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In quantum theory, the concept of time rests on shaky ground. One way to address this problem is to
remove the usual background time parameter as a primitive entity and explain its emergence via
correlations between physical systems. This approach was adopted by Page and Wootters [Phys. Rev. D 27,
2885 (1983)], who showed how time can emerge in a stationary quantum universe from the correlations
between two of its subsystems, one of them acting as a clock for the other. In this work, I study the
robustness of the Page-Wootters construction across different pictures, states of the universe, and clock
interactions, clarifying the role and the nature of the correlations between the subsystems of the universe. I
start by showing how to formulate the Page-Wootters construction in the Heisenberg picture via a unitary
change of basis. I consider both pure and mixed states of the universe and extend the analysis to include
interactions between the clock and the other subsystem of the universe. The study reveals what kind of
correlations are necessary for the construction to work. Interestingly, entanglement is not required as long
as there are no interactions with the clock. The study also shows that these interactions can lead to a
nonunitary evolution for some mixed states of the universe. In a simple two-level system, this aspect
becomes relevant at scales where one would expect strong relativistic effects. At these scales, I also observe

an inversion in the system’s direction of time.
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I. INTRODUCTION

The concept of time in physics is related to a set of issues
generally gathered under the umbrella term “the problem of
time” [1-7]. One of the main issues is that time usually
appears in dynamical laws as a background (classical)
parameter whose nature is completely detached from matter.
This is unsatisfactory, especially since matter and spacetime
interact according to general relativity. The problem becomes
even deeper in quantum theory, where one may argue that any
system that can interact with a quantum system must itself be
quantum (see, for example, [8]).

One way to address these issues is to discard time as a
primitive entity external to physical systems and explain its
emergence from the correlations between these systems. One
of the most prominent quantum versions of this “timeless
approach” is the Page-Wootters (PW) construction [9]. Page
and Wootters showed how the usual time evolution of
quantum theory can be recovered from the correlations
between two subsystems of a stationary quantum universe.
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One of the subsystems is the system of interest; the other acts
as a clock for the former. In the PW construction, time is
associated with an operator of the clock. The other system in
the universe evolves relative to the eigenvalues of this time
operator.

The PW construction is usually formulated in the
Schrodinger picture for pure states of the universe and
without interaction between the system and the clock. In
this work, I study the robustness of the PW construction
across different pictures, states of the universe, and system-
clock interactions. Studying each of these aspects is
important on its own. First, although the Schrodinger
picture (SP) and the Heisenberg picture (HP) are empiri-
cally equivalent, their description of physical reality is
different, especially with regard to locality' [10—13]. Mixed
states of the universe, usually not considered in the
literature, are interesting per se [14]. Finally, considering
an interaction term between the system and the clock makes
the construction more realistic [15].

Notably, the joint study of these aspects clarifies the role
and nature of the system-clock correlations in the PW
construction. These correlations are necessary to make the

"The HP provides a local description of quantum theory
[10-12]. Since the universe in the PW construction is stationary,
here locality refers to a local description of the system relative to
the clock.
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system evolve, but their nature is not fully clear in the
literature. Most works trace it back to entanglement [ 16—19],
while some argue that entanglement2 is not necessary [21] or
show that itis a feature linked to the SP [20,22,23]. This work
reveals which correlations are necessary in different situa-
tions and how they transform in different pictures.

In the first part of this work, I start by reviewing the PW
construction in the SP. The construction recovers the usual
unitary time evolution of quantum theory for the system of
interest after tracing out the clock’s degrees of freedom. As a
result, the HP can be easily recovered at the system level in
the usual way [9]. However, this is different from moving to
the HP at the level of the universe. In fact, the state vector
of the universe is stationary, so the usual distinction between
Schrodinger and the Heisenberg pictures is absent at this
level, and the PW construction applied to the state of the
universe will always lead to the SP description of the system.
Does this mean that the HP does not exist at the level of the
universe? Some works in the literature shed light on the
problem through different approaches [20,22,24-29]. Here, I
show that the PW construction can be formulated in the HP
by performing a wunitary transformation on both the state
vector and the observables of the universe, which transfers
crucial system-clock correlations from the former to the
latter. In this formulation, the observables of the system
depend on the clock’s time operator and the quantum nature
of time is explicit. The usual time evolution of the system’s
observables can then be recovered via the relative-state
construction in the HP [30].

The construction I outline here can be straightforwardly
applied to mixed states of the universe. In addition to
making the results of this work more general, the study of
the HP formulation with mixed states of the universe sheds
some light on what kind of system-clock correlations result
in nontrivial time evolutions. Interestingly, system-clock
entanglement is not a necessary property of the state of the
universe, even in the SP. Building on the results of [29], I
also introduce a differential notation to express the results
compactly and insightfully.

In the second part of this work, I consider interactions
between the system and the clock, expanding some of the
results of [15,31]. The objective is to demonstrate that
the PW construction can be formulated in HP even in the
presence of system-clock interactions and to investigate
additional aspects of the construction with mixed states of
the universe. I motivate the choice of a specific kind of
interaction and show that this interaction can lead to a
nonunitary evolution at the level of the system for some
mixed states of the universe. Interestingly, the necessity of
entanglement for a nontrivial system evolution is restored
in the presence of this kind of system-clock interaction.

Here and in the rest of this work, entanglement refers to the
entanglement between system and clock in the kinematical
Hilbert space [20].

This might have some implications for classical relational
approaches to time. In this context, I also show that the SP
and the HP do not exhaust all the possibilities. There are, in
fact, an infinite number of pictures that differ on how the
time dependence is split between the observables and the
state of the universe. For example, it is possible to find an
interaction picture where the observables of the system
evolve freely while the state vector evolves under an
interaction term.

In the last section, I apply the results of this work to some
simple models. I show how to recover the HP for a two-
level system and study the effect of system-clock inter-
actions on the system’s dynamics. I observe an inversion in
the time direction of the system at scales where one would
expect relativistic effects to be dominant. I also show that if
the universe is in a mixed state, the system can lose its
coherence in a characteristic time that depends on the
strength of the system-clock interaction.

II. REVIEW OF THE PW CONSTRUCTION
IN THE SCHRODINGER PICTURE

In this section, I review the assumptions of the PW
construction and its SP formulation for both pure and
mixed states of the universe.

A. Pure states

The PW construction for pure states of the universe relies
on the following assumptions [9,18]:

(I) The universe can be divided into two sub-
systems. One is the system of interest ©&; the
other acts as a clock € for the first. The Hilbert
space of the universe can be decomposed as
Iy = Hg Q@ Hs. In the ideal case, © and €
are noninteracting, i.e. the Hamiltonian of the uni-
verse is given by

H=H®lc+1®h (1)

where H is the Hamiltonian of the system and his
the Hamiltonian of the clock.

(2) The universe is in an eigenstate of its Hamiltonian
. Usually, the universe is assumed to be in the state
with eigenvalue O, but here I will consider any
eigenstate |W¢)):

HIPe) = E[Pe), (2)

where the double-ket notation is just a visual aid to
remember that the states of the universe are defined
on Hg ® Hs. The states |W¢)) satisfying the
constraint of Eq. (2) live in the physical Hilbert
space 7y, a subspace of the Hilbert space of the
universe 77’y (also called kinematical Hilbert
space) [15].
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(3) The clock has an observable 7 conjugate to h:
(2.7 = i, (3)

where I have set 4 = 1.

