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We derive optimal estimators for the binned two-, three-, and four-point correlators of statistically
isotropic tensor fields defined on the sphere, in the presence of arbitrary beams, inpainting, and masking.
This is a conceptually straightforward extension of the associated scalar-field estimators [O. H. E. Philcox,
Phys. Rev. D 107, 123516 (2023).], but upgraded to include spin-2 fields such as cosmic microwave
background polarization and galaxy shear, and parity-violating physics in all correlators. All estimators
can be realized using spin-weighted spherical harmonic transforms and Monte Carlo summation and are
implemented in the public code PolyBin, with computation scaling, at most, with the total number
of bins. We perform a suite of validation tests verifying that the estimators are unbiased and, in limiting
regimes, minimum variance. These facilitate general binned analyses of higher-point functions, and allow
constraints to be placed on various pheomena, such as nonseparable inflationary physics (novelly including
polarized trispectra), nonlinear evolution in the late Universe, and cosmic parity violation.
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I. INTRODUCTION

Cosmology abounds with scalar fields: the density of
galaxies, the temperature of the cosmic microwave back-
ground (CMB), and the ionization fraction of the Universe,
are a few such examples. Although these fields exist in
three-dimensions, geometry forces us to observe them only
on the surface of a two-sphere, whose radius corresponds to
their distance, or, equivalently, age. Whilst the analysis of
such observables has yielded significant information about
the Universe’s structure, composition and evolution, there
is more information to be wrought if one additionally
considers tensor fields. Such quantities (which are again
observed on the two-sphere) contain also directional
information, with canonical examples being the polariza-
tion of the CMB and the elliptical shapes of galaxies [1–5].
Many tensor fields exhibit symmetry under 90° rotations;
these are known as spin-2 fields [5], and their study has
yielded important constraints on the dynamics of inflation
(through E and B modes in the CMB) and the growth of
structure (through gravitational lensing) e.g., [6–12].
Moreover, there exist cosmological fields with other spins,
including the spin-1 orientation field of galaxies e.g., [13],
which shows 180° rotational symmetries, and a plurality of
examples beyond cosmology, arising in disciplines such as
oceanography and atmospheric physics.

Information can be extracted from stochastic scalar and
tensor fields such as the above through careful measure-
ment and modeling of their statistical properties. This is
principally performed using N-point functions, which
encapsulate the correlations between values of the field
at N points on the sphere [3,14]. On large scales, the
standard cosmological model asserts that the asymptotic
distribution of these fields is Gaussian, and thus fully
described by its two-point function or power spectrum [8].
This provides a direct window to study the physics of the
early Universe, with higher-point functions, such as the
bispectrum and trispectrum allowing for tests of our
assumptions, as well as parametrization of gravitationally
induced nonlinearity. For this reason, it has been common-
place for CMB experiments to study three- and four-point
functions of temperature fluctuations, allowing for a
direct probe of the physics of inflation, and, on small-
scales, gravitational lensing e.g., [6,7,15–21]. Many of
these include polarization data, though this has not yet been
considered for large-scale trispectra. Similarly, the distri-
bution of matter in the late Universe has begun to be probed
using non-Gaussian statistics, both in photometric and
spectroscopic surveys e.g., [4,22–37], though the latter
usually works in deprojected three-dimensional space.
To perform accurate analyses of cosmological fields on

the two-sphere, we require robust estimators for the various
statistics. In general, this is nontrivial, since the fields in
question are rarely observed uniformly or even across the
entire sky. Furthermore, experimental noise and telescope*ohep2@cantab.ac.uk
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beams impact different scales by different amounts, and
there are often gaps in the survey observations due to the
observer effects such as Milky Way extinction and bright
stars. This imprints a complex “window function” (or
“mask”) onto the observations, leading to leakage between
different scales and polarization components. Whilst robust
methods exist for accounting for such effects in the power
spectrum [38], there has been comparably little discussion
for higher-order statistics, particularly when tensors are
involved (see [17–19,39–49]). Much of this is pragmatic;
many of the current analyses of CMB bispectra and
trispectra look only for the amplitude of a single inflationary
component (parametrized by some “nonlinear” amplitude,
such as fNL or gNL), whose biases can be well established
using Monte Carlo simulations [7,43]. If we wish to study
more complex inflationary models (which are not separable
in harmonic space e.g., [50]) or to include gravitational
contributions to the model, it is advantageous to instead
measure the full statistic in some set of bins (rather than just a
characteristic nonlinear amplitude, such as fNL) cf., [41,51].
In this case, it is important to account for the various
observational effects listed above, such that the output
spectra can be reliably compared to models.
In [52] we introduced a formalism for efficient and

accurate computation ofN-point functions sourced by scalar
fields on the two-sphere. Starting from the theoretical
likelihood for the observed field, this derived optimal
estimators for scalar polyspectra, which, by definition,
had minimum variance in the Gaussian limit (following
previous work including [47,48,53–59]). A slight generali-
zation of these allowed for polyspectra to be efficiently
computed using arbitrary weighting schemes (allowing for
any linear masking, inpainting, deprojection, etc., utilizing
iterated spherical harmonic transforms [52], which become
highly efficient on large scales. An important feature of such
estimates is that they are unbiased, i.e., they deconvolve all
mask- and beam-induced effects such that the output spectra
can be directly compared to theoreticalmodels. The physical
utility of these has already been demonstrated; in [60], we
performed the first measurement of the parity-odd compo-
nent of the Planck CMB trispectrum, placing strong con-
straints on parity-breakingmodels of the earlyUniverse, and
refuting (scalar) inflationary interpretation of the recent
claims of parity-violation in galaxy survey data [29,34,35].
This work considers the analogous problem applied to

tensor fields. In particular, we construct estimators for the
power spectrum, bispectrum, and trispectrum of correlated
spin-0 and spin-2 fields on the two-sphere, in the presence
of masking, inpainting, and arbitrary linear weighting
schemes. These are significantly more nuanced than their
scalar equivalents, due to the introduction of additional
variables (E and B fields), and the corresponding prolif-
eration of output spectra. However, these can still be
computed efficiently on large-scales, with computation
time scaling at most linearly with the number of bins. We

additionally allow computation of spectra sourced by
both parity-conserving and parity-breaking physics;
the first time, to our knowledge, that this has been
performed for higher-point tensor observables. The latter
could be occur due to a range of new physics in inflation
(such as couplings to vector fields, Chern-Simons inter-
actions, loops, and beyond [61–66]), or via some form
of chiral gravity modifying the observables at late
times [29]. In all cases, our estimators are unbiased (such
that they can be straightforwardly compared to theoretical
models), and can be implemented using spin-weighted
spherical harmonic transforms. We additionally provide
a general purpose implementation in the PolyBin code [67].1

This should allow for a range of novel theoretical tests, both
for CMB and weak lensing analyses, such as a first
measurement of the large-scale polarized trispectrum.
The remainder of this paper is as follows. In Sec. II we

set out our conventions for spinning fields on the two-
sphere and the various correlators, before discussing the
general form of N-point function estimators in Sec. III.
Sections IV–VI discuss practical computation of the power
spectrum, bispectrum, and trispectrum respectively, before
the estimators are validated with a suite of tests in Sec. VII.
Finally, we conclude in Sec. VIII. We caution that the
remainder of this paper is (quite necessarily) mathemati-
cally dense. Much of the material builds upon the spin-0
work presented in [52], but we recapitulate the relevant
material here for completeness.

II. TENSORS AND CORRELATORS

A. Definition

A spin-s field defined on the two-sphere, saðn̂Þ, can be
expanded in spin-weighted spherical harmonics as

saðn̂Þ¼
X
lm

salmsYlmðn̂Þ; salm¼
Z

dn̂½sYlmðn̂Þ��saðn̂Þ:

ð1Þ

Assuming the underlying fields to be real with ½saðn̂Þ�� ¼
−saðn̂Þ, the spin-components satisfy

½salm�� ¼ð−1Þsþm
−salð−mÞ; P½salm�¼ ð−1Þl−salm; ð2Þ

where P is the parity operator. For spin-�2 fields, it is
conventional to expand in E and B modes:

�2alm ¼ −½aElm � iaBlm�; ð3Þ

where aE and aB give parity-even and parity-odd contri-
butions respectively (both of which are real in map space)
and the negative sign appears by convention. These satisfy

1Available at GitHub.com/OliverPhilcox/PolyBin.
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h
aE;Blm

i� ¼ð−1ÞmaE;Blð−mÞ; P
h
aE;Blm

i
¼pE;Bð−1ÞlaE;Blm ; ð4Þ

where pE ¼ 1 and pB ¼ −1 specifies the parity. A similar
decomposition is possible for spin-1 fields, in terms of
gradient (parity-odd) and curl (parity-even) contributions.
For the cosmic microwave background, there are three

fields of interest; the spin-0 temperature, 0a ¼ T, and the
spin-�2 polarization fields �2a ¼ Q� iU. These are
related to T, E, and B fields via a linear transformation0B@ 0alm

−2alm

þ2alm

1CA ¼

0B@ 1 0 0

0 −1 −i
0 −1 i

1CA
0B@ aTlm

aElm
aBlm

1CA
⇒ salm ≡X

X
sRXaXlm; ð5Þ

where X∈ fT; E; Bg, and the transformation matrix (which
is not a rotation) will be of use later. An analogous form can
be written for galaxy positions and shapes, whence 0a ¼ δg
(the galaxy density), and �2a ¼ γ1 � iγ2 (the galaxy shear).

B. Power spectra

1. Definition

The correlators of spin-2 fields are fundamentally
described by the power spectra of T, E, B,

haXl1m1
aY�l2m2

i ¼ CXY
l1
δKl1l2δ

K
m1m2

X; Y ∈ fT; E; Bg; ð6Þ

assuming rotation and translation invariance and noting that
autospectra include noise. We additionally ignore any
spatially-varying window function, but will return to this
later. In terms of the spin fields in harmonic space, we have
the ideal correlators

hs1al1m1
½s2al2m2

��i ¼ s1s2Cl1
δKl1l2δ

K
m1m2

; ð7Þ

where the (Hermitian) ss0Cl matrix of correlators can be
written in terms of T, E, B as

ss0Cl ¼
X
XY

ðsRXÞCXY
l ðs0RYÞ† ¼

0BB@
CTT
l −ðCTE

l − iCTB
l Þ −ðCTE

l þ iCTB
l Þ

−ðCTE
l þ iCTB

l Þ CEE
l þ CBB

l CEE
l − CBB

l þ 2iCEB
l

−ðCTE
l − iCTB

l Þ CEE
l − CBB

l − 2iCEB
l CEE

l þ CBB
l

1CCA; ð8Þ

where we note that CXY
l ¼ CYX

l are real. The full set of
nontrivial correlators involve the following fields

U2 ≡ fTT; TE; EE; BBg þ fTB; EBg; ð9Þ

separating out parity-even and parity-odd spectra, with the
latter contributing to the spin-ðs; s0Þ covariance multiplied
by i. In general, the two-point covariance is nontrivial, but
significantly simplifies if we assume parity-conservation
and zero-intrinsic B mode,

ðss0ClÞideal ¼

0BB@
CTT
l −CTE

l −CTE
l

−CTE
l CEE

l CEE
l

−CTE
l CEE

l CEE
l

1CCA
þ

0B@NT
l 0 0

0 2NP
l 0

0 0 2NP
l

1CA: ð10Þ

We have additionally separated out contributions from
noise, assuming the impact on the temperature and E=B
fields to be independent and described by spectra NT

l and
NP

l respectively.

2. Application

To form optimal estimators, we will require both the
pixel-space covariance matrix and its inverse. From (7),
these are given by

s1s2Cðn̂1; n̂2Þ≡ hs1aðn̂1Þ½s2aðn̂2Þ��i
¼

X
lm

s1Ylmðn̂1Þ½s1s2Cl�s2Y�
lmðn̂2Þ;

s1s2C
−1ðn̂1; n̂2Þ ¼

X
lm

s1Ylmðn̂1Þ½s1s2ðC−1Þl�s2Y�
lmðn̂2Þ;

ð11Þ

in terms of spherical harmonics. The latter can be written in
terms of the matrix of T=E=B correlators Cl ≡ fCXY

l g

s1s2C
−1ðn̂1;n̂2Þ¼

X
lm

s1Ylmðn̂1Þs1s2 ½R−†C−1
l R−1�s2Y�

lmðn̂2Þ:

ð12Þ

Whilst this may seem unduly complicated, it can be
straightforwardly applied to any map in question, noting
that R and C are just 3 × 3 matrices. Acting on some map
sxðn̂Þ, we find
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s1 ½C−1x�ðn̂1Þ¼
X
lm

s1Ylmðn̂1Þs1s2 ½R−†C−1
l R−1�s2xlm; ð13Þ

replacing the n̂2 integral by a harmonic transform of x.
The first R−1 operator transforms sxlm into the T=E=B
representation xXlm, which is then Wiener filtered by C−1

l
and transformed back to the spin representation by R−1,
before being projected into real space by an inverse harmonic
transform. Similarly, the inner product can be written

x†C−1y≡X
s1s2

Z
dn̂1dn̂2s1x

�ðn̂1Þs1s2C−1ðn̂1; n̂2Þs2yðn̂2Þ

¼
X
lm

X
XY

½xXlm��ðClÞ−1XYyYlm; ð14Þ

which is straightforward to compute.

