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Motivated by current status of dark matter (DM) search, a new type of DM production mechanism is
proposed based on the dynamical process of a strong first-order phase transition in the early Universe,
namely, the filtered DM mechanism. We study the hydrodynamic effects on the DM relic density. By
detailed calculations, we demonstrate that the hydrodynamic modes with the corresponding hydrodynamic
heating effects play essential roles in determining the DM relic density. The corresponding phase transition
gravitational wave could help to probe this new mechanism.
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I. INTRODUCTION

Exploring the microscopic nature of dark matter (DM)
[1] is an important goal in the interplay of particle physics
and cosmology. Besides the well-studied freeze-out, freeze-
in, and misalignment DM formation mechanisms, recently
a new type of mechanism is proposed that the DM is
produced by the dynamical process during a strong first-
order phase transition (SFOPT) [2–5]. This mechanism
could naturally evade the unitarity constraints to form the
heavy DM [6,7] and can be detected by phase transition
gravitational wave (GW). Especially, the intriguing filtered
DM mechanism proposed in Refs. [2,3] assumes that the
DM candidate particles acquire masses when they enter
into the bubbles and too heavy DM particles are energeti-
cally unfavorable to enter into the broken phase. Thus only
an extremely small fraction of DM particles finally enter
into the bubbles and then contribute to the observed DM
relic density. This mechanism applies to not only the DM
model but also baryogenesis [8–15]. In the original work of
filtered DM, the hydrodynamic effects in the vicinity of the
bubble wall are not considered. For example, the temper-
ature in front of and behind the bubble walls is chosen as

the same nucleation temperature. However, the DM density
depends on the temperature and velocity distribution.
Actually, to realize the filtered DM, usually it should
be a SFOPT with a large phase transition strength para-
meter α, which leads to obvious temperature and velocity
differences in front of and behind the bubble wall. These
differences originate from the hydrodynamic effects and
can significantly enhance or suppress the DM relic density.
We study these hydrodynamic effects with dedicated
calculations and find that the DM relic density is sensitive
to the hydrodynamic modes and the corresponding heating
effects.
In Sec. II, we simply present the analytic estimation for

the filtered DM mechanism and clearly show the reason to
consider the hydrodynamic effects. The phase transition
dynamics including the bubble wall velocity are discussed
in Sec. III. In Sec. IV, we show how to calculate hydro-
dynamic profiles of temperature and velocity for zero-
width bubble wall. We present the calculations both for
spherical and planar bubble wall. The hydrodynamic effects
on the analytic DM relic density are also given and we
emphasize the accuracy of simple low-velocity approxi-
mation in the deflagration mode. In Sec. V we show the
temperature and velocity profiles across the bubble wall,
which has a nonzero width. In Sec. VI we solve the
Boltzmann equation numerically for bubble wall with finite
width to get more accurate results. The results of hydro-
dynamic effects on DM relic density for four benchmark
points are also given. The phase transition GW signals of
the filtered DM are given in Sec. VII. Concise conclusions
are given in Sec. VIII.
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II. ANALYTIC ESTIMATION

To clearly see that the hydrodynamic effects play
important roles in the final DM relic density, we first
demonstrate the simple analytic estimation of the DM
density. The detailed numerical calculation of the DM
density by using the Boltzmann equations to include the
hydrodynamic effects is also performed in Sec. VI.
In Fig. 1, we show the basic process of the filtered DM

with hydrodynamic effects. ϕ is the phase transition field
during a SFOPT, and bubbles nucleate in the thermal
plasma of the early Universe. In the upper left we show the
deflagration mode, which is due to the hydrodynamic
effects of the region in front of the bubble wall heating
(red color), and then the DM particles increase the
probability to pass through the bubble wall than one
without considering hydrodynamic effects. In the lower
right we show the case without heating or the case for the
detonation of the DM, which more likely reflects from the
bubble wall. The bubble walls formed during a SFOPT can
provide new approaches to produce heavy DM through the
filtering effects. Due to the energy conservation, only a
Boltzmann-suppressed fraction of the wouldbe DM par-
ticles with very large momenta can pass through the
bubbles walls and then contribute to the DM relic density
when the particles hit the wall. It is straightforward to
discuss the filtering effects in the bubble wall frame with
the following condition [2,3]:

pw
z >

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
; ð1Þ

where pw
z is the particle z-direction momentum in the

bubble wall frame, Δm2 ¼ ðmin
χ Þ2 −m2

0 with min
χ the mass

of DM particle χ deep inside the bubble andm0 the mass in
the false vacuum [11].
Assuming the DM particle χ is in thermal equilibrium

outside the bubble, such that in the bubble wall frame its
distribution function follows the Bose-Einstein or Fermi-
Dirac distribution, then

feqχ ¼ 1

eγ̃plð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpwÞ2þm2

0

p
−ṽplpw

z Þ=T ∓ 1
; ð2Þ

where ṽpl is the relative velocity of fluid bulk motion with

respect to the wall and γ̃pl ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ṽ2pl

q
is its Lorentz

factor. pw ≡ jpwj is the magnitude of the three-momentum
of DM and T is the temperature of DM. The particle flux
coming from the false vacuum per unit area and unit time
can be written as [2,3]

Jwχ ¼ gχ

Z
d3pw

ð2πÞ3
pw
z

Ew f
eq
χ Θ

�
pw
z −

ffiffiffiffiffiffiffiffiffiffi
Δm2

p �
; ð3Þ

where gχ is the DM degrees of freedom. Then the DM
number density inside the bubble ninχ in the bubble center
frame can be written as [2,3]

ninχ ¼ Jwχ
γwvw

; ð4Þ

where vw is the bubble wall velocity and γw ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2w

p
is its Lorentz factor. In our work we set m0 ¼ 0, and then
we can integrate Eq. (3) and get [3]

ninχ ≃
gχT3

γwvw

�
γ̃plð1 − ṽplÞmin

χ =T þ 1

4π2γ̃3plð1 − ṽplÞ2
�
e−

γ̃plð1−ṽplÞmin
χ

T ; ð5Þ

where we have used Maxwell-Boltzmann approximation of
DM distribution. One can see that, as ṽpl → 1; γ̃pl ≫ 1, by

using γ̃plð1 − ṽplÞ ¼ γ̃pl −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2pl − 1

q
→ 1

2γ̃pl
, the exponent

approaches −min
χ =ð2γ̃plTÞ. On the other hand, in the case

of ṽpl → 0; γ̃pl → 1, the exponent becomes −min
χ =T. We

show that, when γ̃pl ≫ min
χ =T, Eq. (5) approaches gχT3=π2,

which is the equilibrium number density for Boltzmann
distribution outside the bubble. It means that all particles
can pass through the bubble wall, i.e., the bubble wall does
not filter out DM particles in this limit.
The filtering effect is mainly represented by the expo-

nential term of Eq. (5). When the fluid velocity in the wall
frame is low, the kinetic energy of DM particles is OðTÞ.
When the fluid velocity is relativistic, the kinetic energy of
DM particles is Oðγ̃plTÞ. Only a small fraction of particles
can penetrate into the bubble when their kinetic energy is
smaller than their mass deep inside the bubblemin

χ . The DM
number density inside the bubble is sensitive to the velocity,

FIG. 1. Schematic process for the filtered DM with hydro-
dynamic effects for the deflagration mode. In upper left we show
that due to the heating effects the DM has more abilities to pass
through the bubble wall. In lower right the DM more likely
reflects from the bubble wall.
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temperature, and mass of DM since they appear in the
exponential term.
The DM abundance today can be calculated by dividing

ninχ by the entropy density s ¼ ð2π2=45Þg⋆ðT 0ÞT 03 inside
the bubble, where g⋆ðT 0Þ is the effective number of
relativistic degrees of freedom associated with entropy
and T 0 is the temperature behind the bubble wall. After
normalizing to the critical density ρc ¼ 3H2

0M
2
pl, we

have [2,9]

ΩDMh2 ¼
min

χ ðninχ þ ninχ̄ Þ
ρc=h2

g⋆0T3
0

g⋆ðT 0ÞT 03

≃ 6.29 × 108
min

χ

GeV

ðninχ þ ninχ̄ Þ
g⋆ðT 0ÞT 03 ; ð6Þ

where T0 ≃ 0.235 meV is the temperature today and
g⋆0 ¼ 3.9 is the effective degree of freedom at present.
h ¼ H0=ð100 km= sec =MpcÞ ¼ 0.678 [16] is the dimen-
sionless parameter in the observed Hubble constant H0.
In the original work of Ref. [2] they do not consider the

variation of velocity and temperature across the bubble wall
from the hydrodynamic effects, namely, they choose

ṽpl ¼ vw; T ¼ T 0 ¼ Tn → Ωð0Þ
DMh

2: ð7Þ

We show the contour plot of the observed DM relic density

Ωð0Þ
DMh

2 ¼ 0.12 in the left panel of Fig. 2. It is shown that
in order to fulfill the observed DM relic abundance we
cannot generally impose an ultrarelativistic bubble wall
with γw ≫ 1. For vw → 0.01, i.e., γw → 1, we have to
imposemin

χ =Tn around 40. And for vw > 0.9, i.e., γw > 2.3,
min

χ =Tn > 100 is generally needed to efficiently filter
the DM.