From these assumptions, the usual time evolution
of the system can be derived in the following way [18].
Equation (3) implies that e="|t) = |t + 0) V 0 €R, where
|£) is the eigenstate of 7 with eigenvalue 7. Using the identity
decomposition in terms of {|f)},, one can write

We) = / dilye(0)elt)e. (4)

where it is assumed that the state of the system |w¢())g
is normalized at all times.> Now, using Egs. (1) and (2), one
can find that

) = e = [ e lye(o)eli-+ O
)

and thus, equating this with Eq. (4), |ye(t))g =
e~i(1=€1)1|y,(0)) &, where I have fixed, without loss of
generality, [y¢(0)) = |w(0)) V &. This means that the state
of the system relative to the clock being in the state |¢) is
given by the partial inner product:

(1¥e) = [we(1)g = e =€V |y (0))g.  (6)

which shows that the relative-state |w(7))g satisfies the
time-dependent Schrodinger equation with Hamiltonian
H — &, where £ is an unobservable shift in energy. In this
construction, time emerges from the system-clock corre-
lations: the time of the system is ¢ if the clock is in the
state |f)¢.

It is clear from Eq. (4) that the PW construction leads to a
nontrivial time evolution of the system only if there are at
least two different |w¢(7))g for two different values of ¢.
This means that in the SP only entangled pure states of the
universe result in nontrivial time evolutions.

B. Mixed states

The same construction outlined here can be applied
to mixed states of the universe [9,19]. In this case, the
stationarity condition of Eq. (2) becomes

[R.H] =0 ()

3This is guaranteed if one imposes, for example, that |¥¢))
must be normalized according to the scalar product {®[¥),,, =
(@|(|7)(t] ® 1g)|¥)) which, due to Egs. (1) and (2), does not
depend on ¢ [15].

where R is the density operator of the universe. The state of
the system relative to the clock being in the state |¢)¢ is now
given by

Tr[RIL, (7
r(R1 () N

pe(t) = —=—=——,
Pel!) = A,

where IT,(7) = 1¢ @ |£)(z] is the projector on the eigen-
space of 1g ® 7 with eigenvalue +.* The states R such that

Tr[RI1,(7)] = O for at least one value of ¢ are excluded
since they do not give rise to a physical state of the system.’
Now, using Egs. (1), (3), and (7) one finds that

palt) = e iMipg(0)eif V1, (9)

which is the usual Schrédinger-picture time evolution of a
system with Hamiltonian A. As I will discuss later, in the
case of mixed states of the universe, system-clock entan-
glement is no longer necessary for a nontrivial time
evolution of the system.

III. PW CONSTRUCTION
IN THE HEISENBERG PICTURE

In this section, I show how to recover the PW construction
in the HP at the level of the universe. The approach and
interpretation [ outline here differ from [22], where the
Heisenberg observables are recovered from other axioms and
the choice of Heisenberg state is motivated differently. They
also differ from [20,24-28], which generally start from
invariant observables (i.e. observables that commute with
a constraint operator), and from [29], which postulates that
the HP is defined by observables of the system that obey a
generalized Heisenberg equation.6

Here, starting from the assumption that the universe is in
a stationary state, [ recover the HP description of the whole
universe via a unitary transformation on both the observ-
ables and the state vector. The observables and Heisenberg
state of [22] are recovered in a simple and well-motivated
way; the assumptions of [29] find a natural explanation and

“The normalization factor Tr[RIT,(?)] does not depend on 7 due
to Egs. (1) and (7).

While the only stationary pure state of the universe such that
(t|¥) = 0 for at least one value of 7 is |¥)) = 0, the class of
stationary mixed states R such that Tr[RI1,(7)] = 0 is bigger.

°In Ref. [29] the author requires that the Hamiltonian of the
universe be equal to the Hamiltonian of the clock to prevent a
real-valued time parameter from appearing in the equations of
motion for the system’s observables. Taken at face value, this
requirement implies that the Hamiltonian of the clock must be
identically zero. A correct interpretation of this statement, which
is difficult to formulate in the framework of [29], is that the
Hamiltonian of the universe in the HP must be equal to the
Hamiltonian of the clock in the SP. This property finds a natural
explanation in the approach described below.
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the invariant observables appearing in [20,22,24-28] can be
recovered via a group-average operation on the HP observ-
ables of the system.7 Moreover, I extend the analysis to
include mixed states of the universe.

A. Pure states

For simplicity, let me focus only on the pure state of the
universe |¥y) and omit the lower index. I will consider
different eigenstates and mixed states later. One can rewrite
|[¥) in Eq. (4) in the following way [18]:

= =181y (0)) 6| TL)s,

(10)

w»z/mf%W@@m@

where the “time line” state |TL)s [18] is defined as
ITL)¢ := [ dt|t)¢ = V2x|h = 0)s, with |h=0)s the O
eigenstate of /.

Equation (10) suggests that the transformation between
the SP and the HP should be given by the unitary8

U = e~iH®, (11)

For instance, if O is an observable of the system in the SP,
the corresponding observable in the HP is:

A ~

OM) = (1810 @ 1¢)e e, (12)

which is an observable depending on the clock’s time

operator 7 and has support on Hy. The observables A,
and 7 transform in the following way:

AW =0 A ®16)0 = A ® 1. (13)

A =01 @0 =1c @ h—HAQ 15, (14)

which shows that the Hamiltonian of the system and the

time operator are invariant under [U, while the Hamiltonian
of the clock is not.” However, the Hamiltonian of the whole
system is not invariant:

"Notice that the time measurements in [20,22] are represented,
in general, by a positive operator-valued measure while I restrict,
for simplicity, to projective measurements. My results are in
agreement with [20,22] for this specific type of time measure-
ments.

¥Notice that this unitary is, apart from a phase and a constant,
the same as the “trivialization map” of [20], and similar to a
“quantum reference frame transformation” as in [32].

Since the transformation between the SP and the HP is

unitary, the relation [2", O] = [h - A, 0] = 0 holds for
every observable of the system O™ This commutation relation
is the initial assumption of [29].

HYW =00 =1¢ @ h. (16)

This is because here U is a formal transformation between

the two pictures and not a time translation generated by H
(which usually defines the transformation between the two
pictures).

For consistency with the SP, the Heisenberg state of the
universe must be

[P00) = O ¥) = [y(0))g[TL)¢. (17)

which is a separable state of clock and system. The
state |‘P )Y still satisfies the stationarity constraint
|‘I‘ » = 0 but this is now entirely due to the state

in the clock’s Hilbert space: 2|TL)¢ = 0. Incidentally, this
also shows that one is free to choose any initial state of
the system lw(0))e while still preserving the constraint
W) =o.
The Helsenberg operators O™ and the Heisenberg

state |P("))) are all one needs to recover the time evolution
of the system’s observables and their expectation values.

Let me first notice that O™ contains the “whole history”
of O: (O™y = fdt@ (0)| e Oe= 1)y (0)) g, where
€)= (PO Py, In order to get one time instance
of 0([”]), consider the following “relative observables” [30]:

0™ (1) = 0 (), (18)

where T1I{"(3) == UL, ()0 = 1,(;®). Equation (15)
implies that ﬁEH)(?) = I1,(7). Equation (18) describes the
observables of the system relative to the clock being in the
eigenstate of the time operator 7 with eigenvalue 7.

Since [O<H>,ﬁ§”>(i)] = 0 for every Heisenberg-picture
observable Oy, of the system, the relative observables form
a “relative subalgebra” at each time ¢ [30]:

A~ A Ay 2 A A
(O ()" = (O™ P (7). (19)

(), (20)

for all the Heisenberg-picture observables oM, O™ of the
system, where [-, -] := O], -]0. Furthermore, the expect-
ation value of O™ relative to the clock being in the
eigenstate with eigenvalue ¢ is given by [30]

(O™ (1))
«™ iy

in agreement with what one would have obtained from the
PW construction in the SP at time ¢.

