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In quantum theory, the concept of time rests on shaky ground. One way to address this problem is to
remove the usual background time parameter as a primitive entity and explain its emergence via
correlations between physical systems. This approach was adopted by Page and Wootters [Phys. Rev. D 27,
2885 (1983)], who showed how time can emerge in a stationary quantum universe from the correlations
between two of its subsystems, one of them acting as a clock for the other. In this work, I study the
robustness of the Page-Wootters construction across different pictures, states of the universe, and clock
interactions, clarifying the role and the nature of the correlations between the subsystems of the universe. I
start by showing how to formulate the Page-Wootters construction in the Heisenberg picture via a unitary
change of basis. I consider both pure and mixed states of the universe and extend the analysis to include
interactions between the clock and the other subsystem of the universe. The study reveals what kind of
correlations are necessary for the construction to work. Interestingly, entanglement is not required as long
as there are no interactions with the clock. The study also shows that these interactions can lead to a
nonunitary evolution for some mixed states of the universe. In a simple two-level system, this aspect
becomes relevant at scales where one would expect strong relativistic effects. At these scales, I also observe
an inversion in the system’s direction of time.
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I. INTRODUCTION

The concept of time in physics is related to a set of issues
generally gathered under the umbrella term “the problem of
time” [1–7]. One of the main issues is that time usually
appears in dynamical laws as a background (classical)
parameter whose nature is completely detached frommatter.
This is unsatisfactory, especially since matter and spacetime
interact according to general relativity. The problembecomes
evendeeper inquantum theory,whereonemay argue that any
system that can interact with a quantum systemmust itself be
quantum (see, for example, [8]).
One way to address these issues is to discard time as a

primitive entity external to physical systems and explain its
emergence from the correlations between these systems. One
of the most prominent quantum versions of this “timeless
approach” is the Page-Wootters (PW) construction [9]. Page
and Wootters showed how the usual time evolution of
quantum theory can be recovered from the correlations
between two subsystems of a stationary quantum universe.

One of the subsystems is the system of interest; the other acts
as a clock for the former. In the PW construction, time is
associated with an operator of the clock. The other system in
the universe evolves relative to the eigenvalues of this time
operator.
The PW construction is usually formulated in the

Schrödinger picture for pure states of the universe and
without interaction between the system and the clock. In
this work, I study the robustness of the PW construction
across different pictures, states of the universe, and system-
clock interactions. Studying each of these aspects is
important on its own. First, although the Schrödinger
picture (SP) and the Heisenberg picture (HP) are empiri-
cally equivalent, their description of physical reality is
different, especially with regard to locality1 [10–13]. Mixed
states of the universe, usually not considered in the
literature, are interesting per se [14]. Finally, considering
an interaction term between the system and the clock makes
the construction more realistic [15].
Notably, the joint study of these aspects clarifies the role

and nature of the system-clock correlations in the PW
construction. These correlations are necessary to make the
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1The HP provides a local description of quantum theory
[10–12]. Since the universe in the PW construction is stationary,
here locality refers to a local description of the system relative to
the clock.
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system evolve, but their nature is not fully clear in the
literature. Most works trace it back to entanglement [16–19],
while some argue that entanglement2 is not necessary [21] or
show that it is a feature linked to the SP [20,22,23]. Thiswork
reveals which correlations are necessary in different situa-
tions and how they transform in different pictures.
In the first part of this work, I start by reviewing the PW

construction in the SP. The construction recovers the usual
unitary time evolution of quantum theory for the system of
interest after tracing out the clock’s degrees of freedom. As a
result, the HP can be easily recovered at the system level in
the usual way [9]. However, this is different from moving to
the HP at the level of the universe. In fact, the state vector
of the universe is stationary, so the usual distinction between
Schrödinger and the Heisenberg pictures is absent at this
level, and the PW construction applied to the state of the
universewill always lead to the SP description of the system.
Does this mean that the HP does not exist at the level of the
universe? Some works in the literature shed light on the
problem through different approaches [20,22,24–29]. Here, I
show that the PW construction can be formulated in the HP
by performing a unitary transformation on both the state
vector and the observables of the universe, which transfers
crucial system-clock correlations from the former to the
latter. In this formulation, the observables of the system
depend on the clock’s time operator and the quantum nature
of time is explicit. The usual time evolution of the system’s
observables can then be recovered via the relative-state
construction in the HP [30].
The construction I outline here can be straightforwardly

applied to mixed states of the universe. In addition to
making the results of this work more general, the study of
the HP formulation with mixed states of the universe sheds
some light on what kind of system-clock correlations result
in nontrivial time evolutions. Interestingly, system-clock
entanglement is not a necessary property of the state of the
universe, even in the SP. Building on the results of [29], I
also introduce a differential notation to express the results
compactly and insightfully.
In the second part of this work, I consider interactions

between the system and the clock, expanding some of the
results of [15,31]. The objective is to demonstrate that
the PW construction can be formulated in HP even in the
presence of system-clock interactions and to investigate
additional aspects of the construction with mixed states of
the universe. I motivate the choice of a specific kind of
interaction and show that this interaction can lead to a
nonunitary evolution at the level of the system for some
mixed states of the universe. Interestingly, the necessity of
entanglement for a nontrivial system evolution is restored
in the presence of this kind of system-clock interaction.

This might have some implications for classical relational
approaches to time. In this context, I also show that the SP
and the HP do not exhaust all the possibilities. There are, in
fact, an infinite number of pictures that differ on how the
time dependence is split between the observables and the
state of the universe. For example, it is possible to find an
interaction picture where the observables of the system
evolve freely while the state vector evolves under an
interaction term.
In the last section, I apply the results of this work to some

simple models. I show how to recover the HP for a two-
level system and study the effect of system-clock inter-
actions on the system’s dynamics. I observe an inversion in
the time direction of the system at scales where one would
expect relativistic effects to be dominant. I also show that if
the universe is in a mixed state, the system can lose its
coherence in a characteristic time that depends on the
strength of the system-clock interaction.

II. REVIEW OF THE PW CONSTRUCTION
IN THE SCHRÖDINGER PICTURE

In this section, I review the assumptions of the PW
construction and its SP formulation for both pure and
mixed states of the universe.

A. Pure states

The PW construction for pure states of the universe relies
on the following assumptions [9,18]:
(1) The universe can be divided into two sub-

systems. One is the system of interest S; the
other acts as a clock C for the first. The Hilbert
space of the universe can be decomposed as
H U ¼ H S ⊗ H C. In the ideal case, S and C
are noninteracting, i.e. the Hamiltonian of the uni-
verse is given by

Ĥ ¼ Ĥ ⊗ 1̂C þ 1̂S ⊗ ĥ; ð1Þ

where Ĥ is the Hamiltonian of the system and ĥ is
the Hamiltonian of the clock.

(2) The universe is in an eigenstate of its Hamiltonian
Ĥ. Usually, the universe is assumed to be in the state
with eigenvalue 0, but here I will consider any
eigenstate jΨE⟫:

ĤjΨE⟫ ¼ EjΨE⟫; ð2Þ

where the double-ket notation is just a visual aid to
remember that the states of the universe are defined
on H S ⊗ H C. The states jΨE⟫ satisfying the
constraint of Eq. (2) live in the physical Hilbert
space H phy, a subspace of the Hilbert space of the
universe H U (also called kinematical Hilbert
space) [15].

2Here and in the rest of this work, entanglement refers to the
entanglement between system and clock in the kinematical
Hilbert space [20].
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(3) The clock has an observable t̂ conjugate to ĥ:

½t̂; ĥ� ¼ i; ð3Þ

where I have set ℏ ¼ 1.
From these assumptions, the usual time evolution

of the system can be derived in the following way [18].
Equation (3) implies that e−iĥθjti ¼ jtþ θi ∀ θ∈R, where
jti is the eigenstate of t̂with eigenvalue t. Using the identity
decomposition in terms of fjtigt, one can write

jΨE⟫ ¼
Z

dtjψEðtÞiSjtiC; ð4Þ

where it is assumed that the state of the system jψEðtÞiS
is normalized at all times.3 Now, using Eqs. (1) and (2), one
can find that

e−iEθjΨE⟫ ¼ e−iĤθjΨE⟫ ¼
Z

dte−iĤθjψEðtÞiSjtþ θiC;

ð5Þ

and thus, equating this with Eq. (4), jψEðtÞiS ¼
e−iðĤ−E1SÞtjψð0ÞiS, where I have fixed, without loss of
generality, jψEð0Þi ¼ jψð0Þi ∀ E. This means that the state
of the system relative to the clock being in the state jti is
given by the partial inner product:

ChtjΨE⟫ ¼ jψEðtÞiS ¼ e−iðĤ−E1SÞtjψð0ÞiS; ð6Þ

which shows that the relative-state jψðtÞiS satisfies the
time-dependent Schrödinger equation with Hamiltonian
Ĥ − E, where E is an unobservable shift in energy. In this
construction, time emerges from the system-clock corre-
lations: the time of the system is t if the clock is in the
state jtiC.
It is clear from Eq. (4) that the PW construction leads to a

nontrivial time evolution of the system only if there are at
least two different jψEðtÞiS for two different values of t.
This means that in the SP only entangled pure states of the
universe result in nontrivial time evolutions.

