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We develop a precise analytic description of oscillons—long-lived quasiperiodic field lumps—in scalar
field theories with nearly quadratic potentials, e.g., the monodromy potential. Such oscillons are essentially
nonperturbative due to large amplitudes, and they achieve extreme longevities. Our method is based on a
consistent expansion in the anharmonicity of the potential at strong fields, which is made accurate by
introducing a field-dependent “running mass.” At every order, we compute effective action for the oscillon
profile and other parameters. Comparison with explicit numerical simulations in (3þ 1)-dimensional
monodromy model shows that our method is significantly more precise than other analytic approaches.
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I. INTRODUCTION

Oscillons [1–4] are long-lived pulsating field configu-
rations that emerge in many classical theories, specifically,
in models of a scalar field φðt; xÞ [5–11]. With time, these
objects demise by emitting radiation. Nevertheless, their
existence may affect a wide range of cosmological phe-
nomena [12–15], from inflationary preheating [16–19] to
phase transitions [20–22] and generation of axion dark
matter [4,23,24].
In some models oscillons live exceptionally long

[9,25,26]. An important example is a scalar field theory
with the monodromy potential [16,25,27]

VðφÞ ¼ 1

2p
ð1þ φ2Þp; p≲ 1; ð1Þ

see Fig. 1. Hereafter we use dimensionless units1 with
particle mass m ¼ 1.
Oscillons in the model (1) exist and last for up to 1014

periods [9]. Their lifetimes are considerably larger at p ≈ 1
when the potential is almost quadratic. This last property is
generic: oscillons with extreme longevities are expected to
appear in models with suppressed interactions [9,28].

Monodromy oscillons significantly alter some cosmo-
logical scenarios described by the model (1). They may
form and produce gravitational waves [16,27,29] at the
reheating stage of the monodromy inflation [30–32] where
φ represents inflaton and p ¼ 1=2. At p ≈ 1 long-lived
monodromy oscillons may impact cosmological evolution
and even form a (part of) scalar field dark matter [9,25].
The aim of this paper is to develop a consistent, practical,

and precise analytic approach to oscillons in theories with
nearly quadratic potentials. It would be logical to organize
such a technique as an asymptotic expansion in the inverse
oscillon lifetime τ−1 ≪ m. However, the parameter τ is not
built into the field theory Lagrangian and cannot be used
directly. That is why all practical descriptions of oscillons
use other—convenient—expansion parameters.
Presently, there are two2 general analytic approaches

to oscillons, and both are useless in the model (1). The
first hope is a perturbative expansion [35–39], since
weakness of interactions may suppress wave emission
and guarantee longevity. For the potential (1), this is
equivalent to expansion in small field amplitudes jφj ≪ 1
which—alas—does not work inside the oscillons because
their fields are strong, φ ∼ φ0 ≫ 1. We demonstrate this
in Fig. 1 by comparing at jφj ≫ 1 the potential with its
quadratic part m2φ2=2 (solid and dotted lines).
The second “Effective Field Theory” (EFT) approach [28]

is based on the observation [40] that spatial sizes of the
longest-living oscillons are large, R ≫ m−1. This is true, in
particular, for oscillons in the model (1). It is natural to
expect that such large objects evolve slowly at time scales

*levkov@ms2.inr.ac.ru
†vasilevgmaslov@ms2.inr.ac.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Physical dimensions can be restored by rescaling φ → φ=F,
t → mt, and x → mx, which gives V ¼ m2F2ð1þ φ2=F2Þp=2p.

2Some other witty tricks [33,34] have limited region of validity
and also do not apply in the model (1).
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t ∼ R considerably exceeding their oscillation periods
T ∼m−1. Then their stability can be related to the con-
servation of adiabatic invariant N [41,42]. Nevertheless,
direct asymptotic expansion in R−1 [28] is of a limited
practical use because it exploits general nonlinear spatially
homogeneous solutions which cannot be obtained analyti-
cally in the model (1).
In this paper we merge the above two approaches

together into a general, simple and precise analytic tech-
nique applicable in the model (1). On the one hand, we
remedy the perturbative method by noting that the potential
(1) with p somewhat below 1 can be approximated by a
parabola μ2φ2=2 in every vast region φ ∼Oðφ0Þ, where
φ0 is arbitrarily large. The latter parabolas, however,
essentially differ from the leading Taylor term of the
potential near the vacuum, as their curvatures μ2 change
with φ0—cf. the dashed, solid, and dotted lines in Fig. 1.
This means that the scalar particles interact weakly even in
the strong-field regions, but their “mass” μ slowly depends
on φ. We therefore write