= S W(0)[e Oy (0)g.  (21)
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Since the Heisenberg state of the universe is separable
with respect to clock and system, one can find a “reduced
description” of O /(1) on the Hilbert space of the system
given by

: (O WL o i
OOl = iy O @

These are the usual Heisenberg-picture observables of a
system with Hamiltonian H.

Here, I have shown a possible way to recover the HP
version of the PW construction starting from the specific
form of the state of the universe. Is this construction
unique? To answer this question, let me consider a generic
unitary transformation U’ between the two pictures. If
|‘~P§H>)) := U'T|W:) is the associated Heisenberg state, I
postulate that a good transformation between the SP and the
HP is defined by the following properties:

(1) U(1g @ U’ = 1¢ ® §, with § a self-adjoint an
operator of the clock, so that the partial inner product
and partial trace of Egs. (6) and (8) are still mean-
ingful. This condition is satisfied in all the cases
considered in this work.

(2) The transformation between the SP and the HP
transfers all the “encoded time evolution” from
the state of the universe to the observables.
Specifically, |‘P/5(H>)) is such that (5’ |‘P§H))) =
ei¢(5’s’)¢(§|‘P:€<H))) Vs,s', where |5) (|5')) is an
eigenstate of the operator § defined above with
eigenvalue s (s') and ¢ (s, s") is a phase.

In Appendix A 1, I show that the possible unitary trans-
formations /' between the SP and the HP differ from U in
Eq. (11) only by local unitary transformations.'® These
local unitaries do not affect the results above and thus lead
to the Heisenberg picture evolution of the observables at the
level of the system.''

The unitary transformation U represents the simplest
choice of transformation between the SP and HP since it
leaves the clock’s time operator and the system’s initial
state invariant. In this particular case, notice that |¥()) is
an eigenstate of /i (with eigenvalue 0). Therefore, when one
applies the Schrodinger-picture PW construction to |P()))
one gets |y(r))g = ([¥) = ¢ (t]e™ I PHW) =
(PN = |w (1)) V1,7, that is, the state of the system
“encoded” in [P is stationary.

"L ocal unitary means any unitary of the form W= W@ ® W@.

In Appendix A 1, I also discuss a specific class of observ-

ables linked by a local unitary transformation of the clock.

One can get “gauge-invariant” observables (i.e. commuting with

H) of the system by a so-called “group average” operation over
this class of observables.

The results of Appendix A 1 imply that the Heisenberg
state of the universe must be separable with respect to the
system and the clock. Does this mean that entanglement
does not play a fundamental role in the construction? The
answer is no. Entanglement is still essential in the con-
struction. The SP-HP transformation simply moves the
entanglement from the state of the universe to the observ-
ables. As always, entanglement depends not only on the
state vector but also on the subalgebras of observables
considered (which differ from the SP ones by the unitary
transformation U).

In Appendix A 1, I also show how my construction is
related to the one of [20,24-28].

Finally, the construction carries over to different
eigenstates |W¢) of 7 with the same unitary U but dif-
ferent Heisenberg states |‘P((§H))> = |w(0))|TL¢), where
ITLg) := [ dte'®'r).

B. Mixed states

Here, I derive the HP version of the PW construction
starting from a mixed state of the universe. The construc-
tion could be applied, for instance, to any closed stationary
subregion of the universe entangled with the rest of the
universe.

For the density operator of the universe R in the SP,

the stationarity constraint of Eq. (7) implies that R is
of the form

R=> wia|En dd(En dil. 23)
k.dy

where H|E;, ) = £\, d) Y k. dy, with dj, the degen-
eracy label. For simplicity, I consider only a finite number
of different energy eigenstates. Using Eq. (10), R can be
written as R = OR™OT with U the unitary defined in
Eq. (11) and

RY = w4 wa, (0)) (w4, (0)| ® [TLg,)(TLg,|.  (24)
k.d,

where (w4 (0))w g, (0) = 6,4,4. This state is separable. One
can also write R = 37, p5,(0) ® |TLE)(TLE| which
shows that R™ is a so-called one-way classically corre-

lated or quantum-classical state [33,34]. Due to Egs. (7)
and (16), this state satisfies

[RM, k] =0, (25)
meaning that

THROIL ()] = THRWIL @) ver.  (26)

that is, no time evolution is encoded in RO,
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The corresponding system’s observables in the HP are
") (1) are
defined as in Eq. (18) and the expectation value of O
relative to the clock being in the eigenstate with eigenvalue
t is given by

defined as in Eq. (12). The relative observables 0!

where pa(0) = 5, pipil0).

Equation (27) is what one would have obtained from the
PW construction in the SP at time ¢.

Finally, since the Heisenberg state of Eq. (24) is separ-
able and since G(Tng|O([H])(z‘)|Tng>(g = ¢(TLg |0 (1) x
|TL¢, ) VY Jj.k, one can define the reduced relative observ-
ables as

5 EY[O(H)@(“@ ® pg)] gy it (g
[ H(t)]@ = Tl‘[ﬁEH)(?)ﬁ] =e s€ ’ ( )

where pg _Tr[R )] = >« Pk|TLg )(TL¢, |s. These are

the usual Helsenberg -evolved observables of the system.

In conclusion, the PW construction can be formulated in
the HP also for mixed states of the universe. Furthermore,
the mixed state of Eq. (23) consists of an ensemble of
eigenstates of 7 with different eigenvalues and is thus more
general than the pure state of Eq. (2). If R contains only
states with the same eigenvalue &, then the Heisenberg state
of Eq. (24) becomes

R = pe(0) ® [TL)(

(29)

which is a product state. In general, however, the
Heisenberg state, although separable, may have some other
kinds of nonclassical correlations [35].

Is the SP-HP transformation outlined here unique? In
Appendix B 1, T show that—under the assumptions dis-
cussed at the end of Sec. Il A—all the other unitary
transformations between the two pictures differ from U
only by local unitaries. Similarly to the previous section, {J

and R™ represent the simplest choice of unitary and set of
Heisenberg states.'? As a result, the possible Heisenberg
states of the universe commute with a local operator of the
clock, similarly to Eq. (25).

“Notice that Eq. (24 deﬁnes a set of possible Helsenberg
states. For example, R/ $e(0) ® |TL¢)(TLg| and R
Ps(0) ® 1 are two such states that differ more than in Just
the choice of pg(0) (the latter is recovered by letting k become
a continuous variable and integrating over all energy eigenvalues

of 7:[).

This point shows another unique feature of the PW
construction with mixed states of the universe. The set of
states R such that [R', i] = 0 is a subset of the set of all
separable (mixed) states. This means that other separable
states can lead to a nontrivial system’s evolution (in the SP).
An example of such a state is

R = / el (1)) (w(1)] @ [1) 1] (30)

with |y (t)) = e7!|y(0)). This is a separable state that
commutes with the Hamiltonian of the universe but gives
rise to the usual time evolution at the level of the system."

Finally, if one has access only to the system, then it is not
possible to distinguish an entangled state of the universe R
from the state

A 1 N
Ruwe =3 [ ditiRIne @ 9. (1)

which is a separable stationary state of the universe with no
coherences between the different eigenstates of [

IV. DIFFERENTIAL FORMULATION

In this section, I introduce an alternative way of
formulating the PW construction in terms of derivatives
with respect to the time operator of the clock. Time-
operator derivatives have already been mentioned in [36]
and used in [29] for the PW construction in the HP. Here, I
expand on these works by showing how the PW con-
struction can be expressed in terms of time-operator
derivatives both in the SP and the HP, and for both pure
and mixed states of the universe. The result is a compact
notation for the PW construction. I will later use this
notation when introducing system-clock interactions.