B. Mixed states

The same construction outlined here can be applied
to mixed states of the universe [9,19]. In this case, the
stationarity condition of Eq. (2) becomes

½R̂; Ĥ� ¼ 0; ð7Þ

where R̂ is the density operator of the universe. The state of
the system relative to the clock being in the state jtiC is now
given by

ρ̂SðtÞ ¼
Tr
C
½R̂Π̂tðt̂Þ�

Tr½R̂Π̂tðt̂Þ�
; ð8Þ

where Π̂tðt̂Þ ¼ 1S ⊗ jtihtj is the projector on the eigen-
space of 1S ⊗ t̂ with eigenvalue t.4 The states R̂ such that
Tr½R̂Π̂tðt̂Þ� ¼ 0 for at least one value of t are excluded
since they do not give rise to a physical state of the system.5

Now, using Eqs. (1), (3), and (7) one finds that

ρ̂SðtÞ ¼ e−iĤtρ̂Sð0ÞeiĤt ∀ t; ð9Þ

which is the usual Schrödinger-picture time evolution of a
system with Hamiltonian Ĥ. As I will discuss later, in the
case of mixed states of the universe, system-clock entan-
glement is no longer necessary for a nontrivial time
evolution of the system.

III. PW CONSTRUCTION
IN THE HEISENBERG PICTURE

In this section, I show how to recover the PW construction
in the HP at the level of the universe. The approach and
interpretation I outline here differ from [22], where the
Heisenberg observables are recovered fromother axioms and
the choice of Heisenberg state is motivated differently. They
also differ from [20,24–28], which generally start from
invariant observables (i.e. observables that commute with
a constraint operator), and from [29], which postulates that
the HP is defined by observables of the system that obey a
generalized Heisenberg equation.6

Here, starting from the assumption that the universe is in
a stationary state, I recover the HP description of the whole
universe via a unitary transformation on both the observ-
ables and the state vector. The observables and Heisenberg
state of [22] are recovered in a simple and well-motivated
way; the assumptions of [29] find a natural explanation and

3This is guaranteed if one imposes, for example, that jΨE⟫
must be normalized according to the scalar product ⟪ΦjΨ⟫phy ≔
⟪Φjðjtihtj ⊗ 1SÞjΨ⟫ which, due to Eqs. (1) and (2), does not
depend on t [15].

4The normalization factor Tr½R̂Π̂tðt̂Þ� does not depend on t due
to Eqs. (1) and (7).

5While the only stationary pure state of the universe such that
htjΨ⟫ ¼ 0 for at least one value of t is jΨ⟫ ¼ 0, the class of
stationary mixed states R̂ such that Tr½R̂Π̂tðt̂Þ� ¼ 0 is bigger.

6In Ref. [29] the author requires that the Hamiltonian of the
universe be equal to the Hamiltonian of the clock to prevent a
real-valued time parameter from appearing in the equations of
motion for the system’s observables. Taken at face value, this
requirement implies that the Hamiltonian of the clock must be
identically zero. A correct interpretation of this statement, which
is difficult to formulate in the framework of [29], is that the
Hamiltonian of the universe in the HP must be equal to the
Hamiltonian of the clock in the SP. This property finds a natural
explanation in the approach described below.
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the invariant observables appearing in [20,22,24–28] can be
recovered via a group-average operation on the HP observ-
ables of the system.7 Moreover, I extend the analysis to
include mixed states of the universe.

A. Pure states

For simplicity, let me focus only on the pure state of the
universe jΨ0⟫ and omit the lower index. I will consider
different eigenstates and mixed states later. One can rewrite
jΨ⟫ in Eq. (4) in the following way [18]:

jΨ⟫ ¼
Z

dte−iĤtjψð0ÞiSjtiC ¼ e−iĤ⊗t̂jψð0ÞiSjTLiC;

ð10Þ

where the “time line” state jTLiC [18] is defined as
jTLiC ≔

R
dtjtiC ¼ ffiffiffiffiffiffi

2π
p jh ¼ 0iC, with jh ¼ 0iC the 0

eigenstate of ĥ.
Equation (10) suggests that the transformation between

the SP and the HP should be given by the unitary8

Û ≔ e−iĤ⊗t̂: ð11Þ

For instance, if Ô is an observable of the system in the SP,
the corresponding observable in the HP is:

ÔðHÞ ¼ eiĤ⊗t̂ðÔ ⊗ 1CÞe−iĤ⊗t̂; ð12Þ

which is an observable depending on the clock’s time
operator t̂ and has support on HU. The observables Ĥ, ĥ
and t̂ transform in the following way:

ĤðHÞ ¼ Û†ðĤ ⊗ 1CÞÛ ¼ Ĥ ⊗ 1C; ð13Þ

ĥðHÞ ¼ Û†ð1S ⊗ ĥÞÛ ¼ 1S ⊗ ĥ − Ĥ ⊗ 1C; ð14Þ

t̂ðHÞ ¼ Û†ð1S ⊗ t̂ÞÛ ¼ 1S ⊗ t̂; ð15Þ

which shows that the Hamiltonian of the system and the
time operator are invariant under Û, while the Hamiltonian
of the clock is not.9 However, the Hamiltonian of the whole
system is not invariant:

ĤðHÞ ¼ Û†Ĥ Û ¼ 1S ⊗ ĥ: ð16Þ

This is because here Û is a formal transformation between
the two pictures and not a time translation generated by Ĥ
(which usually defines the transformation between the two
pictures).
For consistency with the SP, the Heisenberg state of the

universe must be

jΨðHÞ⟫ ≔ Û†jΨ⟫ ¼ jψð0ÞiSjTLiC; ð17Þ

which is a separable state of clock and system. The
state jΨðHÞ⟫ still satisfies the stationarity constraint
ĤðHÞjΨðHÞ⟫ ¼ 0 but this is now entirely due to the state
in the clock’s Hilbert space: ĥjTLiC ¼ 0. Incidentally, this
also shows that one is free to choose any initial state of
the system jψð0ÞiS while still preserving the constraint
ĤðHÞjΨðHÞ⟫ ¼ 0.
The Heisenberg operators ÔðHÞ and the Heisenberg

state jΨðHÞ⟫ are all one needs to recover the time evolution
of the system’s observables and their expectation values.
Let me first notice that ÔðHÞ contains the “whole history”
of Ô: ⟪ÔðHÞ⟫ ¼ R

dtShψð0ÞjeiĤtÔe−iĤtjψð0ÞiS, where
⟪ · ⟫ ≔ ⟪ΨðHÞj · jΨðHÞ⟫. In order to get one time instance
of ÔðHÞ, consider the following “relative observables” [30]:

ÔðHÞðtÞ ≔ ÔðHÞΠ̂ðHÞ
t ðt̂Þ; ð18Þ

where Π̂ðHÞ
t ðt̂Þ ≔ Û†Π̂tðt̂ÞÛ ¼ Π̂tðt̂ðHÞÞ. Equation (15)

implies that Π̂ðHÞ
t ðt̂Þ ¼ Π̂tðt̂Þ. Equation (18) describes the

observables of the system relative to the clock being in the
eigenstate of the time operator t̂ with eigenvalue t.

Since ½ÔðHÞ; Π̂ðHÞ
t ðt̂Þ� ¼ 0 for every Heisenberg-picture

observable ÔH of the system, the relative observables form
a “relative subalgebra” at each time t [30]:

ðÔðHÞΠ̂ðHÞ
t ðt̂ÞÞ2 ¼ ðÔðHÞÞ2Π̂ðHÞ

t ðt̂Þ; ð19Þ

½ÔðHÞΠ̂ðHÞ
t ðt̂Þ; Q̂ðHÞΠ̂ðHÞ

t ðt̂Þ� ¼ ½ÔðHÞ; Q̂ðHÞ�Π̂ðHÞ
t ðt̂Þ

¼ ½Ô; Q̂�ðHÞΠ̂ðHÞ
t ðt̂Þ; ð20Þ

for all the Heisenberg-picture observables ÔðHÞ; Q̂ðHÞ of the
system, where ½·; ·�ðHÞ ≔ Û†½·; ·�Û. Furthermore, the expect-
ation value of ÔðHÞ relative to the clock being in the
eigenstate with eigenvalue t is given by [30]

⟪ÔðHÞðtÞ⟫
⟪Π̂ðHÞ

t ðt̂Þ⟫
¼ Shψð0ÞjeiĤtÔe−iĤtjψð0ÞiS; ð21Þ

in agreement with what one would have obtained from the
PW construction in the SP at time t.

7Notice that the time measurements in [20,22] are represented,
in general, by a positive operator-valued measure while I restrict,
for simplicity, to projective measurements. My results are in
agreement with [20,22] for this specific type of time measure-
ments.

8Notice that this unitary is, apart from a phase and a constant,
the same as the “trivialization map” of [20], and similar to a
“quantum reference frame transformation” as in [32].

9Since the transformation between the SP and the HP is
unitary, the relation ½ĥðHÞ; ÔðHÞ� ¼ ½ĥ − Ĥ; ÔðHÞ� ¼ 0 holds for
every observable of the system ÔðHÞ. This commutation relation
is the initial assumption of [29].
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Since the Heisenberg state of the universe is separable
with respect to clock and system, one can find a “reduced
description” of ÔHðtÞ on the Hilbert space of the system
given by

½ÔðHÞðtÞ�S ≔ ChTLjÔðHÞðtÞjTLiC
⟪Π̂ðHÞ

t ðt̂Þ⟫
¼ eiĤtÔe−iĤt: ð22Þ

These are the usual Heisenberg-picture observables of a
system with Hamiltonian Ĥ.
Here, I have shown a possible way to recover the HP

version of the PW construction starting from the specific
form of the state of the universe. Is this construction
unique? To answer this question, let me consider a generic
unitary transformation Û0 between the two pictures. If

jΨ0ðHÞ
E ⟫ ≔ Û0†jΨE⟫ is the associated Heisenberg state, I

postulate that a good transformation between the SP and the
HP is defined by the following properties:
(1) Û0†ð1S ⊗ t̂ÞÛ0 ¼ 1S ⊗ ŝ, with ŝ a self-adjoint an

operator of the clock, so that the partial inner product
and partial trace of Eqs. (6) and (8) are still mean-
ingful. This condition is satisfied in all the cases
considered in this work.

(2) The transformation between the SP and the HP
transfers all the “encoded time evolution” from
the state of the universe to the observables.