VðφÞ ¼ μ2φ2=2þ δVðφÞ; δV ≡ VðφÞ − μ2φ2=2; ð2Þ

where μ ≠ m, and perform expansion3 in δV. Since Eq. (2)
is a trivial identity, the result does not depend on μ which is
made field-dependent in the end of the calculation. We will
see that this trick with field-dependent μ radically increases
precision, working in a similar way to scale-dependent
renormalized constants in quantum field theory (QFT).
On the other hand, weak interactions imply large sizes of
bound states—oscillons—so we perform further expansion
in the inverse oscillon radius R−1. The accuracy of the

overall method does not deteriorate even at extremely large
oscillon amplitudes, although this technique is less effec-
tive for essentially nonlinear potentials with small p.
To sum up, our expansion parameters are ð∂iφÞ2 ≪ μ2φ2

and δV ≪ μ2φ2. At every order, we analytically obtain
effective action for the oscillon profiles, find expressions
for their adiabatic charges N and energies E. At the
roughest level, our method is close to the single-frequency
approximation, a popular and practical heuristic technique
[11,26,43,44]. We provide a recipe for computing correc-
tions thus upgrading this technique to a consistent asymp-
totic expansion.
The paper is organized as follows. We start in Sec. II by

illustrating the new method in a toy mechanical model.
Then we apply it to field-theoretical oscillons in Sec. III and
confirm its predictions with exact numerical simulations in
Sec. IV. Corrections are considered in Sec. V. Section VI
contains discussion and comparison to other analytic
approaches.

II. TOY MODEL: A MECHANICAL OSCILLATOR

For a start, let us illustrate the key trick of this paper in
the mechanical model of nonlinear oscillator with the
potential (1). Its coordinate φ ¼ φðtÞ satisfies the equation

∂
2
tφ ¼ −V 0ðφÞ≡ −φð1þ φ2Þ−ε; ε≡ 1 − p; ð3Þ

which is not exactly solvable; here the prime denotes φ
derivative.
At ε ≪ 1 and p ≈ 1, however, the nonlinearities are

small, so we can approximately integrate the equation as
follows. We add the auxiliary quadratic term μ2φ2=2 to the
potential and subtract it back,

∂
2
tφ ¼ −μ2φ − δV 0ðφÞ; δV ≡ V − μ2φ2=2; ð4Þ

cf. Eq. (2). The nonlinear force δV 0 is weak if μ2 is close to
the curvature of the potential. We achieve this by choosing

μ2 ¼ V 0ðφ0Þ=φ0 ≡ ð1þ φ2
0Þ−ε; ð5Þ

where the “renormalization scale” φ0 will be tuned soon to
the typical oscillator amplitude. The proper choice (5)
allows us to develop a consistent expansion in small δV.
To the zeroth order in the last term, Eq. (4) describes

linear oscillations with frequency μ. It can be solved by
performing a canonical transformation from the coordinate
φ and momentum πφ ≡ ∂tφ to the action-angle variables,

φ ¼
ffiffiffiffiffiffiffiffiffiffi
2I=μ

p
cos θ; πφ ¼ −

ffiffiffiffiffiffiffi
2Iμ

p
sin θ: ð6Þ

Here IðtÞ and θðtÞ characterize the amplitude and phase of
the oscillations, respectively. Namely, the evolution without
the δV term would be I ¼ const and θ ¼ μt.

FIG. 1. The potential (1) (solid line) approximated by the
leading term of its perturbative expansion around the vacuum
(dotted) and the first term in Eq. (2) (dashed). Typical field inside
oscillons is indicated by φ ∼ φ0. Here we use p ¼ 0.9 and
φ0 ¼ 2 × 104.