Extending the notion of derivative to include variations
over operators gives rise to some subtleties linked to the
noncommutativity of the operators and the choice of the
variation [37]. In this work, I will focus on a specific type of
operator derivatives, namely derivatives taken along the
diagonal. This removes some of the subtleties mentioned
above. It is also important to notice that the results of this
section hinge on the specific algebra of the clock' and the
fact that the time operator is left unchanged when moving
to the HP.

First, I introduce the derivative of a pure state of the
universe with respect to the time operator 7 of the clock:

PNotice that [7%’ 7] = 0 but [R', h] # 0. Also, moving to the
HP one gets U"R'U = |y(0)) ((0)| ® T

YN = Tr[|£)(z]] is an improper normalization factor.

5Spemflcally, Eq. (3) and the fact that 7 has a continuous,
nondegenerate spectrum.
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Cl'—qj» = /dt—d<t|lIJ>> 1) (32)

dr dr

where d(t|¥))/dr = limg_[(t + S|¥) — (¢|¥)]/6 is the
usual time derivative of a state vector. Equation (32)
resembles a directional derivative. It is easy to show that

vy _ . R

Y _ i1z @ iy, (33)
which is similar to the action of momentum in single-
particle quantum mechanics. Using this, the stationarity
condition of Eq. (2) can be written as

id";‘;» — (B ® 16 — £)|¥e). (34)

which has the form of the Schrédinger equation but with
time-operator derivatives instead of ordinary time deriva-
tives. By taking the partial inner product of Eq. (34) with
|f)«, and using the definition of time-operator derivative of
Eq. (32), one gets, at any time ¢,

AWeWe _ i g)eye. (9)

the usual Schrodinger equation on the system’s Hilbert
space (apart from an unobservable energy shift).

In order to move to the HP, I need to introduce time-
operator derivatives of operators. Let me define the
derivative of an operator A (function of 7) with respect
to 7 as [37]

(36)

where the variation has been taken along the diagonal.
Since 7 and & have support only on the clock’s Hilbert

space, the time-operator derivative of A can also be written
as

dA i [dedr'|t)s (t + 5|A|Y + 8)s (| — A
— = lI1Im s
dr 50 )

(37)

which agrees with [29] when A is a function of 7 and the
system’s operators only. It is then easy to prove that

~

dA PN

which also shows that a chain rule holds for the time-
operator derivative. If one considers the operator |¥){(¥|,
Eq. (37) implies that

d{¥|
dr -’

dw)(y| _ d[¥)
o =S+ ) (39)
with @ as in Eq. (32). This connects Egs. (32) and (36)
through a chain rule, which is why I use the same notation
for both derivatives.
The notion of time-operator derivative of an operator and
Eq. (38) allow me to recast the stationarity constraint of

Eq. (7) for a mixed state of the universe R as

=i[R. A ® 1¢], (40)

dz
which is in the form of the Liouville-von Neumann
equation but with time-operator derivatives instead of

ordinary time derivatives. Using the reduction procedure
of Eq. (8) on Eq. (40) one gets

dpe(1)
dt

= ilpe(r). ). (41)

the usual Liouville-von Neumann equation for the state of
the system.
One can also use this notation for the PW construction in

the HP. The time-operator derivative of U in Eq. (11) is

dU . . NP
T —i(A ® 15)U = —iH™{, (42)

and thus, using the chain rule on the HP observables of the
system,

do™ . .
il e 16,01 (43)

which is the usual equation of motion for the observables of
the system in the HP but with time-operator derivatives
instead of usual time derivatives. This is the equation
found, in a different way, in [29]. The usual version of the
equation at the level of the system’s Hilbert space can be
recovered via the procedure of Eq. (8).

Notice that this result holds both for pure and mixed
states of the universe. However, in the first case

dledy
=), (44)
while in the second
fo (H)
=" o (45)

di
Both equations show that no time evolution is encoded in

the Heisenberg state: 7 does not appear in R™, while it

appears only as a trivial phase in |‘P(€H) ».
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V. SYSTEM-CLOCK INTERACTIONS

A. Restrictions on the type of interaction

The PW construction is usually formulated with no
system-clock interactions. This idealization significantly
simplifies the construction but is not realistic. Furthermore,
some works have studied interesting phenomena linked to
the system-clock interaction, such as the emergence of a
Newtonian potential or of a time dilation at the level of the
system [15,31,38].

In this section, I will consider a Hamiltonian of the
universe of the following form:

H=H®1l¢+Ic®h+V, (46)

where V is the system-clock interaction. A detailed study of
the effect of different types of interaction on the PW
construction in the SP has been carried out in [15]. Here, I
will focus on a specific kind of interaction.

First, I will only consider interactions V such that

In ordinary (nonrelativistic) quantum theory, this is one way
to impose the conservation of the additive quantity h+H
[8]. To see this, notice that e‘”:"(ﬁ Rl +1s® fl)e’ﬂ’ =
H ® :ﬂ@ + ﬂ@ ® fz; that is, the quantityﬂ ® ﬁ@ + ﬁ@ ® h
does not change in time. In the PW construction, the state of
the universe is stationary, so even if Eq. (47) did not hold, it

would not be possible to observe a change in h+H.
Nevertheless, here I take the position that conservation laws
of additive quantities should hold as in Eq. (47) even at the
level of the universe despite the impossibility of observing a
violation of them due to the constraints on the state of the
universe.

The second constraint on V that I will impose is
g ®h, V] =0. (48)

This is the same as requiring that dV /d? = 0; that is, 7 must
not appear in V. As I will discuss later, this implies that the
Hamiltonian that regulates the system’s evolution must be
time independent. Taken together with Eq. (47), Eq. (48)
implies that

and thus, since the spectrum of h is not degenerate, the
eigenbasis of V must be of the form {|E)|e)} ., where |E)¢
(|€)¢) are the eigenstates of A (h).'®

"For simplicity, and without loss of generality, I am not
considering degeneracies in the spectrum of H.

The last constraint that I will consider is that V must not
contain powers of /. higher than 1. In other terms,

dky

where higher-order derivatives with respect to an operator
are defined by a recursive application of the operator
derivatives defined in Sec. IV. As I will discuss later, this
condition ensures that only first-order time derivatives
appear in the system’s equations of motion.

Given these constraints, all the allowed system-clock
interactions are of the form

V=X®h, (51)

where X is a self-adjoint operator of the system such that
[X,H] = 0. If the only information we know about the
systems is its Hamiltonian, we can only consider inter-
actions where X = f(H):

V=r(H) ®h. (52)

The most instructive example is the one considered in
[15,31,36,39]:

IO I

Ve = A ® h, (53)
where the label G stands for “gravitational” due to its
connection with the gravitational potential with some post-
Newtonian corrections as in [39]. Some works in the
literature [15,31,38] have shown that this interaction leads
to some gravitational-like effects on the system when
choosing A = dc*/G, with d a characteristic length of
the system.

B. Explicit solutions for pure states

Given a system-clock interaction as in Eq. (52), I show
how to derive an explicit solution in the case of a pure state
of the universe. A similar study was already performed in
[15,31] for pure states of the universe. Here, I generalize the
analysis by considering different eigenvalues of H, which
result in different dynamics at the level of the system. This
effect becomes particularly relevant for mixed states of the
universe (considered in the next subsection). I also show
how to recover the HP. The approach followed here is in the
same spirit of [31].