C. Bispectra

The bispectra of three isotropic and homogeneous
harmonic space fields can be written

haXl1m1
aYl2m2

aZl3m3
i≡ wl1l2l3

m1m2m3
bXYZl1l2l3

;

fX; Y; Zg∈ fT; E; Bg; ð15Þ

where b is the reduced bispectrum and
jl1 − l2j ≤ l3 ≤ l1 þ l2. In this work, we adopt the
following weights (which differ from those of [52])

wl1l2l3
m1m2m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

m1 m2 m3

��
1

3

�
l1 l2 l3

−1 −1 2

�
þ 2 cyc:

�
¼ 1

3

Z
dn̂½þ1Yl1m1

ðn̂Þþ1Yl2m2
ðn̂Þ−2Yl3m3

ðn̂Þ þ 2 cyc:�; ð16Þ

expressing in terms of the Gaunt integral in the second line.
Usually, one fixes wl1l2l3

m1m2m3
to the Gaunt symbol; however,

this nulls any contributions from parity-odd trispectra (as
discussed in [46]), since it is zero for odd l1 þ l2 þ l3.
Here, the only restriction is that li ≥ 2, which is usually
true (after monopole and dipole subtraction). Furthermore,
the bispectrum is symmetric under interchange of any
fli; Xg pairs; similarly the weights are symmetric under
exchange of any pair of fli; mig. Given these symmetries,
the bispectrum is fully specified by the following
components:

U3 ≡ fTTT; TTE; TEE;EEE; TBB; EBBg
þ fTTB; TEB; EEB;BBBg; ð17Þ

where the two groups have pXYZ ¼ pXpYpZ ¼ 1 and −1
respectively. An additional result is that not all l-bins are
independent. To fully specify the spectra we require the
triplets of (17) with

l1 ≤ l2 ðX ¼ YÞ; l2 ≤ l3 ðY ¼ ZÞ; ð18Þ

with no restrictions on li (except from the triangle
conditions).2

Finally, we note that, due to the symmetries of the
weighting, the bispectrum has the following properties
under conjugation and parity:

ðbXYZl1l2l3
Þ� ¼ ð−1Þl1þl2þl3bXYZl1l2l3

;

P½bXYZl1l2l3
� ¼ pXYZð−1Þl1þl2þl3bXYZl1l2l3

; ð19Þ
using (4). As such, configurations of fields with pXYZ ¼ 1
(the first group in (17) have real bispectra for even l1 þ
l2 þ l3 and imaginary else, whilst the situation reverses for
pXYZ ¼ −1. Note that rotational invariance forbids scalar
physics from generating a parity-odd three-point function,
thus TTT etc. do not contain contributions with odd
l1 þ l2 þ l3, and cannot be used to probe primordial
scalar parity-violation. Parity-even spectra with a single B
mode can be generated from scalars however and appear at
second order in cosmic perturbation theory [68]. As such,
scalar physics will generate only four spectra at leading
order (ignoring, e.g., lensing); (bTTT; bTTE; bTEE; bEEE).
In our case, we require the bispectrum of the spin-s

components directly, since these can be straightforwardly
related to the real-space windowed quantities. Noting that
salm ¼ sRXaXlm, in the notation of (5), we can write

hs1al1m1
s2al2m2

s3al3m3
i

¼
X
XYZ

wl1l2l3
m1m2m3

ðs1RXÞðs2RYÞðs3RZÞbXYZl1l2l3
: ð20Þ

Unlike the trispectrum, we do not require permutations in
this definition, since the weights are symmetric under
ðl; mÞ exchange.

2Our convention differs from that of Planck [7], which asserted
the X ¼ Y ¼ Z conditions for all correlators, but included also
permutations e.g., TET in their analysis. Both approaches are
equivalent, though we find it useful to minimize the number of
output spectra, particularly for higher-order correlators.
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D. Trispectra

The relation for trispectra follows similarly. In this case, we write the general definition

haXl1m1
aYl2m2

aZl3m3
aWl4m4

i≡X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

tXY;ZWl1l2;l3l4
ðLÞ þ 23 perms:; fX; Y; Z;Wg∈ fT; E; Bg; ð21Þ

where the permutations are over the joint set fX;l; mg, and the relevant weights are similar as before

wLM
l1l2m1m2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

r �
l1 l2 L

m1 m2 M

��
l1 l2 L

−1 −1 2

�
¼

Z
dn̂þ1Yl1m1

ðn̂Þþ1Yl2m2
ðn̂Þ−2YLMðn̂Þ; ð22Þ

requiring li ≥ 1 and L ≥ 2. The trispectrum has the following symmetries:

tXY;ZWl1l2;l3l4
ðLÞ ¼ tYX;ZWl2l1;l3l4

ðLÞ ¼ tZW;XY
l3l4;l1l2

ðLÞ; ð23Þ

with other pairs nontrivially related due to the degeneracy in the definition of tetrahedron diagonals. This additionally
requires the triangle conditions jl1 − l2j ≤ L ≤ l1 þ l2, jl3 − l4j ≤ L ≤ l3 þ l4.
The relevant trispectra are defined by the following 21 quadruplets of fields

U4 ≡ fTTTT; TTTE; TTEE; TTBB; TETE; TEEE; TEBB; TBTB; TBEB;EEEE;EEBB;EBEB;BBBBg
þ fTTTB; TTEB; TETB; TEEB; TBEE; TBBB;EEEB;EBBBg; ð24Þ

with pXYZW ¼ 1 and −1, respectively. As before, the trispectrum symmetries of (23) imply that we can apply the following
restrictions on li to yield a complete set of bins

l1 ≤ l2 ðX ¼ YÞ; l3 ≤ l4 ðZ ¼ WÞ
l1 ≤ l3 ðX ¼ Z ∪ Y ¼ WÞ; l2 ≤ l4 if l1 ¼ l3 ðX ¼ Z ∪ Y ¼ WÞ: ð25Þ

Here, the trispectrum satisfies

ðtXY;ZWl1l2;l3l4
ðLÞÞ� ¼ð−1Þl1þl2þl3þl4tXY;ZWl1l2;l3l4

ðLÞ; P½tXY;ZWl1l2;l3l4
ðLÞ�¼pXYZWð−1Þl1þl2þl3þl4tXY;ZWl1l2;l3l4

ðLÞ ð26Þ

such that spectra with pXYZW ¼ 1 are parity-even for even l1 þ l2 þ l3 þ l4 and parity-odd for odd l1 þ l2 þ l3 þ l4

whilst this is reversed for pXYZW ¼ −1. In linear CMB theory, scalar physics only sources spectra containing T andEmodes
at leading order, which reduces the number of nontrivial spectra to six (though B-modes appear at second order and above,
and through lensing). Finally, in terms of the spin-weighted fields we can write

hs1al1m1 s2
al2m2 s3

al3m3 s4
al4m4

i≡X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ðs1RXÞðs2RYÞðs3RZÞðs4RWÞtXY;ZWl1l2;l3l4
ðLÞ þ 23 perms: ð27Þ

E. Binning

To form estimators, we must relate the continuous
spectra defined above to their binned forms (which we
measure directly). This is somewhat nontrivial in the
presence of polarization, since only some of the various
correlators are independent, with, for example, the BT
power spectrum being fully defined by TB.
For the power spectrum, we begin by expressing CXY

l in
terms of the binned quantities of interest; CuðbÞ, where b

specifies an l-bin and u∈U2 specifies a pair of fields
from the set given in (9). For arbitrary XY pairs, we can
write

CXY
l ¼

X
b;u∈U2

CuðbÞ
Δu

2

h
δu;XYK þ δu;YXK

i
ΘlðbÞ: ð28Þ

whereΘlðbÞ is unity if l is in bin b and zero else. Here, the
symmetry factor Δu

2 is two if both components of u are
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equal and unity else (i.e., Δ2
u ¼ 1þ δu1u2K for u≡ u1u2). In

each case, the sum over pairs and bins picks out the relevant
spectrum, for example, CBT

l is mapped to −CTB
l . Strictly,

the above result is valid only in the narrow bin limit, but this
makes little difference for the higher-point functions. The

above result can be straightforwardly inserted into (7), and
allows extraction of the derivatives of the salm covariance
with respect to the desired bandpowers.
A similar procedure is possible for the bispectrum. In this

case, we sum over all triplets of fields s∈ S3 (17),

bXYZl1l2l3
¼ 1

2

X
b;u∈U3;χ ∈�1

buχðbÞ
Δu

3ðbÞ
h
δu;XYZK Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ þ 5 perms:

ih
1þ χpuð−1Þl1þl2þl3

i
; ð29Þ

where the allowed values of the bins b≡ fb1; b2; b3g are
set by the symmetries of (18) (i.e., b1 ≤ b2 if u1 ¼ u2 and
b2 ≤ b3 if u2 ¼ u3, for u≡ u1u2u3).

3 Here the degeneracy
factor Δu

3ðbÞ is defined by

Δu
3ðbÞ ¼

8>>>><>>>>:
6 b1 ¼ b2 ¼ b3 and u1 ¼ u2 ¼ u3
2 b1 ¼ b2 and u1 ¼ u2
2 b2 ¼ b3 and u2 ¼ u3
1 else;

ð30Þ

where the conditions should be read sequentially. Finally,
we have inserted a parity-factor ½1þ χpuð−1Þl1þl2þl3 �=2;

this allows us to separate parity-even and parity-odd
components which source even and odd l1 þ l2 þ l3

(depending on the spectrum of interest). Here, we denote
conventional parity-conserving contributions by buþðbÞ
and those sourced by parity-odd effects (e.g., chiral
gravitational waves) by bu−ðbÞ. Note that this is not required
for the power spectrum, since spectra with pu ¼ −1
(TB and EB) can only be sourced by parity-breaking
physics (and likewise for pu ¼ 1 and parity-conserving
physics).
Finally, the binned trispectrum for fields X, Y, Z, W can

be written as a sum over all trispectra listed in (24), for bins
b≡ fb1; b2; b3; b4g in li and bin B in L,

haXl1m1
aYl2m2

aZl3m3
aWl4m4

i ¼ 1

2

X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

X
b;u∈U4;χ ∈�1

tuχðb; BÞ
Δu

4ðbÞ
ΘLðBÞ½1þ χpuð−1Þl1þl2þl3þl4 �

×
h
δu;XYZWK Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3ÞΘl4

ðb4Þ þ 7 perms:
i
þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ; ð31Þ

where we include the m variables in this definition (unlike (29), to yield the correct behavior under permutations. This can
be straightforwardly related to that of the spin-s fields salm via (27). Here, the eight permutations in the bracket are over
exchanges of the following sets of fields-and-bins, fbi; uig:

f1234g; f1243g; f2134g; f2143g; f3412g; f3421g; f4312g; f4321g; ð32Þ

and the final two terms permute all relevant li; mi; ui. As before, the sum over bins in (31) is limited to nontrivial bins, as
defined by (25). In this case, the degeneracy factor is defined as

Δu
4ðbÞ ¼

8>>>>>>>>><>>>>>>>>>:

8 b1 ¼ b2 ¼ b3 ¼ b4 and u1 ¼ u2 ¼ u3 ¼ u4
4 b1 ¼ b2 and b3 ¼ b4 and u1 ¼ u2 and u3 ¼ u4
2 b1 ¼ b2 and u1 ¼ u2
2 b3 ¼ b4 and u3 ¼ u4
2 b1 ¼ b3 and b2 ¼ b4 and u1 ¼ u3 and u2 ¼ u4
1 else:

ð33Þ

Finally, we insert a parity-factor, as for the bispectrum, to separate out contributions sourced by parity-even and parity-odd
physics, here denoted by tþ and t−.

3In the narrow-bin limit, bins with b1 ¼ b2 ¼ b3 have even l1 þ l2 þ l3, thus cannot yield signals for χpu ¼ −1. In [52], such bins
were dropped; here, we keep them for consistency between parity-even and parity-odd definitions, but note that they will have large
variances. A similar conclusion holds for certain trispectrum components.
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III. SPECTRAL ESTIMATORS

A. Ideal case

In this section, we derive optimal estimators for weakly
non-Gaussian statistics, starting from a suitable expansion of
the data likelihood and maximizing with respect to the signal
of interest. Such estimators can be robustly defined and
implemented, and, in the limit ofGaussian statistics, aremini-
mum variance, i.e., they saturate their Cramér-Rao bound.
We begin with the Edgeworth expansion for the like-

lihood of data di in some set of pixels n̂ and spins s (jointly
denoted by the index i). Assuming Einstein summation
convention, we can write

L½d� ∝ exp

�
−
1

2
di�C−1

ij d
j −

1

2
Tr logC

�
×

�
1þ 1

3!
hdidjdkiðHijkÞ�

þ 1

4!
hdidjdkdliðHijklÞ� þ � � �

�
: ð34Þ

Here Cij ≡ hdid�ji is the map-space covariance matrix,
whose form was given in (11) as a function of two positions
and two spins. We have additionally included the three- and
four-point expectations hdidjdki and hdidjdkiwhich can be
similarly computed in terms of the bispectrum and trispec-
trum of Sec. II. The objects denoted Hij��� are Hermite
tensors, given by

Hijk ¼ hihjhk − ðhihhjhki þ 2 perms:Þ
Hijkl ¼ hihjhkhl − ðhihjhhkhli þ 5 perms:Þ

þ ðhhihjihhkhli þ 2 perms:Þ; ð35Þ

in terms of the Wiener-filtered data hi ≡ ½C−1d�i. This
expansion is similar to that used in previous works [52,59],
but allows for complex data as required for fields with
nonzero spin (e.g., Q� iU polarization states).
To obtain estimators for the N-point correlators, we

maximize the logarithm of (34) with respect to some
coefficients, xuχðbÞ, contained only within the (N > 2)-point
function (e.g., the parity even/odd bandpowers in some set of
bins and fields). This yields an estimator of the form

½FNx̂�uχðbÞ ¼
1

N!