3In Eq. (2) we ignore the constant part of the potential which
does not affect the field equation.
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The next step is to include nonlinear corrections in δV. It
is convenient to do that on the level of classical action,

S ¼
Z

dt½πφ∂tφ −H� ¼
Z

dt½I∂tθ −HðI; θÞ�; ð7Þ

where the Hamiltonian is

H ¼ 1

2
π2φ þ VðφÞ ¼ μI þ δVðI; θÞ; ð8Þ

and we performed the transformation (6) in the second
equalities.
It is worth stressing that I and θ are not the true action-

angle variables of the full nonlinear oscillator. Hence, the
perturbation δV may cause I and ∂tθ to drift slowly, and
also equips them with tiny oscillating corrections. Below
we consider stationary solutions on long timescales. In
this case the integral (7) averages the perturbations over
many periods. Since θ evolves linearly in the zeroth-
order approximation, we can perform the averaging by
integrating4 over it,

δV → hδVi ¼
Z

2π

0

dθ
2π

δVðθÞ ¼ 1

2p
ðApðςÞ − pμIÞ; ð9Þ

where ς ¼ 2I=μ,

ApðςÞ≡ hð1þ ς cos2 θÞpi

¼ ð1þ ςÞp=2Pp

�
1þ ς=2ffiffiffiffiffiffiffiffiffiffiffi
1þ ς

p
�
; ð10Þ

and PpðxÞ≡ 2F1½−p; pþ 1; 1; ð1 − xÞ=2� is the Legendre
function.
Together, Eqs. (7), (8), and (9) form an effective action

describing long-term behavior of the monodromy oscil-
lator. We obtained it to the leading order in δV.
Now, we make a crucial step: choose the parameter μ

and its arbitrary “scale” φ0 in Eq. (5). The approximate
action (7), (8), (9) depends on φ0, but very weakly: its
variation with respect to that parameter is OðδV2Þ ∼Oðε2Þ.
Indeed, μ cancels itself in the exact action (7) and resurfaces
in the approximate results only because we ignored
μ-dependent corrections. If we continued computations
to the n-th order in δV, the sensitivity of the effective
action to φ0 and μ would be Oðεnþ1Þ. Thus, we are free to
choose φ0 in any reasonable way that decreases δV and
increases the precision of the expansion. Specifically, we
adjust φ0 to the field amplitude5 in Eq. (6),

φ0 ¼
ffiffiffiffiffi
2I

p
: ð11Þ

This makes μ ¼ μðIÞ depend on the action variable.
Equations for the long-term motions of the monodromy

oscillator are obtained by varying the effective action (7),
(8), (9) with respect to IðtÞ and θðtÞ. We get θ ¼ ωt and

ω ¼ μþ ð∂ςAp=μ2p − 1=2Þðμ − I∂IμÞ; ð12Þ

where ς ¼ 2I=μ and ∂Iμ ¼ −εð1þ 2IÞ−ε=2−1. Equation (12)
gives oscillation frequency ω ¼ ωðIÞ as a function of the
action variable.
To test the method, we compare Eq. (12) with the exact

frequency ωðIÞ of the monodromy oscillator at p ¼ 0.95;
see Fig. 2. The latter is computed by numerically evolving
Eq. (3) and then extracting the oscillation period T ¼ 2π=ω
and the action variable I ¼ H

πφdφ=2π. Figure 2 shows
that the theory has a remarkable relative precision Δω=ω ∼
10−4 which remains stable even in the case of exceptionally
large amplitudes I ∼ 1030.
The secret of high accuracy is hidden in two tricks. First,

we correctly selected the values of artificial parameters φ0

and μðφ0Þ, and even allowed them to “run”—depend on
I—in the end. This approach is similar to running of the
renormalized constants in QFT. Second, despite working
at small ε≡ 1 − p, we did not directly expand δV in this
parameter: The latter expansion actually goes in ε ln jφj and
breaks at large amplitudes jφj≳ e1=2ε.
It is worth noting that corrections to the effective action

(7), (8), (9) can be computed in a straightforward manner,
by taking higher-order δV contributions into account. We
will work them out in Sec. V when effective action in field
theory is introduced.

FIG. 2. Frequency ω of the monodromy oscillator as a function
of the action variable I; we use p ¼ 0.95. Solid line and circles
show the theory (12) and exact numerical results, respectively.

