dδe
−δ2

2σ2
δ
ðMÞ ¼ 1

2
Erfc

�
δcffiffiffi
2

p
σδ

�
:

ð26Þ

The Eq. (26) is computed using the incomplete gamma
function:

βPSðMPBHÞ ¼
Γ
�
1
2
; δ2c
2σ2δ

�
2
ffiffiffi
π

p : ð27Þ

The PS approach has been found to underestimate the
fractional abundances of PBHs by approximately two
orders of magnitude [18,72]. For this reason we consider
the PT as well. The peak number density is given by

npeak ¼
Z

∞

νc

N ðνÞdν¼ σ2
3

ð2πÞ2ð ffiffiffi
3

p
σ1Þ3

Z
∞

νc

dνG̃ðκ;νÞe−ν2=2

ð28Þ

where ν≡ δ=σ0 and νc corresponds to this value at the
threshold δc. The function G̃ is given from:

G̃ðκ; νÞ ¼
Z

∞

0

fðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − κ2Þ

p exp

�
−
ðx − κνÞ2
2ð1 − κ2Þ

�
dx ð29Þ

where

f ¼ x3 − 3x
2

" ffiffiffi
5

2

r
x

!
þ
 ffiffiffi

5

8

r
x

!#

þ
ffiffiffiffiffiffi
2

5π

r ��
31x2

4
þ 8

5

�
e−5x

2=8 þ
�
x2

2
−
8

5

�
e−5x

2=2

�
:

ð30Þ

The mass fraction in PT is given from:

βPT ¼ 1ffiffiffiffiffiffi
2π

p
�

σ2
ðaHÞð ffiffiffi

3
p

σ1Þ

�
3
Z

∞

νc

G̃ðκ; νÞ exp
�
−
ν2

2

�
dν:

ð31Þ

A recent approximation gives good results in comparison
with the exact numerical PT [72]. According to this
approximation the βPT function can be approximated by:

βappr ¼
1ffiffiffiffiffiffi
2π

p Q3ðνc2 − 1Þ exp
�
−
ν2c
2

�
ð32Þ

where Q ¼ σ1=ðaH
ffiffiffi
3

p
σδÞ. In the following we will use this

approximation.
As we can notice in this section from the mass fraction β

is sensitive to the exact value of the threshold. In both
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studies of PS and PT, Eqs. (27) and (31), the value of β and,
hence, the value of the fPBH is exponentially sensitive to the
value of the threshold δc. A slightly different threshold can
give different results and that is the reason for the numerical
evaluation of the threshold.

V. THRESHOLD IN INFLATIONARY MODELS

In this section we present the calculation of the threshold
δc for different classes of models proposed in the literature,
which are a two-field model with a noncanonical kinetic
term, a hybrid model with a waterfall trajectory and a model
with an inflection point in the effective scalar potential.
Specifically, in the hybrid model the parameters can be
combined to just one parameter, which will be introduced
later, defined as Π, as it is suggested in [9]. Hence, with just
one parameter we can derive the height and width of power
spectrum. For the other two models the parameters which
are needed for fixing the width and height of the power
spectrum is b1;2 [8,18]. The other parameters fix the position
of the power spectrum and they are important in order to
have a good explanation of the abundances of PBHs to dark
matter at the window of ½10−16–10−10� M ⊙ and simulta-
neously fitted with the observable constraints of inflation at
CMB scales [18]. However, they do not affect the height
and width. So, we examine if these models can predict a
significant fraction of DM. We define the parameter of each
mechanism, which is responsible for the height and width of
power spectrum. Finally, we evaluate the threshold and we
propose a value in order these models can explain the
maximum of PBHs abundances.

A. Threshold in two field model with
noncanonical kinetic term

In this section we evaluate the threshold and the abun-
dance of PBHs to DM by the two-field model studied in
Ref. [8]. This two-field model is characterized by two stages
of inflation with a large noncanonical kinetic coupling,
which connects the two fields [8,24–28]. The perturbations
at small scales are dramatically enhanced by the sharp
feature in the form of nonminimal coupling.
In particular, the action of a two-field toy model is given

by the expression:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R−

1

2
ð∂ϕÞ2 − e−b1ϕð∂χÞ2 þ Vðϕ; χÞ

�
ð33Þ

where MP is the reduced Planck mass. The potential is
given as follows:

Vðϕ; χÞ ¼ V0

ϕ2

ϕ2
0 þ ϕ2

þm2
χ

2
χ2 ð34Þ

where ϕ is a canonical scalar field, χ is a noncanonical
scalar field and b1 an interaction between the fields. V0, ϕ0,

and mχ are parameters. In the following we consider the
choices of parameters in [8]: V0=ðmχMPÞ2 ¼ 500 and

ϕ0 ¼
ffiffiffi
6

p
MP.