One can define the DM penetration rate Rð0Þ
in as in the

original works as

Rð0Þ
in ¼ ninχ

noutχ
; ð8Þ

where noutχ ¼ gχT3=π2 is the equilibrium DM number
density outside the bubble wall at the time of the phase

transition. The penetration rate Rð0Þ
in is shown in the right

panel of Fig. 2. This quantity evaluates the filtering ability

of the bubble wall. The larger the Rð0Þ
in is, the weaker the

filtering effect is.
Actually, the temperature and velocity are not constants

across the bubble wall. As the bubble wall expands, the
vacuum energy releases and then causes reheating and bulk
motions of the plasma around the bubble wall. We denote
the quantities in front of the bubble wall with þ and behind
the wall with −. Then, in the filtered DM mechanism, ṽpl
and T in Eq. (2) should be evaluated in front of the bubble
wall and T 0 is the temperature behind the bubble wall,

ṽpl ¼ ṽþ; T ¼ Tþ; T 0 ¼ T−

ðthis works with hydrodynamic effectsÞ: ð9Þ

Then Eq. (5) should be rewritten as

ninχ ≃
gχT3þ
γwvw

�
γ̃þð1 − ṽþÞmin

χ =Tþ þ 1

4π2γ̃3þð1 − ṽþÞ2
�
e−

γ̃þð1−ṽþÞmin
χ

Tþ ; ð10Þ

and we have a DM relic density of

FIG. 2. Left: contour plot of γw and min
χ =Tn with DM relic density Ωð0Þ

DMh
2 ¼ 0.12 without hydrodynamic effects. Right: penetration

rate Rð0Þ
in as functions of γw and min

χ =Tn without hydrodynamic effects.
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ΩðhyÞ
DM h2 ¼ min

χ ðninχ þ ninχ̄ Þ
ρc=h2

g⋆0T3
0

g⋆ðT−ÞT3
−

≃ 6.29 × 108
min

χ

GeV

ðninχ þ ninχ̄ Þ
g⋆ðT−ÞT3

−
: ð11Þ

This can also be expressed in terms of the renewed

penetration rate RðhyÞ
in ,

ΩðhyÞ
DM h2 ¼ 6.37 × 107

min
χ

GeV

2gχ
g⋆ðT−Þ

�
Tþ
T−

�
3

RðhyÞ
in ; ð12Þ

with

RðhyÞ
in ¼ 1

γwvw

�
γ̃þð1 − ṽþÞmin

χ =Tþ þ 1

4γ̃3þð1 − ṽþÞ2
�
e−

γ̃þð1−ṽþÞmin
χ

Tþ : ð13Þ

There are generally two distinct cases: (1) For a phase
transition with αn ≲ 1, we expect that T− will be different
with Tþ by a Oð1Þ factor and the DM relic abundance is
dominantly set by filtering effects. (2) However, for strong
supercooling phase transition αn ≫ 1, we expect the wall
velocity is ultrarelativistic and the dominant mechanism is
supercool DM [17] which produce very large T−=Tþ to
suppress the relic density of DM. In the latter case, one may
still want to quantify the filtering effects in order to get

accurate results. An accurate evaluation of RðhyÞ
in is impor-

tant in a given model.
It is obviously important to evaluate the temperature and

velocity in front of and behind the bubble wall. On one
hand, as the typical energy of DM in front of the bubble
wall is proportional to the temperature Tþ, higher temper-
ature Tþ in front of the bubble wall means stronger ability
of DM to pass through the bubble wall. However, a larger
T− may lead to a larger vacuum value behind the wall,
producing a largermin

χ . This makes it harder for DM to pass
through the bubble wall. On the other hand, the velocity
determines the momentum distribution of DM, which
affects the DM number density. The hydrodynamic effects
are first mentioned by Ref. [3] without calculations. In this
work we demonstrate how to calculate the hydrodynamic
effects in details.

III. PHASE TRANSITION DYNAMICS

A. Toy model

To work in the filtered DM mechanism, we assume a
simple DM model

L ¼ −yχ χ̄Φχ − VðΦÞ − κΦ†ΦH†H þ H:c:; ð14Þ

where Φ is a scalar doublet and VðΦÞ is the tree-level
potential of Φ. χ is a Dirac particle, which would be the
DM candidate. This model can represent a variety of phase
transition models like the inert singlet, inert doublet
models. The background field is defined as

Φ ¼
�
0;ϕ=

ffiffiffi
2

p �
T
: ð15Þ

The mixing term κΦ†ΦH†H behaves as a portal with which
the DM particles can become thermal equilibrium with
standard model (SM) plasma outside the bubble wall then
they share the same temperature and velocity. And due to
this portal coupling ϕ can annihilate away after phase
transition. We assume the effective scalar potential at finite
temperature is of the form

Veffðϕ; TÞ ¼
μ2 þDT2

2
ϕ2 − CTϕ3 þ λ

4
ϕ4 −

g⋆π2T4

90
;

ð16Þ

where g⋆ is the effective number of freedom at phase
transition. We choose g⋆ ¼ 120 for simplicity as counting
some extra particle species.
The critical temperature at which Veffð0; TcÞ ¼

Veffðϕc; TcÞ is

Tc ¼
2

λD − 2C2

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λDðλD − 2C2ÞT2

b

q
2

3
75; ð17Þ

where

T2
b ¼ −

μ2

D
¼ λ

D
v20; ð18Þ

is the temperature when the potential barrier vanishes. We
choose zero-temperature vacuum value v0 ¼ 246 GeV for
simplicity. The two minima are

hϕi ¼ 0;
3CT
2λ

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4λðμ2 þDT2Þ
9C2T2

s #
: ð19Þ

Then the DM mass deep inside the bubble is given by

min
χ ¼ yχϕ−ffiffiffi

2
p ; ð20Þ

where ϕ− ¼ ϕðT−Þ is the field value that is evaluated at the
temperature behind the bubble wall. ϕn is the field value at
nucleation temperature Tn.
We use CosmoTransitions [18] to find the phase tran-

sition points. The bubbles begin to nucleate at the temper-
ature Tn when bounce action S3ðTnÞ=Tn ≃ 142. Actually,
this simple potential has a semianalytical approximation for
the tunneling action [19,20]

S3
T

¼ C

λ3=2
64π

ffiffiffi
δ

p ðβ1δþ β2δ
2 þ β3δ

3Þ
81ð2 − δÞ2 ð21Þ
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with

δ ¼ λðμ2 þDT2Þ
C2T2

ð22Þ

and β1 ¼ 8.2938, β2 ¼ −5.5330, β3 ¼ 0.8180.
Then we use the following definition of the phase

transition strength:

α≡ ð1 − T
4

∂

∂TÞΔVeff

π2g⋆T4=30
; ð23Þ

where ΔVeff is the potential difference between the false
and true vacuum. Then the inverse duration of the phase
transition is

β ¼ −
d
dt

S3ðTÞ
T

¼ HðTÞT d
dT

S3ðTÞ
T

: ð24Þ

We can also have the analytic expression of α and β, which is
shown inAppendixA. InAppendixA it is also shown that the
analytic expression and CosmoTransitions give almost the
same results. We show four benchmark points in Table I. In
our work we mainly work in BP1 and we will also show the
results of other three benchmark points. We use the semi-
analyticmethod to scan the parameters in toymodel as shown
in Fig. 3. We fix λ ¼ 0.01 and then show four phase-
transition parameters as functions of D, C in the toy model:
the nucleation temperature Tn, the phase transition strength
αn, the washout parameter ϕn=Tn, and phase transition
rate β=Hn, where Hn ¼ HðTnÞ is the Hubble constant at
nucleation.

B. Bubble wall velocity

Precise calculation of bubble wall velocity is still difficult
now. In reality, this should be done by evaluating the inter-
actions between the bubble wall and the plasma. The friction
comes from the nonequilibrium part of heavy particles that
have masses comparable with the phase transition temper-
ature. The solution of bubble wall velocity requires us to
solve the EOM including nonequilibrium part [21–23]

∂
2ϕþ ∂Veff

∂ϕ
¼

X
i¼B;F

gi
dm2

i

dϕ

Z
d3p
ð2πÞ3

δfi
2Ei

: ð25Þ

However, even in local equilibrium, there is still an effective
friction on the bubble wall [24–26]. The general quantum
field theoretic formula shows that [24]

FIG. 3. The four phase-transition parameters Tn, αn, ϕn=Tn, and β=Hn in the toy model with fixed λ ¼ 0.01.

TABLE I. Four sets of benchmark parameters and the corre-
sponding phase transition parameters.