First, let me notice that the spectrum of V is {f(E)e} .,

with E and ¢ eigenvalues of A and &, respectively. Since the
state of the universe |¥,)) can be written, in general, as'’

""Here, 1 am assuming that the spectrum of A is continuous.
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W) = / dEdeiy, [E)e). (54)

the stationarity condition H|¥,)) = 0 reads
o) = [ AEQe(E e+ F(E))inlEe) =0, (55)

and thus, for a given E and ¢, either 1z, = 0 or

E
1+ f(E)

which is well defined for all E such that f(E) # -1
Therefore, Eq. (54) becomes

e=g(E) = (56)

W) = / dEd 5| E)g(E))

— /m(/ dE/IEg(m%\B)ﬁ
- / dres @ty 0)) 1), (57)

where |y (0)) = de% |E) with Agyg) =0 wherever
g(E) is not defined. % S0, by taking the partial inner product
with ¢ (#|, one recovers a unitary evolution of the system in
the SP with an effective Hamiltonian

A

Aoy = —g(H). (58)

For instance, in the case of the potential V¢ of Eq. (53) one
has [31]

A

A

Hgff = (59)

1+4
Importantly, the Hamiltonians of Eqs. (58) and (59) are
self-adjoint. This property is guaranteed by Eq. (49). If
Eq. (49) does not hold, the effective Hamiltonian will be, in
general, non-self-adjoint [40].

From Eq. (57) it is also easy to see how to move to the
HP, since |¥,) = U'|y(0))|TL) where the unitary

0 = iflr®?, (60)

can be used to move between the SP and the HP as in
Sec. Il A. Under U/ Egs. (13)—(15) change to

BIf f(E*) = —1 for some E* then there is no solution. In this
case Ap:, must be zero for any e Usually, the interaction
considered is weak enough so that f(E) = —1 only for very
large negative energies. In Sec. VI, I will consider the effects of a
strong interaction on a simple model.

Notice that the normalization of |y (7)) is guaranteed at all

times if (y(0)||y(0)) = 1.

HY = A ® 15, (61)
" =16 @ h— Hyr ® T, (62)
=151, (63)

crucially leaving 7 invariant so that ' and |y(0))|TL)
represent a good SP-HP transformation and Heisenberg
state according to the requirements of Sec. III A. Thus,
the HP PW construction developed in Sec. III A can be
straightforwardly applied to this case by replacing A
with H.

Also notice that H.; and V transform in the following
way:

flﬁ? =Hy ® 1, (64)

A

N N ~ SN A A dv
VW =V 4 ifly - [1.V] = V—Heff‘av (65)

where Eq. (65) follows from Egs. (49) and (50).
Interestingly, when using the gravitational interaction of
Eq. (53) the Hamiltonian of the universe in the HP
becomes HM = e ® h+VC.

An important difference between the interacting and
noninteracting PW constructions emerges when consider-
ing different eigenstates of H. For an eigenstate of H with
eigenvalue &, the function g(E) in Eq. (56) becomes

E-¢&

1+ f(E) (66)

9¢(E) =

and thus the effective Hamiltonian of the system changes to

I:Ieff(é') = —gg(f{ ). In the case of the interaction VE, the
effective Hamiltonian is given by

(67)

with the approximation holding as long as A is much bigger
than the typical energy of the system. This leads to a
nontrivial modification in the dynamics of the system. The
difference in the system’s dynamics between two eigen-
states of the universe with eigenvalues £ and & can be
quantified in the following way:

W ()ly® ()] ~ |y (0)|e"&=OF/A |y (0))],  (68)

where I have assumed that the initial of the system is the
same in both cases.
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C. Explicit solutions for mixed states

Here, I assume that the state of the universe is a mixed

state R. The general form of R is given by Eq. (23) which,
using Eq. (57), can also be written as

R = / ded?’ Zpke’gk

0) ® |r){¢'le ™, (69)

dy ,dp*
where p(0) = - LS4 Vi, [ AEAE' =5 te /IE’ |E> (E'| with py
such that Tr[p,(0)] = 1, and g, (H) = ggk( ). Thus, using
Egs. (8) and (58), the state of the system at time ¢ reads

= Zpke_iﬁeff(gk)tﬁk(o)eil:leff(gk)t’ (70)
k

where the coefficients p; are greater than 0 and such that
>« Px = 1. Importantly, if the state of the universe consists
of eigenstates of H with different eigenvalues, the evolution
of the system is no longer unitary overall.”' Instead, states
of the system associated with different eigensectors of H
evolve with Hamiltonians which, due to Eq. (66), differ by
more than just a trivial energy shift. In the special case
where all the p(0) are equal, the evolution of pg is given
by the completely positive trace-preserving map pg (1) =
S Bi(0)ps(0)BL(r) with  Kraus B(1) =

\/ﬁe_iHeff(gkﬁ.

The evolution of the system can be unitary only if the
state of the universe belongs to a single eigensector of ks
An interesting consequence is that only entangled states of
the universe give rise to a nontrivial unitary time evolution
on the system’s Hilbert space.23 This means that separable
states such as those in Eqs. (30) and (31) are no longer
allowed.

Finally, in order to move to the HP, let me rewrite
Eq. (69) as

Zpke lHeff gk

operators

Pi(0) ® |TL)(TL e 81 (71)

If there is more than one term in the sum, then there is no
unitary to move between the SP and the HP. In the special
case where all the p,(0) are equal, we can write

“Here, I am also assuming that the spectrum of H is
continuous. For simplicity, I am taking the sum over a discrete
number of eigenstates of H.

*mportantly, the map pe (0) — pe (1) preserves the positivity
and the trace of pg(0).

For a different kind of nonunitarity due to a nonideal clock
see 3[4 1].

This can be seen by restricting Eq. (69) to only one term of
the sum.

R=> BROE], (72)
k

with R := pc(0) ® |TL)(TL| and Kraus operators
By := /pre Her(€)®T To recover the HP, we can act with
the adjoint map on the observables of the universe and

use the Heisenberg state R™. For instance, the observables
of the system in HP are given by

= B0 ® 1¢)B;. (73)
k

The construction then follows the lines of Secs. 111 B
and V B. Notice that the adjoint map leaves the operator 7
unchanged, and the Heisenberg state is such that

[R™ h] = 0, in agreement with Eq. (25).

D. Differential formulation and interaction picture
The results above can be represented compactly using
the time operator derivatives of Sec. I'V. For pure states of

the universe and the interaction V¢, the stationarity con-
dition can be written as

. H d|¥e)
I+ —®1
l( uty® @> @

=(H® 1c-&)|¥e). (74)

and thus

dI‘I’g»
d7

= (Hg (&) ® 16)|¥e), (75)

with HY:(E) the effective Hamiltonian of Eq. (67).
Interestingly, it is not possible to recover an analogous
operatorial Liouville-von Neumann equation for mixed
states of the universe. This is linked to the fact that the
system’s evolution is no longer unitary for a general
mixed state.

The differential notation is also helpful for quickly
grasping some aspects of the PW construction with sys-
tem-clock interaction. For instance, if the interaction contains
powers of h greater than 1, then the Schrodinger equation
will have higher-order time derivatives. Alternatively, if V
does not commute with h—that is, 7 appears in V—then
the effective Hamiltonian of the system will be time
dependent [15].

Finally, let me notice that the SP and the HP do not
exhaust all the possibilities. There can be infinite pictures
that differ on how the time dependence is split between the
observables and the state of the universe. For example,
there is an interaction picture where the observables are
evolved with the “free” unitary U of Eq. (11), while the
state of the universe [P0 := UT|¥)) obeys the following
equation:
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dl¥®)
d7

i = V0 1emy, (76)
where VU := 0TV U is the system-clock interaction in the
new picture. This shows that the state is still dependent on 7
and thus not all the time dependence has been transferred to
the observables. In particular, [#(D)) is still entangled.

VI. SOME SIMPLE MODELS

Here, 1 show how the results obtained above can be
applied to some simple scenarios. I start by showing how
the PW construction for some simple qubit models can be
formulated in the HP. Then, I consider the effects of a
system-clock interaction between a qubit and an “ideal
clock** Some unique effects arise when system and clock
are strongly interacting. I also study these effects in a
massive two-level system. Finally, I consider how the
system’s dynamics changes when the universe is in a
mixed state.