4This and other θ averages can be recast as contour integrals
hfi ¼ H

fðzÞdz=ð2πizÞ over the unit circle z ¼ e2iθ, jzj ¼ 1.
5Alternatively, one can find φ0ðIÞ from the equation φ2

0 ¼
2I=μ, where μ is still given by Eq. (5). This method gives slightly
better results at extremely large amplitudes when μ is signifi-
cantly smaller than 1.
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III. EFFECTIVE FIELD THEORY FOROSCILLONS

Let us turn to oscillons—long-lived solutions of the field
equation

∂
2
tφ − Δφ ¼ −V 0ðφÞ ð13Þ

with the monodromy potential (1). For definiteness, we
will work in 3þ 1 dimensions: Generalizations to other
cases are straightforward. We perform the trick (2): extract
the quadratic part of the potential μ2φ2=2 and then
work order-by-order in the remaining part δV. Now, the
equation includes a spatial derivative Δφ which also can
be treated perturbatively. Indeed, Δφ and δV 0 are compa-
rable inside the oscillons because these objects are held by
weak attractive self-force compensating repulsive contri-
butions of the derivatives (“quantum pressure”). As a
consequence, the oscillon sizes are parametrically large:
R−2 ∼OðδVÞ ∼OðεÞ.
To the zeroth order in δV, we have the same linear

oscillator ∂2tφ ¼ −μ2φ as in the previous section, where
μðφ0Þ again estimates local curvature of the potential
via Eq. (5).
The next step is to perform the transformation (6) to the

action-angle variables, which are now the fields Iðt; xÞ and
θðt; xÞ. The classical action takes the form

S ¼
Z

d4x½πφ∂tφ − π2φ=2 − ð∂iφÞ2=2 − VðφÞ�

¼
Z

dtd3x½I∂tθ − μI − ð∂iφÞ2=2 − δV�: ð14Þ

As before, we average the perturbations—the two last terms
in Eq. (14)—over period. Expression for hδVi is already
given in Eq. (9). To process the term with spatial derivatives,
we substitute Eq. (6) into ð∂iφÞ2, move slowly varying ∂iI
and ∂iθ out of the average, and then integrate the coefficients
in front of them over θ, cf. Eq. (9). This gives

hð∂iφÞ2i ¼
ð∂iIÞ2
4Iμ

þ I
μ
ð∂iθÞ2; ð15Þ

where the cross-term ∂iI∂iθ vanishes due to time-reflection
symmetry θ → −θ.
Substituting Eqs. (9) and (15) into Eq. (14), we arrive at

the leading-order effective action for oscillons,6

Seff ¼
Z

dtd3x

�
I∂tθ−μI−

ð∂iIÞ2
8Iμ

−
Ið∂iθÞ2
2μ

−
ApðςÞ
2p

þμI
2

�
;

ð16Þ

where ς ¼ 2I=μ and the function ApðςÞ is defined
in Eq. (10).
The final—important—step is to make the “effective

mass” μ ¼ μðIÞ and its “scale” φ0 ¼ φ0ðIÞ depend on the
oscillation amplitude7 via Eqs. (5) and (11). Like in Sec. II,
this tunes μ to the second derivative of the potential at any I.
One can see straight away that the effective model (16) is

invariant under the global phase shifts θ → θ þ α. This
implies conservation of the global charge,

N ¼
Z

d3x Iðt; xÞ; ð17Þ

representing the adiabatic invariant of Refs. [41,42].
From the viewpoint of the effective theory, oscillons

are nontopological solitons [45,46] minimizing the energy
E at a fixed charge N. Their profiles can be obtained by
extremizing the functional F ¼ E − ωN with Lagrange
multiplier ω, or simply by substituting the stationary ansatz

Iðt; xÞ ¼ ψ2ðxÞ; θðt; xÞ ¼ ωt; ð18Þ

into the effective field equations. Either way, the resulting
equation for ψðxÞ is

ωψ ¼ μψ −
Δψ
2μ

þ ψð∂iψÞ2
∂Iμ

2μ2

þ ð∂ςAp=μ2p − 1=2Þðμ − ψ2
∂IμÞψ ; ð19Þ

cf. Eq. (12) and recall that μ ¼ μðIÞ is different from the
“bare” field mass m ¼ 1.
We solve Eq. (19) in spherical symmetry using the

shooting method. Figure 3 shows the solutions ψ ¼ ψðrÞ at
two values of ω. They characterize the oscillon amplitudes
which are large and rapidly grow as the frequency ω
decreases.