D C λ Tn [GeV] αn β=Hn ϕn=Tn

BP1 0.4 0.04 0.01 45.13 0.23 1531.69 11
BP2 0.3 0.036 0.01 53.42 0.13 1299.67 10
BP3 0.5 0.04 0.01 39.03 0.31 2044.65 11.1
BP4 0.7 0.055 0.01 33.6 0.81 1659.02 15.4
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ΔPle ¼ ðγ2w − 1ÞTnΔs; ð26Þ

with Δs is the difference of the entropy density between the
true and the false vacuum.
For ultrarelativistic bubble wall with γwTn ≫ mi the

leading-order contribution of friction is [27]

ΔPLO ¼
X
i

gici
Δm2

i

24
T2
n; ð27Þ

where gi is the number of freedom of the particles and
Δm2

i ¼ m2
i ðϕ−Þ −m2

i ðϕþÞ with ϕ− and ϕþ are the vacuum
value behind and in front of the bubble wall, respectively.
ci ¼ 1 for bosons and ci ¼ 1=2 for fermions. The next-to-
leading-order (NLO) friction is still being debated. One is
proportional to γw [28]

ΔPð1Þ
NLO ≈ γw

X
j∈V

λjmjT3
n log

mj

μref
; ð28Þ

where
P

j∈V sums over only gauge bosons and λj is their
gauge couplings. μref ≈ λjTn is an IR cutoff. However,
Ref. [29] reports another expression for the NLO friction,
which is proportional to γ2w:

ΔPð2Þ
NLO ≈ γ2w

X
j∈V

λjgjT4
n: ð29Þ

In Ref. [3], they pointed out that, for a filtered DM
mechanism, the main friction should come from the heavy
particles:

ΔPheavy ¼
dng⋆π2

90
ð1þ vwÞ3γ2ωT4

n; ð30Þ

where

dn ≡ 1

g⋆

" X
0.2mi>γwTn

�
gbi þ

7

8
gfi

�#
; ð31Þ

with gbi and gfi as the number of degrees of freedom of the
bosons and fermions, respectively. This has a similar form
as Eq. (26). For heavy particles in a false vacuum they
have an entropy density s ∝ T3, and in true vacuum their
contribution to entropy density is approximately zero.
In this work, we focus on the hydrodynamic effects on

the DM relic density. And the bubble wall velocity is
an important parameter to determine the hydrodynamic
mode. To obtain more general results, we do not specify
the definite bubble wall velocity, but discuss three hydro-
dynamic modes for different bubble wall velocities.

IV. VELOCITY AND TEMPERATURE
DISTRIBUTION FROM HYDRODYNAMIC

EFFECTS WITH ZERO-WIDTH BUBBLE WALL

As the bubble wall is expanding, the phase transition
happens and the latent heat is injected, which causes
reheating and bulk motions of the plasma. This produces
the temperature and velocity profiles around the bubble
wall. In this section we discuss the hydrodynamic effects
without considering the thickness of the bubble wall [30].

A. Continuity equations

The energy-momentum tensor (EMT) for the scalar field
ϕ is

Tμν
ϕ ¼ ∂

μϕ∂νϕ − gμν
�
1

2
ð∂ϕÞ2 − VT¼0ðϕÞ

�
; ð32Þ

where VT¼0ðϕÞ is the effective potential at zero temperature
that includes one-loop quantum corrections.
The energy-momentum tensor for plasma is

Tμν
pl ¼

X
i

Z
d3k

ð2πÞ3Ei
kμkνfeqi ðkÞ; ð33Þ

which can be parametrized as a perfect fluid

Tμν
pl ¼ ωplu

μ
plu

ν
pl − pplgμν; ð34Þ

where uμpl ¼ ðγ; γv⃗Þwith γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
in the frame of the

bubble center, the thermal pressure ppl and enthalpy ωpl are

ppl ¼ �T
X
i

Z
d3k
ð2πÞ3 log ½1� exp ð−Ei=TÞ�;

ωpl ¼ T
∂ppl

∂T
¼ epl þ ppl; ð35Þ

with Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
defined in the plasma rest frame.

The signs þ=− denote fermions/bosons.
Because for scalar field EMT ωϕ ¼ eϕ þ pϕ ¼ 0

and pϕ ¼ −VT¼0ðϕÞ, we can write the EMT of the total
system as

Tμν
fl ¼ Tμν

ϕ þ Tμν
pl ¼ ωuμuν − pgμν; ð36Þ

with ω ¼ ωpl, uμ ¼ uμpl, and p ¼ ppl − VT¼0.
The equation of state can be parametrized by using the

bag model. In the false vacuum,

pþ ¼ 1

3
aþT4þ − ϵ; eþ ¼ aþT4þ þ ϵ; ð37Þ

and in the broken phase
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p− ¼ 1

3
a−T4

−; e− ¼ a−T4
−: ð38Þ

Here

a� ≡ 3

4T3
�

∂p
∂T

				
�
¼ 3ω�

4T4
�
; ϵ� ¼ 1

4
ðe� − 3p�Þ; ð39Þ

where a� are the number of freedom in the false and true
vacuum, respectively. Mostly aþ > a− as counting the
heavy particles across the bubble wall. ϵ denotes the false-
vacuum energy, which is often defined to be zero in the
broken, true-minimum phase.
We consider the continuity equations that come from the

energy-momentum conservation,

∇μTμν ¼ uν∇μðuμωÞ þ uμω∇μuν −∇νp ¼ 0: ð40Þ

We project the direction of the flow of the fluid, and using
uμ∇νuμ ¼ 0, we get

∇μðuμωÞ − uμ∇μp ¼ 0: ð41Þ

We next project perpendicular to the flow with some
spacelike vector ū ¼ γðv; v=vÞ such that ūμuμ ¼ 0;
ū2 ¼ −1. Then we have

ūνuμω∇μuν − ūν∇νp ¼ 0: ð42Þ

Since there is no characteristic distance scale in the
problem, the solution could be described by a self-similar
parameter ξ ¼ r=t, where r is the distance from the bubble
center and t the time from nucleation. Then the gradients
will be turned into

uμ∇μ ¼ −
γ

t
ðξ − vÞ∂ξ; ūμ∇μ ¼ γ

t
ð1 − ξvÞ∂ξ: ð43Þ

By using

∇μuμ ¼
jv
ξ

γ

t
þ γ

t
γ2ð1 − ξvÞ∂ξv; ð44Þ

with j ¼ 0, 1, 2 for planar, cylindrical, and spherical
cases, respectively. Then Eqs. (41) and (42) can be trans-
formed into

ðξ − vÞ ∂ξe
ω

¼ j
v
ξ
þ ½1 − γ2vðξ − vÞ�∂ξv;

ð1 − vξÞ ∂ξp
ω

¼ γ2ðξ − vÞ∂ξv: ð45Þ

The derivatives ∂ξe and ∂ξp can be related through the
speed of sound in the plasma, c2s ≡ ðdp=dTÞ=ðde=dTÞ,
then from Eq. (45) we have

j
v
ξ
¼ γ2ð1 − vξÞ

�
μ2

c2s
− 1

�
∂ξv;

∂ξω

ω
¼

�
1þ 1

c2s

�
γ2μ∂ξv; ð46Þ

with μ as the Lorentz-transformed fluid velocity,

μðξ; vÞ ¼ ξ − v
1 − ξv

: ð47Þ

In many cases c2s only slightly deviates from 1=3. After
getting vðξÞ, we can integrate Eq. (46) to get

ωðξÞ ¼ ω0 exp

�Z
vðξÞ

v0

�
1þ 1

c2s

�
γ2μdv

�
: ð48Þ

B. Matching conditions

In order to solve the continuity equations, we must
impose some boundary conditions. There are two bounda-
ries in our cases, the bubble wall at ξw ¼ vw and the shock
front ξsh. In the reference frame of the bubble wall, we can
again use the energy-momentum conservation across the
boundaries; remember that we denote ṽ as velocity in the
frame of the bubble wall:

ωþṽ2þγ̃2þ þ pþ ¼ ω−ṽ2−γ̃2− þ p−; ωþṽþγ̃2þ ¼ ω−ṽ−γ̃2−:

ð49Þ

From these equations one obtains the relations

ṽþṽ− ¼ pþ − p−

eþ − e−
¼ 1 − ð1 − 3αþÞrω

3 − 3ð1þ αþÞrω
;

ṽþ
ṽ−

¼ e− þ pþ
eþ þ p−

¼ 3þ ð1 − 3αþÞrω
1þ 3ð1þ αþÞrω

; ð50Þ

with αþ ≡ ϵ=ðaþT4þÞ and rω¼ωþ=ω−¼ðaþT4þÞ=ða−T4
−Þ.

The fluid velocities on each side in the bubble center frame
are given by v� ¼ μðξw; ṽ�Þ.
Substituting Eqs. (37) and (38) into Eq. (50), we can

solve for ṽþ as function of ṽ−,

ṽþ ¼ 1

1þ αþ

"�
ṽ−
2
þ 1

6ṽ−

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ṽ−
2
þ 1

6ṽ−

�
2

þ α2þ þ 2

3
αþ −

1

3

s #
: ð51Þ

We show the two branches of solutions in Fig. 4. The
upper branch corresponds to the detonation that the
incoming flow is supersonic (ṽþ > cs) and is faster than
outgoing flow (ṽþ > ṽ−). For deflagration ṽþ < cs and
ṽþ < ṽ−. One can see that there are no deflagration
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solutions for αþ > 1=3. The process with ṽ− ¼ cs is called
a Jouguet detonation. We then have

ṽþ ¼ vJðαþÞ ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αþð2þ 3αþÞ
p
ffiffiffi
3

p ð1þ αþÞ
: ð52Þ

For deflagration mode, in order to satisfy the condition that
vðξ → ∞Þ ¼ 0, there should be a shock front at ξsh in front
of the bubble wall. We shall use index 1 for variables
behind the shock front and index 2 for variables in front of
the shock front. Energy-momentum conservation across the
shock front gives us a similar form as Eq. (50),

ṽ1ṽ2 ¼
1

3
;

ṽ1
ṽ2

¼ 3T4
2 þ T4

1

3T4
1 þ T4

2

: ð53Þ

C. Spherical approximation

In the spherical case, for detonation the velocity in front
of the bubble wall vþ ¼ 0 in the bubble center frame and
Tþ ¼ Tn. Then we have ṽþ ¼ ξw ¼ vw and αþ ¼ αn where
αn ¼ ϵ=ðaþT4

nÞ. The bubble wall is followed by a rarefac-
tion wave that ends at ξ ¼ cs. The rarefaction wave is
depicted by Eq. (46). The boundary condition is

vðξwÞ ¼ v− ¼ μðξw; ṽ−Þ; ð54Þ
with ṽ− given by the inverse of Eq. (51). After getting the
profile of the velocity, the enthalpy profile is given by
Eq. (48) with the boundary condition