A. Qubit and ideal clock

Let me consider a model where the system of interest is a
qubit and the clock is an ideal clock with two conjugate
observables 7 and /. Let me assume that the Hamiltonian of
system + clock is H=H @ Is + 1 ® h with H = 6,/2.
Here, o, . denote the Pauli matrices. Let me also assume
that the state of system + clock is an eigenstate of H with
eigenvalue 0 and that the system is in the state [y(0))g at
time 7= 0. Since all the qubit’s observables can be
expressed in terms of two generators of its algebra, one
can choose to keep only track of (6, ® 1¢,0. ® 1¢) [42].

To move to the HP, one can choose the Heisenberg state
lw(0))g|TL)¢ and act with the unitary U = ¢=#®7 on the
generators obtaining

(Gx ® ]]Gvgz ® ]](S) - (Gx ® ]](Svaz ® COS(%)
+ 0, ® sin(7)), (77)

where the dependence of the system’s observables on the
time operator 7 is explicit. Moreover, the qubit’s generators
relative to the clock being in the eigenstate with eigenvalue
t are given by (o,11,(7), [o, cos(t) + o, sin(¢)]I1,(7)). Using
Eq. (22) one can get the evolved generators of the system
(64,0, cos(t) + o, sin(z)) that one would have obtained
through the Heisenberg equation.

B. Qubit system and clock

As a further simplification, let me assume that the clock
consists of a single qubit [17] and that the time operator 7 is
given by 7 := 15|0)(0|¢ + #,]1)(1|s where |0)¢ (|1)¢) is the

**Here, ideal clock means a clock with an algebra as in Eq. (3).

+1 (—1) eigenstate of ﬁ@ ® o,. In this case, to avoid a
trivial evolution, one must consider only nondegenerate
Hamiltonians of clock and system such that their sum has a
doubly degenerate zero eigenvalue.25 For example, one can
choose H = 6, /2 and h = —6,/2 (when At := 1, — tg = 7,
this Hamiltonian evolves the time eigenstates correctly:
¢~ih21|0) = j|1)). Since now the clock is finite dimensional,
Eq. (3) does not hold. Instead, the commutator is now
[, h] = —iAt/20,.

A suitable Heisenberg state of system + clock is now
0)&(|0)6 + [1))/+/(2). Under the unitary U(ty) =

¢~ iH®(~116) the generators (o, ® Tg.06, ® 1) become

(Gx ® HG’
o, ® [|0)(0] + cos(Ar)[1)(1]] + sin(Ar)oy @ [1)(1]).
(78)

This means that if the clock is in the state |0)¢, the
reduced relative generators of the system will be
(0,,0.); if the clock is in the state |1)s the generators
will be (o,,cos (At)o, + sin (At)o,), as expected.

Finally, let me check that these results are consistent with
the state of the system in the SP. To do so, let me write the
density matrix of the system as

pe =5 (14 Sa0a ). 09)

with  2;(7)=Trlpg(t)o;] =Tr|pg(t)o;(At)],  where
{o;(At)}, are the Heisenberg-evolved Pauli matrices
after a time Az and pg(ty) = ]0)(0|g. As I have shown
above, at time 7, the Pauli matrices are unchanged and
thus, trivially, pg(f)) =]0)(0|g. Using the Heisenberg-
evolved generators above one finds at time #;: {4;(¢,)};, =
(0, —sin(Ar), cos(At)). Plugging these values into Eq. (79)
one gets

i sin(At)
1 — cos(Ar) ) (80)

One would have obtained this density matrix by evolving
the system’s state in the SP.

1/ 1+4cos(Ar)
pelin) = 2 ( —isin(At)

C. Qubit interacting with an ideal clock

Here, I will consider a qubit interacting with the clock.
For simplicity, I will study the system in the SP, but the HP
can be easily recovered using the results of Sec. III. Let me
assume that the clock is ideal to guarantee enough

25 . .
In the previous example this was guaranteed for any non-
degenerate Hamiltonian of the qubit since the spectrum of the
clock Hamiltonian was R.
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degeneracy in the eigenvalues of the Hamiltonian of the
universe. Let me assume a system-clock interaction as in
Eq. (53), with H = ¢, /2. If the state of the qubit at time

t = 01is |0), then the state of the universe with eigenvalue £
is given by
we) = [ are” i 0], (51)
The effective Hamiltonian of the system can be written as
. 2-&
i) = 222 pr 1 von 0T, (8)
T+5% 2
where
PN E) = ! E+ ! (83)
A 4A)°
1 &
ANE=—(1+—], 84
o8 =3 (1+7) (54)

with A = det(1 + %{2) = 1 — ;L. The Hamiltonian is well
defined for A # +1/2and 1 # 0. For A - £1/2, ¢, and w
diverge. When A = 1/2 (A = —1/2), there is still a sta-
tionary state of the universe, namely |+)|h =& —1/4)
(|-)|h = £+ 1/4)), but the system is stationary in the state
|[+) (]=)). When A = 0 the interaction term is not defined,
but for A = 0, He — 0 and thus the system is stationary
(in the initial state |0)). Notice that when A — oo (no
interaction), H. — o,/2 for any value of £, as expected.
The unitary evolution of the system is given by

Ueff(l) i= o~ P(AE) p—iw(N.E)ot/2 (85)

The first part induces an unobservable phase shift while
the second rotates the state of the qubit. The effect of the
system-clock interaction is to change the speed at which the
qubit evolves. The observable part of the effect is deter-
mined by w.

In Fig. 1, I have plotted the value of w(A, 0) and ¢ (A, 0)
for different values of A. For A — 1/2, the speed of the
system’s evolution diverges. Interestingly, for values of A
between O and 1/2 the system evolves back in time (the
usual direction of time is defined by the noninteracting limit
A — ). For A < 0, the situation is symmetrical for @ and
antisymmetrical for ¢b. As can be seen in Egs. (83) and (84),
for £ # 0 there are additional zeroes for ¢ and @. When
@ = 0 the system is stationary.

D. Massive qubit interacting with an ideal clock

Let me consider a system with mass m and a two-level
internal Hamiltonian & = mc? + E;0,/2, where E; is the
system’s internal energy. The effective Hamiltonian for this

2 : —— w(\,0)

FIG. 1. Plot of the parameters governing the effective Hamil-
tonian of the two-level system discussed in Sec. VI C. w and ¢ are
plotted as functions of the interaction strength A for £ =0 (in
arbitrary units). ¢ contributes to an unobservable global phase
while o represents a timescale factor for the system’s evolution.
Notice the inversion in the direction of the evolution for —1/2 <
A < 1/2 and the divergences for A = £1/2.

system under the system-clock interaction of Eq. (53) is
still given by Eq. (82) but now with coefficients

b (A.E) :mc2<] +mcz—5_5+E%/4A>’ (86)

A A mc?
E; &
ANE) =—(1+—), 87
on(n &) =52 (145) (57)
with A = (1 + %)2 - 4E—Zz. In the following, I will assume

that the internal energy of the system is much smaller
than its rest energy (E; < mc?). The observable part of
the evolution is still governed by w,,, which is plotted in
Fig. 2. The behavior of w,, is similar to the previous case,
but now the divergences happen at A = —mc? + E; /2. If
one assumes a Newtonian system-clock interaction [15]
A = —dc*/G, with d the clock-system distance, then the
divergences happen at the critical values of d:

Ry E,G
deip = > + By (88)

where R, = 2?—2’” is the Schwarzschild radius of the system.

Between these two distances, the system evolves back in
time. Notice that if the system were a black hole and the
system-clock coupling factor were A = —dc*/2G, this
time inversion would happen in a small region around
the event horizon. Similarly to the previous case, Hy —0
for A — 0, and thus the system becomes stationary in
this limit.