As we mentioned before, for the computation of δc we
need as a first step to evaluate the primordial power
spectrum. The power spectrum is evaluated numerically
by solving the perturbation of the fields. For this reason we
briefly refer to this evaluation. The equations below are
written for n-fields, but one can easily obtain those for one
or two fields. More details can be found in [73].
Generally, the equation of the fields φi using e-fold time

is given from (we work in MP ¼ 1):

φ̈cþϒc
abφ̇

aφ̇bþ
�
3−

1

2
σ̇2
�
φ̇cþ

�
3−

1

2
σ̇2
�
Vc

V
¼ 0 ð35Þ

where dots represent the derivative in respect to e-fold time
and indices i ¼ a; b; c represent derivatives with respect
to the field. ϒc

ab denotes the Christofel symbol in respect to
the fields:

ϒc
ab ¼

1

2
GcdðGda;b þGdb;a −Gab;dÞ; ð36Þ

where Gij is the field metric. By σ̇ we denote the velocity
field which is given as follows:

σ̇2 ¼ Gabφ
aφb: ð37Þ

The Hubble parameter is given by:

H2 ¼ V

3 − 1
2
σ̇2

ð38Þ

and the slow-roll parameter ε1 is given from:

ε1 ¼
1

2
σ̇2: ð39Þ

The equation for the perturbations δφ2 of the fields are
given by:

δφ̈c þ ð3 − ε1Þδφ̇c þ 2ϒc
abφ̇

aδφ̇b

þ
�
ϒc

ab;dφ̇
aφ̇b þ Vc

d

H2
−GcaGab;d

Vb

H2

�
δφd

þ k2

a2H2
δφc ¼ 4Ψ̇ φ̇−2Ψ

Vc

H2
ð40Þ

and the equation for the Bardeen potential Ψ is given by:

Ψ̈þ ð7 − ε1ÞΨ̇þ
�
2
V
H2

þ k2

a2H2

�
Ψ ¼ −

Vc

H2
δφc: ð41Þ
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In this analysis we suppose that we are initially in Bunch-
Davies vacuum. The power spectrum is given from the
equation:

PR ¼ k3

ð2πÞ2 ðRi
2Þ ð42Þ

where

Ri ¼ ΨþH
XNfields

i

φ̇iδφi

φ̇i
2

: ð43Þ

In Fig. 1 (left panel) we show the power spectrum for
different values of the parameter b1 given in the kinetic term
of the action (33). As one can notice the peak height and the
width of the power spectrum depend on the parameter b1.
For the given power spectra we evaluate the value of the
threshold following the steps of the Section III. The
threshold, which is finally given from the Eq. (19), is
depicted in the right panel of Fig. 1 as a function of b1 (black
line). Therefore one can notice that different profiles of
power spectrum lead to different thresholds δc.
Finally, we evaluate the abundance of PBHs to DM using

the PT formalism in Eq. (20). In the right panel of Fig. 1 we
present the specific choice of the value of the b1 in order to
explain the whole amount of DM (orange dashed line). We
observe that this model requires a threshold at around
δc ¼ 0.515. It is also imperative to verify that the fractional
abundance ΩPBH=ΩDM, given in Eq. (21), does not exceed
1. In the specific case we have investigated, the value
slightly surpasses 1, leading to the need to explore smaller
but notable abundances. Therefore, for obtaining the maxi-
mum DM we need a slighter smaller power spectrum and
thus a slighter smaller threshold. To sum up, this infla-
tionary mechanism with two fields and a large coupling,
which connects these two fields, can explain a significant
amount of DM from PBHs formation.