Specifically, jΨ0ðHÞ
E ⟫ is such that Chs̄0jΨ0ðHÞ

E ⟫ ¼
eiϕðs;s0ÞChs̄jΨ0ðHÞ

E ⟫ ∀ s; s0, where js̄i (js̄0i) is an
eigenstate of the operator ŝ defined above with
eigenvalue s (s0) and ϕðs; s0Þ is a phase.

In Appendix A 1, I show that the possible unitary trans-
formations Û0 between the SP and the HP differ from Û in
Eq. (11) only by local unitary transformations.10 These
local unitaries do not affect the results above and thus lead
to the Heisenberg picture evolution of the observables at the
level of the system.11

The unitary transformation Û represents the simplest
choice of transformation between the SP and HP since it
leaves the clock’s time operator and the system’s initial
state invariant. In this particular case, notice that jΨðHÞ⟫ is
an eigenstate of ĥ (with eigenvalue 0). Therefore, when one
applies the Schrödinger-picture PW construction to jΨðHÞ⟫
one gets jψðt0ÞiS ¼ Cht0jΨðHÞ⟫ ¼ Chtjeiĥðt

0−tÞjΨðHÞ⟫ ¼
ChtjΨðHÞ⟫ ¼ jψðtÞiS ∀ t; t0, that is, the state of the system
“encoded” in jΨðHÞ⟫ is stationary.

The results of Appendix A 1 imply that the Heisenberg
state of the universe must be separable with respect to the
system and the clock. Does this mean that entanglement
does not play a fundamental role in the construction? The
answer is no. Entanglement is still essential in the con-
struction. The SP-HP transformation simply moves the
entanglement from the state of the universe to the observ-
ables. As always, entanglement depends not only on the
state vector but also on the subalgebras of observables
considered (which differ from the SP ones by the unitary
transformation U).
In Appendix A 1, I also show how my construction is

related to the one of [20,24–28].
Finally, the construction carries over to different

eigenstates jΨE⟫ of Ĥ with the same unitary Û but dif-

ferent Heisenberg states jΨðHÞ
E ⟫ ¼ jψð0ÞijTLEi, where

jTLEi ≔
R
dteiEtjti.

B. Mixed states

Here, I derive the HP version of the PW construction
starting from a mixed state of the universe. The construc-
tion could be applied, for instance, to any closed stationary
subregion of the universe entangled with the rest of the
universe.
For the density operator of the universe R̂ in the SP,

the stationarity constraint of Eq. (7) implies that R̂ is
of the form

R̂ ¼
X
k;dk

νk;dk jEk; dk⟫⟪Ek; dkj; ð23Þ

where ĤjEk; dk⟫ ¼ EkjEk; dk⟫ ∀ k; dk, with dk the degen-
eracy label. For simplicity, I consider only a finite number
of different energy eigenstates. Using Eq. (10), R̂ can be
written as R̂ ¼ ÛR̂ðHÞÛ† with Û the unitary defined in
Eq. (11) and

R̂ðHÞ ¼
X
k;dk

νk;dk jψdkð0Þihψdkð0Þj ⊗ jTLEkihTLEk j; ð24Þ

where hψd0k
ð0Þiψdkð0Þ ¼ δdkd0k . This state is separable. One

can also write R̂ðHÞ ¼ P
k pkρ̂kð0Þ ⊗ jTLEkihTLEk j which

shows that R̂ðHÞ is a so-called one-way classically corre-
lated or quantum-classical state [33,34]. Due to Eqs. (7)
and (16), this state satisfies

½R̂ðHÞ; ĥ� ¼ 0; ð25Þ

meaning that

Tr
C
½R̂ðHÞΠ̂tðt̂Þ� ¼ Tr

C
½R̂ðHÞΠ̂t0 ðt̂Þ� ∀ t; t0; ð26Þ

that is, no time evolution is encoded in R̂ðHÞ.

10Local unitarymeans any unitary of the form Ŵ ¼ ŴS ⊗ ŴC.
11In Appendix A 1, I also discuss a specific class of observ-

ables linked by a local unitary transformation of the clock.
One can get “gauge-invariant” observables (i.e. commuting with
Ĥ) of the system by a so-called “group average” operation over
this class of observables.
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The corresponding system’s observables in the HP are
defined as in Eq. (12). The relative observables ÔðHÞðtÞ are
defined as in Eq. (18) and the expectation value of ÔðHÞ

relative to the clock being in the eigenstate with eigenvalue
t is given by

Tr½ÔðHÞðtÞR̂ðHÞ�
Tr½Π̂ðHÞ

t ðt̂ÞR̂ðHÞ�
¼ Tr

S
½eiĤtÔe−iĤtρ̂Sð0Þ�; ð27Þ

where ρ̂Sð0Þ ¼
P

k pkρ̂kð0Þ.
Equation (27) is what one would have obtained from the

PW construction in the SP at time t.
Finally, since the Heisenberg state of Eq. (24) is separ-

able and since ChTLEj jÔðHÞðtÞjTLEj
iC ¼ ChTLEk jÔðHÞðtÞ×

jTLEkiC ∀ j; k, one can define the reduced relative observ-
ables as

½ÔHðtÞ�S ≔
Tr
C
½ÔðHÞðtÞð1S ⊗ ρ̂CÞ�
Tr½Π̂ðHÞ

t ðt̂ÞR̂�
¼ eiĤtÔSe−iĤt; ð28Þ

where ρ̂C ≔ Tr
S
½R̂ðHÞ� ¼ P

k pkjTLEk
ihTLEk jC. These are

the usual Heisenberg-evolved observables of the system.
In conclusion, the PW construction can be formulated in

the HP also for mixed states of the universe. Furthermore,
the mixed state of Eq. (23) consists of an ensemble of
eigenstates of Ĥwith different eigenvalues and is thus more
general than the pure state of Eq. (2). If R̂ contains only
states with the same eigenvalue E, then the Heisenberg state
of Eq. (24) becomes

R̂ðHÞ ¼ ρ̂Sð0Þ ⊗ jTLEihTLE j; ð29Þ

which is a product state. In general, however, the
Heisenberg state, although separable, may have some other
kinds of nonclassical correlations [35].
Is the SP-HP transformation outlined here unique? In

Appendix B 1, I show that—under the assumptions dis-
cussed at the end of Sec. III A—all the other unitary
transformations between the two pictures differ from Û
only by local unitaries. Similarly to the previous section, Û
and R̂ðHÞ represent the simplest choice of unitary and set of
Heisenberg states.12 As a result, the possible Heisenberg
states of the universe commute with a local operator of the
clock, similarly to Eq. (25).

This point shows another unique feature of the PW
construction with mixed states of the universe. The set of
states R̂0 such that ½R̂0; ĥ� ¼ 0 is a subset of the set of all
separable (mixed) states. This means that other separable
states can lead to a nontrivial system’s evolution (in the SP).
An example of such a state is

R̂0 ¼
Z

dtjψðtÞihψðtÞj ⊗ jtihtj; ð30Þ

with jψðtÞi ¼ e−iĤtjψð0Þi. This is a separable state that
commutes with the Hamiltonian of the universe but gives
rise to the usual time evolution at the level of the system.13

Finally, if one has access only to the system, then it is not
possible to distinguish an entangled state of the universe R̂
from the state

R̂dec ≔
1

N

Z
dtChtjR̂jtiC ⊗ jtihtj; ð31Þ

which is a separable stationary state of the universe with no
coherences between the different eigenstates of t̂.14

IV. DIFFERENTIAL FORMULATION

In this section, I introduce an alternative way of
formulating the PW construction in terms of derivatives
with respect to the time operator of the clock. Time-
operator derivatives have already been mentioned in [36]
and used in [29] for the PW construction in the HP. Here, I
expand on these works by showing how the PW con-
struction can be expressed in terms of time-operator
derivatives both in the SP and the HP, and for both pure
and mixed states of the universe. The result is a compact
notation for the PW construction. I will later use this
notation when introducing system-clock interactions.
Extending the notion of derivative to include variations

over operators gives rise to some subtleties linked to the
noncommutativity of the operators and the choice of the
variation [37]. In this work, I will focus on a specific type of
operator derivatives, namely derivatives taken along the
diagonal. This removes some of the subtleties mentioned
above. It is also important to notice that the results of this
section hinge on the specific algebra of the clock15 and the
fact that the time operator is left unchanged when moving
to the HP.
First, I introduce the derivative of a pure state of the

universe with respect to the time operator t̂ of the clock:
12Notice that Eq. (24) defines a set of possible Heisenberg

states. For example, R̂ðHÞ ¼ ρ̂Sð0Þ ⊗ jTLEihTLE j and R̂ðHÞ ¼
ρ̂Sð0Þ ⊗ 1C are two such states that differ more than in just
the choice of ρ̂Sð0Þ (the latter is recovered by letting k become
a continuous variable and integrating over all energy eigenvalues
of Ĥ).

13Notice that ½R̂0; t̂� ¼ 0 but ½R̂0; ĥ� ≠ 0. Also, moving to the
HP one gets Û†R̂0Û ¼ jψð0Þihψð0Þj ⊗ 1C.