ω− ¼ γ2wvw
γ̃2−ṽ−

ωn: ð55Þ

For the deflagration mode, we have v− ¼ 0, v2 ¼ 0, and
α2 ¼ αn. Or equivalently, ṽ− ¼ ξw ¼ vw, ṽ2 ¼ ξsh, and

α2 ¼ αn. Equation (46) depicts the profile between ξw and
ξsh, and the boundary condition is vþ in front of the bubble
wall or v1 behind the shock front. vþ ¼ μðξw; ṽþÞ with ṽþ
given by Eq. (51). However, here αþ ≠ αn because of the
heating effects in front of the bubble wall. In order to solve
this, one can use the shooting method that first guess the
temperature behind the bubble wall T−, then from Eq. (50)
we get initial values and integrate Eqs. (46) and (48) up to the
point where μðvðξÞ; ξÞξ ¼ 1=3 to find the position of the
shock front. Then adjust T− until Eq. (53) is satisfied.
For the hybrid mode, it has both the shock front and the

rarefaction wave. We can use the similar procedure as
deflagration, except the boundary condition that ṽ− ¼ cs.
In Fig. 5, we show the velocity and temperature just

in front of and behind the bubble wall and we choose
αn ¼ 0.1. For deflagrations we have ṽ− ¼ vw and ṽþ < ṽ−.
For the hybrid case we have ṽ− ¼ cs. For detonations ṽþ ¼
vw and ṽ− < ṽþ. For deflagration and hybrid modes, they
are both heating or cooling in front of and behind the
bubble wall. However for detonations we have Tþ ¼ Tn
and only heating behind the bubble wall. As we will see
in Sec. 8, ṽþ and Tþ or ṽ− and T− will give the boundary
conditions for velocity and temperature profiles across the
bubble wall when the wall has nonzero width.

The behavior of ΩðhyÞ
DM h2=Ωð0Þ

DMh
2, which is the ratio

between the DM relic abundance in the three hydrody-
namic mode and the DM relic density without heating
effects is shown as functions of vw and D in Fig. 6. In the
left panel we show the deflagration case for vw < cs. The
effect of increasing D is mainly increasing αn. We can see
that for low velocity the DM relic density is enhanced,
which is mainly due to the heating effects from which
T− < Tn < Tþ such that ϕ− < ϕn. Then the DM is more
preferable to pass through the bubble wall. As the velocity
increases the effect is weaker. For vw ≳ 0.1 we have

ΩðhyÞ
DM h2=Ωð0Þ

DMh
2 < 1, which is mainly due to the suppres-

sion of velocity in front of the bubble wall. This can be seen
from ωþγ̃2þṽþ ¼ ω−γ̃

2
−ṽ− that the variation of velocity is

opposite to the temperature. And we can see from Eq. (61)
that the variation of the velocity will compensate the
variation of the temperature. For the detonation case
the heating effects influence slightly because the main
difference is the vacuum value ϕ− > ϕn such that
min

χ ðT−Þ > min
χ ðTnÞ. The discontinuity in right panel is

due to the jump of temperature and velocity that can be
seen in Fig. 5. And we find for D > 0.7 that there are no
solutions for detonations because the heating is strong
enough that T− > Tc and ϕðT−Þ is complex.1 Actually, this
is not the case in reality because the heating is strong
enough to produce a hydrodynamic backreaction, which
gives a upper limit of the bubble wall velocity [32],

FIG. 4. Velocities in front of and behind the bubble wall. The
upper branch and the lower branch correspond to detonation and
deflagration, respectively. The gray areas are forbidden because
they are not physical solutions.

1This behavior may provide a possibility to achieve supersonic
baryogenesis [31].
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vw ≃
�log Tc

Tn

6αc

�1=2

¼
�T4

c log
Tc
Tn

6T4
nαn

�1=2

; ð56Þ

where αc and αn are the phase transition strength defined in
Eq. (23) with Tc and Tn, respectively.
From Eq. (51), in the small limit of bubble wall velocity

we have the approximation

ṽþ ≃
ṽ−ð1 − 2αþ − 3α2þÞ

1þ αþ
: ð57Þ

Then from Eq. (49) we have

ω−

ωþ
¼ γ̃2þṽþ

γ̃2−ṽ−
≃
1 − 2αþ − 3α2þ

1þ αþ
≡ a−T4

−

aþT4þ
: ð58Þ

From Fig. 5 we can see that for vw → 0 we have αþ ≈ αn
then

ṽþ ≃
vwð1 − 2αn − 3α2nÞ

1þ αn
;

T− ≃
�
1 − 2αn − 3α2n

1þ αn

�1
4

�
aþ
a−

�1
4

Tn: ð59Þ

For example, in the limit that vw ¼ 0.01, for BP1 we have
T− ≈ 33 GeV and then from Eq. (19) we have ϕðT−Þ ¼
438 GeV, we can get that ΩðhyÞ

DM h2=Ωð0Þ
DMh

2 ≃ 65, which is
consistent with a more exact result without using the low
bubble wall velocity limit. This can be seen in Fig. 6, where

we show the ΩðhyÞ
DM h2=Ωð0Þ

DMh
2 for different values of D

and vw. We fix C ¼ 0.04 and λ ¼ 0.01. The low velocity
approximation for D ¼ 0.4 is represented by the green

FIG. 5. Left: flow velocity in the bubble wall frame ṽþ and ṽ− as functions of vw for αn ¼ 0.1 for spherical bubbles. Right: temperature
in front of and behind the bubble wall as functions of vw for αn ¼ 0.1 for spherical bubbles.

FIG. 6. Ratio of DM relic densityΩðhyÞ
DM h2=Ωð0Þ

DMh
2 as a function of vw andD. Left is for vw < cs (deflagrations) and right is for vw > cs

(hybrids and detonations). We fix C ¼ 0.04 and λ ¼ 0.01. And we have fixed yχ ¼ 3, which gives Ωð0Þ
DMh

2 ≃ 0.12 at vw ¼ 0.01 for BP1.
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dashed line. It is shown that the low velocity approximation
fits well with the exact analytic results.
In summary, in the low velocity limit as vw ≲ 0.1

the quantities around the bubble wall can be evaluated
approximately,

ṽ− ¼ vw; ṽþ ≃
vwð1 − 2αn − 3α2nÞ

1þ αn
; Tþ ≃ Tn;

T− ≃
�
1 − 2αn − 3α2n

1þ αn

�1
4

�
aþ
a−

�1
4

Tn; ð60Þ

then the analytic expression of DM number density is

ninχ ≃
gχT3þ
γwvw

�
γ̃þð1 − ṽþÞmin

χ =Tþ þ 1

4π2γ̃3þð1 − ṽþÞ2
�
e−γ̃þð1−ṽþÞmin

χ ðT−Þ=Tþ ;

ð61Þ

which can be used to get relatively more precise analytic
results.

D. Planar approximation

The hydrodynamic equations can be solved analytically
for planar walls. As j ¼ 0 in Eq. (46), we have either
v0ðξÞ≡ 0 or μðξ; vÞ ¼ �cs. At the bubble wall, the fluid
velocity should fulfill v� < ξw such that μðξ; vÞ ¼ −cs is
not physical. Then the physical solutions are either the
constants or the rarefaction,

vrarðξÞ ¼
ξ − cs
1 − csξ

: ð62Þ

The integration in Eq. (48) is simple to do. For v0ðξÞ ¼ 0
the enthalpy is a constant. For μðξ; vÞ ¼ cs we have

ω

ω0

¼
�
1 − v0
1þ v0

1þ v
1 − v

�
2=

ffiffi
3

p

: ð63Þ

For detonations, the fluid velocity between ξ ¼ cs and a
certain ξ0 ≤ ξw is given by vðξÞ ¼ vrarðξÞ. And the fluid
velocity between ξ0 and ξw is constant v≡ v−. From the
matching condition vrarðξ0Þ ¼ v− we can determine the
position ξ0,

ξ0 ¼
v− þ cs
1þ v−cs

: ð64Þ

v− ¼ μðξw; ṽ−Þ with ṽ− is given by the inverse of Eq. (51)
as a function of αþ ¼ αn and ṽþ ¼ ξw. Between cs and ξ0,
the enthalpy profile is given by Eq. (63) with the boundary
condition ω0 ¼ ω−. The ω− is given by Eq. (55) and is also
the constant value between ξ0 and ξw. Inserting Eq. (62)
into Eq. (63), we have

ωðξÞ ¼ ω−

�
1 − v−
1þ v−

1 − cs
1þ cs

1þ ξ

1 − ξ

�
2=

ffiffi
3

p

: ð65Þ

It is much simpler for deflagration mode. In this case, the
fluid velocity is constant v≡ vþ ¼ v1 between ξw and ξsh
and vanishes outside this region. We also have ṽ− ¼ ξw,
ṽ2 ¼ ξsh, ωþ ¼ ω1, and αþ ¼ α1. Then by using Eq. (53),
we have

3ξ2sh ¼
3αn þ α1
αn þ 3α1

; vþ ¼ v1 ¼
3ξ2sh − 1

2ξsh
: ð66Þ

Combine this with Eq. (51) we can get ξsh as a function of
αn and ξw ≡ vw,

FIG. 7. Velocity and enthalpy profiles of three hydrodynamic modes for αn ¼ 0.23. The solid lines are for spherical bubbles and
dashed lines are for the approximation of the planar wall.
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ð3ξ2sh − 1Þ2 þ ξshð3ξ2sh − 1Þ1− 3ξ2w
ξw

¼ 9

2
αnð1− ξ2shÞ2; ð67Þ

which we can solve numerically.
For the hybrid case we get a similar equation as Eq. (67)

by using the condition vþ ¼ v1 and αþ ¼ α1,�
ξshð1 −

ffiffiffi
3

p
ξwÞ −

3ξ2sh − 1

2
ðξw −

ffiffiffi
3

p
Þ
�
2

¼ 9

4
αnð1 − ξ2wÞð1 − ξ2shÞ2: ð68Þ

In Fig. 7, we show the velocity and enthalpy profile in
both spherical and planar cases for αn ¼ 0.23. The solid
lines represents the results for spherical bubbles and the
dashed lines are for the approximation of planar wall.