B. Threshold in hybrid model

Hybrid models for explaining the PBHs have already
been proposed [9,10]. According to these models, large
curvature perturbations can be generated during a mild
waterfall trajectory. In particular, these models are in the
framework of two field inflation, where one field acquires
tachyonic solution in the critical point and the other, which
plays the role of the inflaton, becomes unstable. The
analysis of the background dynamics is decomposed in
two phases: a slow-roll phase until the critical point and a
second waterfall phase till the end of the inflation. The
calculation of the inflationary observables during these
phases has been performed analytically in the slow-roll
approximation [9,74]. In this section we present the two
field hybrid model [10] for explaining the DM and we
evaluate the δc and then the abundances of PBHs to DM.
The F-term hybrid model in the globally supersymmetric

renormalizable superpotential reads as follows [75–77]:

W ¼ κS
�
Ψ1Ψ2 −

M2

2

�
; ð44Þ

where Ψ1, Ψ2 are chiral superfields, the scalar component
of the superfield, S is the gauge singlet inflaton field, κ is a
dimensionless coupling constant and M is a mass. The
scalar potential in hybrid models is given from

VSUSY
F ¼ Λ

��
1 −

ψ2

M2

�
2

þ 2ϕ2ψ2

M4

�
; ð45Þ

where we have assumed Λ ¼ κ2M4=4. In order to fix the
noncanonical kinetic term we have jSj ¼ ϕ=

ffiffiffi
2

p
and

jΨ1j ¼ jΨ2j ¼ ψ=
ffiffiffi
2

p
. The potential is flat along the

direction ψ ¼ 0, jϕj > jϕcj ¼ M and is given by a constant
value for the energy density V ¼ κ2m4. The field ψ
develops tachyonic solutions if

FIG. 1. Left: primordial power spectrum for different values of b. Right: the value of δc versus the value of the b1. The dashed line
corresponds the choice of parameter b1 in order to define all the dark matter in the Universe.
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κ2ð−M2 þ ϕ2 þ 6ψ2Þ < 0: ð46Þ

Along the flat direction this condition becomes:

ϕ2
c < M2: ð47Þ

The value of the field ϕc denotes the critical point, as below
this value the field develops tachyonic solutions. The
inflaton ϕ field moves through the valley until it reaches
the critical point. After that the other field, which is called
waterfall, acquires tachyonic solution and the inflaton
moves through the waterfall. Finally, the inflation ends
in false vacuum. A potential which leads to enhancement of
power spectrum and is derived from hybrid model is given
as follows [9,10]:

Vhybrid ¼ Λ
��

1 −
ψ2

M2

�
2

þ 2ϕ2ψ2

M4
þ a1ðϕ − ϕcÞ

þ a2ðϕ − ϕcÞ2
�

ð48Þ

where a1 and a2 are dimensionful parameters. These
parameters play a crucial role in shaping the characteristics
of the potential and directly influence the behavior of the
system at the critical point
The power spectrum of this two-field potential can

be analytically estimated by employing the slow-roll
approximation and dividing the solution into two distinct
phases [9,74]. In the first phase, inflation is solely driven by
the inflaton, while the influence of the other field is
considered negligible. However, as the inflationary process
progresses, the terms associated with the other field gradu-
ally begin to dominate, leading to a significant impact on the
dynamics of the system and this signifies the onset of the
second phase. The approximated power spectrum is given
from the following expression [9]:

PR ¼ 1

4π2
Λ

3M2
P

 
1

a21M
4
P
þ M4

64M4
Pξ

2
2ψ

2
k

!

≈
1

4π2
Λ

3M2
P

M4

64M4
Pψ

2
kξ

2
2

: ð49Þ

where

ξ2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1χ2M

p
2

; with χ2 ¼ ln

�
M3=2 ffiffiffiffiffi

a1
p

2ψ0

�
: ð50Þ

and

ψk ¼ ψ0eχk ; with

χk ¼
4a1M4

P

M3

 
χ1=22 M3=2

2M2
p
ffiffiffiffiffi
a1

p þ Mϕc
1=2

4M2
Pa

1=2
1 x1=22

− N

!
2

: ð51Þ

The approximation (49) is in good agreement with the
numerical evaluation of the power spectrum, as it is shown
in Refs. [9,10]. For this reason we use this expression for the
computation of the thresholds. Interestingly, it is possible to
characterize any of the quantities in this expression by the
combination Π:

Π ¼ M
ffiffiffiffiffi
ϕc

p
M2

P
ffiffiffiffiffi
a1

p : ð52Þ

Hence in the next we use this parameter for the evaluation of
the threshold.
In the left panel of Fig. 2 we depict the power spectrum of