IV. COMPARISON WITH NUMERICAL
SIMULATIONS

Let us compare the predictions of our effective field
theory (EFT) with exact oscillons. We obtain the latter by
numerically evolving the full equation (13) for the spheri-
cally symmetric field φðt; rÞ. We start these simulations
from the EFT oscillons, i.e., φð0; rÞ given by the profiles
ψðrÞ and Eqs. (18), (6). Practice shows that such initial data
settle down to true nonexcited oscillons much quicker than
generic initial conditions. Details of our numerical method
are presented in Ref. [28].
Typical evolution of the oscillon field during one period is

visualized in Fig. 4, where solid and dashed lines correspond
to oscillation maximum and minimum, respectively. In the

6One may pack real I and θ into one complex field ψðt; xÞ ¼ffiffi
I

p
e−iθ; see Ref. [28]. This turns the effective theory (16) into a

nonlinear Schrödinger model with global symmetry ψ → ψe−iα.

7One can show that the effective action (16) is insensitive to φ0

up to Oðε2Þ corrections, where δV ∼ ð∂iIÞ2=I ∼OðεÞ.
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exact model, outgoing radiation carries away the energy and
makes the oscillon amplitude decrease, but that process is
extremely slow and cannot be seen in Fig. 4.
Once the exact oscillon is formed, we measure its period

T ¼ 2π=ω as the time interval between the consecutive
maxima of the field at the center φðt; 0Þ. The “exact” value
of the adiabatic invariant N is given by the standard
formula [41,42],

N ¼ 1

2π

Z
d3x

I
πφdφ ¼

Z
d3x

Z
tþT

t

dt
2π

ð∂tφÞ2: ð20Þ

Finally, the oscillon energy E is

E ¼
Z

d3x½ð∂tφÞ2=2þ ð∂iφÞ2=2þ VðφÞ�: ð21Þ

To increase precision, we average all “exact” quantities
over several periods.
In Fig. 5 we compare the fields φðt; xÞ of numerical and

EFT oscillons with the same frequency ω at the moments
tmax of oscillation maxima, ∂tφðtmax; 0Þ ¼ 0. The EFT
prediction (lines) is obtained by substituting the profile
I ¼ ψ2ðrÞ into Eq. (6) at θ ¼ 0. It agrees well with the
numerical results (circles) at two essentially different values
of ω. Note that our theory remains precise even for the
ω ¼ 0.4 oscillon that has extremely large amplitude. We
further confirm this in Fig. 6(a) showing the maximal fields
φðtmax; r ¼ 0Þ of exact and EFT oscillons as functions of
frequency.
Good agreement is also observed for the integral

quantities, say, the oscillon charge8 NðωÞ given by
Eq. (17) in the EFT and by Eq. (20) in full theory, cf. the
lines and circles in Fig. 6(b). It is worth noting that
oscillons with ω≲ 0.99 satisfy the Vakhitov-Kolokolov
criterion [28,47,48] dN=dω < 0 which is necessary for
stability. Thus, they are expected to be unstable with respect
to linear perturbations only in the narrow frequency
region ω ≈m ¼ 1.

FIG. 4. Numerical evolution of the monodromy oscillon during
one period. We use ω ¼ 0.7 and p ¼ 0.95.

FIG. 5. Fields φðtmax; rÞ of the monodromy oscillons at times
tmax of oscillation maxima. We use p ¼ 0.95 and frequencies
(a) ω ¼ 0.7, (b) ω ¼ 0.4. Solid line is the EFT prediction, while
the circles show results of full numerical simulations.

FIG. 3. Profiles ψðrÞ of the monodromy oscillons at two
frequencies and p ¼ 0.95.