14N ≔ Tr½jtihtj� is an improper normalization factor.
15Specifically, Eq. (3) and the fact that t̂ has a continuous,

nondegenerate spectrum.
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djΨ⟫
dt̂

≔
Z

dt
dhtjΨ⟫
dt

jtiC; ð32Þ

where dhtjΨ⟫=dt ¼ limδ→0½htþ δjΨ⟫ − htjΨ⟫�=δ is the
usual time derivative of a state vector. Equation (32)
resembles a directional derivative. It is easy to show that

djΨ⟫
dt̂

¼ ið1S ⊗ ĥÞjΨ⟫; ð33Þ

which is similar to the action of momentum in single-
particle quantum mechanics. Using this, the stationarity
condition of Eq. (2) can be written as

i
djΨE⟫

dt̂
¼ ðĤ ⊗ 1C − EÞjΨE⟫; ð34Þ

which has the form of the Schrödinger equation but with
time-operator derivatives instead of ordinary time deriva-
tives. By taking the partial inner product of Eq. (34) with
jtiC, and using the definition of time-operator derivative of
Eq. (32), one gets, at any time t,

i
djψEðtÞiS

dt
¼ ðĤ − EÞjψEðtÞiS; ð35Þ

the usual Schrödinger equation on the system’s Hilbert
space (apart from an unobservable energy shift).
In order to move to the HP, I need to introduce time-

operator derivatives of operators. Let me define the
derivative of an operator Â (function of t̂) with respect
to t̂ as [37]

dÂ
dt̂

≔ lim
δ→0

Âðt̂þ δ1CÞ − Âðt̂Þ
δ

; ð36Þ

where the variation has been taken along the diagonal.
Since t̂ and ĥ have support only on the clock’s Hilbert
space, the time-operator derivative of Â can also be written
as

dÂ
dt̂

¼ lim
δ→0

R
dtdt0jtiChtþ δjÂjt0 þ δiCht0j − Â

δ
; ð37Þ

which agrees with [29] when Â is a function of t̂ and the
system’s operators only. It is then easy to prove that

dÂ
dt̂

¼ i½1S ⊗ ĥ; Â�; ð38Þ

which also shows that a chain rule holds for the time-
operator derivative. If one considers the operator jΨ⟫⟪Ψj,
Eq. (37) implies that

djΨ⟫⟪Ψj
dt̂

¼ djΨ⟫
dt̂

⟪Ψj þ jΨ⟫ d⟪Ψj
dt̂

; ð39Þ

with djΨ⟫
dt̂ as in Eq. (32). This connects Eqs. (32) and (36)

through a chain rule, which is why I use the same notation
for both derivatives.
The notion of time-operator derivative of an operator and

Eq. (38) allow me to recast the stationarity constraint of
Eq. (7) for a mixed state of the universe R̂ as

dR̂
dt̂

¼ i½R̂; Ĥ ⊗ 1C�; ð40Þ

which is in the form of the Liouville–von Neumann
equation but with time-operator derivatives instead of
ordinary time derivatives. Using the reduction procedure
of Eq. (8) on Eq. (40) one gets

dρ̂SðtÞ
dt

¼ i½ρ̂SðtÞ; Ĥ�; ð41Þ

the usual Liouville–von Neumann equation for the state of
the system.
One can also use this notation for the PW construction in

the HP. The time-operator derivative of Û in Eq. (11) is

dÛ
dt̂

¼ −iðĤ ⊗ 1CÞÛ ¼ −iĤðHÞÛ; ð42Þ

and thus, using the chain rule on the HP observables of the
system,

dÔðHÞ

dt̂
¼ i½Ĥ ⊗ 1C; Ô

ðHÞ�; ð43Þ

which is the usual equation of motion for the observables of
the system in the HP but with time-operator derivatives
instead of usual time derivatives. This is the equation
found, in a different way, in [29]. The usual version of the
equation at the level of the system’s Hilbert space can be
recovered via the procedure of Eq. (8).
Notice that this result holds both for pure and mixed

states of the universe. However, in the first case

djΨðHÞ
E ⟫

dt̂
¼ EjΨðHÞ

E ⟫; ð44Þ

while in the second

dR̂ðHÞ

dt̂
¼ 0: ð45Þ

Both equations show that no time evolution is encoded in
the Heisenberg state: t̂ does not appear in R̂ðHÞ, while it

appears only as a trivial phase in jΨðHÞ
E ⟫:
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V. SYSTEM-CLOCK INTERACTIONS

A. Restrictions on the type of interaction

The PW construction is usually formulated with no
system-clock interactions. This idealization significantly
simplifies the construction but is not realistic. Furthermore,
some works have studied interesting phenomena linked to
the system-clock interaction, such as the emergence of a
Newtonian potential or of a time dilation at the level of the
system [15,31,38].
In this section, I will consider a Hamiltonian of the

universe of the following form:

Ĥ ¼ Ĥ ⊗ 1̂C þ 1̂S ⊗ ĥþ V̂; ð46Þ

where V̂ is the system-clock interaction. A detailed study of
the effect of different types of interaction on the PW
construction in the SP has been carried out in [15]. Here, I
will focus on a specific kind of interaction.
First, I will only consider interactions V̂ such that

½Ĥ ⊗ 1̂C þ 1̂S ⊗ ĥ; V̂� ¼ 0: ð47Þ

In ordinary (nonrelativistic) quantum theory, this is one way
to impose the conservation of the additive quantity ĥþ Ĥ
[8]. To see this, notice that e−iĤtðĤ ⊗ 1̂C þ 1̂S ⊗ ĥÞeiĤt ¼
Ĥ ⊗ 1̂C þ 1̂S ⊗ ĥ; that is, the quantity Ĥ ⊗ 1̂C þ 1̂S ⊗ ĥ
does not change in time. In the PW construction, the state of
the universe is stationary, so even if Eq. (47) did not hold, it
would not be possible to observe a change in ĥþ Ĥ.
Nevertheless, here I take the position that conservation laws
of additive quantities should hold as in Eq. (47) even at the
level of the universe despite the impossibility of observing a
violation of them due to the constraints on the state of the
universe.
The second constraint on V̂ that I will impose is

½1S ⊗ ĥ; V̂� ¼ 0: ð48Þ

This is the same as requiring that dV̂=dt̂ ¼ 0; that is, t̂must
not appear in V̂. As I will discuss later, this implies that the
Hamiltonian that regulates the system’s evolution must be
time independent. Taken together with Eq. (47), Eq. (48)
implies that

½Ĥ ⊗ 1C; V̂� ¼ 0; ð49Þ

and thus, since the spectrum of ĥ is not degenerate, the
eigenbasis of V̂ must be of the form fjEijεigE;ε where jEiS
(jεiC) are the eigenstates of Ĥ (ĥ).16

The last constraint that I will consider is that V̂ must not
contain powers of ĥ higher than 1. In other terms,

dkV̂

dĥk
¼ 0 ∀ k ≥ 2; ð50Þ

where higher-order derivatives with respect to an operator
are defined by a recursive application of the operator
derivatives defined in Sec. IV. As I will discuss later, this
condition ensures that only first-order time derivatives
appear in the system’s equations of motion.
Given these constraints, all the allowed system-clock

interactions are of the form

V̂ ¼ X̂ ⊗ ĥ; ð51Þ

where X̂ is a self-adjoint operator of the system such that
½X̂; Ĥ� ¼ 0. If the only information we know about the
systems is its Hamiltonian, we can only consider inter-
actions where X̂ ¼ fðĤÞ:

V̂ ¼ fðĤÞ ⊗ ĥ: ð52Þ

The most instructive example is the one considered in
[15,31,36,39]:

V̂G ¼ 1

Λ
Ĥ ⊗ ĥ; ð53Þ

where the label G stands for “gravitational” due to its
connection with the gravitational potential with some post-
Newtonian corrections as in [39]. Some works in the
literature [15,31,38] have shown that this interaction leads
to some gravitational-like effects on the system when
choosing Λ ¼ dc4=G, with d a characteristic length of
the system.

B. Explicit solutions for pure states

Given a system-clock interaction as in Eq. (52), I show
how to derive an explicit solution in the case of a pure state
of the universe. A similar study was already performed in
[15,31] for pure states of the universe. Here, I generalize the
analysis by considering different eigenvalues of Ĥ, which
result in different dynamics at the level of the system. This
effect becomes particularly relevant for mixed states of the
universe (considered in the next subsection). I also show
how to recover the HP. The approach followed here is in the
same spirit of [31].
First, let me notice that the spectrum of V̂ is ffðEÞεgE;ε

with E and ε eigenvalues of Ĥ and ĥ, respectively. Since the
state of the universe jΨ0⟫ can be written, in general, as17

16For simplicity, and without loss of generality, I am not
considering degeneracies in the spectrum of Ĥ. 17Here, I am assuming that the spectrum of Ĥ is continuous.
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jΨ0⟫ ¼
Z

dEdελEεjEijεi; ð54Þ

the stationarity condition HjΨ0⟫ ¼ 0 reads

ĤjΨ0⟫ ¼
Z

dEdεðEþ εþ fðEÞεÞλEεjEijεi ¼ 0; ð55Þ

and thus, for a given E and ε, either λEε ¼ 0 or

ε ¼ gðEÞ ≔ − E
1þ fðEÞ ; ð56Þ

which is well defined for all E such that fðEÞ ≠ −1.18

Therefore, Eq. (54) becomes

jΨ0⟫ ¼
Z

dEλEgðEÞjEijgðEÞi

¼
Z

dt

�Z
dEλEgðEÞ

eigðEÞtffiffiffiffiffiffi
2π

p jEi
�
jti

¼
Z

dteigðĤÞtjψ0ð0Þijti; ð57Þ

where jψ0ð0Þi ≔
R
dE

λEgðEÞffiffiffiffi
2π

p jEi with λEgðEÞ ¼ 0 wherever

gðEÞ is not defined.19 So, by taking the partial inner product
with Chtj, one recovers a unitary evolution of the system in
the SP with an effective Hamiltonian

Ĥeff ≔ −gðĤÞ: ð58Þ

For instance, in the case of the potential V̂G of Eq. (53) one
has [31]

ĤG
eff ¼

Ĥ

1þ Ĥ
Λ

: ð59Þ

Importantly, the Hamiltonians of Eqs. (58) and (59) are
self-adjoint. This property is guaranteed by Eq. (49). If
Eq. (49) does not hold, the effective Hamiltonian will be, in
general, non-self-adjoint [40].
From Eq. (57) it is also easy to see how to move to the