∂hdi1 � � � diN i
∂xuχðbÞ

ðHi1���iN Þ�; ð36Þ

involving a data-independent normalizationmatrix, defined as

F uu0
N;χχ0 ðb;b0Þ ¼ 1

N!

�
∂hdi1 � � �diN i�

∂xuχðbÞ
C−1

i1j1

� � �C−1
iNjN

∂hdj1 � � � djN i
∂xu

0
χ0 ðb0Þ

��
: ð37Þ

Assuming weak non-Gaussianity, this is an optimal estimator
forxuχðbÞ, i.e., it isminimumvariance. Furthermore, the choice
of FN ensures that the estimator is unbiased, such that
E½x̂uχðbÞ� ¼ xuχðbÞ (via the Hermite polynomial ortho-
gonality).4 Furthermore, in the Gaussian limit, the covariance
matrix of x̂uχðbÞ is given by the inverted normalization

F−1;uu0
N;χχ0 ðb;b0Þ. Finally, denoting the Cholesky factorized

Fisher matrix as F 1=2, we note that e.g., [55,56]h
F 1=2

N x̂
i
u

χ
ðbÞ ∼N ð0; IÞ; ð38Þ

i.e., the rescaled estimator obeys a standardized normal
distribution in the limit of weak non-Gaussianity. This allows
for efficient data compression, as in [60].

B. Realistic case

In practice, the estimators we will discuss in this work
are a little more nuanced than the above. First, the data is
often masked or windowed, such that the true map, d, is
related to the observed map, d̃, by sd̃ðn̂Þ ¼ Wðn̂Þsdðn̂Þ,
whereW is some pixel-space mask which we will generally
take to be spin-independent and real.5 As such, we should
formulate the estimators of (36) and (37) in terms of
masked fields d̃, and their respective correlators. Since the
mask is multiplicative, this is straightforward to implement
in practice.
Secondly, the above estimators require Wiener-filtered

data, h≡ C−1d̃, where C ¼ hd̃d̃†i. The full covariance
matrix is high dimensional (containing 9N2

pix elements for
spins 0;�2) and thus hard to compute and harder to invert,
particularly in the presence of translation-dependent noise
and holes in the window (such as a Galactic sky mask). A
more practical estimator is wrought by abandoning the
exact Wiener filter and instead applying some custom
weighting S−1, with h redefined to h≡ S−1d̃. The weight-
ing is not required to be invertible (i.e., S does not have to
exist), and can be chosen to allow for simple implementa-
tion. In CMB analyses, a typical approach would be to
choose the linear operator S−1 such that it (a) (noninvert-
ibly) projects out undesired areas of the map (from e.g., the
Milky Way and point sources), and (b) filters the data in
harmonic space by the ideal power spectrum (including
noise). Assuming a diagonal-in-n̂ projection operator Π
and a diagonal-in-l filtering by the idealized T=E=B-space
covariance Cl, this is applied to a map x as

4We have implicitly assumed that the N-point correlators are
fully described by the binned polyspectra. Any contributions
from nonprimordial sources, e.g., noise, are thus included within
the binned correlators.

5One could straightforwardly use a different mask for each
spin and similarly deconvolve its effect from the output corre-
lators.
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sxðn̂Þ → Πðn̂Þsxðn̂Þ → s½Πx�lm → ½C−1
l R−1½Πx��Xlm

→ s½R−†C−1
l R−1½Πx��ðn̂Þ; ð39Þ

which requires only two harmonic transforms to implement.
For a general filter S−1 and mask, the binned-polyspec-

trum estimator becomes

½FNx̂�uχðbÞ ¼
1

N!

∂hd̃i1 � � � d̃iN i
∂xuχðbÞ

ðHi1���iN Þ�

F uu0
N;χχ0 ðb;b0Þ ¼ 1

N!

�
∂hd̃i1 � � � d̃iN i�

∂xuχðbÞ
S−1
i1j1

� � �S−1
iNjN

∂hd̃j1 � � � d̃jN i
∂xu

0
χ0 ðb0Þ

��
; ð40Þ

where h≡ S−1d̃ and FN is Hermitian only if S−1 is. This
remains unbiased, such that E½x̂uχðbÞ� ¼ xuχðbÞ for any filter
S−1 (due to the definition of FN). This implies that the
estimator deconvolves the effect of any linear masking and
inpainting contained within S−1. In the limit of S−1 → C−1,
the estimator becomes optimal, such that F−1

N is equal to
the estimators covariance matrix; any difference second
order in S − C (if S−1 is invertible). The remainder of this
work is dedicated to exploring how such estimators can be
applied in practice.

IV. POWER SPECTRUM

The above derivation of the N-point spectrum estimators
strictly applies only for N > 2. From the Gaussian part of
the likelihood (34), we can derive a similar estimator for the
bandpower of some pair of fields u in bin b:

½F 2Ĉ�uðbÞ ¼
1

2
h�i

∂Cij

∂CuðbÞ hj

F uu0
2 ðb; b0Þ ¼ 1

2
Tr

�
S−† ∂C

∂CuðbÞS
−1 ∂C

∂Cu0 ðb0Þ

�
; ð41Þ

again assuming a general weighting S−1 and denoting the
windowed covariance as Cij ≡ hd̃id̃�ji. To derive this we
have expanded the likelihood around some fiducial set of
bandpowers (sincewe cannot assume the fiducial value to be
zero), the value of which exactly cancels in the estimator,
once the Tr logC term is considered.6 This bears strong
similarities to the higher-point estimators of (40), differing
only due to the complex conjugate present in the definition
of the power spectrum and the absence of a parity index.

A. Numerator

We now simplify this expression, starting first with the
numerator. Starting with the explicit definition of C in pixel
space cf., (11), incorporating the window function, we
can write,

s1s2Cðn̂1; n̂2Þ ¼ Wðn̂1ÞWðn̂2Þ
X
lm

s1Ylmðn̂1Þs1s2 ½RCR†�s2Y�
lmðn̂2Þ

¼ Wðn̂1ÞWðn̂2Þ
X
lmXY

s1Ylmðn̂1Þs1RX

� X
b;u∈U2

CuðbÞ
Δu

2

h
δu;XYK þ δu;YXK

i
ΘlðbÞBX

lB
Y
l

�
s2R

†
Ys2Y

�
lmðn̂2Þ ð43Þ

using the definition of the binned power spectrum (28) in
the second line. We have additionally inserted an isotropic
beam, Bl, which differ between temperature and polari-
zation. Inserting this into the numerator of (41) and
simplifying gives the explicitly real form

½F 2Ĉ�uðbÞ ¼
1

2Δu
2

X
lmXY

ΘlðbÞBX
lB

Y
l ½R†Wh�X�lm

×
h
δu;XYK þ δu;YXK

i
½R†Wh�Ylm; ð44Þ

where ½R†Wh�Xlm ≡P
sðsR†

XÞs½Wh�lm, and we have re-
placed the integrals over n̂1;2 by a harmonic transform. We
may additionally compute the sum using only modes with
m ≥ 0 by adding a factor of ð1þ δKm≥0Þ, which evaluates to
unity if m ¼ 0 and two else. In the absence of a mask and
with an ideal weighting S−1 → C−1, ½R†h�Xlm ¼ ½C−1a�Xlm;
in general, the various T=E=B components mix due to
masking, however. Following these manipulations (44) is
relatively straightforward to compute: one performs har-
monic transforms to yield the filtered maps ½R†Wh�Xlm then
combines pairwise to yield the estimator, summing over all
lmodes in the bin and fields of interest.7 We note that, even
without the mask, the XY power spectrum does not reduce
to the canonical form aXlma

Y�
lm due to the nontrivial

correlations between spectra (e.g., a nonzero CTE
l prior).

6If we include an additive noise term with covariance N, such
that C ¼ P

b;u C
uðbÞ∂C=∂CuðbÞ þ N, the estimator numerator is

modified to

½F 2Ĉ�uðbÞ ¼
1

2
h�i

∂Cij

∂CuðbÞ hj −
1

2
Tr

�
S−† ∂C

∂CuðbÞS
−1N

�
: ð42Þ

Here, we absorb the noise into the observed spectrum.

7In the practical implementation of these estimators, we
replace ½R†Wh�Xlm by hXlm if the mask is uniform, thus avoiding
any unnecessary harmonic transforms.
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B. Normalization

Computing the Fisher matrix in (41) is nontrivial due to
the trace operation, which naively requires Oð9N2

pixÞ
operations to implement. To sidestep this, we adopt a
similar procedure to [48,52], introducing a set of Gaussian
random field (GRF) maps ai with known and invertible
covariance A≡ haa†ia:

F uu0
2 ðb; b0Þ ¼ 1

2

	
a†S−† ∂C

∂CuðbÞS
−1 ∂C

∂Cu0 ðb0ÞA
−1a



a

;

ð45Þ

where ha†A−1aia ¼ 1. Noting that the various covariances
and weightings are linear operators, this can be computed
in Oð3NpixÞ time, with the expectation (which replaces the
trace) implemented as Monte Carlo average over realiza-
tions of ai. Assuming A−1 is close to S−1, this converges
quickly (roughly as 1þ 1=Nsim). The above expression can
be rewritten succinctly as

F uu0
2 ðb;b0Þ

¼1

2

D
ðQu

2½S−1a�ðbÞÞ� · ½WS−1W� ·Qu0
2 ½A−1a�ðb0Þ

E
a
; ð46Þ

defining

sQu
2½x�ðn̂; bÞ ¼s

�
∂hdd†i
∂CuðbÞWx

�
ðn̂Þ; ð47Þ

where we have explicitly separated out the maskW. This is
simply a product to two maps, Q�

2 and ½WS−1WQ2�,
summed over each pixel in real- or harmonic-space
(via the Wiener-Khinchin theorem). To compute the nor-
malization we thus perform the following set of operations:
(1) Generate a GRF a from some fiducial covariance A.
(2) Filter this map to obtain A−1a and S−1a.
(3) Compute Qu

2½x�ðbÞ maps for each bin of interest.
(4) Combine pairwise to form the Fisher matrix.
(5) Average over Nsim realizations of a.
Inserting the explicit form for the two-point function

(28), we find the following form for Q2, expressed in
harmonic space:

sQu
2;lm½x�ðbÞ ¼

1

Δu
2

X
XY

ΘlðbÞBX
lB

Y
lsRX

h
δu;XYK þ δu;YXK

i
½R†Wx�Ylm

Qu;X
2;lm½x�ðbÞ ¼

1

Δu
2

ΘlðbÞBu1
l Bu2

l

�
½R†Wx�u2lmδu1XK þ ½R†Wx�u1lmδu2XK

�
; ð48Þ

transforming to T=E=B space in the second line. This is
similar to the numerator term of (44), and can be simply
implemented via spin-weighted spherical harmonic trans-
forms.8

C. Ideal limits

We now consider the limiting form of the above
estimators to gain some intuition for their form. In ideal
scenarios, we can drop the mask and beam and assume
S−1 ¼ C−1, which is translationally invariant. In this case,
the ½R†Wh�Xlm term becomes hXlm ≡ ½C−1

l alm�X (since C−1

involves R−†C−1R−1), thus the numerator simplifies to

½F 2Ĉ�uðbÞ →
1

Δu
2

X
lm

ΘlðbÞRe½hu1�lmh
u2
lm�; ð49Þ

where the bracket takes the real part. This is just the
standard power spectrum estimator, albeit with Wiener
filtering through C−1.
In the same limit, the normalization can be written in

terms of harmonic-space T=E=B quantities as

F uu0
2 ðb; b0Þ → 1

2
Tr

�
C−1 ∂C

∂CuðbÞC
−1 ∂C

∂Cu0 ðb0Þ

�
¼ 1

2Δu
2Δu0

2

X
l

ð2lþ 1ÞΘlðbÞΘlðb0Þ
X
XYZW

h
C−1;XY
l ðδu;YZK þ δu;ZYK ÞC−1;ZW

l ðδu0;WX
K þ δu

0;XW
K Þ

i
¼ 1

Δu
2Δu0

2

X
l

ð2lþ 1ÞΘlðbÞΘlðb0Þ
h
C
−1;u1u01
l C

−1;u0
2
u2

l þ C
−1;u0

2
u1

l C
−1;u2u01
l

i
ð50Þ

8If we had additionally included a noise term in the quadratic estimator, this could be computed in a similar manner, replacing the
random fields a by fields drawn from the noise covariance.
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inserting the explicit derivatives in the second line, and
noting that the covariance is symmetric. Assuming that the
bins are disjoint, this is diagonal in b, b0, but not in u, u0.
This implies that each l-bin is uncorrelated, but there are
nontrivial correlations between the different power spec-
trum estimators, since C−1 is not generally assumed to be
diagonal. If we ignored such correlations, we would find a
familiar form involving

P
lð2lþ 1ÞΘ2

lðbÞ=CXX
l CZZ

l . A
subtle point is that the correlation matrix (defined by
F−1

2 under ideal assumptions) is block diagonal, thus the
spectra bifurcate into uncorrelated groups; parity-even

ðpu ¼ 1Þ and parity-odd (pu ¼ −1). This is a consequence
of rotational symmetry and does not hold for the general
case, since masks and filtering can induce leakage between
parity-odd and parity-even components.