V. TEMPERATURE AND VELOCITY PROFILE
WITH BUBBLE WALL THICKNESS

Further, we relax the assumption of zero-width bubble
wall and consider the wall thickness, which can help to
perform more precise results with Boltzmann equations in
next section. As the bubble wall has a finite width, we
expect the velocities and the temperature of the plasma have
a profile across the wall. Below we neglect the index w of
zw and pw

z for simplicity. Keep in mind that we work in the
bubble wall frame.
To derive the equations that describe the evolution of

TðzÞ and ṽplðzÞ, we can still use the equations of con-
servation of EMT ∇μTμν ¼ 0 [33]

T30 ¼ ωplγ̃
2
plṽpl ≡ c1;

T33 ¼ 1

2
ð∂zϕÞ2 − Veffðϕ; TÞ þ ωplγ̃

2
plṽ

2
pl ≡ c2; ð69Þ

where c1 and c2 are constants that depend on boundary
values T− and ṽ− (or alternatively on Tþ and ṽþ), which
denote the fluid temperature and velocity at z → −∞
(þ∞). It is simple to show that, if we parametrize the
Veff as

Veff ¼ −p ¼ ϵ − aT4=3; ð70Þ

this is just the bag model case. However, in reality the a and
ϵ is functions of temperature which will give us results
beyond bag model [34–36].
In practice, one can directly solve the first line of Eq. (69)

for vpl:

ṽpl ¼
−ωpl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c21 þ ω2

pl

q
2c1

: ð71Þ

Substituting ṽpl into the equation for T33 yields

1

2
ð∂zϕÞ2 − Veff −

1

2
ωpl þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c21 þ ω2

pl

q
− c2 ¼ 0: ð72Þ

In order to get c1 and c2, we should solve for hydrodynamic
equations for the bubble wall system just as in last section,
in particular, for three cases: detonations, deflagrations,
and hybrids. As we can see in Fig. 7, we can in many cases
just use the planar approximation. Then for, three cases,
we have
(1) Detonations: Tþ ¼ Tn and ṽþ ¼ vw, which gives us

c1 ¼ ωnγ
2
wvw; c2 ¼ ωnγ

2
wv2w − Veffð0; TnÞ: ð73Þ

(2) Deflagrations: After getting ξsh from Eq. (67), we
have from Eq. (66)

ωþ ¼ ωn
9ξ2sh

3ð1 − ξ2shÞ
; ṽþ ¼ vw − vþ

1 − vwvþ
;

where vþ ¼ 3ξ2sh − 1

2ξsh
; ð74Þ

then

c1 ¼ ωþγ̃2þṽþ; c2 ¼ ωþγ̃2þṽ2þ −Veffð0; TþÞ: ð75Þ

(3) Hybrids: After solving ξsh from Eq. (68), we have
the same form of c1 and c2 as deflagrations.

After getting c1 and c2, we can solve Eqs. (71) and (72)
to get the profiles of velocity ṽplðzÞ and temperature TðzÞ
around the bubble wall.
In addition to Eqs. (71) and (72), we have another

equation, i.e., the EOM of the background scalar field,

∂
2ϕþ ∂Veffðϕ; TÞ

∂ϕ
¼ 0: ð76Þ

A simple solution of this equation is tanh ansatz,

ϕðzÞ ¼ ϕðT−Þ
2

�
1þ tanh

2z
Lw

�
: ð77Þ

We choose the wall width Lw ¼ 5=Tn. We show the results
of TðzÞ and ṽplðzÞ in Fig. 8, where we choose the relatively
low velocity vw ¼ 0.01 and the relatively high velocity
vw ¼ 0.9, respectively. The left figure represents the
deflagration mode where the temperature inside the bubble
is lower than Tn. We can also see that ṽ− ¼ vw, which
fulfills the boundary condition for deflagration. In contrast,
the right figure depicts the detonation mode where the
temperature in front of the bubble wall Tþ ¼ Tn and
temperature inside bubble is higher than Tn. For detonation
we also have ṽþ ¼ vw.
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VI. NUMERICAL RESULTS
OF THE HYDRODYNAMIC EFFECTS

ON BOLTZMANN EQUATION
WITH BUBBLE WALL THICKNESS

Generally the bubble wall is not extremely thin. The
distribution of particles varies across the bubble wall
caused by the gradient of their masses. To obtain more
precise results of the hydrodynamic effects on the DM
density, we perform numerical calculations with the
Boltzmann equation and bubble wall thickness.

A. Boltzmann equation

The Boltzmann equation characterizes the evolution of
particles in phase space,

L½fχ � ¼ C½fχ �: ð78Þ

Here, L is the Liouville operator and C is a collision term,
which accounts for the particle interactions.
We introduce the fluid ansatz, the distribution function of

DM in the wall frame is parametrized as

fχ ¼ Aðz; pzÞfeqχ;þ ¼ Aðz; pzÞ exp
�
−
γ̃þðE − ṽþpzÞ

Tþ

�
;

ð79Þ

where feqχ;þ is the equilibrium distribution function in
front of the bubble wall. Because of the energy

conservation, in the bubble wall frame E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ pzðzÞ2 þmχðzÞ2
q

≡ const: with

mχðzÞ≡min
χ ðϕ−Þ
2

�
1þ tanh

2z
Lw

�
; ð80Þ

where min
χ ðϕ−Þ ¼ yχϕ− is the mass of DM deep inside the

bubble.
The Liouville operator is the total time derivative of the

phase space distribution function f ¼ fðt;xðtÞ;pðtÞÞ. In a
steady state and neglect the x, y direction, using energy-
conservation p2

z þmχðzÞ2 ¼ const: in the wall frame, we
then have

L½fχ � ¼
pz

E

∂fχ
∂z

−
mχ

E

∂mχ

∂z

∂fχ
∂pz

: ð81Þ

Then we find that the nonzero ∂mχ=∂z acts as a external
force which disturb the phase space distribution of DM. We
now integrate over the transverse momentum components
px and py and multiply by the number of spin states,
gχ ¼ 2, giving

gχ

Z
dpxdpy

ð2πÞ2 L½fχ � ¼ gχ

Z
dpxdpy

ð2πÞ2
pz

E

∂fχ
∂z

− gχ

�
∂mχ

∂z

�Z
dpxdpy

ð2πÞ2
mχ

E

∂fχ
∂pz

:

ð82Þ

Using the Maxwell-Boltzmann approximation for fχ
then gives

FIG. 8. Velocity and temperature profiles of DM across the bubble wall for deflagration (vw ¼ 0.01 in the left panel) and detonation
(vw ¼ 0.9 in the right panel). The hydrodynamic effects and bubble width are considered.
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gχ

Z
dpxdpy

ð2πÞ2 L½fχ � ≈ gχ

�
∂

∂z
Aðz; pzÞ

�Z
dpxdpy

ð2πÞ2
pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
χ þ p2

x þ p2
y þ p2

z

q e−E
P
þ=Tþ

þ gχAðz; pzÞ
Z

dpxdpy

ð2πÞ2
pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
χ þ p2

x þ p2
y þ p2

z

q �
∂

∂z
e−E

P
þ=Tþ

�

− gχ

�
∂mχ

∂z

��
∂

∂pz
Aðz; pzÞ

�Z
dpxdpy

ð2πÞ2
mχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
χ þ p2

x þ p2
y þ p2

z

q e−E
P
þ=Tþ

− gχ

�
∂mχ

∂z

�
Aðz; pzÞ

Z
dpxdpy

ð2πÞ2
mχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
χ þ p2

x þ p2
y þ p2

z

q �
∂

∂pz
e−E

P
þ=Tþ

�
; ð83Þ

where

EPþ ≡ EPþðz; pzÞ ¼ γ̃þðE − ṽþpzÞ: ð84Þ
After the integration the Liouville term becomes

gχ

Z
dpxdpy

ð2πÞ2 L½fχ � ≈
��

pz

mχ

∂

∂z
−
�
∂mχ

∂z

�
∂

∂pz
−
�
∂mχ

∂z

�
γ̃þṽþ
Tþ

�
Aðz; pzÞ

�
gχmχTþ
2πγ̃þ

eγ̃þðṽþpz−
ffiffiffiffiffiffiffiffiffiffiffi
m2

χþp2
z

p
Þ=Tþ : ð85Þ

B. Collision term

One can evaluate the collision term C½fχ � in the local plasma frame of DM and turn back to wall frame at the end. We
consider the process of annihilation χðpPÞ þ χ̄ðqPÞ → ϕðkPÞ þ ϕðlPÞ and inverse decay χðpPÞ þ χ̄ðqPÞ → ϕðkPÞ in our
case. The collision terms for the other processes, χϕ → χϕ, χχ → χχ, and χχ̄ → χχ̄, has similar expressions. For
annihilation, integrating over px and py and multiplying by the number of spin states, gχ ¼ 2, the collision term is

gχ

Z
dpxdpy

ð2πÞ2 C½fχ � ¼ −
X
spins

Z
dpxdpy

ð2πÞ2 dΠqPdΠkPdΠlP
ð2πÞ4
2EP

p
δð4ÞðpP þ qP − kP − lPÞjMj2χχ̄↔ϕϕ

× ½fχpfχ̄qð1� fϕk
Þð1� fϕl

Þ − fϕk
fϕl

ð1� fχpÞð1� fχ̄qÞ�; ð86Þ

where Mχχ̄↔ϕϕ is the scattering matrix element, and we have used the notation EP
p ¼ ½ðpPÞ2 þm2