Finally, let me discuss what happens when the universe is
in a mixed state R. Since the spectrum of 7 is continuous,
there are infinite choices of R compatible with the system
being initially in the state |0)(0|. For simplicity, I will choose
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FIG. 2. Plot of the parameters governing the effective Hamil-
tonian of the massive two-level system discussed in Sec. VID.
w,, and ¢,, are plotted as functions of the interaction strength A
for £ =0, E; = 1, and mc? = 2 (in arbitrary units). ¢,, contrib-
utes to an unobservable global phase while w,, represents a
timescale factor for the system’s evolution. Notice the inversion
in the direction of the evolution and the divergences.

R to be an equal mixture of two eigensectors of 7, one with
eigenvalue 0 and one with eigenvalue £. The state of the
system at time ¢ is thus given by Eq. (70).

Pe(t) = = (e (0t |0) (0] Her(O)t
+ e~ (E)1]0) (0] Hen ()1, (89)
Substituting the explicit expression for g one gets

1 Ept Ef&t Ef&t Ept
P (1) =55 (10) (0] + 7555%:[0) (0] ¢S5 e’ (90)

The evolution of pg(z) is manifestly nonunitary. Inter-
estingly, P (#) reaches the maximally mixed state after a time

- ThAA _ nhA me?\ 2 E%
DTTEE TEE

A W]’ O

where [ have reinstated 7. 7, has the meaning of a
coherence time.

Another meaningful quantity is the number of full
rotations that the system can undergo before it reaches
the maximally mixed state:

Tp A
— =, 92
T 2& (92)
where 7 = 2%’;A is the time it takes for a system to go back to

the initial state in the case of no clock-system interactions.
This quantity shows the two parameters that regulate the
process. Strong system-clock coupling and big differences
between the eigenvalues of  lead to short “relative”
coherence times for the system. Substituting A = dc*/G
(the minus sign does not change the conclusions), one gets

4
o _ de (93)
T 2GE
Interestingly, if €& = mc?, tp/7 = d/Rg, where Ry is the
Schwarzschild radius of the system.

To grasp the magnitude of this effect, let me consider
an atomic-scale system. Assuming that the clock is gravi-
tationally coupled to the system at a distance d = 1071% m,
7p/t~ 10°! for £ =10 eV, while /7~ 10*" for £ =
ml,cz, where m, is the mass of the proton. Both these
relative coherence times are very long. These results show
that even if the system’s evolution is nonunitary, this effect
may not be easy to detect for weak gravitational system-
clock interactions. Instead, the effect becomes significant
for large values of £ at scales where one would expect
strong relativistic effects, e.g. for £ = mc? and d = Ry.
Alternatively, the effect could increase with the number of
different energy eigenvalues appearing in the state of the
universe. | leave the investigation of this point open for
future work.

VII. CONCLUSIONS

In this work, I have investigated some features and
generalizations of the Page-Wootters construction. First, |
have shown how to formulate the PW construction in the
Heisenberg picture. This is achieved with a formal unitary
transformation that transfers the time dependence from the
state of the universe to the observables. The same trans-
formation applies to both pure and mixed states of the
universe as long as there is no system-clock interaction. In
this picture, the dependence of the system’s observables on
the time operator of the clock is manifest, while the usual
time evolution of quantum theory emerges in the relative
observables.

The Heisenberg picture formulation of the PW con-
struction reveals some interesting aspects about the system-
clock correlations. For instance, entanglement is not
necessary for a nontrivial time evolution if one allows
mixed states of the universe. One can encode the relevant
system-clock correlations in a separable (mixed) state. In
fact, for any stationary entangled state of the universe, it is
possible to find a separable stationary mixed state that
encodes the same time evolution.

In this work, I have also studied the role of some types of
system-clock interactions in the PW construction. Under
such interactions, different pure stationary states of the
universe lead to different dynamics at the level of the
system. This is important because any realistic system must
have some level of interaction between its subsystems. If
the system under consideration is the whole universe,
usually its state is assumed to be pure and with energy
0. However, this does not have to be the case for a generic
closed system. Pure states of the universe with different
energy eigenvalues lead to different effective Hamiltonians
for the system, and mixed states of the universe can lead to a
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nonunitary evolution. In principle, it is possible to detect the
latter effect and thus distinguish some mixed (stationary)
states of the universe from the pure ones (contrary to [9]). For
instance, in the case of a two-level system interacting with an
ideal clock, I showed that the nonunitarity of the system’s
dynamics can lead to the loss of coherence in a characteristic
time that depends on the strength of the interaction. This
effect is very small for weakly interacting systems, but it
becomes important at scales where one would expect
relativistic effects to arise. Interestingly, at these scales, even
pure states of the universe lead to unusual dynamics at the
level of the system. For example, if the clock interacts
gravitationally with a two-level massive system, there is a
region of system-clock distances where the system evolves
backwards in time. This happens when the system-clock
distance is around half of the Schwarzschild radius of the
system. I shall explore this effect thoroughly in a forth-
coming paper.

The study of the PW construction with system-clock
interactions shows another interesting aspect: the system
can undergo a unitary evolution only if the state of the
universe is entangled. In some sense, interactions restore
the role of entanglement in the PW construction. This could
have interesting consequences for classical relational
approaches to time [7,43,44]. T leave the exploration of
this point to future work.

The construction outlined here could be easily extended to
include all the other generators of symmetry transformations
[45—47]. It could also be applied to other related problems,
such as indefinite causal order [48], the questions on clock
synchronization raised in [29], and time dilation [31,38,49].

Finally, it would be interesting to consider interactions
such that 7 is not left invariant when moving from the
Schrodinger picture to the Heisenberg picture. In this case,
one has to modify the notion of partial trace to get the right
relative state of the system in the Heisenberg picture. I leave
this problem open for future investigations.
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APPENDIX A: PROPERTIES OF THE SP-HP
TRANSFORMATION FOR PURE STATES
OF THE UNIVERSE

1. Allowed transformations and gauge invariance

In Sec. IIT A, T have found that the unitary U leads to the
HP version of the PW construction. However, one may
wonder if this unitary is the only possible transformation

between the SP and the HP. In other words, one has to
motivate the choice of the unitary U and of the Heisenberg
state |‘Png))) such that @|T2H>)) = |¥s). Assuming that
the transformation between the SP and the HP is unitary,
any such choice is described by an additional unitary
transformation W: |¥e) = @|T(H) @ WWT|‘I’E€H) )}
U’|‘P’ 'Y, where U =0 W and \‘P’ VAVT|‘I’ (F)y
The choice of U’ and \‘I” )} is then determmed by the
requlrerAnents of Sec. T A:

(1) U"(1g @ 1)U’ = 1 ® §, with § a self-adjoint op-
erator of the clock, so that the partial inner product
and partial trace of Egs. (6) and (8) are still mean-
ingful. This condition is satisfied in all the cases
considered in this work.

(2) The transformation between the SP and the HP
transfers all the “encoded time evolution” from the
state of the universe to the observables. In other

words, |‘P )) is such that

¢TIy = et (59 (A1)

for all s, s', where |3) (|3)) is an eigenstate of § with
eigenvalue s (s") and ¢(s s") is a phase.

Clearly, any local unitary W= W@ ® WG is allowed smce
W leaves g ® 7 of the form Ig ® § and ( ’|‘I‘ )} x
Wee(s'|WeM) o W@¢< S|P o o (WY Vs s (s)
is an eigenstate of 7 with eigenvalue s). Since in ordinary
quantum theory it is possible to change the basis with
impunity, this is a desirable feature of the construction.
However, these local changes of basis are not of much
interest for the current purposes, so I will only consider local
unitaries on the clock’s Hilbert space that leave 7 invariant
and do not change the basis of the system’s Hilbert space.