8Graphs for EðωÞ and NðωÞ have similar shapes due to the
relation dE=dN ¼ ω holding for the EFT oscillons [28].
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To sum up, our leading-order EFT with field-dependent
“mass” μ ¼ μðIÞ gives accurate predictions even if the
monodromy potential is moderately nonlinear; see the
graph with p ¼ 0.8 and ε ¼ 0.2 in Fig. 6. Their relative
error is almost insensitive to the field strength inside the
oscillon but grows with nonlinearity of the potential.

V. HIGHER-ORDER CORRECTIONS

So far, we used the leading-order approximation: We
assumed that I and θ evolve slowly while evaluating the
averages δV → hδVi in Eq. (9) and ð∂iφÞ2 → hð∂iφÞ2i in
Eq. (15). Let us show that this approach can be promoted to
a consistent asymptotic expansion in the nonlinearity δV of
the potential and in the inverse oscillon size R−1.
We split I and θ into EFT fields Ī, θ̄ evolving at large

timescales and fast-oscillating corrections δI, δθ,

I ¼ Īðt; xÞ þ δIðt; xÞ; θ ¼ θ̄ðt; xÞ þ δθðt; xÞ; ð22Þ
where hδIi ¼ hδθi ¼ 0. Effective action for Ī and θ̄ can be
computed by integrating out δI and δθ in the arbitrary
slowly changing background. To this end, we obtain exact
equations for I and θ from the action (14) and subtract their
time averages. We get

∂tδI ¼ jθðI; θÞ; ∂tδθ ¼ −jIðI; θÞ; ð23Þ

where

jθ ¼ ∂θφðΔφ − δV 0Þ; ð24Þ

jI ¼ ∂IφðΔφ − δV 0Þ − h∂IφðΔφ − δV 0Þi ð25Þ

are the sources depending on Ī, θ̄, δI, and δθ via Eqs. (6)
and (22).
It is clear that Eqs. (23) can be used to express δI and δθ

as functions of Ī and θ̄. Indeed, let us change the time
variable to θ̄ which evolves progressively: ∂t ≈ ð∂tθ̄Þ∂θ̄.
Then, solving the equations order-by-order in small δI and
δθ, we indeed find the fast-oscillating parts as series of
functions depending on Ī and θ̄.
Let calculate the first nontrivial (second-order) correc-

tion to the effective action considering the stationary
oscillon background Ī ¼ ψ2ðxÞ and θ̄ ¼ ωt in Eq. (18).
At this level, we ignore δI and δθ in the right-hand sides of
Eqs. (23). Then

jθ ≈
sin 2θ̄
μ

ψ2½−Δψ=ψ − μ2 þ ð1þ ςcos2θ̄Þ−ε�; ð26Þ

jI ≈
cos 2θ̄
2μ

�
Δψ
ψ

þ μ2
�
−
cos2 θ̄
μ

ð1þ ςcos2θ̄Þ−ε

þ 1

2ψ2
½ApðςÞ −Ap−1ðςÞ�; ð27Þ

where Eqs. (6), the monodromy potential (1), (2), and
ς ¼ 2Ī=μ were used. The solutions δIðĪ; θ̄Þ and δθðĪ; θ̄Þ are
given by the primitives of the sources (26), (27), with
respect to θ̄. We substitute them into the action (14)
expanded quadratically in δI and δθ and average the result
over θ̄. This gives the second-order effective action Seff ¼
Sð1Þ
eff þ Sð2Þ

eff , where S
ð1Þ
eff ½Ī; θ̄� is provided by Eq. (16) and the

correction is

Sð2Þ
eff ¼

1

ω

Z
dtd3x

�
jIðĪ; θ̄Þ

Z
θ̄
jθðĪ; θ̄0Þdθ̄0

�

¼ 1

4ω

Z
dtd3x

	
1

2μ2
ðΔψ þ μ2ψÞ2 þDpðςÞ

pψ2

−
BpðςÞ
pψ3

ðΔψ þ μ2ψÞ


; ð28Þ

see Ref. [28] for general and detailed discussion. In
Eq. (28) we introduced the form factors