χ �2,
dΠqP ≡ d3qP=½2EP

q ð2πÞ3�, and fχp ≡ fχðtP ;xP;pPÞ, with χp ≡ χðpÞ.
We neglect Pauli blocking and Bose enhancement for all species by setting 1� f ≈ 1, and assume that all species

except for the initial DM particle χðpÞ are in equilibrium. In the local frame of DM the light particles ϕ should obey the
equilibrium distribution

feqϕ ¼ exp

�
−
γ̃0plðzÞðEϕ − ṽ0plðzÞpzϕÞ

TðzÞ
�
; ð87Þ

where

ṽ0plðzÞ ¼
ṽplðzÞ − ṽþ
1 − ṽplðzÞṽþ

ð88Þ

represents the relativistic velocity between ϕ and DM.
Since detailed balance holds for each momentum mode independently, feqϕk

feqϕl
¼ feqχpf

eq
χ̄q
.

gχ

Z
dpxdpy

ð2πÞ2 C½fχ � ¼ −gχ
Z

dpxdpy

ð2πÞ2 dΠqPdΠkPdΠlP
ð2πÞ4
2EP

p
δð4ÞðpP þ qP − kP − lPÞjMj2χχ̄↔ϕϕ

h
fχpf

eq
χ̄q;þ − feqχpf

eq
χ̄q

i
: ð89Þ

Here we approximate fχ̄q ≃ feqχ̄q;þ ¼ expð−EP
p=TþÞ. We will see later that the A is of Oð1Þ except for some finite regions,

so this approximation does not influence the results dramatically.
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We can now integrate over k and l to obtain

gχ

Z
dpxdpy

ð2πÞ2 C½fχ � ¼ −gχgχ̄
Z

dpxdpy

ð2πÞ22EP
p
dΠqP4Fσχχ̄→ϕϕ

h
fχpf

eq
χ̄q;þ − feqχpf

eq
χ̄q

i
;

¼ −gχgχ̄
Z

dpxdpy

ð2πÞ22EP
p
dΠqP4Fσχχ̄→ϕϕ

h
Afeqχp;þf

eq
χ̄q;þ − feqχpf

eq
χ̄q

i
;

≡ ΓPðz; pzÞAðz; pzÞ − ΓIðz; pzÞ; ð90Þ

where the kinematic factor

F≡ EP
pEP

q jvχ − vχ̄ j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 2m2

χÞ2 − 4m4
χ

q
; ð91Þ

and here the collision rate for χχ̄ → ϕϕ is defined as

ΓP
P ðz; EP

p Þ ¼ −gχgχ̄
Z

dpxdpy

ð2πÞ22EP
p
dΠqP4Fσχχ̄→ϕϕf

eq
χp;þf

eq
χ̄q;þ;

ð92Þ
and collision rate for their inverse process

ΓP
I ðz; EP

p Þ ¼ −gχgχ̄
Z

dpxdpy

ð2πÞ22EP
p
dΠqP4Fσχχ̄→ϕϕf

eq
χpf

eq
χ̄q
:

ð93Þ

The integration can be done numerically by using the
Monte Carlo package VEGAS [37]. To boost back into the
bubble wall frame, in Eqs. (92) and (93) we should replace
EP
p with γ̃þðE − ṽþpzÞ,

ΓPðIÞðz; pzÞ ¼ ΓP
PðIÞðz; γ̃þðE − ṽþpzÞÞ: ð94Þ

In the case without heating, we have ṽþ ¼ vw and
Tþ ¼ Tn, then one can get

gχ

Z
dpxdpy

ð2πÞ2 C½fχ � ¼ Γnðz; pzÞðAðz; pzÞ − 1Þ ð95Þ

with ΓP ¼ ΓI ¼ Γn. This is the original form of Ref. [2].
Outside the bubble, where mχ ≈ 0, the annihilation cross

section is

σðχχ̄ → ϕϕÞ ¼ y4χ
32πs

½2 log ðs=m2
ϕÞ − 3� þOðm2

ϕ=sÞ:
ð96Þ

We show in Fig. 9 the collision rate ΓPðIÞðz; pzÞ for
yχ ¼ 1 and pini

z ¼ 600 GeVwhere pini
z is the initial incident

z momentum towards the bubble wall. As we can see, the
collision rates are different for each case due to the
hydrodynamic effects. In the detonation case, the temper-
ature in front of the bubble wall is the same, resulting in the
same collision rate. However, heating effects behind the
bubble wall cause T− to be higher than Tþ. This induces a
larger collision rate for ΓI. And because of Tþ ¼ Tn < T−
and ϕ− > ϕn, we also have that ΓP < Γn < ΓI. For the
deflagration of vw ¼ 0.01, as the plasma in front of the
bubble wall is heated, the collision rate is slightly enhanced.
Due to that T− < Tn < Tþ and ϕ− < ϕn, one can get
that ΓI < Γn < ΓP.

FIG. 9. Collision rates for the incident DM particle with pini
z ¼ 600 GeV. Red and blue lines are collision rates considering heating

effects and black lines are collision rates without heating effects. Left panel is for vw ¼ 0.01 and right panel is for vw ¼ 0.9.
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For decay process, we define

gχ

Z
dpxdpy

ð2πÞ2 C½fχ � ¼ −gχ
Z

dpxdpy

ð2πÞ2 dΠqPdΠkP
ð2πÞ4
2EP

p
δð4ÞðpP þ qP − kPÞjMj2χχ̄↔ϕ

×
h
fχpf

eq
χ̄q;þ − feqϕk

i
;

¼ −gχ
Z

dpxdpy

ð2πÞ2 dΠqPdΠkP
ð2πÞ4
2EP

p
δð4ÞðpP þ qP − kPÞjMj2χχ̄↔ϕ

×
h
Afχp;þf

eq
χ̄q;þ − feqχ̄pf

eq
χ̄q

i
;

≡ ΓPðz; pzÞAðz; pzÞ − ΓIðz; pzÞ; ð97Þ

with

ΓIðPÞðz;EP
p Þ ¼−

Z
dpxdpydqP

gχgχ̄m2
ϕq

P

128π4EP
pEP

q pP f
eq
χ̄pð;þÞf

eq
χ̄qð;þÞ ;

ð98Þ

where we have used for inverse decay jMj2χχ̄↔ϕ¼4y2χðp ·qÞ
and then integrate over the phase space.

C. Numerical results

1. Solutions to Boltzmann equations

Due to energy and momentum conservation, along the
paths on which both the transverse momentum p⊥ and the
quantity p2

z þm2
χðzÞ are constant, the differential operator

simply reduces to a total derivative with respect to z:

pz

mχ

∂

∂z
−
�
∂mχ

∂z

�
∂

∂pz
→

pz

mχ

d
dz

; ð99Þ

which is called the method of characteristics.
Then the Boltzmann equations can be transformed into

the form of

dA
dz

¼ cðA; pz; zÞ: ð100Þ

The explicit form of right-handed term can be extracted
from Eqs. (85) and (90).
In order to solve for this differential equation we have to

impose the boundary conditions. As the particles far in
front of the bubble wall should be in thermal equilibrium,
we can set Aðz ≪ −Lw; pz > 0Þ ¼ 1. This uses the ther-
mal-equilibrium condition that we discuss in Appendix B.
We also assume an identical parallel wall at z ≫ Lw.
One can compute the solutions along the curves starting
at ðz ≪ −Lw; pz > min

χ Þ to find the values deep inside the
bubble, at ðz ≫ Lw; pz > 0Þ. Then for particles which
originate inside the bubble wall we set

Aðz ≫ Lw; pzÞ ¼ Aðz ≫ Lw;−pzÞ: ð101Þ

This assumes that the flow form inside to outside comes
from the other side of bubble wall.
After getting Aðz; pzÞ, we can integrate and get the DM

relic number density

ninχ ¼ Tþ
γwγ̃þ

Z
∞

0

dpz

ð2πÞ2 Aðz ≫ Lw; pzÞ

× exp
h
γ̃þ

�
ṽþpz −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðmin

χ Þ2
q �

=Tþ
i

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðmin

χ Þ2
q

þ Tþ
γ̃þ

�
; ð102Þ

where the extra 1=γw accounts for the boost from the bubble
wall frame into the bubble center frame.
We show the phase space enhancement factor A in

Fig. 10. The results are significantly different for cases with
and without heating at vw ¼ 0.01. Due to the heating
effects in deflagration mode, the phase space enhancement
factor is decreasing because of the smaller velocity in front
of the bubble wall and smaller min

χ behind the wall. Smaller
min

χ causes smaller perturbations for DM. For detonations
the velocity is the same for both cases but min

χ for
detonations is slightly larger due to the heating effect, A
is slightly enhanced.
One may worry about the too large A of our results.