Eq. (49) for different values of the parameter Π. We plot the
spectra in respect to the comoving wave number k, which is
connected to the number of e-folds as k ¼ k�eN and k� is
the pivot scale. In the right panel of Fig. 2 we repeat the
calculation for the threshold δc analyzed in Sec. III. It is
evident that larger values of the power spectrum width lead
to a decrease in the corresponding threshold. This result

FIG. 2. Hybrid model. Left: The power spectrum for different values of Π. Right: The value of δc versus the value of the Π.
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aligns with the findings of Ref. [45], where the study
focuses on the Gaussian and lognormal power spectrums.
As the width of the power spectrum increases, the shape
parameter q decreases, indicating that the participation of
multiple modes in the collapse results in a flatter compac-
tification function [45].
Through this work we used PT instead of PS approach. To

illustrate the contrast between these two methodologies we
present a comparison in Fig. 3 of how the fPBH varies with
respect to the parameter Π. In this figure we display the
computed PBH abundance using both the PS (blue line)
and PT (orange line) approaches. Remarkably, a significant
disparity emerges between the PS approach and PT. When
employing the PS approach, it is shown that we cannot
explain a remarkable amount of DM. The fraction abun-
dances increase as the value of Π decreases. However, in
order to have such abundances we need the peak less than
10−8 and these regions are restricted from microlensing for
Subaru (HSC), Eros=Macho=Ogle [78–80], ultra faint dwarf
(UFD) [81] and CMB measurements [82].
In contradiction to PS approach, we observe a notable

fraction ofOð1Þ with the PT at the values of Π ¼ 18. These
findings highlight the effectiveness of the PTapproach, as it
offers the opportunity to potentially explain even the whole
DM, thus yielding valuable insights for further exploration
and analysis. Moreover, it is of utmost importance to ensure
that the maximum value of the ratio ΩPBH=ΩDM does not
exceed 1. In this particular instance, we have determined
that this value is lower than one, and so we can elucidate the
whole DM content. Therefore, the hybrid models can
obtain even the whole DM and the value of the threshold
can be at around δc ¼ 0.51.

C. Threshold in model with an inflection point

An intriguing possibility in the framework of inflation is
that the existence of an inflection point in the single field

potential could provide an explanation for the generation of
PBHs and subsequently account for a significant portion of
the DM in the Universe. This mechanism arises when the
slow-roll parameter, represented by ε1 in Eq. (39), acquires
a substantial value, resulting in the violation of the slow roll
approximation. Importantly, this parameter remains below
one, allowing inflation to continue. Following this, a phase
emerges where the inflaton remains nearly constant, lead-
ing to a local amplification. During this plateau, the power
spectrum experiences enhancement, facilitating the pro-
duction of PBHs during the radiation-dominated phase of
the early Universe. A lot of works have adopted the idea of
an inflection point Refs. [8–21].
In many previous works, a value of δc in the range of

acceptance has been used. Generally, one can find the exact
value of δc for these models and then with fine tuning of the
parameters which give the peak height, they can have a
significant fraction of DM. For the study of single field
inflation with an inflection point we present the model [18].
Similar result one can obtain for other models as well.
The model in Ref. [18] is embedded in no scale super-

gravity theory. The Kähler potential and superpotential are
given from Eqs.:

K ¼ −3 ln
�
1 −

jy1j2
3

−
jy2j2
3

�
;

W ¼ m

�
−y1y2 þ

y2y21
l
ffiffiffi
3

p
�
ð1þ c2e−b2y1

2

y12Þ ð53Þ

where y1 and y2 are chiral fields and l, b2 and c2 are
parameters. The inflationary direction can be fixed assum-
ing one field of these fields as the inflaton and the other as
the modulo one. The analysis is presented in Refs. [83,84].
The scalar potential V can be expressed in terms of the
Kähler potential, K and the superpotential W:

V ¼ eK=MP
2

�
ðK−1Þi

j

�
Wj̄þWKj̄

MP
2

��
W̄iþ

W̄Ki

MP
2

�
−
3jWj2
MP

2

�
ð54Þ

where ðK−1Þij̄ is the inverse of Kähler metric and Ki ¼
∂K=∂Φi. After the evaluation of the potential and concern-
ing the noncanonical kinetic term of the Lagrangian, one
can obtain an inflection point in the effective scalar
potential. One should also take into account specific values
for the parameters in order to obtain significant peaks at
small scales in the effective scalar potential. In this analysis
we adopt the parameters of Ref [18].
In Fig. 4 (left panel) we depict the power spectrum as a

function of the comoving wave number k for different
choice of the parameter b. One can notice that a lot of fine
tuning is required for obtaining a capable peak height of the
power spectrum. For the evaluation of power spectrum we
solve numerically the perturbation of the field, as they

FIG. 3. The fraction abundance of PBHs in the case of hybrid
models.
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given from the differential equations (40) reduced in the
single field case. Finally we derive the power spectrum
from Eq. (42).
In the right panel of Fig. 4 we depict the evaluated

thresholds δc for some choices of the parameter b2 with the
formalism from Sec. III. The dashed line in the right panel
corresponds to the case where we have fPBH ¼ 1. The
abundances of PBHs is calculate with the PT, as before.
However, it is important to ensure that the maximum value
of the ratio ΩPBH=ΩDM does not exceed 1. The results are
similar to the case of two field models with a large curvaton
field. This value slightly surpasses 1, leading to the need to
explore smaller abundances of PBHs. Therefore, infla-
tionary models with an inflection point can predict a
significant amount the DM from PBHs with the value of
the threshold at around δc ¼ 0.503.
Nevertheless, the drawback of these models is that a lot

of fine tuning to the interlining parameters is required. An
additional problem for these models is that the one loop
correction at large scales are too large to accept the validity
of perturbation theory [85–88].

VI. CONCLUSIONS

The formation of PBHs has been the subject of study for
decades, with recent advances in numerical simulations
providing a more complete understanding of the mechanism
involved. The production of PBHs can be explained by a
significant enhancement in the scalar power spectrum at
small scales. In this work we study the production of PBHs
from inflationary models by concerning the evaluation of
the threshold δc.
Specifically, we study the evaluation of the threshold δc

in some proposed mechanisms of producing PBHs in the
framework of inflation. The first mechanism is based on a
two field model with a noncanonical kinetic term, which is
responsible for an important enhancement in the scalar
power spectrum. The second one is based on a hybrid

model characterized by a waterfall trajectory. The last
mechanism is a single inflation with an inflection point in
the effective scalar potential. These three models facilitate
the computation of the critical threshold by depending
on only one parameter, as previously explained. A single
parameter dependence is necessary to avoid complex
numerical evaluation of thresholds from the power spec-
trum of a given model.
After evaluating the thresholds for PBHs formation, we

calculate the fractional abundance of PBHs in relation to
DM. Two approaches were used for this calculation: the PS
approach and the PT. We observed that the PS approach
tends to underestimate the results, thus necessitating the
adoption of an approximation based on the PT. Our findings
indicate that mechanisms based on both two-field inflation
and single-field inflation with an inflection point have the
ability to account for a significant fraction observed DM in
the Universe, given specific parameter choices.
Furthermore, we have shown that the mechanism of a

mild waterfall in the hybrid model has the capability to
account for the entirety of the observed DM content in the
Universe. Notably, when comparing the results obtained
from the PS approach with those from the PT, it becomes
evident that the PS approach yields lower values for the
abundances in contrast to the PT approach. Consequently,
while the PS approach imposes constraints on these
models in order to explain only a fraction of the DM,
the PT evaluation of the fraction provides the potential to
explain even the entire DM. This discrepancy underscores
the enhanced effectiveness and broader explanatory power
of the PT approach in understanding the origins of DM in
the Universe.
Finally, it is worth noting that in all the investigated

models, the threshold value consistently converges around
0.51. This consistent threshold value holds significant
implications for future comparative studies focused on
the production of PBHs through inflationary processes.

FIG. 4. Left: The power spectrum for many choices of parameter b2. We choose l ¼ 1.0002 and c2 ¼ 14. Right: The corresponding
thresholds as a function of b2.
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Understanding the precise threshold value provides a crucial
benchmark for assessing the viability and efficiency of
different inflationary scenarios in generating PBHs. These
findings pave the way for more comprehensive and in-depth
investigations into the underlying mechanisms that contrib-
ute to the formation of PBHs.
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