Bp ¼ ðpþ 1ÞApþ1ðςÞ þ pðς=2þ 1ÞAp−1ðςÞ
− ð1þ 2pþ ðpþ 1Þς=2ÞApðςÞ; ð29Þ

Dp ¼A2pðςÞ−A2
pðςÞ−A2p−1ðςÞþApðςÞAp−1ðςÞ ð30Þ

in front of the terms with different numbers of derivatives.
The second-order effective theory remains invariant

under the shifts θ̄ → θ̄ þ α due to averaging over θ̄. This
means that the global charge N is still conserved. Its
Noether expression

FIG. 6. (a) Amplitudes φðtmax; r ¼ 0Þ and (b) adiabatic invar-
iants NðωÞ of the monodromy oscillons at p ¼ 0.8 and p ¼ 0.95.
Solid lines show the predictions of the leading-order EFT. At two
values of p, they reproduce the exact numerical results (circles)
with relative precisions ΔN=N ∼ 0.2 and 0.06, respectively.
The latter accuracies are almost independent of the oscillon
amplitude.
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N ¼
Z

d3x
δSeff

δ∂tθ̄
;

however, includes a correction to Eq. (17) because Sð2Þ
eff

depends on ∂tθ̄ ¼ ω.

After finding Sð2Þ
eff , we again allow φ0 and μ to vary with

I → Ī via Eqs. (11) and (5). This time, the effective action is
sensitive to φ0 at the weaker level Oðε3Þ.
The action (16), (28) allows us to compute corrections to

the oscillon profiles ψðrÞ ¼ ψ ð1ÞðrÞ þ ψ ð2ÞðrÞ, their fields
φðĪ þ δI; θ̄ þ δθÞ, charges, and energies.
Let us juxtapose the improved theory with exact sim-

ulations. However, we saw that the accuracy of our
leading-order EFT is already comparable to the numerical
precision. To see the progress, we intentionally spoil the
theory by choosing a counterintuitive auxiliary scale φ2

0 ¼
Ī=128 ≪ Ī, cf. Eq. (6). Besides, we use essentially non-
quadratic potential with p ¼ 0.8 and ε ¼ 0.2. Together,
these deteriorations move the leading-order predictions
for NðωÞ away from the exact result, cf. the dashed line
with the circles in Fig. 7. But the second-order EFT (solid
line) is less susceptible to the impairment and agrees
with the simulations. This demonstrates that higher-
order corrections are capable of improving the effective
theory, although they are impractical in the model under
consideration.
It is worth noting that corrections to the effective action

of even higher orders can be computed similarly to
Eq. (28), in two steps. First, solve Eqs. (23) to the required
order in δI and δθ and substitute the result into the action
(14) expanded to the same order. Second, average the
resulting Lagrangian over θ̄. The possibility of performing
calculations to arbitrary order exposes our effective

theory as asymptotic expansion and clarifies its region of
applicability.

VI. DISCUSSION

We developed a simple and precise analytic description
of oscillons in scalar models with nearly quadratic poten-
tials. The two cornerstones of our method are the correct
choice of variables I, θ in Eq. (6) and the “running”
(field-dependent) mass μðIÞ in Eqs. (2), (5), and (11). We
demonstrated that the effective action (16), (28) for I and θ
has the form of a systematic asymptotic expansion in the
spatial derivatives and nonlinearities of the potential.
Oscillons appear in this effective theory as nontopological
solitons minimizing the energy at a given value of the
adiabatic invariant N.
The best part of our method is the possibility of

computing corrections by keeping more terms in the
expansion. At the same time, suitable choice of the
“running mass” μ radically improves precision, making
credible even the leading-order results. This trick with μ is
inspired by the renormalization theory: it does the same job
for the effective classical action as scale-dependent cou-
pling constants do for the perturbative QFT. We demon-
strate its power once again in Fig. 8 by plotting the energy
EðωÞ of oscillons in the monodromy model (1) as a
function of their frequency ω at p ¼ 0.95. Relative
deviation of our leading-order theoretical prediction (solid
line) from the exact simulation (circles) never exceeds
ΔE=E≲ 0.06 despite the fact that fields inside the oscillons
are exceptionally strong at small ω.
It is instructive to compare our new theory with other

analytic approaches. In the perturbative (small-amplitude)
method, one expands the monodromy potential (1) in
powers of φ,

V ¼ φ2=2 − εφ4=4þ εð1þ εÞφ6=12þ… ð31Þ

FIG. 7. Comparison of the first- and second-order EFT pre-
dictions (lines) with exact simulations (circles). The plot shows
the charge NðωÞ of the monodromy oscillons at p ¼ 0.8. We
intentionally ruined the precision of the theoretical calculation by
detuning the parameter φ0.