HP, since jΨ0⟫ ¼ Û0jψð0ÞijTLi where the unitary

Û0 ≔ e−iĤeff⊗t̂; ð60Þ

can be used to move between the SP and the HP as in
Sec. III A. Under Û0 Eqs. (13)–(15) change to

ĤðHÞ ¼ Ĥ ⊗ 1C; ð61Þ

ĥðHÞ ¼ 1S ⊗ ĥ − Ĥeff ⊗ 1C; ð62Þ

t̂ðHÞ ¼ 1S ⊗ t̂; ð63Þ

crucially leaving t̂ invariant so that Û0 and jψð0ÞijTLi
represent a good SP-HP transformation and Heisenberg
state according to the requirements of Sec. III A. Thus,
the HP PW construction developed in Sec. III A can be
straightforwardly applied to this case by replacing Ĥ
with Ĥeff .
Also notice that Ĥeff and V̂ transform in the following

way:

ĤðHÞ
eff ¼ Ĥeff ⊗ 1C; ð64Þ

V̂ðHÞ ¼ V̂ þ iĤeff · ½t̂; V̂� ¼ V̂ − Ĥeff ·
dV̂

dĥ
; ð65Þ

where Eq. (65) follows from Eqs. (49) and (50).
Interestingly, when using the gravitational interaction of
Eq. (53) the Hamiltonian of the universe in the HP
becomes ĤðHÞ ¼ 1S ⊗ ĥþ V̂G.
An important difference between the interacting and

noninteracting PW constructions emerges when consider-
ing different eigenstates of Ĥ. For an eigenstate of Ĥ with
eigenvalue E, the function gðEÞ in Eq. (56) becomes

gEðEÞ ≔ − E − E
1þ fðEÞ ; ð66Þ

and thus the effective Hamiltonian of the system changes to
ĤeffðEÞ ≔ −gEðĤÞ. In the case of the interaction V̂G, the
effective Hamiltonian is given by

ĤG
effðEÞ ¼

Ĥ − E

1þ Ĥ
Λ

≈ ĤG
effð0Þ − E þ EĤ

Λ
; ð67Þ

with the approximation holding as long asΛ is much bigger
than the typical energy of the system. This leads to a
nontrivial modification in the dynamics of the system. The
difference in the system’s dynamics between two eigen-
states of the universe with eigenvalues E and E0 can be
quantified in the following way:

jhψE0 ðtÞjψEðtÞij ≈ jhψð0ÞjeiðE0−EÞĤt=Λjψð0Þij; ð68Þ

where I have assumed that the initial of the system is the
same in both cases.

18If fðE�Þ ¼ −1 for some E� then there is no solution. In this
case λE�ε must be zero for any ε. Usually, the interaction
considered is weak enough so that fðEÞ ¼ −1 only for very
large negative energies. In Sec. VI, I will consider the effects of a
strong interaction on a simple model.

19Notice that the normalization of jψðtÞi is guaranteed at all
times if hψð0Þjjψð0Þi ¼ 1.
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C. Explicit solutions for mixed states

Here, I assume that the state of the universe is a mixed
state R̂. The general form of R̂ is given by Eq. (23) which,
using Eq. (57), can also be written as20

R̂ ¼
Z

dtdt0
X
k

pkeigkðĤÞtρ̂kð0Þ ⊗ jtiht0je−igkðĤÞt0 ; ð69Þ

where ρ̂kð0Þ ≔ 1
pk

P
dk νk;dk

R
dEdE0 λ

dk
E λ

dk�
E0

2π jEihE0j with pk

such that Tr½ρ̂kð0Þ� ¼ 1, and gkðĤÞ ≔ gEkðĤÞ. Thus, using
Eqs. (8) and (58), the state of the system at time t reads

ρ̂SðtÞ ¼
X
k

pke−iĤeffðEkÞtρ̂kð0ÞeiĤeffðEkÞt; ð70Þ

where the coefficients pk are greater than 0 and such thatP
k pk ¼ 1. Importantly, if the state of the universe consists

of eigenstates of Ĥwith different eigenvalues, the evolution
of the system is no longer unitary overall.21 Instead, states
of the system associated with different eigensectors of Ĥ
evolve with Hamiltonians which, due to Eq. (66), differ by
more than just a trivial energy shift. In the special case
where all the ρ̂kð0Þ are equal, the evolution of ρ̂S is given
by the completely positive trace-preserving map ρ̂SðtÞ ¼P

k B̂kðtÞρ̂Sð0ÞB̂†
kðtÞ with Kraus operators B̂kðtÞ ≔ffiffiffiffiffi

pk
p

e−iĤeffðEkÞt.
The evolution of the system can be unitary only if the

state of the universe belongs to a single eigensector of Ĥ.22

An interesting consequence is that only entangled states of
the universe give rise to a nontrivial unitary time evolution
on the system’s Hilbert space.23 This means that separable
states such as those in Eqs. (30) and (31) are no longer
allowed.
Finally, in order to move to the HP, let me rewrite

Eq. (69) as

R̂ ¼
X
k

pke−iĤeffðEkÞ⊗t̂ρ̂kð0Þ ⊗ jTLihTLjeiĤeffðEkÞ⊗t̂: ð71Þ

If there is more than one term in the sum, then there is no
unitary to move between the SP and the HP. In the special
case where all the ρ̂kð0Þ are equal, we can write

R̂ ¼
X
k

B̂kR̂
ðHÞB̂†

k; ð72Þ

with R̂ðHÞ ≔ ρ̂Sð0Þ ⊗ jTLihTLj and Kraus operators
B̂k ≔

ffiffiffiffiffi
pk

p
e−iĤeffðEkÞ⊗t̂. To recover the HP, we can act with

the adjoint map on the observables of the universe and
use the Heisenberg state R̂ðHÞ. For instance, the observables
of the system in HP are given by

ÔðHÞ ¼
X
k

B̂†
kðÔ ⊗ 1CÞB̂k: ð73Þ

The construction then follows the lines of Secs. III B
and V B. Notice that the adjoint map leaves the operator t̂
unchanged, and the Heisenberg state is such that
½R̂ðHÞ; ĥ� ¼ 0, in agreement with Eq. (25).

D. Differential formulation and interaction picture

The results above can be represented compactly using
the time operator derivatives of Sec. IV. For pure states of
the universe and the interaction V̂G, the stationarity con-
dition can be written as

i
�
1U þ Ĥ

Λ
⊗ 1C

�
djΨE⟫

dt̂
¼ ðĤ ⊗ 1C − EÞjΨE⟫; ð74Þ

and thus

i
djΨE⟫

dt̂
¼ ðĤG

effðEÞ ⊗ 1CÞjΨE⟫; ð75Þ

with ĤG
effðEÞ the effective Hamiltonian of Eq. (67).

Interestingly, it is not possible to recover an analogous
operatorial Liouville–von Neumann equation for mixed
states of the universe. This is linked to the fact that the
system’s evolution is no longer unitary for a general
mixed state.
The differential notation is also helpful for quickly

grasping some aspects of the PW construction with sys-
tem-clock interaction. For instance, if the interaction contains
powers of ĥ greater than 1, then the Schrödinger equation
will have higher-order time derivatives. Alternatively, if V̂
does not commute with ĥ—that is, t̂ appears in V̂—then
the effective Hamiltonian of the system will be time
dependent [15].
Finally, let me notice that the SP and the HP do not

exhaust all the possibilities. There can be infinite pictures
that differ on how the time dependence is split between the
observables and the state of the universe. For example,
there is an interaction picture where the observables are
evolved with the “free” unitary Û of Eq. (11), while the
state of the universe jΨðIÞ⟫ ≔ Û†jΨ⟫ obeys the following
equation:

20Here, I am also assuming that the spectrum of Ĥ is
continuous. For simplicity, I am taking the sum over a discrete
number of eigenstates of Ĥ.

21Importantly, the map ρ̂Sð0Þ → ρ̂SðtÞ preserves the positivity
and the trace of ρ̂Sð0Þ.

22For a different kind of nonunitarity due to a nonideal clock
see [41].

23This can be seen by restricting Eq. (69) to only one term of
the sum.
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i
djΨðIÞ⟫

dt̂
¼ V̂ðIÞjΨðIÞ⟫; ð76Þ

where V̂ðIÞ ≔ Û†V̂ Û is the system-clock interaction in the
new picture. This shows that the state is still dependent on t̂
and thus not all the time dependence has been transferred to
the observables. In particular, jΨðIÞ⟫ is still entangled.

VI. SOME SIMPLE MODELS

Here, I show how the results obtained above can be
applied to some simple scenarios. I start by showing how
the PW construction for some simple qubit models can be
formulated in the HP. Then, I consider the effects of a
system-clock interaction between a qubit and an “ideal
clock.”24 Some unique effects arise when system and clock
are strongly interacting. I also study these effects in a
massive two-level system. Finally, I consider how the
system’s dynamics changes when the universe is in a
mixed state.

A. Qubit and ideal clock

Let me consider a model where the system of interest is a
qubit and the clock is an ideal clock with two conjugate
observables t̂ and ĥ. Let me assume that the Hamiltonian of
systemþ clock is Ĥ¼ Ĥ⊗ 1Cþ1S ⊗ ĥ with Ĥ ¼ σx=2.
Here, σx;y;z denote the Pauli matrices. Let me also assume
that the state of systemþ clock is an eigenstate of Ĥ with
eigenvalue 0 and that the system is in the state jψð0ÞiS at
time t ¼ 0. Since all the qubit’s observables can be
expressed in terms of two generators of its algebra, one
can choose to keep only track of ðσx ⊗ 1C; σz ⊗ 1CÞ [42].
To move to the HP, one can choose the Heisenberg state

jψð0ÞiSjTLiC and act with the unitary Û ¼ e−iĤ⊗t̂ on the
generators obtaining

ðσx ⊗ 1C; σz ⊗ 1CÞ → ðσx ⊗ 1C; σz ⊗ cosðt̂Þ
þ σy ⊗ sinðt̂ÞÞ; ð77Þ

where the dependence of the system’s observables on the
time operator t̂ is explicit. Moreover, the qubit’s generators
relative to the clock being in the eigenstate with eigenvalue
t are given by ðσxΠ̂tðt̂Þ; ½σz cosðtÞ þ σy sinðtÞ�Π̂tðt̂ÞÞ. Using
Eq. (22) one can get the evolved generators of the system
ðσx; σz cosðtÞ þ σy sinðtÞÞ that one would have obtained
through the Heisenberg equation.