In Appendix A 2, I show that any nonlocal unitary W is
not allowed. The class of unitaries and Heisenberg states
that I will consider is thus

[Dd) = UAJe_i“@@"/’(?), (A2)

H i h(i
PR = e B0y (0)g [ TLe)s. (A3
with ¢(7) a self-adjoint function of 7 only. Notice that
¢1e®() does not change either the observables or the
relative observables of the system. The simplest choice is U
and |‘PéH> ). For this choice, the stationarity constraint on
the state of the universe becomes
A\ gy (H H

(1o ® )W) = £y (A4)

Notice that since W is a local unitary, any Heisenberg

state must be separable with respect to clock and system
(see Appendix A 3 for another proof of this).
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Let me now discuss some additional features of the
construction. First, let me notice that there is what one may

call a gauge freedom. In the HP, the unitaries /() = 1¢ ®
¢ are gauge transformations, since Uf (9)|‘P§Hg )=
"59|‘I‘ )) V6,E€R. Under U(0 ), the time operator

1 undergoes a time translation: U’ (0)(1¢ ® DU(H) =
1e ® (1—01¢), and all the observables related to O™
by (6)

uT(g)O(H)a(e) _ eiﬁl@(?—é‘ﬁg)Oe—iH®(?—H1I¢)’ (AS)
belong to the same equivalence class. The observables
found in, for example, [20] are the so-called “group
average” of the observables in these equivalence classes
[20,50]. Notice that the group average of the system’s
observables in these equivalence classes results in observ-
ables that commute with the Hamiltonian of the universe.

For a general closed system, these new observables
describe a different physical situation even if all the
expectations values are the same [11]. The difference lies
in the different dynamics described by the old and the new
observables, and it can be detected by “starting” with
another Heisenberg state that is not an eigenstate of /().
However, the PW construction does not allow states that do
not satisfy the stationarity condition, so this difference is
impossible to detect.

This reasoning may not apply to other transformations
that have |‘P » as an eigenstate (for instance, a local
transformation on the system). Still, it is unclear what it
means to start with a different Heisenberg state of the
universe and, thus, whether it is possible to detect the
difference between the new and the old observables, even in
principle. I leave the questions regarding this possibility
open for future discussion.

2. Condition on the unitary transformations of U

Given that |¥) = UWM) = UW Wi @My, let me
assume that W leaves 7 invariant. This means that W must
be a function of the system’s operators and 7 only. Thus,
W = [drA(t) ® |r)(t], with A unitary. The condition on
|\p/<H>

(WY — o) (WY Vi (A6)

implies that
AT() (PO = PEOAT (1) (1| PEY Ve f, (A7)
where 1 have wused that fact that (f|¥M)) =

(7P V¢, 7. If one also requires that W |®®)) is such
that Eq. (A6) holds for any state initial state |y) of the
system, then

Vit

AN(1)y) = PR (1)) (A8)

and for any |y). Therefore, A*(¢') = ¢#(“")AT(1) V1,1 and
thus W =A(0) ® [dre=O1|¢) (], which is a local
unitary.

What if Wi(lg @ )W = I ® §? In this case, it is
always possible to find a local unitary of the clock V such
that V(g ® 3)V = 1g ® 7. This means that

WV (1l @5VW=1¢ ® 3, (A9)
and thus the unitary V W is a function of the observables of
the system and § only. Moreover, [#/())) = W' VTV|‘P )y =
W W0y — (W) 8700, where |9700) = 7w
is a state for which (A1) holds (since V is a local unitary).
Therefore, one can apply the reasoning above to the unitary
VW, with [¥” (™)) instead of |¥("))) in Eq. (A7). Thus, V W
must be a local unitary and (since V is a local unitary) W must
be a local unitary too.

3. No encoded time evolution and separability

The pure Heisenberg state of the universe must be such
that ¢ (s'|P"H)) = e ss) (s|P ) Vs, s, where |s) and
|s") are eigenstates of the clock-observable §and ¢(s,s') is
a phase. This implies that

ey = / ds]s)g(s| - |20V

= oy ([ ase0s))
— s [ ase#elsc ).

which is a separable state of system and clock.
Vice versa, if |#("))) is separable, that is [P/
|X)s|Y)e. then

(A10)

(") = (s'[X)|Y) = e (5] X)|Y)

= W) (5P Y Vs, s, (A11)

where I have used the fact that |¥/("))) is normalized as in
Eq. (4) (so that (Y|Y)g = 1 and (s|X)¢ is just a phase for
any s). Let me notice that the case (s|¥'"™)) = 0 is not
allowed since this would imply that (z|¥)) = 0 for some |7)
eigenstate of 7 and thus [applying the stationarity condi-
tion of Eq. (2)] (#|¥)) = 0 V7. This implies that |[¥)) = 0
which is not an allowed state of the universe.
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APPENDIX B: PROPERTIES OF THE SP-HP
TRANSFORMATION FOR MIXED STATES
OF THE UNIVERSE

1. Allowed transformations

In Sec. I1I B, T have found that the unitary U leads to the HP
version of the PW construction for mixed states of the
universe. The associated Heisenberg states are given by
Eq. (24). Is this transformation between the two pictures
unique?

Similarly to the conditions discussed in Appendix A 1,
the Heisenberg state of the universe should not encode
any time evolution, i.e. it should be such that Eq. (26)
holds. Since the universe I am considering is a

closed system, every other possible Heisenberg state R/
should be linked to R™ via a unitary transformation
FIEH) — yitf M)y 26

Any local unitary W = Wg ® W is allowed since W
leaves 1g ® 7 of the form Tg ® § and "[(;r[ﬁ’(H)fIS(ﬁ)]:

WETH R (3] We =W Tr{R WL (1) We =Tr{R"")x

I1,(5)]Vs.s'.

In Appendix B 2, I show that nonlocal unitaries are not
allowed. Therefore, restricting to transformations that leave
7 invariant and do not change the basis of the system’s
Hilbert space, the class of unitaries and Heisenberg states
that I will consider is

A

[U(/) = ﬂ]e‘i“©®¢<?)’ (B])

ﬁ&H) i= e1e®PDRM) o-ile@() (B2)

*However, notice that R™ = j¢(0) ® |TL¢)(TLg| and

R™ = p(0) ® T are two Heisenberg states described by
Eq. (24) but they are not related by a unitary transformation.

with ¢(7) a self-adjoint function of 7 only. The simplest
choice is represented by U and R™.

2. Condition on the unitary transformations of U

Given that '™ = WT@(H)VAV, let me assume that I1g ®
7 is invariant under W. This means that W must be a
function of the system’s operators and 7 only. Thus,
W = [drA(1) ® |)(z], with A unitary. Under this assump-
tion, I will show that the unitary W must be a local unitary.

Let me start from the fact that R/ must encode no time
evolution, that is

T@r[W*ﬁ(HWﬁt(a] = Tr[WIREWIL, (7))

and thus

A

A (TR (DA = AT (7 TR (B]A(Y)

(B4)

where the second equality is due to Eq. (26). I will further
require that W R™ W must be such that Eq. (26) holds for
any choice of R given by Eq. (24). Thus, let me choose
7%&';”;’5 = |w)(w| ® |TLg)(TL¢| for any |y) and &. I can
then rewrite Eq. (B4) as

AT(Olw) (wlA() = AT()lw) wlA(Y) Vi, (BS)
and for any state of the system |y). This implies that
A(f) = ) A(r) and thus W = A(0) ® fdtei‘/’(t*o)|t)<t|
which is a local unitary. The demonstration for the case
when Tg ® 7 is not invariant under W (but is still of the
form 1g ® §) is similar to that in Appendix A 2.
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