FIG. 8. The energy EðωÞ of three-dimensional monodromy
oscillons at p ¼ 0.95 and ε ¼ 0.05.
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and then solves the field equation order-by-order in
it [35–39]. Generally speaking, such small-amplitude
expansion (SAE) is valid only at ω ∼m ¼ 1, since it can
be recast as series in the binding energy ð1 − ωÞ ∝ φ2 of
particles inside the oscillons [35]. This is apparent in Fig. 8,
where the dotted and dash-dotted lines show the first two
orders of SAE [two and three terms in Eq. (31), respec-
tively]. In the most interesting and wide frequency region
ω≲ 0.9 they considerably deviate from the simulations.
Another method employs expansion in ε≡ 1 − p char-

acterizing nonlinearity of the monodromy potential (1). At
the first order and jφj ≫ 1 one obtains [9],

V ¼ φ2

2
½1þ ε − ε lnφ2 þOðφ−2Þ þOðε2ln2jφjÞ�: ð32Þ

This truncated model has a family of exactly periodic
solutions with Gaussian spatial profiles [9,42,49] that
approximate the monodromy oscillons—see the dashed
line in Fig. 8 showing their energies. We observe that
Eq. (32) does a better job than the small-amplitude
expansion, but fails at small ω when oscillon fields become
exceptionally large, ε ln jφj≳ 1.
In contrast, our effective theory universally applies and

remains precise at all frequencies and oscillon amplitudes.
Its relative accuracy is rather controlled by the anharmo-
nicity parameter ε≡ 1 − p of the potential. For example, in
the model of monodromy inflation [12–15] with p ¼ 0.5
the leading-order EFT results for the oscillon energies are
offset by ΔE=E ∼ 0.4 from the exact data, cf. the dashed
line and the circles in Fig. 9. However, one can make a
better choice of the EFT parameter φ0: find it by solving the
equation φ2

0 ¼ 2I=μðφ0Þ. Then the relative error drops
down to ΔE=E ∼ 0.1 which is surprisingly small; see the
solid line in Fig. 9 and Footnote 5 for details. This suggests
that the wise choice of the EFT scale is capable of curing
the method even in the case of significantly nonlinear
potentials.9

We anticipate that the results of this paper will be helpful
for analytic calculations in oscillon cosmology. In particu-
lar, theoretical relations between oscillon amplitudes,
energies, frequencies, and adiabatic charges are important
whenever these objects represent dark matter [9,25] or
generate gravitational waves after inflation [16,27,29].
Even more results can be obtained by applying our

method in other models with nearly quadratic potentials
akin to Eq. (1).
But the most interesting development would be to

adopt our approach for calculation of the oscillon evapo-
ration rates Γ. Segur and Kruskal evaluated them analyti-
cally in the framework of small-amplitude expansion [37];
see also [39,50,51]. Namely, they demonstrated that Γ ∝
expð−const=g0Þ is nonperturbative in the expansion param-
eter g0 ∝ φ. Our technique is different, but it also has the
form of asymptotic expansion. Its formal parameter g can
be introduced in Eq. (2) as

V ¼ μ2φ2=2þ g2δV;

where g ¼ 1 is the physical value. Once this is done,
the rescaling x ¼ x̃=g brings g2 in front of the second
small term with spatial derivatives. It would be fascinating
to apply methods of nonperturbative resummation in
Refs. [37,39,50,51] to our series, thus getting a general
expression for Γ in models with nearly quadratic potentials.
The latter calculation, however, lies beyond the scope of the
present paper.
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FIG. 9. Oscillon energies EðωÞ in the case of strongly nonlinear
monodromy potential with p ¼ 0.5 (points) compared to the two
leading-order EFT predictions (solid and dashed lines). The latter
lines differ by the choice of the EFT scale φ0.

9This does not mean, however, that the EFT series converge
well in this case, since the expansion parameter ε ¼ 0.5 is large.
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