V. BISPECTRUM

We now turn our attention to three-point functions.
Computation proceeds analogously to the power
spectrum, beginning with the general estimator for N ¼ 3
cf., (40):

½F 3b̂�uχðbÞ ¼
1

3!

∂

D
d̃i1 d̃i2 d̃i3

E
∂buχðbÞ

�
hi1hi2hi3 − ½hi1hhi2hi3i þ 2 perms:�

��
;

F uu0
3;χχ0 ðb;b0Þ ¼ 1

3!

"
∂hd̃i1 d̃i2 d̃i3i�

∂buχðbÞ
S−1
i1j1

S−1
i2j2

S−1
i3j3

∂hd̃j1 d̃j2 d̃j3i
∂bu

0
χ0 ðb0Þ

#�
: ð51Þ

The principal difference between this and the power spectrum estimator is the presence of the linear term in the numerator:
this can significantly reduce the large scale variance of the estimator [52] and may be computed via Monte Carlo methods.
To this end, we introduce a set of maps fαgwith covariance equal to that of the data, i.e., hαα†i ¼ C.9 The linear term is then
given by an average over α;

½F 3b̂�uχðbÞ ¼
1

3!

∂

D
d̃i1 d̃i2 d̃i3

E
∂buχðbÞ

�
hi1hi2hi3 − ½hi1h½S−1α�i2 ½S−1α�i3iα þ 2 perms:�

��
; ð52Þ

which can be estimated via Monte Carlo averaging.

A. Numerator

To massage the bispectrum estimator into a practically computable form, we first require the explicit definition of the
map-space three-point correlation function in terms of the reduced bispectrum (20),

hs1 d̃ðn̂1Þs2 d̃ðn̂2Þs3 d̃ðn̂3Þi ¼
Y3
i¼1

�
Wðn̂iÞ

X
limiXi

BXi
li si

Ylimi
ðn̂iÞsiRXi

�
wl1l2l3
m1m2m3

bX1X2X3

l1l2l3

¼ 1

2

Y3
i¼1

�
Wðn̂iÞ

X
limiXi

BXi
li si

Ylimi
ðn̂iÞsiRXi

�
wl1l2l3
m1m2m3

×
X

b;u∈U3

buχðbÞ
Δu

3ðbÞ
h
1þ χpuð−1Þl1þl2þl3

ih
δu;X1X2X3

K Θl1ðb1ÞΘl2
ðb2ÞΘl3ðb3Þ þ 5 perms:

i
; ð53Þ

using the binned bispectrum definition (29) in the second line, and inserting an isotropic beam BX
l . Our next step is to insert

this into the estimator numerator and simplify, which leads to the form,

½F 3b̂�uχðbÞ ¼
1

2Δu
3ðbÞ

X
limi

wl1l2l3
m1m2m3

Θl1
ðb1ÞΘl2ðb2ÞΘl3ðb3ÞBu1

l1
Bu2
l2
Bu3
l3
½1þ χpuð−1Þl1þl2þl3 �

×
n
½R†Wh�u1l1m1

½R†Wh�u2l2m2
½R†Wh�u3l3m3

− ð½R†Wh�u1l1m1
h½R†Wα�u2l2m2

½R†Wα�u3l3m3
i
α
þ 2 perms:Þ

o�
; ð54Þ

9Note that the bispectrum estimator remains unbiased if hαα†iα ≠ C, though its variance generically increases.
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where the spatial integrals (from the i summations) have
been replaced with harmonic transforms and we have
invoked symmetry to absorb one of the permutation sums.
This form of the estimator is not easy to implement, since it
involves a coupled sum over three ðl; mÞ pairs, with a

prohibitive Oðl6
maxÞ scaling. To proceed, we must rewrite

the expression in a factorizable form, which is made
possible by writing the weighting function wl1l2l3

m1m2m3
as an

integral over spin-weighted spherical harmonics, as in (16).
Following some simplification, we find

h
F 3b̂

i
u

χ
ðbÞ ¼ β̂uχ ½d; d; d�ðbÞ −

hD
β̂uχ ½d; α;α�ðbÞ

E
α
þ 2 perms:

i
β̂uχ ½α; β; γ�ðbÞ≡ 1

6Δu
3ðbÞ

Z
dn̂

n
þ1
Hu1 ½α�ðb1; n̂Þþ1H

u2 ½β�ðb2; n̂Þ−2Hu3 ½γ�ðb3; n̂Þ

þ ðχpuÞþ1H̄
u1 ½α�ðb1; n̂Þþ1H̄

u2 ½β�ðb2; n̂Þ−2H̄u3 ½γ�ðb3; n̂Þ
o
þ 2 perms:; ð55Þ

defining the filtered maps

sHX½x�ðn̂;bÞ¼
X
lm

ΘlðbÞBX
l ½R†WS−1x�X�lmsYlmðn̂Þ; sH̄X½x�ðn̂;bÞ¼

X
lm

ð−1ÞlΘlðbÞBX
l ½R†WS−1x�X�lmsYlmðn̂Þ; ð56Þ

which satisfy the conjugation relation

½sHX½x�ðn̂; bÞ�� ¼ ð−1Þs−sHX½x�ðn̂; bÞ ¼ ð−1ÞssH̄X½x�ð−n̂; bÞ: ð57Þ

The conjugate property implies that fþ1H;−−1Hg are a spin-�1 pair of fields (rather than �1H). In (55), we symmetrize
both over the choice of fields appearing in the expectation, and over the position of the external spin index (i.e., over

nontrivial exchanges of fu1; b1g pairs). Via the conjugation relations, ðβ̂uχÞ� ¼ χpuβ̂
u
χ , thus the estimator simplifies to

β̂uþ½α; β; γ�ðbÞ ¼
1

3Δu
3ðbÞ

Z
dn̂Refþ1H

u1 ½α�ðb1; n̂Þþ1H
u2 ½β�ðb2; n̂Þ−2Hu3 ½γ�ðb3; n̂Þ þ 2 perms:g;

β̂u−½α; β; γ�ðbÞ ¼
i

3Δu
3ðbÞ

Z
dn̂Imfþ1H

u1 ½α�ðb1; n̂Þþ1H
u2 ½β�ðb2; n̂Þ−2Hu3 ½γ�ðb3; n̂Þ þ 2 perms:g: ð58Þ

Despite all the numerous definitions, (55) is straightforward
to compute in Oð3NpixNitÞ operations, using the following
set of operations:
(1) Draw a GRF α from the (assumed) true covarianceC.
(2) Filter both α and the data d by the weighting

scheme and the mask to form WS−1d, WS−1α
maps, then use a spherical harmonic transform
to compute R†WS−1d and R†WS−1α in T=E=B
space.

(3) Compute the sHX and sH̄X maps for each bin of
interest with X∈ fT; E; Bg and s∈ fþ1;−2g via a
further spin-weighted spherical harmonic transform.

(4) Compute β̂ for each configuration of interest as a
real-space summation.

(5) Iterate over Nit random fields α to form the
Monte Carlo average and use this to assemble the
estimator numerator.

B. Normalization

The bispectrum Fisher matrix can be computed
using similar techniques applied to the power
spectrum (Sec. IV B, cf., [48]). First, we rewrite the
OðN3

pixÞ map-space sum as a Monte Carlo average by
introducing some fiducial covariance A and its inverse as
follows:

S−1
i2j2

S−1
i3j3

→ S−1
i2i02

S−1
i3i03

×
1

2
ðAi0

2
j0
2
Ai0

3
j0
3
þ Ai0

2
j0
3
Ai0

3
j0
2
Þ

× A−1
j0
2
j2
A−1
j0
3
j3
; ð59Þ

noting that the Fisher matrix is symmetric under j2 ↔ j3.
As in Sec. IV, we write each covariance as the expectation
of a random field aðiÞ, A≡ haðiÞaðiÞ†i, allowing the sum to
be rewritten as an expectation:
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S−1
i2j2

S−1
i3j3

→
1

4
S−1
i2i02

S−1
i3i03

D
að1Þi0

2
að1Þi0

3
að1Þ�j0

2
að1Þ�j0

3
þ að2Þi0

2
að2Þi0

3
að2Þ�j0

2
að2Þ�j0

3
− að1Þi0

2
að1Þi0

3
að2Þ�j0

2
að2Þ�j0

3
− að2Þi0

2
að2Þi0

3
að1Þ�j0

2
að1Þ�j0

3

E
a
A−1
j0
2
j2
A−1
j0
3
j3
; ð60Þ

where að1Þ and að2Þ are independent and identically distributed.10 Applied to (51), we find

F uu0
3;χχ0 ðb;b0Þ ¼ 1

2

�
Fuu0;1111
3;χχ0 ðb;b0Þ þ Fuu0;2222

3;χχ0 ðb;b0Þ − Fuu0;1122
3;χχ0 ðb;b0Þ − Fuu0;2211

3;χχ0 ðb;b0Þ
�

Fuu0;μνρσ
3;χχ0 ðb;b0Þ≡ 1

12

	
∂hd̃i1 d̃i2 d̃i3i�

∂buχðbÞ
S−1
i1j1

½S−1aðμÞ�i2 ½S−1aðνÞ�i3 × ½A−1aðρÞ��j2 ½A−1aðσÞ��j3
∂hd̃j1 d̃j2 d̃j3i
∂bu

0
χ0 ðb0Þ


�

a

¼ 1

12

D�
Qu

3;χ ½S−1aðμÞ;S−1aðνÞ�ðbÞÞ� · ½WS−1W� · ðQu0
3;χ0 ½A−1aðρÞ;A−1aðσÞ�

�E�
a

ð61Þ

defining the pixel-space derivative maps

Qu
3;χ;i½x; y�ðbÞ ¼

∂hdidjdki
∂buχðbÞ

½Wx��j ½Wy��k: ð62Þ

As for the power spectrum, this is the inner product of two maps, for each combination of bins, fields, and parities.
Inserting the definition of the three-point function and simplifying, the Q3 derivatives can be written in harmonic space

s1Q
u
3;χ;l1m1

½x; y�ðbÞ ¼ 1

2Δu
3ðbÞ

X
l2l3m2m3X1X2X3

s1RX1
wl1l2l3
m1m2m3

BX1

l1
BX2

l2
BX3

l3

h
1þ χpuð−1Þl1þl2þl3

i
×
h
δu;X1X2X3

K Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ þ 5 perms:
i
½R†Wx�X2�

l2m2
½R†Wy�X3�

l3m3
: ð63Þ

As for the estimator numerator, this can be simplified by inserting the integral form of the weights:

s1Q
u
3;χ;l1m1

½x; y�ðbÞ ¼
�Θl1ðb1ÞBu1

l1

6Δu
3ðbÞ s1Ru1

Z
dn̂

n
þ1
Yl1m1

ðn̂Þþ1H
u2 ½x�ðn̂; b2Þ−2Hu3 ½y�ðn̂; b3Þ

þ χpuð−1Þl1þ1Yl1m1
ðn̂Þþ1H̄

u2 ½x�ðn̂; b2Þ−2H̄u3 ½y�ðn̂;b3Þ
o
þ 2 perms:

�
þ 5 perms: ð64Þ

where the first set of permutations are over the positions of the fþ1;þ1;−2g spins and the second over the fb; ug pairs.
Using the parity properties of spin-weighted spherical harmonics, this can be further rewritten in T=E=B space as

Qu;X
3;χ;l1m1

½x; y�ðbÞ ¼
�Θl1ðb1ÞBu1

l1

3Δu
3ðbÞ

δu1XK

Z
dn̂f−þ1Y�

l1m1
ðn̂Þ−1Hu2 ½x�ðn̂; b2Þþ2H

u3 ½y�ðn̂; b3Þ

− ðχpuÞ−1Y�
l1m1

ðn̂Þþ1H
u2 ½x�ðn̂; b2Þ−2Hu3 ½y�ðn̂; b3Þg� þ 2 perms:

�
þ 2 perms:; ð65Þ

noting that two permutations are equivalent. We additionally note the conjugate relation,

ðQu;X
3;χ;l1m1

½x; y�ðbÞÞ� ¼ ðχpuÞ × ð−1Þm1Qu;X
3;χ;l1ð−m1Þ½x; y�ðbÞ; ð66Þ

thus Q3 is real (imaginary) in map space if χpu ¼ 1 (χpu ¼ −1). The above can be efficiently computed using spin-
weighted spherical harmonic transforms, first to define the �1H and �2H fields, then to perform the n̂ integrals, noting that
Qlm transforms as a triplet of real fields (i.e., T, Q, U) if we add a factor of i when χpu ¼ −1. As such, the derivative, and
thus the full Fisher matrix, can be efficiently computed as a summation in real space, or, for a local-in-l weighting and
W ¼ 1, harmonic space.