However, the A evaluates the nonequilibrium part of
distribution function of DM. When the DM mass is much
larger compared with the temperature, it almost fully
decouples with the SM bath and we hope the nonequili-
brium part should be large. This can be seen from the
extreme case that the DM decouple with thermal bath
immediately when the DM particles hit the bubble wall, in
other words the DM is in a purely nonequilibrium state.
Then we can ignore the collision term in the Boltzmann
equation. Thus we have

d
dz

ðAfeqχ Þ ¼ 0 ð103Þ

HYDRODYNAMIC EFFECTS ON THE FILTERED DARK MATTER … PHYS. REV. D 108, 063508 (2023)

063508-15



along the flow path of DM. This gives us

Aðz ≫ Lw; pzÞ exp
�
−
γ̃þðE − ṽþpzÞ

Tþ

�

¼ Aðz ≪ −Lw; pini
z Þ exp

�
−
γ̃þðE − ṽþpini

z Þ
Tþ

�
: ð104Þ

Since we have Aðz ≪ −Lw; pini
z Þ ¼ 1 and energy-

conservation p2
z þm2

χ ¼ const:, we can get ðpini
z Þ2 ¼

p2
z þ ðmin

χ Þ2, which gives us

Aðz ≫ Lw; pzÞ ¼ exp

0
B@γ̃þṽþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðmin

χ Þ2
q

− pz

�
Tþ

1
CA:

ð105Þ
This can obviously be very large. Generally, the collisions
with thermal bath help DM to return to thermal equilibrium,
so we expect a smaller A when we include the colli-
sion terms.
In the left panel of Fig. 11 we show the DM relic density

for BP1 where we choose vw ¼ 0.01. Analytic results

indicate that the DM relic density for deflagration
mode is nearly 65 times greater than the one without
heating, while numerical results suggest that the
enhancement is almost 70 times. The calculations in
analytic and numerical method differ by a factor
of 3. For detonations in the right panel of Fig. 11

we have ΩðhyÞ
DM h2=Ωð0Þ

DMh
2 ¼ 1=19 in analytic method

and ΩðhyÞ
DM h2=Ωð0Þ

DMh
2 ¼ 1=27 in numerical method. The

hydrodynamic effects of detonation are weaker than
deflagration because of that for detonation the only
difference is the temperature behind the bubble wall and
so the DM field-dependent mass min

χ .
The analytic results of the deflagration case can be

easily understood by the low-velocity approximation. We

choose yχ ¼ 2.8 and thus Ωð0Þ
DMh

2 ¼ 0.12 for BP1. For BP1

we have αn ¼ 0.23 and Tn ¼ 45.13 GeV. From Eq. (60),
we get

ṽ− ¼ 0.01; ṽþ ≃ 0.003; Tþ ≃ 45.13 GeV;

T− ≃ 33.67 GeV ð106Þ

FIG. 10. Evolution of Aðz; pzÞ where we choose yχ ¼ 1. Left panels are for low velocity vw ¼ 0.01 and right panels are for high
velocity vw ¼ 0.9.
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then from Eqs. (9)–(11) we can get

ΩðhyÞ
DM h2

Ωð0Þ
DMh

2
¼ min

χ ðT−Þninχ ðT−Þ
min

χ ðTnÞninχ ðTnÞ
×
T3
n

T3
−
≃ 67; ð107Þ

which is consistent with our results. ninχ ðT−Þ is the DM
number density in the deflagration mode and ninχ ðTnÞ is the
number density without hydrodynamic effects. As we have
mentioned below Eq. (5), the filtering effects mainly come
from the competition between the kinetic energy γ̃þTþ of
the DM particle and the mass min

χ deep inside the bubble.
For the deflagration mode with vw ¼ 0.01, the main
influence comes from the variation of temperature across
the bubble wall. In particular, for BP1,

min
χ ðT−Þ=Tþ

min
χ ðTnÞ=Tn

≃ 0.88 ð108Þ

leads to

ninχ ðT−Þ=ninχ ðTnÞ ≃ 31: ð109Þ

We can see that the DM number density is enhanced due to
the suppression of min

χ =T which evaluates the competition
between the DM kinetic energy and the DM mass deep
inside the bubble. For the same reason, the relic density for
detonation mode is suppressed. For detonation, only the
temperature T− inside the bubble and the corresponding
min

χ ðT−Þ vary due to the hydrodynamic effects. Generally,
the temperature behind the bubble wall rises in the case
of detonation, T− > Tn. The DM mass behind the bubble
wall is then enlarged. The kinetic energy does not vary,
γ̃þTþ ¼ γwTn. As a consequence, the DM relic abundance
is suppressed. For deflagration with vw ≳ 0.01 and hybrid

case, it is a little difficult to estimate the results from
the analytic method. However, the calculation is still
straightforward.
The numerical method of solving Boltzmann equations

gives more accurate results than the analytic method. The
reason is that the analytic method takes an assumption: the
bubble wall has zero width and filtering process is instant.
This is not realistic in most phase transition processes.
When DM particles penetrate into the bubbles, they
experience interactions with other particles in the plasma.
The temperature and velocity profile of SM plasma can
influence the temperature and velocity of DM. This causes
a redistribution of DM particles in the phase space. As a
consequence, the DM number density is also influenced.

2. Results for benchmark points

We show the results for four benchmark points in
Tables II and III for vw ¼ 0.01 and vw ¼ 0.9, respectively.
We fix the value of min

χ ðTnÞ=Tn so that in the case without

hydrodynamic effects we have Ωð0Þ
DMh

2 ¼ 0.12. When the
value of min

χ ðTnÞ=Tn ¼ yχϕn=Tn is fixed, the value of yχ

FIG. 11. ΩDMh2 as function ofmin
χ ðTnÞ=Tn withmin

χ ðTnÞ≡ yχϕn with and without hydrodynamic heating effects. The analytic results
are plotted by the dashed curves and numerical results are plotted by the solid curves. The blue curves represent cases without heating
effects and the red curves represent the cases with the corresponding hydrodynamic mode.

TABLE II. Results for the four benchmark points for

vw ¼ 0.01. The min
χ ðTnÞ=Tn is set by Ωð0Þ

DMh
2 ¼ 0.12. For BP4

there is no deflagration mode because of the large phase-
transition strength αn.

Analytic Numerical

min
χ ðTnÞ=Tn ΩðhyÞ

DM h2=Ωð0Þ
DMh

2 min
χ ðTnÞ=Tn ΩðhyÞ

DM h2=Ωð0Þ
DMh

2

BP1 31 66 32 71
BP2 31.1 7.9 32.2 8.1
BP3 30.8 778.8 31.9 858.5
BP4 ⋆ ⋆ ⋆ ⋆
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for a specific benchmark point is fixed, too. As we can see
in Table II, for vw ¼ 0.01 the DM relic density is generally
enhanced due to the heating effects. And the enhancement
is stronger as the phase-transition strength αn is larger. This
is because that there is larger difference of temperature and
velocity between the in front of and behind the bubble wall.
For BP4 with vw ¼ 0.01, there is no deflagration mode
for αþ > 1=3.
Table III shows that, for detonation mode, the DM relic

density is typically lower than that without heating, with
differences of generally one or two orders of magnitude.
The effects are slighter as the phase-transition is weaker.
Notably, for BP4 the case is actually a hybrid mode,
resulting in extremely significant effects. This can be seen
from Eq. (52) that for BP4 we have vJðαnÞ ≃ 0.92. Heating
effects in hybrid mode are particularly large because both
the front and back of the bubble wall experience significant
changes. However, for the detonation mode the hydro-
dynamic effects work only behind the bubble wall and it
influences only the field value or DM mass.

VII. PHASE TRANSITION GRAVITATIONAL
WAVE SIGNALS OF THE FILTERED

DARK MATTER

Naturally, this filtered DM mechanism could be detec-
ted by phase transition GW signals from bubble collision
[38–40], turbulence [40], and sound wave [41] during a
SFOPT. We just show the phase transition GW spectra for
BP2 (solid black line) and BP3 (solid green line) with vw ¼
0.9 in Fig. 12 for simplicity. The colored regions represent
the sensitivity curves for LISA [42] and TianQin [43] with
the signal-to-noise ratio (SNR) about 5 for 108 s observa-
tion time, respectively. The GW spectra are sensitive to
bubble wall velocity. For example, for vw ¼ 0.01, the GW
spectrum is much weaker. The corresponding SNR will be
lower than 5. From Fig. 12, we could see that the future
GW detectors LISA, TianQin [44] could detect this
new DM mechanism with SNR larger than 5. Taiji [45],
BBO [46], DECIGO [47], Ultimate-DECIGO [48] could
also detect this new DM mechanism by GW signals.
It may be difficult to discuss the impact of hydrodynamic

effects of the filtered DM mechanism on the GW spectra
because there are four free parameters in our model:D,C, λ,

and the Yukawa coupling yχ . However, as an example, we
can fix three of them and take the parameter D, which
directly varies ϕn and Tn as the free parameter. The yχ is
chosen so that min

χ ðTnÞ=Tn ¼ yχϕn=Tn which fulfills

ΩðhyÞ
DMh2 ¼ 0.12 for BPi (i ¼ 2, 3). We introduce new

benchmark points BP0
i to compare with BPi. The other

three parameters except D are the same as BPi. We choose
the detonation case vw ¼ 0.9 for simplicity. As we have
mentioned in Sec. IV C, for detonation the hydrodynamic
heating effects only influence the temperature behind the
bubble wall, then we get min

χ ðT−Þ > min
χ ðTnÞ. In order to

fulfill the relic density for BP0
i, which does not consider the

heating effects, we have to impose the condition:

Ωð0Þ
DMh

2 ¼ 0.12: ð110Þ

We scan the parameter region of D for BP0
i and find the

value of D to satisfy the above condition. Other phase-
transition parameters are shown in Table IV. The GW
spectra of BP0

2 and BP0
3 are shown in terms of the dashed

lines in the Fig. 12. We can see that the GW spectra for
filtered DM with and without hydrodynamic effects are
dramatically different with those for filtered DM without
hydrodynamic effects. More detailed discussions on the
GW detection are left in our future work.