B. Qubit system and clock

As a further simplification, let me assume that the clock
consists of a single qubit [17] and that the time operator t̂ is
given by t̂ ≔ t0j0ih0jC þ t1j1ih1jC where j0iC (j1iC) is the

þ1 (−1) eigenstate of 1̂S ⊗ σz. In this case, to avoid a
trivial evolution, one must consider only nondegenerate
Hamiltonians of clock and system such that their sum has a
doubly degenerate zero eigenvalue.25 For example, one can
choose Ĥ ¼ σx=2 and ĥ ¼ −σx=2 (whenΔt ≔ t1 − t0 ¼ π,
this Hamiltonian evolves the time eigenstates correctly:
e−iĥΔtj0i ¼ ij1i). Since now the clock is finite dimensional,
Eq. (3) does not hold. Instead, the commutator is now
½t̂; ĥ� ¼ −iΔt=2σy.
A suitable Heisenberg state of systemþ clock is now

j0iSðj0iC þ j1iCÞ=
ffiffiðp
2Þ. Under the unitary Ûðt0Þ ≔

e−iĤ⊗ðt̂−t01CÞ, the generators ðσx ⊗ 1C; σz ⊗ 1CÞ become

ðσx ⊗ 1C;

σz ⊗ ½j0ih0j þ cosðΔtÞj1ih1j� þ sinðΔtÞσy ⊗ j1ih1jÞ:
ð78Þ

This means that if the clock is in the state j0iC, the
reduced relative generators of the system will be
ðσx; σzÞ; if the clock is in the state j1iC the generators
will be ðσx; cos ðΔtÞσz þ sin ðΔtÞσyÞ, as expected.
Finally, let me check that these results are consistent with

the state of the system in the SP. To do so, let me write the
density matrix of the system as

ρSðtÞ ¼
1

2

�
1þ

X
i

λiðtÞσi
�
; ð79Þ

with λiðtÞ≔Tr½ρSðtÞσi�¼Tr½ρSðt0ÞσiðΔtÞ�, where
fσiðΔtÞgi are the Heisenberg-evolved Pauli matrices
after a time Δt and ρSðt0Þ ¼ j0ih0jS. As I have shown
above, at time t0 the Pauli matrices are unchanged and
thus, trivially, ρSðt0Þ ¼ j0ih0jS. Using the Heisenberg-
evolved generators above one finds at time t1: fλiðt1Þgi ¼
ð0;− sinðΔtÞ; cosðΔtÞÞ. Plugging these values into Eq. (79)
one gets

ρSðt1Þ ¼
1

2

�
1þ cosðΔtÞ i sinðΔtÞ
−i sinðΔtÞ 1 − cosðΔtÞ

�
: ð80Þ

One would have obtained this density matrix by evolving
the system’s state in the SP.

C. Qubit interacting with an ideal clock

Here, I will consider a qubit interacting with the clock.
For simplicity, I will study the system in the SP, but the HP
can be easily recovered using the results of Sec. III. Let me
assume that the clock is ideal to guarantee enough

24Here, ideal clock means a clock with an algebra as in Eq. (3).

25In the previous example this was guaranteed for any non-
degenerate Hamiltonian of the qubit since the spectrum of the
clock Hamiltonian was R.
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degeneracy in the eigenvalues of the Hamiltonian of the
universe. Let me assume a system-clock interaction as in
Eq. (53), with Ĥ ¼ σx=2. If the state of the qubit at time
t ¼ 0 is j0i, then the state of the universe with eigenvalue E
is given by

jΨE⟫ ¼
Z

dte−i
Ĥ−E

1þĤ=Λ
tj0ijti: ð81Þ

The effective Hamiltonian of the system can be written as

ĤeffðEÞ ¼
σx=2 − E
1þ σx

2Λ
¼ ϕðΛ; EÞ1þ ωðΛ; EÞ σx

2
; ð82Þ

where

ϕðΛ; EÞ ¼ −
1

Δ

�
E þ 1

4Λ

�
; ð83Þ

ωðΛ; EÞ ¼ 1

Δ

�
1þ E

Λ

�
; ð84Þ

with Δ ≔ detð1þ σx=2
Λ Þ ¼ 1 − 1

4Λ2. The Hamiltonian is well
defined for Λ ≠ �1=2 and λ ≠ 0. For Λ → �1=2, ϕ, and ω
diverge. When Λ ¼ 1=2 ðΛ ¼ −1=2Þ, there is still a sta-
tionary state of the universe, namely jþijh ¼ E − 1=4i
ðj−ijh ¼ E þ 1=4iÞ, but the system is stationary in the state
jþi ðj−iÞ. When Λ ¼ 0 the interaction term is not defined,
but for Λ → 0, Ĥeff → 0 and thus the system is stationary
(in the initial state j0i). Notice that when Λ → ∞ (no
interaction), Ĥeff → σx=2 for any value of E, as expected.
The unitary evolution of the system is given by

ÛeffðtÞ ≔ e−iϕðΛ;EÞte−iωðΛ;EÞσxt=2: ð85Þ

The first part induces an unobservable phase shift while
the second rotates the state of the qubit. The effect of the
system-clock interaction is to change the speed at which the
qubit evolves. The observable part of the effect is deter-
mined by ω.
In Fig. 1, I have plotted the value of ωðΛ; 0Þ and ϕðΛ; 0Þ

for different values of Λ. For Λ → 1=2, the speed of the
system’s evolution diverges. Interestingly, for values of Λ
between 0 and 1=2 the system evolves back in time (the
usual direction of time is defined by the noninteracting limit
Λ → ∞). For Λ < 0, the situation is symmetrical for ω and
antisymmetrical for ϕ. As can be seen in Eqs. (83) and (84),
for E ≠ 0 there are additional zeroes for ϕ and ω. When
ω ¼ 0 the system is stationary.

D. Massive qubit interacting with an ideal clock

Let me consider a system with mass m and a two-level
internal Hamiltonian Ĥ ¼ mc2 þ EIσx=2, where EI is the
system’s internal energy. The effective Hamiltonian for this

system under the system-clock interaction of Eq. (53) is
still given by Eq. (82) but now with coefficients

ϕmðΛ; EÞ ¼
mc2

Δ

�
1þmc2 − E

Λ
−
E þ E2

I =4Λ
mc2

�
; ð86Þ

ωmðΛ; EÞ ¼
EI

Δ

�
1þ E

Λ

�
; ð87Þ

with Δ ¼ ð1þ mc2
Λ Þ2 − E2

I
4Λ2. In the following, I will assume

that the internal energy of the system is much smaller
than its rest energy (EI ≪ mc2). The observable part of
the evolution is still governed by ωm, which is plotted in
Fig. 2. The behavior of ωm is similar to the previous case,
but now the divergences happen at Λ ¼ −mc2 � EI=2. If
one assumes a Newtonian system-clock interaction [15]
Λ ¼ −dc4=G, with d the clock-system distance, then the
divergences happen at the critical values of d∶

dcrit ¼
RS

2
∓ EIG

2c4
; ð88Þ

where Rs ¼ 2Gm
c2 is the Schwarzschild radius of the system.

Between these two distances, the system evolves back in
time. Notice that if the system were a black hole and the
system-clock coupling factor were Λ ¼ −dc4=2G, this
time inversion would happen in a small region around
the event horizon. Similarly to the previous case, Ĥeff → 0
for Λ → 0, and thus the system becomes stationary in
this limit.
Finally, let me discuss what happens when the universe is

in a mixed state R̂. Since the spectrum of Ĥ is continuous,
there are infinite choices of R̂ compatible with the system
being initially in the state j0ih0j. For simplicity, I will choose

FIG. 1. Plot of the parameters governing the effective Hamil-
tonian of the two-level system discussed in Sec. VI C. ω and ϕ are
plotted as functions of the interaction strength Λ for E ¼ 0 (in
arbitrary units). ϕ contributes to an unobservable global phase
while ω represents a timescale factor for the system’s evolution.
Notice the inversion in the direction of the evolution for −1=2 <
Λ < 1=2 and the divergences for Λ ¼ �1=2.
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R̂ to be an equal mixture of two eigensectors of Ĥ, one with
eigenvalue 0 and one with eigenvalue E. The state of the
system at time t is thus given by Eq. (70).