10Whilst we could simply write the expectation as Ai0
2
j0
2
Ai0

3
j0
3
¼ hað1Þi0

2
að1Þi0

3
að2Þ�j0

2
að2Þ�j0

3
i, the form above makes more efficient use of the

random fields.
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C. Ideal limits

In the ideal limit of homogeneous noise, unit mask and beam, and ideal Wiener filtering, the bispectrum estimators
significantly simplify. As before, we start by noting that ½R†Wh�Xlm → hXlm, thus the bispectrum numerator can be written as

½F 3b̂�uχðbÞ →
1

2Δu
3ðbÞ

X
limi

wl1l2l3
m1m2m3

Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ½1þ χpuð−1Þl1þl2þl3 �ðhu1l1m1
hu2l2m2

hu3l3m3
Þ�

¼ χpu

Δu
3ðbÞ

X
l1l2l3

X
m1m2m3

wl1l2l3
m1m2m3

Θl1
ðb1ÞΘl2ðb2ÞΘl3ðb3Þhu1l1m1

hu2l2m2
hu3l3m3

; ð67Þ

with the additional restriction ð−1Þl1þl2þl3 ¼ χpu. Here, we have dropped the expectation terms, since this fixes l2 ¼ l3

which requires l1 ¼ 0 after summing over mi. In the second line, we have replaced terms with their complex conjugates,
finding a familiar bispectrum estimator; simply the product of three harmonic-space fields multiplied by the weights. For
efficient implementation, one can express the weights in integral form as before,

½F 3b̂�uχðbÞ →
1

6Δu
3ðbÞ

Z
dn̂

n
þ1
Hu1ðn̂; b1Þþ1H

u2ðn̂; b2Þ−2Hu3ðn̂; b3Þ

þ ðχpuÞþ1H̄
u1ðn̂; b1Þþ1H̄

u2ðn̂; b2Þ−2H̄u3ðn̂;b3Þ
o
þ 2 perms:; ð68Þ

with the ideal definitions

sHXðn̂; bÞ →
X
lm

ΘlðbÞhX�lmsYlmðn̂Þ; sH̄Xðn̂; bÞ →
X
lm

ð−1ÞlΘlðbÞhX�lmsYlmðn̂Þ: ð69Þ

This matches standard prescriptions e.g., [46,69]. Furthermore, from the conjugation properties of (57), this is explicitly real
if χpu ¼ 1 and imaginary if χpu ¼ −1, and can be written succinctly in the form of (58).
For the normalization, we first rewrite in harmonic space in terms of T=E=B fields,

F uu0
3;χχ0 ðb;b0Þ → 1

3!

X
limiXiX0

i

264∂
D
dX1

l1m1
dX2

l2m2
dX3

l3m3

E�

∂buχðbÞ
ðC−1

l1
ÞX1X0

1ðC−1
l2
ÞX2X0

2ðC−1
l3
ÞX3X0

3

∂

D
d
X0
1

l1m1
d
X0
2

l2m2
d
X0
3

l3m3

E
∂bu

0
χ0 ðb0Þ

375
�

: ð70Þ

Inserting the explicit polyspectrum derivatives, we find

F uu0
3;χχ0 ðb;b0Þ → χpu

6Δu
3ðbÞΔu0

3 ðb0Þ
X
l1l2l3

� X
m1m2m3

�½wm1m2m3

l1l2l3
�2
�X

XiX0
i

h
C
−1;X1X0

1

l1
C
−1;X2X0

2

l2
C
−1;X3X0

3

l3

i
×
h
δu;X1X2X3

K Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ þ 5 perms:
ih
δ
u0;X0

1
X0
2
X0
3

K Θl1
ðb01ÞΘl2ðb02ÞΘl3ðb03Þ þ 5 perms:

i
; ð71Þ

recalling that C−1 is real. This has the additional restriction ð−1Þl1þl2þl3 ¼ χpu ¼ χ0pu0 , implying that there are no
correlations between physics sourced by different parities. The mi summation yields

X
m1m2m3

½wm1m2m3

l1l2l3
�2 ¼ 1

9

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

��
l1 l2 l3

−1 −1 2

�
þ 2 cyc:

�
2

; ð72Þ

via Wigner 3j orthogonality. Finally, we can absorb one of the permutation summations, giving a factor of six, thus

F uu0
3;χχ0 ðb;b0Þ→ 1

9

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

��
l1 l2 l3

−1 −1 2

�
þ 2 cyc:

�
2 χpuδ

χpu;χ0pu0
K

Δu
3ðbÞΔu0

3 ðb0Þ
X
l1l2l3

Θl1ðb01ÞΘl2ðb02ÞΘl3ðb03Þ

×
h
C
−1;u1u01
l1

C
−1;u2u02
l2

C
−1;u3u03
l3

δKb1b01
δKb2b02

δKb3b03
þ 5 perms:

i
; ð73Þ
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where the permutations are over fui; big pairs and again we
restrict to ð−1Þl1þl2þl3 ¼ χpu. Notably, this is not diagonal
in fields, with, for example TTT and TEE nontrivially
correlated (as for the power spectrum). Some covariances
do vanish however, for example, there are no TBB-TTT
correlations if CTB

l ¼ 0. Finally, we note that pairs of
bispectra are correlated only if their bins b and b0 are
permutations of each other. Although Sec. II E gave
restrictions on which bins are required for each spectrum
(which depend on the fields in question), there can be
nontrivial correlations with b ≠ b0, for example
bTTTðb1; b2; b3Þ and bTTEðb1; b3; b2Þ are related. This lies

in contrast with the spin-zero case, where the restriction of
b1 ≤ b2 ≤ b3 gave a factor δKb;b0, and thus a diagonal ideal
Fisher matrix.

VI. TRISPECTRUM

Finally, we turn to the estimation of the polarized four-
point function.11 This is essentially analogous to the
bispectrum estimator, but made somewhat more involved
by the addition of new fields, internal momenta, and a more
complex permutation structure. Our starting point is the
general N ¼ 4 estimator, from (40)

½F 4t̂�uχðb; BÞ ¼
1

4!

∂

D
d̃i1 � � � d̃i4

E
∂tuχðb; BÞ

�
hi1hi2hi3hi4 − ½hi1hi2hhi3hi4i þ 5 perms:� þ ½hhi1hi2ihhi3hi4i þ 2 perms:�

��

F uu0
4;χχ0 ðb; B;b0; B0Þ ¼ 1

4!

264∂
D
d̃i1 � � � d̃i4

E�

∂tuχðb; BÞ
S−1
i1j1

� � �S−1
i4j4

∂

D
d̃j1 � � � d̃j4

E
∂tu

0
χ0 ðb0; B0Þ

375
�

; ð74Þ

where the binning depends on four sides b≡ fb1; b2; b3; b4g and a diagonal B, as specified in Sec. II E. As in Sec. V, the
expectations in the numerator can be computed via Monte Carlo averaging over GRFs with fiducial covariance C,

½F 4 t̂�uχðb; BÞ ¼
1

4!

∂

D
d̃i1 � � � d̃i4

E
∂tuχðb; BÞ

�
hi1hi2hi3hi4 − ½hi1hi2h½S−1α�i3 ½S−1α�i4iα þ 5 perms:�

þ
hD

½S−1αð1Þ�i1 ½S−1αð1Þ�i2 ½S−1αð2Þ�i3 ½S−1αð2Þ�i4
E
α
þ 2 perms:

i��
; ð75Þ

where αð1Þ and αð2Þ are independent and identically distributed. As we show in Sec. VI C, these terms vanish for parity-odd
correlators in the ideal limit, but, for parity-even scenarios, perform an important role subtracting off the Gaussian part of the
four-point correlator. As such, it is important that the random fields have a covariance close to the true value to avoid biasing
the estimator.

A. Numerator

As before, we begin by considering the explicit form of the map-space four-point correlation function (27),

hs1 d̃ðn̂1Þ � � �s4 d̃ðn̂4Þi ¼
Y4
i¼1

�
Wðn̂iÞ

X
limiXi

BXi
li si

Ylimi
ðn̂iÞsiRXi

�X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

tX1X2;X3X4

l1l2;l3l4
ðLÞ þ 23 perms:

¼ 1

2

Y4
i¼1

�
Wðn̂iÞ

X
limiXi

BXi
li si

Ylimi
ðn̂iÞsiRXi

�X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

×
X

b;u∈U4;χ ∈�1

tuχðb; BÞ
Δu

4ðbÞ
ΘLðBÞ½1þ χpuð−1Þl1þl2þl3þl4 �

×
h
δu;XYZWK Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3ÞΘl4ðb4Þ þ 7 perms:

i
þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ: ð76Þ

11Whilst one could extend the techniques of this work to higher-point correlators still, this would be somewhat academic since, if the
likelihood is quasi-Gaussian, there is a strong descending hierarchy of information content in the N-point correlators. Quadspectra and
beyond are similarly of little use for inflationary studies, since they are sourced only by three-particle interactions or higher loops. In the
nonlinear regime, higher-order correlators can dominate; however, the N-point correlations functions are perturbative statistics at heart,
and thus far from optimal summary statistics in this setting.
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Taking the derivative with respect to the trispectrum components and inserting into the estimator numerator yields

½F 4 t̂�uχðb; BÞ ¼ τ̂uχ ½d; d; d; d�ðb; BÞ −
h
hτ̂uχ ½d; d; α;α�ðb; BÞiα þ 5 perms:

i
þ
h
hτ̂uχ ½αð1Þ; αð1Þ; αð2Þ; αð2Þ�ðb; BÞiα þ 2 perms:

i
τ̂uχ ½α; β; γ; δ�ðb; BÞ ¼

1

2Δu
4ðbÞ

X
limi

X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ΘLðBÞBu1
l1
Bu2
l2
Bu3
l3
Bu4
l4
½1þ χpuð−1Þl1þl2þl3þl4 �

× Θl1ðb1ÞΘl2ðb2ÞΘl3
ðb3ÞΘl4ðb4Þ½R†WS−1α�u1�l1m1

½R†WS−1β�u2�l2m2
½R†WS−1γ�u3�l3m3

½R†WS−1δ�u4�l4m4
;

ð77Þ
replacing the map-space integrals by harmonic transforms and absorbing the permutations by symmetry. This factorizes into
two terms, linked only by L, M,

τ̂uχ ½α; β; γ; δ�ðb; BÞ ¼
1

2Δu
4ðbÞ

X
LM

ð−1ÞMΘLðBÞ

×
n
Au1u2
b1b2

½α; β�ðL;−MÞAu3u4
b3b4

½γ; δ�ðL;MÞ þ ðχpuÞĀu1u2
b1b2

½α; β�ðL;−MÞĀu3u4
b3b4

½γ; δ�ðL;MÞ
o

ð78Þ

defining the harmonic space maps

Au1u2
b1b2

½α; β�ðL;MÞ ¼
X

l1l2m1m2

wLM
l1l2m1m2

Θl1ðb1ÞΘl2ðb2ÞBu1
l1
Bu2
l2
½R†WS−1α�u1�l1m1

½R†WS−1β�u2�l2m2

Āu1u2
b1b2

½α; β�ðL;MÞ ¼
X

l1l2m1m2

ð−1Þl1þl2þLwLM
l1l2m1m2

Θl1ðb1ÞΘl2ðb2ÞBu1
l1
Bu2
l2
½R†WS−1α�u1�l1m1

½R†WS−1β�u2�l2m2
: ð79Þ

This is a consequence of parametrizing the tetrahedron by sides and diagonals, which splits the shape up into two triangles
with a shared diagonal. These have the symmetry property

½Au1u2
b1b2

½α; β�ðL;MÞ�� ¼ ð−1ÞMĀu1u2
b1b2

½α; β�ðL;−MÞ; ð80Þ
implying that the τ̂ estimator can be rewritten as

τ̂uþ½α; β; γ; δ�ðb; BÞ ¼
1

2Δu
4ðbÞ

X
LM≥0

ð1þ δKM>0ÞΘLðBÞRe
n�

Āu1u2
b1b2

½α; β�ðL;MÞ
��
Au3u4
b3b4

½γ; δ�ðL;MÞ

þ
�
Āu3u4
b3b4

½γ; δ�ðL;MÞ
��
Au1u2
b1b2

½α; β�ðL;MÞ
o
;

τ̂u−½α; β; γ; δ�ðb; BÞ ¼
i

Δu
4ðbÞ

X
LM≥0

ð1þ δKM>0ÞΘLðBÞIm
n�

Āu1u2
b1b2

½α; β�ðL;MÞ
��
Au3u4
b3b4

½γ; δ�ðL;MÞ

þ
�
Āu3u4
b3b4

½γ; δ�ðL;MÞ
��
Au1u2
b1b2

½α; β�ðL;MÞ
o
; ð81Þ

which is considerably simpler to implement, involving only modes with M ≥ 0 (i.e., those stored by HEALPix).
Next, we insert the integral forms of the trispectrum weights given in (22), yielding

Au1u2
b1b2

½α; β�ðL;MÞ ¼
Z

dn̂−2YLMðn̂Þþ1H
u1 ½α�ðn̂; b1Þþ1H

u2 ½β�ðn̂;b2Þ

¼
�Z

dn̂−2Y
�
LMðn̂Þ−1Hu1 ½α�ðn̂; b1Þ−1Hu2 ½β�ðn̂; b2Þ

��
;

Āu1u2
b1b2

½α; β�ðL;MÞ ¼ ð−1ÞL
Z

dn̂−2YLMðn̂Þþ1H̄
u1 ½α�ðn̂;b1Þþ1H̄

u2 ½β�ðn̂; b2Þ

¼
�Z

dn̂þ2Y
�
LMðn̂Þþ1H

u1 ½α�ðn̂; b1Þþ1H
u2 ½β�ðn̂; b2Þ

��
; ð82Þ
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in terms of the H maps of (56) using the symmetry
properties of (57). Despite the chain of definitions, this
form is straightforward to implement in Oð3NitNpixÞ
operations via the following prescription:
(1) Draw two GRFs αð1Þ and αð2Þ from the (close-to) true

covariance C.
(2) Filter both α and the data d by the weighting scheme

and the mask to form WS−1d, WS−1α maps, then
use a spherical harmonic transform to compute
R†WS−1d and R†WS−1α, as before.

(3) Compute the �1H
X maps for each bin of interest

with X∈ fT; E; Bg via a further spin-weighted
spherical harmonic transform.