TABLE III. Results for the four benchmark points for vw ¼ 0.9.
BP1;2;3 are detonation cases and BP4 is the hybrid case.

Analytic Numerical

min
χ ðTnÞ=Tn ΩðhyÞ

DM h2=Ωð0Þ
DMh

2 min
χ ðTnÞ=Tn ΩðhyÞ

DM h2=Ωð0Þ
DMh

2

BP1 125.3 1=19 147.8 1=27
BP2 125.9 1=7 148.7 1=9
BP3 124.6 1=10 147.3 1=12
BP4 123.8 1=ð1.2 × 1013Þ 146.5 1=ð2.2 × 1015Þ

FIG. 12. Phase transition GW spectra for BP2;3 and BP0
2;3. The

colored regions represent the sensitivity curves for LISA and
TianQin with SNR ¼ 5 for 108 s observation time, respectively.

TABLE IV. The modified benchmark parameters that fulfill

Ωð0Þ
DMh

2 ¼ 0.12 based on BP2 and BP3.

D C λ Tn [GeV] αn β=Hn ϕn=Tn

BP0
2 2.1 0.036 0.01 17.34 1.25 12226 10

BP0
3 5.8 0.04 0.01 10.3 4.48 27037 11.1

JIANG, HUANG, and LI PHYS. REV. D 108, 063508 (2023)

063508-18



VIII. CONCLUSION

We have found that the hydrodynamic effects play
essential roles in the filtered DM mechanism for the reason
that the DM relic density is sensitive to the hydrodynamic
modes, the bubble wall velocity, the temperature, and
velocity profile in the vicinity of bubble wall. On one
hand, to produce efficient filtered effects, the parameter
ϕ=T is usually very large, which generally corresponds to
large phase transition strength α. And for large α, the
hydrodynamic effects are significant since, in this case, the
temperature and velocity differences in front of and behind
the bubble wall are significant. On the other hand, the
bubble wall velocity and the hydrodynamic modes are also
essential to the final relic DM density. For the deflagration
mode with low bubble wall velocity, the hydrodynamic
effects significantly enhance the relic density. In contrast,
for the detonation mode, the relic density is obviously
reduced. For the hybrid mode, the hydrodynamic correction

is extremely large. Our study could be applied in various
concrete filtered DM models and general phase transition
process in the early Universe.
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APPENDIX A: PHASE TRANSITION
PARAMETERS

Here we present the results from Ref. [20] which
describe the semianalytical calculation of phase transition
parameters in the toy model,

α ¼ 15ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4δ

p þ 3Þð−4δþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4δ

p þ 9ÞC2ðDλ − δC2Þ
23π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 4δ

p
g⋆λ3

; ðA1Þ

and

β

H
¼ 192π

ffiffiffi
δ

p ½−β1ðδþ 6Þ þ β2δðδ − 10Þ þ β3δ
2ð3δ − 14Þ�ðDλ − δC2Þ

243ðδ − 2Þ3Cλ3=2 ðA2Þ

with β1, β2, and β3 given in Eq. (21) and δ defined in
Eq. (22).
In Fig. 13 we show the bounce action S3ðTÞ=T as

function of temperature. We can see that the
CosmoTransitions gives the same results as the semian-
alytical calculation.

APPENDIX B: THERMAL EQUILIBRIUM

In the previous calculation, we have assumed that the
DM has a thermal equilibrium distribution in front of the
bubble wall. This requires that the reflected DM should
return to the same momentum as p ∼ T of the thermal
plasma. In order to evaluate this, we have to evaluate the
momentum exchange between reflected DM and the DM
that is in thermal equilibrium [49,50].
In the false vacuum, the DM is massless. Some DM

particles are reflected by the bubble wall and will be
out of equilibrium. By denoting the momentum of a par-
ticle in the plasma frame as pP ¼ ðEP; pP

x ; pP
y ; pP

z Þ with

EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ ðpP
x Þ2 þ ðpP

y Þ2 þ ðpP
z Þ2

q
, the transformed

momentum in the wall frame is

p¼ ðE;px;py;pzÞ ¼
�
EP þ vwpP

zffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2w

p ;pP
x ;pP

y ;
pP
z þ vwEPffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2w

p �
:

ðB1Þ

After DM reflects off the wall we have pz → p̃z ¼ −pz,
then the reflected momentum of DM in the plasma frame
becomes

FIG. 13. S3ðTÞ=T as function of temperature T for BP1 in
semianalytical method and in Cosmotransitions.
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p̃P ¼ ðẼP; p̃P
x ; p̃P

y ; p̃P
z Þ ¼

�
Eþ vwpzffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v2w
p ;px;py;

−pz − vwEffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2w

p �
:

ðB2Þ

Then the ẼP is given by

ẼP ¼ ð1þ v2wÞEP þ 2vwpP
z

1 − v2w
; ðB3Þ

and p̃P
z by

p̃P
z ¼ −

ð1þ v2wÞpP
z þ 2vwEP

1 − v2w
; ðB4Þ

from which the momentum exchange in a single collision
of DM in the plasma frame is

δpP
z ¼ p̃P

z − pP
z ¼ −2vw

vwpP
z þ EP

1 − v2w
: ðB5Þ

The thermal plasma has jpPj ∼OðTÞ. The reflected χ
and the χ that is in thermal equilibrium have momenta

pP
1 ¼

�
T þ 2vwT

ð1 − vwÞT
; 0; 0;−T −

2vwT
ð1 − vwÞT

�
;

pP
2 ¼ ðT; 0; 0; TÞ; ðB6Þ

respectively. The momentum of the c.m. frame is then

pP
c:m: ¼ pP

1 þ pP
2 ¼

�
2

1 − vw
T; 0; 0;

−2vw
1 − vw

T

�
: ðB7Þ

Hence, the velocity of the c.m. frame relative to the
plasma frame is vc:m: ¼ −vw and the Mandelstam variable ŝ
of the scattering is

ŝ ¼ 4T2
1þ vw
1 − vw

: ðB8Þ

The elastic collision in the c.m. frame is represented as
p0
1 þ p0

2 → p0
3 þ p0

4 with

p0
1 ¼ ðEc:m:; 0; 0;−Ec:m:Þ; p0

2 ¼ ðEc:m:; 0; 0; Ec:m:Þ;
p0
3 ¼ ðEc:m:; 0;−Ec:m: sin θ;−Ec:m: cos θÞ;

p0
4 ¼ ðEc:m:; 0; Ec:m: sin θ; Ec:m: cos θÞ; ðB9Þ

with Ec:m: ¼ pc:m: ¼
ffiffiffî
s

p
=2.

The momentum loss in such a collision in the plasma
frame is

δpχ ¼ pP
1z − pP

3z ¼ γc:m:ðp0
1z − p0

3zÞ ¼ −
γc:m:t̂
2Ec:m:

; ðB10Þ

where we have Lorentz transformed between the c.m.
and plasma frames and we use t̂ ¼ ðp0

1 − p0
3Þ2 ¼

−2E2
c:m:ð1 − cos θÞ. Now we can derive the momentum-

loss rate

d logðpχÞ
dt

≈
nχvMøl

pχ

Z
0

−4E2
c:m:

dt̂
dσ
dt̂

δpχ ;

≈ −
γc:m:nχvMøl

2Ec:m:T

Z
0

−4E2
c:m:

dt̂
dσ
dt̂

t̂; ðB11Þ

where vMøl ≃ 2 is the Møller velocity and

nχ ¼ gχ
3ζ3
4π2

T3;
dσ
dt̂

¼ jiMj2
16πŝ2

¼ y4χ
16πŝ2

: ðB12Þ

Then the thermal equilibrium condition will be

d logðpχÞ
dt

> H → yχ ≳ 5.4 × 10−4
�
g⋆
120

�
1=8

�
2

gχ

�
1=4

×

�
Tn

100 GeV

�
1=4

ð1þ vwÞ1=4: ðB13Þ

Besides this, we also require that the DM reflected off
should be quickly annihilate away, then we have [2]

yχ ≳ ð8 × 10−4Þ
�

g�
120

�
1=8

�
2

gχ

�
1=4

�
Tn

1 TeV

�
1=4

×

�
log 36T2

n=m2
ϕ

log 36

�−1=4

: ðB14Þ
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