ρ̂SðtÞ ¼
1

2
ðe−iĤeffð0Þtj0ih0jeiĤeffð0Þt

þ e−iĤeffðEÞtj0ih0jeiĤeff ðEÞtÞ: ð89Þ

Substituting the explicit expression for Ĥeff one gets

ρ̂SðtÞ¼
1

2
e−i

EI t
2Δσxðj0ih0jþe−i

EIEt
2ΔΛσx j0ih0jeiEIEt2ΔΛσxÞeiEI t2Δσx : ð90Þ

The evolution of ρ̂SðtÞ is manifestly nonunitary. Inter-
estingly, ρ̂SðtÞ reaches themaximallymixed state after a time

τD ¼ πℏΔΛ
EIE

¼ πℏΛ
EIE

��
1þmc2

Λ

�
2

−
E2
I

4Λ2

�
; ð91Þ

where I have reinstated ℏ. τD has the meaning of a
coherence time.
Another meaningful quantity is the number of full

rotations that the system can undergo before it reaches
the maximally mixed state:

τD
τ
¼ Λ

2E
; ð92Þ

where τ ¼ 2πℏΔ
EI

is the time it takes for a system to go back to
the initial state in the case of no clock-system interactions.
This quantity shows the two parameters that regulate the
process. Strong system-clock coupling and big differences
between the eigenvalues of Ĥ lead to short “relative”
coherence times for the system. Substituting Λ ¼ dc4=G
(the minus sign does not change the conclusions), one gets

τD
τ
¼ dc4

2GE
: ð93Þ

Interestingly, if E ¼ mc2, τD=τ ¼ d=RS, where RS is the
Schwarzschild radius of the system.
To grasp the magnitude of this effect, let me consider

an atomic-scale system. Assuming that the clock is gravi-
tationally coupled to the system at a distance d ¼ 10–10 m,
τD=τ ≈ 1051 for E ¼ 10 eV, while τD=τ ≈ 1041 for E ¼
mpc2, where mp is the mass of the proton. Both these
relative coherence times are very long. These results show
that even if the system’s evolution is nonunitary, this effect
may not be easy to detect for weak gravitational system-
clock interactions. Instead, the effect becomes significant
for large values of E at scales where one would expect
strong relativistic effects, e.g. for E ¼ mc2 and d ¼ RS.
Alternatively, the effect could increase with the number of
different energy eigenvalues appearing in the state of the
universe. I leave the investigation of this point open for
future work.

VII. CONCLUSIONS

In this work, I have investigated some features and
generalizations of the Page-Wootters construction. First, I
have shown how to formulate the PW construction in the
Heisenberg picture. This is achieved with a formal unitary
transformation that transfers the time dependence from the
state of the universe to the observables. The same trans-
formation applies to both pure and mixed states of the
universe as long as there is no system-clock interaction. In
this picture, the dependence of the system’s observables on
the time operator of the clock is manifest, while the usual
time evolution of quantum theory emerges in the relative
observables.
The Heisenberg picture formulation of the PW con-

struction reveals some interesting aspects about the system-
clock correlations. For instance, entanglement is not
necessary for a nontrivial time evolution if one allows
mixed states of the universe. One can encode the relevant
system-clock correlations in a separable (mixed) state. In
fact, for any stationary entangled state of the universe, it is
possible to find a separable stationary mixed state that
encodes the same time evolution.
In this work, I have also studied the role of some types of

system-clock interactions in the PW construction. Under
such interactions, different pure stationary states of the
universe lead to different dynamics at the level of the
system. This is important because any realistic system must
have some level of interaction between its subsystems. If
the system under consideration is the whole universe,
usually its state is assumed to be pure and with energy
0. However, this does not have to be the case for a generic
closed system. Pure states of the universe with different
energy eigenvalues lead to different effective Hamiltonians
for the system, and mixed states of the universe can lead to a

FIG. 2. Plot of the parameters governing the effective Hamil-
tonian of the massive two-level system discussed in Sec. VI D.
ωm and ϕm are plotted as functions of the interaction strength Λ
for E ¼ 0, EI ¼ 1, and mc2 ¼ 2 (in arbitrary units). ϕm contrib-
utes to an unobservable global phase while ωm represents a
timescale factor for the system’s evolution. Notice the inversion
in the direction of the evolution and the divergences.
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nonunitary evolution. In principle, it is possible to detect the
latter effect and thus distinguish some mixed (stationary)
states of the universe from the pure ones (contrary to [9]). For
instance, in the case of a two-level system interacting with an
ideal clock, I showed that the nonunitarity of the system’s
dynamics can lead to the loss of coherence in a characteristic
time that depends on the strength of the interaction. This
effect is very small for weakly interacting systems, but it
becomes important at scales where one would expect
relativistic effects to arise. Interestingly, at these scales, even
pure states of the universe lead to unusual dynamics at the
level of the system. For example, if the clock interacts
gravitationally with a two-level massive system, there is a
region of system-clock distances where the system evolves
backwards in time. This happens when the system-clock
distance is around half of the Schwarzschild radius of the
system. I shall explore this effect thoroughly in a forth-
coming paper.
The study of the PW construction with system-clock

interactions shows another interesting aspect: the system
can undergo a unitary evolution only if the state of the
universe is entangled. In some sense, interactions restore
the role of entanglement in the PW construction. This could
have interesting consequences for classical relational
approaches to time [7,43,44]. I leave the exploration of
this point to future work.
The construction outlined here could be easily extended to

include all the other generators of symmetry transformations
[45–47]. It could also be applied to other related problems,
such as indefinite causal order [48], the questions on clock
synchronization raised in [29], and time dilation [31,38,49].
Finally, it would be interesting to consider interactions

such that t̂ is not left invariant when moving from the
Schrödinger picture to the Heisenberg picture. In this case,
one has to modify the notion of partial trace to get the right
relative state of the system in the Heisenberg picture. I leave
this problem open for future investigations.
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APPENDIX A: PROPERTIES OF THE SP-HP
TRANSFORMATION FOR PURE STATES

OF THE UNIVERSE

1. Allowed transformations and gauge invariance

In Sec. III A, I have found that the unitary Û leads to the
HP version of the PW construction. However, one may
wonder if this unitary is the only possible transformation

between the SP and the HP. In other words, one has to
motivate the choice of the unitary Û and of the Heisenberg

state jΨðHÞ
E ⟫ such that ÛjΨðHÞ

E ⟫ ¼ jΨE⟫. Assuming that
the transformation between the SP and the HP is unitary,
any such choice is described by an additional unitary

transformation Ŵ: jΨE⟫ ¼ ÛjΨðHÞ
E ⟫ ¼ Û Ŵ Ŵ†jΨðHÞ

E ⟫ ¼
Û0jΨ0ðHÞ

E ⟫, where Û0 ≔ Û Ŵ and jΨ0ðHÞ
E ⟫ ≔ Ŵ†jΨðHÞ

E ⟫.

The choice of Û0 and jΨ0ðHÞ
E ⟫ is then determined by the

requirements of Sec. III A:
(1) Û0†ð1S ⊗ t̂ÞÛ0 ¼ 1S ⊗ ŝ, with ŝ a self-adjoint op-

erator of the clock, so that the partial inner product
and partial trace of Eqs. (6) and (8) are still mean-
ingful. This condition is satisfied in all the cases
considered in this work.

(2) The transformation between the SP and the HP
transfers all the “encoded time evolution” from the
state of the universe to the observables. In other

words, jΨ0ðHÞ
E ⟫ is such that

Chs̄0jΨ0ðHÞ
E ⟫ ¼ eiϕðs;s0ÞChs̄jΨ0ðHÞ

E ⟫; ðA1Þ
for all s, s0, where js̄i (js̄0i) is an eigenstate of ŝ with
eigenvalue s (s0) and ϕðs; s0Þ is a phase.

Clearly, any local unitary Ŵ ¼ ŴS ⊗ ŴC is allowed since

Ŵ leaves 1S ⊗ t̂ of the form 1S ⊗ ŝ and Chs̄0jΨ0ðHÞ
E ⟫ ∝

ŴSChs0jΨE
ðHÞ⟫ ∝ ŴSChsjΨE

ðHÞ⟫ ∝ Chs̄jΨ0ðHÞ
E ⟫ ∀ s; s0 (jsi

is an eigenstate of t̂ with eigenvalue s). Since in ordinary
quantum theory it is possible to change the basis with
impunity, this is a desirable feature of the construction.
However, these local changes of basis are not of much
interest for the current purposes, so I will only consider local
unitaries on the clock’s Hilbert space that leave t̂ invariant
and do not change the basis of the system’s Hilbert space.
In Appendix A 2, I show that any nonlocal unitary Ŵ is

not allowed. The class of unitaries and Heisenberg states
that I will consider is thus

Ûϕ ≔ Ûe−i1S⊗ϕðt̂Þ; ðA2Þ

jΨðHÞ
E;ϕ⟫ ≔ ei1S⊗ϕðt̂Þjψð0ÞiSjTLEiC; ðA3Þ

with ϕðt̂Þ a self-adjoint function of t̂ only. Notice that
ei1S⊗ϕðt̂Þ does not change either the observables or the
relative observables of the system. The simplest choice is Û

and jΨðHÞ
E ⟫. For this choice, the stationarity constraint on

the state of the universe becomes

ð1S ⊗ ĥÞjΨðHÞ
E ⟫ ¼ EjΨðHÞ

E ⟫: ðA4Þ

Notice that since Ŵ is a local unitary, any Heisenberg
state must be separable with respect to clock and system
(see Appendix A 3 for another proof of this).
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Let me now discuss some additional features of the
construction. First, let me notice that there is what one may
call a gauge freedom. In the HP, the unitaries ÛðθÞ ≔ 1S ⊗
e−iĥθ are gauge transformations, since ÛðθÞjΨðHÞ

E;0⟫ ¼
e−iEθjΨðHÞ

E;0⟫ ∀ θ; E ∈R. Under ÛðθÞ, the time operator

t̂ undergoes a time translation: Û†ðθÞð1S ⊗ t̂ÞÛðθÞ ¼
1S ⊗ ðt̂ − θ1̂CÞ, and all the observables related to ÔðHÞ

by ÛðθÞ

Û†ðθÞÔðHÞÛðθÞ ¼ eiĤ⊗ðt̂−θ1̂CÞÔe−iĤ⊗ðt̂−θ1̂CÞ; ðA5Þ

belong to the same equivalence class. The observables
found in, for example, [20] are the so-called “group
average” of the observables in these equivalence classes
[20,50]. Notice that the group average of the system’s
observables in these equivalence classes results in observ-
ables that commute with the Hamiltonian of the universe.
For a general closed system, these new observables

describe a different physical situation even if all the
expectations values are the same [11]. The difference lies
in the different dynamics described by the old and the new
observables, and it can be detected by “starting” with
another Heisenberg state that is not an eigenstate of ÛðθÞ.
However, the PW construction does not allow states that do
not satisfy the stationarity condition, so this difference is
impossible to detect.
This reasoning may not apply to other transformations

that have jΨðHÞ⟫ as an eigenstate (for instance, a local
transformation on the system). Still, it is unclear what it
means to start with a different Heisenberg state of the
universe and, thus, whether it is possible to detect the
difference between the new and the old observables, even in
principle. I leave the questions regarding this possibility
open for future discussion.