(4) Compute AðL;MÞ and ĀðL;MÞ harmonic-space
maps for each pair of bins and fields.

(5) Combine these pairwise to form both τ½d; d; α; α�
and τ½αð1Þ; αð1Þ; αð2Þ; αð2Þ� and their permutations.

(6) Iterate over Nit=2 pairs of random fields to form the
Monte Carlo average and use this to assemble the
estimator numerator.

B. Normalization

Finally, we consider the trispectrum Fisher matrix, which
is computed similarly to the bispectrum piece. As before,
we start by prudent introduction of the identity matrix in the
following manner:

S−1
i2j2

S−1
i3j3

S−1
i4j4

þ 5 perms: ¼ S−1
i2i02

S−1
i3i03

S−1
i4i04

×
h
Ai0

2
j0
2
Ai0

3
j0
3
Ai0

4
j0
4
þ 5 perms:

i
× A−1

j0
2
j2
A−1
j0
3
j3
A−1
j0
4
j4
; ð83Þ

where the permutations contribute equivalently to the Fisher matrix due to index interchange symmetry. Introducing two set
of random fields αð1Þ; αð2Þ, we can rewrite this as

S−1
i2j2

S−1
i3j3

S−1
i4j4

þ 5 perms: ¼ 1

8
S−1
i2i02

S−1
i3i03

S−1
i4i04

×
D�

að1Þi0
2
að1Þi0

3
að1Þi0

4
að1Þ�j0

2
að1Þ�j0

3
að1Þ�j0

4
þ að2Þi0

2
að2Þi0

3
að2Þi0

4
að2Þ�j0

2
að2Þ�j0

3
að2Þ�j0

4

�
þ 9

�
að1Þi0

2
að1Þi0

3
að2Þi0

4
að1Þ�j0

2
að1Þ�j0

3
að2Þ�j0

4
þ að1Þi0

2
að2Þi0

3
að2Þi0

4
að1Þ�j0

2
að2Þ�j0

3
að2Þ�j0

4

�
− 6

�
að1Þi0

2
að1Þi0

3
að1Þi0

4
að1Þ�j0

2
að2Þ�j0

3
að2Þ�j0

4
þ að2Þi0

2
að2Þi0

3
að2Þi0

4
að1Þ�j0

2
að1Þ�j0

3
að2Þ�j0

4

�E
a
× A−1

j0
2
j2
A−1
j0
3
j3
A−1
j0
4
j4
; ð84Þ

which makes most efficient use of the pairs of simulations, as discussed in [47]. This allows the Fisher matrix to be written
in the form:

F uu0
4;χχ0 ðb; B;b0; B0Þ ¼ 1

48

h�
Fuu0;111;111
4;χχ0 ðb; B;b0; B0Þ þ Fuu0;222;222

4;χχ0 ðb; B;b0; B0Þ
�

þ 9
�
Fuu0;112;112
4;χχ0 ðb; B;b0; B0Þ þ Fuu0;122;122

4;χχ0 ðb; B;b0; B0Þ
�

− 6
�
Fuu0;111;122
4;χχ0 ðb; B;b0; B0Þ þ Fuu0;222;112

4;χχ0 ðb; B;b0; B0Þ
�i

Fuu0;abc;def
4;χχ0 ðb; B;b0; B0Þ ¼ 1

4!

*
∂

D
d̃i1 � � � d̃i4

E�

∂tuχðb; BÞ
S−1
i1j1

½S−1aðaÞ�i2 ½S−1aðbÞ�i3 ½S−1aðcÞ�i4

× ½A−1aðdÞ��j2 ½A−1aðeÞ��j3 ½A−1aðfÞ��j4
∂

D
d̃j1 � � � d̃j4

E
∂tu

0
χ0 ðb0; B0Þ

+�

a

¼ 1

4!

D�
Qu

4;χ ½S−1aðaÞ;S−1aðbÞ;S−1aðcÞ�ðb; BÞ
��

· ½WS−1W�

·
�
Qu0

4;χ0 ½A−1aðdÞ;A−1aðeÞ;A−1aðfÞ�ðb0; B0Þ
�E�

a
; ð85Þ

with the derivative maps

Qu
4;χ;i½x; y; z�ðb; BÞ ¼

∂hdidjdkdli
∂tuχðb; BÞ

½Wx��j ½Wy��k½Wz��l : ð86Þ

Given theQ4 maps, the Fisher matrix can thus be computed as an inner product (though we caution that there will be a large
number of components, unless the binning is very coarse).
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Inserting the binned trispectrum definition (31), the derivative maps take the explicit form in harmonic space

s1Q
u
4;χ;l1m1

½x; y; z�ðb; BÞ ¼ 1

2Δu
4ðbÞ

X
limiXi

s1RX1

X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ΘLðBÞBX1

l1
BX2

l2
BX3

l3
BX4

l4

× ½1þ χpuð−1Þl1þl2þl3þl4 �
h
δu;X1X2X3X4

K Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3ÞΘl4
ðb4Þ þ 7 perms:

i
× ½R†Wx�X2�

l2m2
½R†Wy�X3�

l3m3
½R†Wz�X4�

l4m4
þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ: ð87Þ

To simplify these further, we can replace the second trispectrum weight by its integral representation and rearrange, finding

s1Q
u
4;χ;l1m1

½x; y; z�ðb; BÞ ¼
�Θl1ðb1ÞBu1

l1

2Δu
4ðbÞ s1Ru1

X
l2m2LM

ð−1ÞMwLð−MÞ
l1l2m1m2

ΘLðBÞΘl2ðb2ÞBu2
l2
½R†Wx�u2�l2m2

×
h
Au3u4
b3b4

½y; z�ðL;MÞ þ χpuð−1Þl1þl2þLĀu3u4
b3b4

½y; z�ðL;MÞ
i

þ 7 perms:

�
þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ; ð88Þ

in terms of the A functions of (79). Replacing also the first weighting function yields

s1Q
u
4;χ;l1m1

½x; y; z�ðb; BÞ ¼
�Θl1ðb1ÞBu1

l1

2Δu
4ðbÞ s1Ru1

Z
dn̂

n
þ1
Yl1m1

ðn̂Þþ1H
u2 ½x�ðn̂; b2Þ−2Au3u4

b3b4
½y; z�ðn̂;BÞ

þ ðχpuÞ−1Yl1m1
ðn̂Þ−1Hu2 ½x�ðn̂; b2Þþ2A

u3u4
b3b4

½y; z�ðn̂;BÞ
o

þ 7 perms:

�
þ ðx ↔ yÞ þ ðx ↔ zÞ; ð89Þ

invoking the A symmetry given in (80), noting that sH̄X½x�ð−n̂; bÞ ¼−s HX½x�ðn̂; bÞ, and defining the spin-�2 maps

þ2A
u3u4
b3b4

½y; z�ðn̂;BÞ ¼
X
LM

ΘLðBÞþ2YLMðn̂ÞAu3u4�
b3b4

½y; z�ðL;MÞ;

−2A
u3u4
b3b4

½y; z�ðn̂;BÞ ¼
X
LM

ΘLðBÞ−2YLMðn̂ÞĀu3u4�
b3b4

½y; z�ðL;MÞ; ð90Þ

(noting the complex conjugates). Here, the eight permutations in (89) are over pairs of bins and fields, preserving the
ðb1; b2Þ and ðb3; b4Þ pairings. Finally, we can simplify a little further using the above symmetries to yield the T=E=B-space
representation,

Qu;X
4;χ;l1m1

½x; y; z�ðb; BÞ ¼ −
�Θl1ðb1ÞBu1

l1

2Δu
4ðbÞ

δu1XK

Z
dn̂

n
þ1
Y�
l1m1

ðn̂Þ−1Hu2 ½x�ðn̂; b2Þþ2A
u3u4
b3b4

½y; z�ðn̂;BÞ

þ ðχpuÞ−1Y�
l1m1

ðn̂Þþ1H
u2 ½x�ðn̂;b2Þ−2Au3u4

b3b4
½y; z�ðn̂;BÞ

o� þ 7 perms:

�
þ ðx ↔ yÞ þ ðx ↔ zÞ; ð91Þ

analogous to the Q3 form of (65). This can be computed as a further harmonic transform, noting that
ðQu;X

4;χ;l1m1
Þ� ¼ ðχpuÞð−1Þm1Qu;X

4;χ;l1ð−m1Þ, thus Q4 consists of three real fields in map space, once we take the imaginary

part of any parity-odd correlators.
Given the above manipulations, our route to computing the full Fisher matrix in Oð3NpixNitÞ operations becomes:
(1) Generate random fields að1Þ and að2Þ from the fiducial covariance A (which should be close to C for efficient

convergence).
(2) Compute the ½R†WS−1a� and ½R†WA−1a� fields via harmonic transforms for both random fields.
(3) Compute �1H for each field and bin of interest via a harmonic transform.
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(4) Perform a second harmonic transform to compute A and Ā for each pair of bins and fields, then transform to þ2A and

−2Ā, as a function of the diagonal B.
(5) Perform another transform to compute sQ in harmonic space, weight by the bin, and (if the mask is nontrivial),

transform to real space.
(6) Compute the Fisher matrix by performing an inner product for each pair of spectra in real or harmonic space.
(7) Assemble the Monte Carlo average by summing over Nit realizations of the above procedure.

The above is computationally demanding, due to the large number of chained harmonic transforms. However, it is not
infeasible (as demonstrated in Sec. VII), and not parametrically harder than the scalar case, with the principal added
complication coming from the significantly larger number of fields in question.

C. Ideal limits

We now consider the limiting form of the trispectrum estimator in ideal settings. We caution that the resulting form for the
normalization is not efficient computationally; a faster numerical approach is to use theMonte Carlo procedures of Sec. VI B.

1. Numerator

Akin to before, we begin by writing the numerator explicitly in T=E=B harmonic space in ideal conditions,

½F 4 t̂�uχðb; BÞ →
1

4!

X
limiXi

∂

D
dX1

l1m1
dX2

l2m2
dX3

l3m3
dX4

l4m4

E
∂tuχðb; BÞ

�
hX1

l1m1
hX2

l2m2
hX3

l3m3
hX4

l4m4

−
h
hX1

l1m1
hX2

l2m2
ð−1Þm4δKl3l4

δKm3ð−m4ÞC
−1;X3X4

l3
þ 5 perms:

i
þ
h
ð−1Þm2þm4δKl1l2δ

K
l3l4

δKm1ð−m2Þδ
K
m3ð−m4ÞC

−1;X1X2

l1
C−1;X3X4

l3
þ 2 perms:

i��
; ð92Þ

where we have evaluated the expectations analytically. After inserting the binned trispectrum definition, the first piece,
involving four fields, takes the explicit form

½F 4t̂�uχðb; BÞj4−field →
χpu

Δu
4ðbÞ

X
LM

ΘLðBÞð−1ÞM
� X

l1l2m1m2

Θl1ðb1ÞΘl2ðb2ÞwLð−MÞ
l1l2m1m2

hu1l1m1
hu2l2m2

�
×

� X
l3l4m3m4

Θl3ðb3ÞΘl4ðb4ÞwLM
l3l4m3m4

hu3l3m3
hu4l4m4

�
; ð93Þ

with the additional parity restriction that ð−1Þl1þl2þl3þl4 ¼ χpu Practically, this can be computed analogously to the
nonideal case (Sec. VI A) with

½F 4t̂�uχðb; BÞj4−field →
1

2Δu
4ðbÞ

X
LM

ð−1ÞMΘLðBÞ

×
n
Au1u2
b1b2

½d; d�ðL;−MÞAu3u4
b3b4

½d; d�ðL;MÞ þ ðχpuÞĀu1u2
b1b2

½d; d�ðL;−MÞĀu3u4
b3b4

½d; d�ðL;MÞ
o
; ð94Þ

where A and Ā are defined as before. This can be written as a real or imaginary part as in (81).
For the term involving two fields, we proceed similarly, but note that we can use the following relation to simplify themi

summation, given the Kronecker deltas and 3j symbols in the weights:

X
m3m4M

ð−1ÞM
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

�
ð−1Þm4δKm3ð−m4Þδ

K
l3l4

¼ ð−1Þl1þl3−m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l3 þ 1

2l1 þ 1

s
δKL0δ

K
l1l2

δKl3l4δ
K
m1ð−m2Þ;

X
m2m4M

ð−1ÞM
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

�
ð−1Þm4δKm2ð−m4Þ ¼ δKl1l3δ

K
l2l4

δKm1ð−m3Þ
ð−1Þl2þl3þL−m1

2l1 þ 1
; ð95Þ

assuming triangle conditions to be obeyed in both cases. Importantly, terms of the first form cannot contribute, since the
weights vanish for L ¼ 0. The two-field term can thus be written
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½F 4t̂�uχðb; BÞj2−field → −
χpu

Δu
4ðbÞ

X
LM

ΘLðBÞð−1ÞM
� X

l1l2m1m2

Θl1ðb1ÞΘl2ðb2ÞwLð−MÞ
l1l2m1m2

�� X
l3l4m3m4

Θl3ðb3ÞΘl4ðb4ÞwLM
l3l4m3m4

�
×
h
hhu1l1m1

hu3l3m3
ihu2l2m2

hu4l4m4
þ 3 perms:

i
; ð96Þ

where ð−1Þl1þl2þl3þl4 ¼ χpu and the remaining permutations contract the pairs 2–4, 1–4, and 2–3. Inserting the second
relation of (96) and simplifying, we find the simplified two-field term,