2. Condition on the unitary transformations of Û

Given that jΨ⟫ ¼ ÛjΨðHÞ⟫ ¼ Û Ŵ Ŵ†jΨðHÞ⟫, let me
assume that Ŵ leaves t̂ invariant. This means that Ŵ must
be a function of the system’s operators and t̂ only. Thus,
Ŵ ¼ R

dtÂðtÞ ⊗ jtihtj, with Â unitary. The condition on
jΨ0ðHÞ⟫

ht0jΨ0ðHÞ⟫ ¼ eiϕðt;t0ÞhtjΨ0ðHÞ⟫ ∀ t; t0; ðA6Þ

implies that

Â†ðt0ÞhtjΨðHÞ⟫ ¼ eiϕðt;t0ÞÂ†ðtÞhtjΨðHÞ⟫ ∀ t; t0; ðA7Þ

where I have used that fact that htjΨðHÞ⟫ ¼
ht0jΨðHÞ⟫ ∀ t; t0. If one also requires that Ŵ†jΨðHÞ⟫ is such
that Eq. (A6) holds for any state initial state jψi of the
system, then

Â†ðt0Þjψi ¼ eiϕðt;t0ÞÂ†ðtÞjψi ∀ t; t0; ðA8Þ

and for any jψi. Therefore, Â†ðt0Þ ¼ eiϕðt;t0ÞÂ†ðtÞ ∀ t; t0 and
thus Ŵ ¼ Âð0Þ ⊗ R

dte−iϕð0;tÞjtihtj, which is a local
unitary.
What if Ŵ†ð1S ⊗ t̂ÞŴ ¼ 1S ⊗ ŝ? In this case, it is

always possible to find a local unitary of the clock V̂ such
that V̂†ð1S ⊗ ŝÞV̂ ¼ 1S ⊗ t̂. This means that

Ŵ†V̂†ð1S ⊗ ŝÞV̂ Ŵ ¼ 1S ⊗ ŝ; ðA9Þ

and thus the unitary V̂ Ŵ is a function of the observables of
the systemand ŝ only.Moreover, jΨ0ðHÞ⟫¼ Ŵ†V̂†V̂jΨðHÞ⟫¼
Ŵ†V̂†jΨ00ðHÞ⟫¼ðV̂ ŴÞ†jΨ00ðHÞ⟫, where jΨ00ðHÞ⟫≔ V̂jΨðHÞ⟫
is a state for which (A1) holds (since V̂ is a local unitary).
Therefore, one can apply the reasoning above to the unitary
V̂ Ŵ, with jΨ00ðHÞ⟫ instead of jΨðHÞ⟫ in Eq. (A7). Thus, V̂ Ŵ
must be a local unitary and (since V̂ is a local unitary) Ŵmust
be a local unitary too.

3. No encoded time evolution and separability

The pure Heisenberg state of the universe must be such
that Chs0jΨ0ðHÞ⟫ ¼ eiϕðs;s0ÞChsjΨ0ðHÞ⟫ ∀ s; s0, where jsi and
js0i are eigenstates of the clock-observable ŝ and ϕðs; s0Þ is
a phase. This implies that

jΨ0ðHÞ⟫ ¼
Z

dsjsiChsj · jΨ0ðHÞ⟫

¼ h0jΨ0ðHÞ⟫
�Z

dseiϕðs;0ÞjsiC
�

¼ jψ 0ð0ÞiS
�Z

dseiϕðs;0ÞjsiC
�
; ðA10Þ

which is a separable state of system and clock.
Vice versa, if jΨ0ðHÞ⟫ is separable, that is jΨ0ðHÞ⟫ ¼

jXiCjYiS, then

hs0jΨ0ðHÞ⟫ ¼ hs0jXijYi ¼ eiϕðs;s0ÞhsjXijYi
¼ eiϕðs;s0ÞhsjΨ0ðHÞ⟫ ∀ s; s0; ðA11Þ

where I have used the fact that jΨ0ðHÞ⟫ is normalized as in
Eq. (4) (so that hYjYiS ¼ 1 and hsjXiC is just a phase for
any s). Let me notice that the case hsjΨ0ðHÞ⟫ ¼ 0 is not
allowed since this would imply that htjΨ⟫ ¼ 0 for some jti
eigenstate of t̂ and thus [applying the stationarity condi-
tion of Eq. (2)] ht0jΨ⟫ ¼ 0 ∀ t0. This implies that jΨ⟫ ¼ 0,
which is not an allowed state of the universe.
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APPENDIX B: PROPERTIES OF THE SP-HP
TRANSFORMATION FOR MIXED STATES

OF THE UNIVERSE

1. Allowed transformations

In Sec. III B, I have found that the unitary Û leads to theHP
version of the PW construction for mixed states of the
universe. The associated Heisenberg states are given by
Eq. (24). Is this transformation between the two pictures
unique?
Similarly to the conditions discussed in Appendix A 1,

the Heisenberg state of the universe should not encode
any time evolution, i.e. it should be such that Eq. (26)
holds. Since the universe I am considering is a
closed system, every other possible Heisenberg state R̂0ðHÞ

should be linked to R̂ðHÞ via a unitary transformation
R̂0ðHÞ ¼ Ŵ†R̂ðHÞŴ.26

Any local unitary Ŵ ¼ ŴS ⊗ ŴC is allowed since Ŵ
leaves 1S ⊗ t̂ of the form 1S ⊗ ŝ and Tr

C
½R̂0ðHÞΠ̂sðŝÞ�¼

Ŵ†
STrC

½R̂ðHÞΠ̂sðt̂Þ�ŴS¼Ŵ†
STrC

½R̂ðHÞΠ̂s0 ðt̂Þ�ŴS¼Tr
C
½R̂0ðHÞ×

Π̂s0 ðŝÞ�∀s;s0.
In Appendix B 2, I show that nonlocal unitaries are not

allowed. Therefore, restricting to transformations that leave
t̂ invariant and do not change the basis of the system’s
Hilbert space, the class of unitaries and Heisenberg states
that I will consider is

Ûϕ ≔ Ûe−i1S⊗ϕðt̂Þ; ðB1Þ

R̂ðHÞ
ϕ ≔ ei1S⊗ϕðt̂ÞR̂ðHÞe−i1S⊗ϕðt̂Þ; ðB2Þ

with ϕðt̂Þ a self-adjoint function of t̂ only. The simplest
choice is represented by Û and R̂ðHÞ.

2. Condition on the unitary transformations of Û

Given that R̂0ðHÞ ¼ Ŵ†R̂ðHÞŴ, let me assume that 1S ⊗
t̂ is invariant under Ŵ. This means that Ŵ must be a
function of the system’s operators and t̂ only. Thus,
Ŵ ¼ R

dtÂðtÞ ⊗ jtihtj, with Â unitary. Under this assump-
tion, I will show that the unitary Ŵ must be a local unitary.
Let me start from the fact that R̂0ðHÞ must encode no time

evolution, that is

Tr
C
½Ŵ†R̂ðHÞŴΠ̂tðt̂Þ� ¼ Tr

C
½Ŵ†R̂ðHÞŴΠ̂t0 ðt̂Þ� ∀ t; t0: ðB3Þ

and thus

Â†ðtÞTr
C
½R̂ðHÞΠ̂tðt̂Þ�ÂðtÞ ¼ Â†ðt0ÞTr

C
½R̂ðHÞΠ̂t0 ðt̂Þ�Âðt0Þ

¼ Â†ðt0ÞTr
C
½R̂ðHÞΠ̂tðt̂Þ�Âðt0Þ ∀ t; t0;

ðB4Þ

where the second equality is due to Eq. (26). I will further
require that Ŵ†R̂ðHÞŴ must be such that Eq. (26) holds for
any choice of R̂ðHÞ given by Eq. (24). Thus, let me choose

R̂ðHÞ
jψi;E ¼ jψihψ j ⊗ jTLEihTLE j for any jψi and E. I can

then rewrite Eq. (B4) as

Â†ðtÞjψihψ jÂðtÞ ¼ Â†ðt0Þjψihψ jÂðt0Þ ∀ t; t0; ðB5Þ

and for any state of the system jψi. This implies that
Âðt0Þ ¼ eiϕðt;t0ÞÂðtÞ and thus Ŵ ¼ Âð0Þ ⊗ R

dteiϕðt;0Þjtihtj
which is a local unitary. The demonstration for the case
when 1S ⊗ t̂ is not invariant under Ŵ (but is still of the
form 1S ⊗ ŝ) is similar to that in Appendix A 2.

[1] J. Barbour, The End of Time: The Next Revolution in Physics
(Oxford University Press, USA, 2001).

[2] J. Barbour, arXiv:0903.3489.
[3] C. Kiefer, in Towards a Theory of Spacetime Theories,

Einstein Studies, edited by D. Lehmkuhl, G. Schiemann,
and E. Scholz (Springer, New York, NY, 2017),
pp. 287–295.

[4] C. Kiefer, J. Phys. Conf. Ser. 174, 012021 (2009).
[5] C. J. Isham, in Integrable Systems, Quantum Groups, and

Quantum Field Theories, NATO ASI Series, edited by
L. A. Ibort and M. A. Rodríguez (Springer Netherlands,
Dordrecht, 1993), pp. 157–287.
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