½F 4 t̂�uχðb; BÞj2−field → −
δKχpu;1

Δu
4ðbÞ

X
L

ΘLðBÞΘl1ðb1ÞΘl2ðb2Þ
�
l1 l2 L

−1 −1 2

�
2 ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

× ð−1Þl1þl2þL

�
δKb1b3δ

K
b2b4

h
C−1;u1u3
l1

ðdC−1
l2
Þu2u4 þ ðdC−1

l1
Þu1u3C−1;u2u4

l2

i
þ δKb1b4δ

K
b2b3

h
C−1;u1u4
l1

ðdC−1
l2
Þu2u3 þ ðdC−1

l1
Þu1u4C−1;u2u3

l2

i�
; ð97Þ

introducing the empirical power spectrum estimates

ðdC−1
l Þuu

0
¼

P
mð−1Þmhulmhu

0
lð−mÞ

2lþ 1
≡

P
mh

u
lmh

u0�
lm

2lþ 1
: ð98Þ

Finally, the zero-field term is simply obtained as ð−1=2Þ the expectation of the two-field term, yielding

½F 4 t̂�uχðb; BÞj0−field →
δKχpu;1

Δu
4ðbÞ

X
L

ΘLðBÞΘl1ðb1ÞΘl2ðb2Þ
�
l1 l2 L

−1 −1 2

�
2 ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

× ð−1Þl1þl2þL
�
δKb1b3δ

K
b2b4

C−1;u1u3
l1

C−1;u2u4
l2

þ δKb1b4δ
K
b2b3

C−1;u1u4
l1

C−1;u2u3
l2

�
; ð99Þ

As expected, the two- and zero-field parts of the estimator just involve the (Wiener filtered) power spectra, with weightings
appropriate to the binning scheme. These terms generically vanish due to the requirement that χpu ¼ ð−1Þl1þl2þl3þl4 → 1;
as such, they contribute only to parity-even terms if there are an even number of B-modes in the spectrum, and parity-odd
terms else. Under the additional assumption of parity-conserving power spectra, we find that the disconnected terms are
important only for parity-even physics (χ ¼ 1) in spectra with pu ¼ 1 (e.g., TTTE, EBEB, etc.).

2. Normalization

We now turn to the Fisher matrix, which can be written explicitly in harmonic T=E=B space as

F uu0
4;χχ0 ðb; B;b0; B0Þ → 1

4!

X
limiXiX0

i

264∂
D
dX1

l1m1
� � � dX4

l4m4

E�

∂tuχðb; BÞ
C
−1;X1X0

1

l1
� � �C−1;X4X0

4

l4

∂

D
d
X0
1

l1m1
� � � dX0

4

l4m4

E
∂tu

0
χ0 ðb0; B0Þ

375
�

; ð100Þ

just as for the bispectrum. To proceed, we insert the reduced trispectrum definition and simplify via the following 3j
relations:

X
m1m2m3m4MM0

ð−1ÞMþM0
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

��
l1 l2 L0

m1 m2 −M0

��
l3 l4 L0

m3 m4 M0

�
¼ δKLL0

2Lþ1
;

X
m1m2m3m4MM0

ð−1ÞMþM0
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

��
l1 l3 L0

m1 m3 −M0

��
l2 l4 L0

m2 m4 M0

�
¼ð−1Þl2þl3

�
L l1 l2

L0 l4 l3

�
;

X
m1m2m3m4MM0

ð−1ÞMþM0
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

��
l1 l4 L0

m1 m4 −M0

��
l3 l2 L0

m3 m2 M0

�
¼ð−1ÞLþL0

�
L l1 l2

L0 l3 l4

�
; ð101Þ
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cf., [52], which cover the three nontrivial permutations in the trispectrum definition (21). The Fisher matrix can thus be
written as a sum of three parts, the first of which involves the first line of (101) and is thus diagonal in B, B0:

F uu0
4;χχ0 ðb; B;b0; B0Þj

I
→ δKBB0

ðχpuÞδKχpu;χ0pu0

Δu
4ðbÞΔu0

4 ðb0Þ
X
liL

Θl1ðb1Þ � � �Θl4ðb4ÞΘLðBÞ
ð2l1 þ 1Þ � � � ð2l4 þ 1Þð2Lþ 1Þ

ð4πÞ2

×

�
l1 l2 L

−1 −1 2

�
2
�
l3 l4 L

−1 −1 2

�
2h
C
−1;u1u01
l1

� � �C−1;u4u04
l4

δKb1b01
� � � δKb4b04 þ 7 perms:

i
; ð102Þ

where we have additionally inserted the binned trispectrum definition and asserted that ð−1Þl1þl2þl3þl4 ¼ χpu ¼ χ0pu0 .
Here, the permutations are those that preserve the 1–2, 3–4 pairings.
The second and third parts of the Fisher matrix are similar, but are not diagonal in L, L0, due to the 6j symbols present in

(101). This implies that they mix different binned components (as in the scalar scale), though wewill find that b and b0 must
always be permutations of each other. The second part takes the explicit form,

F uu0
4;χχ0 ðb; B;b0; B0Þ


II
→

ðχpuÞδKχpu;χ0pu0

Δu
4ðbÞΔu0

4 ðb0Þ
X
liLL0

Θl1ðb1Þ � � �Θl4
ðb4ÞΘLðBÞΘL0 ðB0Þ ð2l1 þ 1Þ � � � ð2l4 þ 1Þð2Lþ 1Þð2L0 þ 1Þ

ð4πÞ2

×

�
l1 l2 L

−1 −1 2

��
l3 l4 L

−1 −1 2

��
l1 l3 L0

−1 −1 2

��
l2 l4 L0

−1 −1 2

�
ð−1Þl2þl3

�
Ll1l2

L0l4l3

�
×
h
C
−1;u1u01
l1

C
−1;u2u03
l1

C
−1;u3u02
l1

C
−1;u4u04
l4

δKb1b01
δKb2b03

δKb3b02
δKb4b04

þ 7 perms:
i
; ð103Þ

with permutations exchanging, e.g., b01 ↔ b02, again asserting ð−1Þl1þl2þl3þl4 ¼ χpu ¼ χ0pu0 . Finally, the third
contribution is given by

F uu0
4;χχ0 ðb; B;b0; B0Þj

III
→

ðχpuÞδKχpu;χ0pu0

Δu
4ðbÞΔu0

4 ðb0Þ
X
liLL0

Θl1
ðb1Þ � � �Θl4ðb4ÞΘLðBÞΘL0 ðB0Þ ð2l1 þ 1Þ � � � ð2l4 þ 1Þð2Lþ 1Þð2L0 þ 1Þ

ð4πÞ2

×

�
l1 l2 L

−1 −1 2

��
l3 l4 L

−1 −1 2

��
l1 l4 L0

−1 −1 2

��
l3 l2 L0

−1 −1 2

�
ð−1ÞLþL0

�
L l1 l2

L0 l3 l4

�
×
h
C
−1;u1u01
l1

C
−1;u2u04
l1

C
−1;u3u03
l1

C
−1;u4u02
l4

δKb1b01
δKb2b04

δKb3b03
δKb4b02

þ 7 perms:
i
: ð104Þ

As for the bispectrum, F 4 encodes correlations between
different trispectra composed of different fields, though
requires χpu ¼ χ0pu0 , and, if the power spectra are parity-
even, pu ¼ pu0 . The correlations betweenB0 ≠ B imply that
the Fisher matrix (and thus the covariance of the estimator)
have a complex structure. This arises from a geometric
degeneracy in the tetrahedron definition, since a tetrahedron
on the two-sphere can be parametrized by either of two
diagonals. This additionally makes the ideal Fisher matrix
more work to implement, strictly requiring Oðl6

maxÞ oper-
ations. For this reason, the Monte Carlo procedure outlined
in Sec. VI B is usually preferred in practice.

VII. VALIDATION

We now validate the power spectrum, bispectrum, and
trispectrum algorithms derived above. All estimators are
implemented in the publicly available PolyBin package,12 the

scalar version of which was described in [52]. The
estimators make extensive use of the HEALPix [70] and
LIBSHARP [71] codes to manipulate data on the two-sphere
and perform spin-weighted spherical harmonic transforms.
Alongside the addition of tensor fields, the code has been
extensively written since its genesis in [52], optimizing for
both CPU and memory efficiency, in part by careful
avoidance of any unnecessary harmonic transforms (for
example, if the mask is uniform). The scalar part of the new
code has been explicitly tested against the old, to ensure
calculations are consistent to machine precision, where
appropriate.13 In the code (and in the plots below), we take
the imaginary parts of any parity-breaking bispectrum and
trispectrum such that the outputs are explicitly real.

12GitHub.com/OliverPhilcox/PolyBin.

13Note that we use a different weighting convention for
bispectra in this work to allow for parity-odd contributions, thus
the bispectrum outputs differ by the appropriately averaged ratio
of the two weights.
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A. Setup

We first present an overview of our testing methodology.
To validate the estimators, we use simulated Gaussian
realizations of the T, Q, and U polarized CMB maps via
HEALPix’s synalm routine [70], with input lensed power
spectra derived from the CLASS code [72], at thePlanck 2018
cosmology [8], and noise via the standard prescription of
[73].We additionally include a parity-breaking signal via the
correlation coefficients rTB ¼ rEB ¼ 0.5; this facilitates
testing of the parity-odd power spectrum sector and covari-
ance matrices. All fields are generated at the desired testing
resolution, here set toNside ¼ 256 for fast computation, thus
we do not require pixel window functions, and we addi-
tionally ignore any harmonic space beam. For the window,
we utilize the Planck GAL040 mask with 2° apodization
[74], which masks all but ≈34% of the sky, practically
removing the majority of power at l≲ 5.14 When
Monte Carlo simulations are required, these are generated
analogously to themockdata,withNit ¼ 100 iterations used
by default. Whilst our testing suite is principally focused on
CMB applications, we stress that it applies also to any other
spin-0/spin-2 fields on the sphere, such as cosmic shear and
its correlation with galaxy overdensity.
An important ingredient of the estimators is the weight-

ing function S−1. As noted in Sec. III, the optimal choice is
S−1 ¼ C−1, i.e., the inverse pixel covariance. Here, we
shall ignore the impact of the mask (noting that this is unity
in the unmasked regions, ignoring apodization), and fix

S−1 to be the diagonal-in-l inverse harmonic-space covari-
ance C−1

l , including the cross-covariances between all
fields. As we see below, this is approximately optimal in
practice for l≳ 5.
When testing the three-point estimators, it is useful to

generate simulations with a known bispectrum, rather than
restricting to GRFs. For this purpose, we generate random
maps, alm, via a procedure similar to [46,48], with the
T=E=B-space redefinition

aXlm → aXlm þ
X

l2l3m2m3YZ

1

6
wll2l3
mm2m3

bXYZll2l3
hY�l2m2

hZ�l3m3
: ð105Þ

Here, wl1l2l3
m1m2m3

is the bispectrum weighting function given
in §II, hXlm ≡ ½C−1

l a�Xlm is the inverse-covariance-weighted
field and bXYZl1l2l3

is the desired bispectrum. At first order in
bXYZ, this satisfies

haXl1m1
aYl2m2

aZl3m3
i ¼ wl1l2l3

m1m2m3
bXYZl1l2l3

; ð106Þ

as desired, though we note that higher-order corrections
may be important if bXYZ is large; furthermore, the
power spectrum is distorted by an amount proportional
to ðbXYZÞ2. If one assumes a separable bispectrum,
bXYZl1l2l3

¼ βXl1β
Y
l2
βZl3 , this can be practically implemented

as a real-space integral,

aXlm → aXlm þ 1

18
βXl

Z
dn̂½−1Oðn̂Þ−1Oðn̂Þ−2Y�

lmðn̂Þ − 2−1Oðn̂Þþ2Oðn̂Þþ1Y
�
lmðn̂Þ�; ð107Þ

defining

sOðn̂Þ ¼
X
lmX

βXlh
X
lmsYlmðn̂Þ; ð108Þ

making use of the aforementioned conjugate properties. As before, this can be evaluated via spin-weighted spherical harmonic
transforms.Wemay additionally insert a factor of ½1� puð−1Þl1þl2þl3 �=2 in order to inject input spectra of only a single parity.
In general, our estimators return measurements of the binned polyspectra, which, for comparison to theory, should be

connected to the unbinned models.15 For completeness, we list these relations below, derived by taking expectations of the
ideal estimator and inserting the unbinned polyspectrum definitions given in Sec. II. Firstly, the power spectrum becomes

½F−1
2 C�th;uðbÞ ¼ 1

Δu
2

X
l

ΘlðbÞð2lþ 1Þ
X
u0
S
−1;u1u01
l S

−1;u2u02
l Cth;u0

l

F th;uu0
2 ðbÞ ¼ 1

Δu
2Δu0

2

X
l

ΘlðbÞð2lþ 1Þ
h
S
−1;u1u01
l S

−1;u2u02
l þ S

−1;u1u02
l S

−1;u2u01
l

i
; ð109Þ

14As discussed in [60], an alternative approach is to include the mask only in the weighting function S−1, setting the window, W, to
unity elsewhere in the algorithm. This may be preferable for complex masks containing an abundance of holes, and leads to somewhat
expedited computation.

15A simple approximation is to evaluate the relevant theory polyspectrum in the bin center; this will often suffice in practice if the bins
are relatively thin.
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withCth;uðbÞ → Cth;u
l in the narrow-bin limit. Notably, the sum over u0 in the first line is over all pairs of fields, not just those

in (9), since we have not inserted the binned definition; this additionally leads to the permutations in the second line
of (109). For the bispectrum, we find

½F−1
3 b�th;uχ ðbÞ ¼ 1

9

χpu

Δu
3ðbÞΔu0

3 ðb0Þ
X
l1l2l3

Θl1ðb1ÞΘl2
ðb2ÞΘl3ðb3Þ

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

��
l1 l2 l3

−1 −1 2

�
þ 2 cyc:

�
2

×
X
u0
S
−1;u1u01
l1

S
−1;u2u02
l2

S
−1;u3u03
l3

bth;u
0

l1l2l3
;

F th;uu0
3;χχ0 ðb;b0Þ ¼ 1

9

χpuδ
χpu;χ0pu0
K

Δu
3ðbÞΔu0

3 ðb0Þ
X
l1l2l3

Θl1ðb01ÞΘl2
ðb02ÞΘl3ðb03Þ

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

��
l1 l2 l3

−1 −1 2

�
þ 2 cyc:

�
2

×
h
S
−1;u1u01
l1

S
−1;u2u02
l2

S
−1;u3u03
l3

δKb1b01
δKb2b02

δKb3b03
þ 5 perms:

i
; ð110Þ

where we restrict to triplets with ð−1Þl1þl2þl3 ¼ χpu, and the u0 summation is taken over all triplets of fields. As before, this

has the thin-bin limit bth;u → bth;ul1l2l3
. Finally, the binned trispectrum takes the form (cf., [52,60] for scalars)

½F 4 t̂�th;uχ ðb; BÞ ¼ 8
χpu

Δu
4ðbÞ

X
liL
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� � � S−1;u4u04l4
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i
; ð111Þ

summing over all quadruplets of fieldsu0, with the additional
parity restriction that ð−1Þl1þl2þl3þl4 ¼ χpu. Here, we
have assumed that the off-diagonal terms in the Fisher
matrix (whichmixL andL0) are subdominant Sec.VI C). As
noted in [38], when applied to real data, these relations are
not quite exact, since the true expectation of the estimator
includes the variation of the mask across the bins in the
numerator and denominator. For higher-order statistics, such
corrections are small and can generally be ignored.

B. Power spectrum

To test the two-point estimators, we compute the
binned power spectrum multipoles over an array of 40

regularly-spaced bins between l ¼ 2 and l ¼ 402, for all
six nontrivial combinations of T, E, and B, giving a total of
Nbin ¼ 240 components. This is performed with and with-
out the Planck sky mask; in each case, we compute both the
Fisher matrix, F 2, and the estimator numerators, via the
unwindowed prescription and the ideal limits.
In Table I, we list the runtime of the optimal and ideal

estimators. Both with and without the mask function, this is
dominated by computation of the Fisher matrix, which
must be estimated for each pair of bins and fields from a
suite of Nit GRF realizations. In the presence of a nontrivial
window, this requires harmonic transforms for each
element, giving a total of 2 × 3 × Nbin × Nit (counting

TABLE I. Computation times for ideal and optimal power spectrum estimators, for Nside ¼ 256 and 40 bins with l∈ ½2; 402Þ. We
show results for both the estimator numerators and Fisher matrices, with the latter computed from Nit ¼ 100 Monte Carlo simulations.
Timings are given for both a uniform mask and a Planck sky mask; each example requires two harmonic transforms to define the
numerator (one for spin 0 and one for spin 2), with the latter requiring an additional ≈ 2000 transforms for each realization of the optimal
Fisher matrix. This occurs since each of the 240 elements of the map-space Q2 derivative is estimated via a reverse harmonic transform
(for both spins), then the S−1 weighting is applied, which requires a further transformation.

Mask Ideal Fisher (s) Optimal Fisher Ideal numerator (s) Optimal numerator (s)

Uniform 19 18 s × 100 1.6 1.6
Galactic 19 45 s × 100 1.6 1.6
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number of spins, number of transforms, number of bins,
and number of simulations). Whilst this may be somewhat
expensive for high-resolution maps, we stress that it need
be computed only once for a given survey geometry and
fiducial cosmology, i.e., it is independent of the data. For a
uniform mask, no harmonic transforms are needed since all
computations can be performed in T=E=B harmonic-space.
Computation of the estimator numerators is straightfor-
ward, requiring only pair of transforms to define the filtered
data, and subsequent harmonic-space summations in each
bin. For high-resolution maps at a given Nside, computation
of this part is essentially independent of Nbin (unlike for the
higher-point functions).

Figure 1 displays the output binned power spectrum
measurements from the PolyBin code against theoretical
expectations, all computed using a galactic mask.
For each of the six spectra considered, we find excellent
agreement between empirical and predicted spectra, both
for the unwindowed estimators and their ideal equivalents.
The last bin of the unwindowed estimators is somewhat
biased; this is as expected, since we do not correctly
account for mask-induced correlations between it
and the next bin. In practice, one would always compute
the spectrum across a slightly wider range of l-bins
than used in the final analysis, allowing such effects to
be nulled.

FIG. 1. Measured and theoretical power spectra from a suite of simulations, obtained using the unwindowed and idealized estimators
of this work implemented in PolyBin. Simulations are constructed using a Planck cosmology and noise model and a galactic-sky mask,
but include additional parity-odd correlations for testing. We show measurements from 1000 GRF simulations, with Fisher matrices
(needed for the unwindowed/optimal estimators) constructed from 100 Monte Carlo realizations. The top panels show the measured
spectra using the two estimators alongside the theoretical expectations, rescaled by lðlþ 1Þ=2π. In the bottom panel, we plot the
estimator errors (points) and the diagonal of the (unwindowed or ideal) Fisher matrix. For the ideal estimators, we rescale the means and
variances by factors of hW2i=hWi2 and hW4i=hW2i2 respectively, to account for the mask effects; this holds only approximately, thus the
ideal variances (green) may not precisely match their predictions. If the estimator is unbiased and optimal, the mean of the unwindowed
estimator mean will match theory, and the variance will match the inverse Fisher matrix; this is demonstrated in the above.
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Turning to the variances, the unwindowed results show
excellent agreement between the empirical variances and
the inverse Fisher matrix predictions. This indicates that
our estimators are (approximately) minimum-variance, and
thus optimal in the Gaussian regime. The idealized
estimators show fair agreement with their idealized
Fisher matrix predictions, though we note that this pre-
diction does not fully account for the spatial dependence of
the window, and is thus only approximate. As in [52], the
unwindowed estimators appear to have higher variances
than their idealized equivalents: this is due to an
anticorrelation between neighboring bins, and does not
lead to reduced signal-to-noise (i.e., it does not imply
suboptimality).
In Fig. 2, we show the correlation structure of the optimal

estimator, both theoretically (from the inverse Fisher
matrix) and empirically (from the simulation suite). As
before, we find excellent agreement, with no discernible
difference seen between the two matrices (except for noise).
We observe strong off-diagonal signals induced by physical
TE, TB, and EB correlations (with only the first expected
from conventional physics), whilst the effects of masking
lead to a leakage of power between adjacent bins, as
evidenced by the negative elements alongside the diagonal.
The similarity of both variances and correlations is an

important verfication of our estimator and its optimality.
Finally, we note that our results are stable to the choice of
hyperparameters; reducing to just Nit ¼ 10 Monte Carlo
iterations used to estimate the Fisher matrix yields an error
of ð0.0� 0.3Þσ across all bins, implying that our choice of
Nit ¼ 100 is conservative.

C. Bispectrum

As for the power spectrum, we validate the bispectrum
estimators by ensuring that (a) the mean of the estimators
matches the theoretical expectation, and (b) the variance is
close to the inverse Fisher matrix, i.e., the optimal limit. For
this purpose, we analyze simulations both with and without
an injected three-point function, noting that the estimators
are strictly minimum-variance only in the Gaussian limit.
For this test, we compute the bispectrum in Nl ¼ 9l-bins
equally spaced in l3=2 (chosen to evenly distribute any
primordial signal-to-noise [75]), with l∈ ½2; 440Þ.16 We
utilize the same binning for both squeezed and non-
squeezed triangles, though note that this is not required
by PolyBin; alternative choices may be preferred if one is
testing a model that peaks in squeezed configurations (such
as local-type primordial non-Gaussianity). In practice, we
drop the first bin after the full bispectrum is computed (thus
accounting for bin leakage), since this is heavily contami-
nated by the window function and generally non-Gaussian;
a similar procedure was used for the trispectrum in [60].
Gaussian simulations are generated as before, with non-
Gaussianity incorporated for even l1 þ l2 þ l3 via the
dimensionless factorized bispectrum bXYZl1l2l3

¼ βXl1β
Y
l2
βZl3 ,

with βTl ¼ ð2 × 10−6Þe−ðl−2Þ=40, βEl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CEE
l¼80=C

TT
l¼80

p
βTl ,

and βBl ¼ 0, set by initial testing to ensure a signal of
appropriate strength. We compute bispectra for all 20
combinations of fields and parities (cf., Sec. V), leading
to a total of Nbin ¼ 2140 bins (after dropping modes
with l < 5).
Before presenting the bispectrum results, it is useful to

understand their scalings by estimating the number of
spherical harmonic transforms involved in each part of
the estimator. The numerator requires 2 × 3 × Nl trans-
forms to define the �1H and �2H fields (one per spin, one
per field, and one per l-bin), then the three-field term is
evaluated using a real-space summation. When the one-
field term is included, this is enhanced by a factor of Nit,
yielding a total of ≈6NitNl transforms for the numerator.
For the Fisher matrix, each realization requires Nbin
harmonic transforms to form the Q3 arrays, which are
then combined in harmonic- or real-space, with the latter
requiring an additional set of transforms to apply the S−1

weighting and the mask. As such, the total Fisher matrix
scaling isOðNitNbinÞ, whilst the scaling of the numerator is

FIG. 2. Correlation matrices corresponding to the unwindowed
power spectrum measurements shown in Fig. 1. The lower-half
matrix shows the theoretical correlation obtained from the inverse
Fisher matrix, whilst the upper half shows that extracted from a
suite of 1000 mocks. Sub-boxes show correlations between
individual spectra, with l-bins stacked from lowest (top left)
to highest (bottom-right). We find excellent agreement between
theory and data, and observe off-diagonal correlations from both
couplings between different polarized components and the survey
mask.

16The exact bin edges are fixed to f2; 5; 30; 68; 114; 167;
227; 293; 364; 440g.
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OðNitNlÞ.17 Finally, we note that the computation of the
Fisher matrix may be practically limited by computational
memory limits rather than runtime. Each Monte Carlo
iteration requires Q3 to be computed in each bin, for two
random fields, and for two weightings (S−1 and A−1). After
this, the arrays are combined as an inner product, requiring
4Nbin maps to be held in memory. For Nside ¼ 256 and the
above binning configuration, this requires ≈120 GB of
memory, which is well within the reach of most clusters.18

For higher-resolution studies, one may wish to use wider
bins to reduce the memory consumption, or, in the most
restrictive limit, compute the inner product elementwise,
leading to an algorithm with quadratic complexity rather
than linear.
Computation times for the bispectrum estimator are

shown in Table II, when applied to both a Planck galactic
mask and a trivial uniform mask. With our choice of
binning, each Monte Carlo realization of the Fisher
matrices require ≈10–20 minutes to compute, with the
windowed computation taking longer due to the additional
harmonic transforms required. Due to our low Nside, the
transforms are not strongly rate-limiting; this is evidenced
by the nontrivial mask computations being only a factor of
two slower than the uniform case, despite involving ≈10×
more harmonic transforms. In this example, computing the
Fisher matrix via Monte Carlo summation is actually more
efficient than direct computation of the idealized form. The
latter involves an Oðl3

maxÞ summation, which took ≈10
hours on a 40-core machine. The estimator numerators are
fast to compute: the three-field term takes under a minute
per simulation (for all ∼2500 bins), whilst the one-field
correction multiplies this by a factor aroundNit ¼ 100. The
latter computation can be somewhat expedited by pre-
processing the Monte Carlo simulations and holding them

in memory (which itself required≈4minutes); if memory is
a limitation, this can be dropped, such that each simulation
is analyzed only as necessary. As discussed above, the
action of the one-field term is to reduce the variance only on
ultralarge scales and does not affect the mean; for studies
focussing on smaller scales, this contribution can be
dropped for significant computational gain. As such, the
fastest bispectrum estimator is the optimal form (with a
Monte Carlo Fisher matrix), but without the one-field term.
Figure 3 shows the bispectra measured with our pipeline,

averaged over 1000 realizations. We find excellent agree-
ment between theory and data for both types of estimator
across all fields and parities. This demonstrates that our
algorithm can correctly recover an injected bispectrum, i.e.,
it is unbiased. The various data points show a large dynamic
range; this is due to the large range of l (5 ≤ l < 440), and
the differences in amplitude between T, E, and B. We note
that some χpu ¼ −1 data points have very large scatter; this
corresponds to bins with b1 ¼ b2 ¼ b3, which have no
contribution from odd l1 þ l2 þ l3 in the thin-bin limit.
In Fig. 4, we display the empirical bispectrum variances

from GRF simulations (always including a Galactic mask).
We find excellent agreement between the empirical unwin-
dowed variances and the inverse Fisher predictions for all
correlators across a huge range of amplitudes; this implies
that our estimator is close to minimum variance, as
expected.19 As for the power spectrum, the ideal estimator
shows slightly reduced variances compared to the optimal
form; this is again sourced by an anticorrelation between
neighboring bins. These are relatively well modeled by the
ideal Fisher matrix (multiplied by hW6i=hW3i2 for mask
W), though exact agreement is not guaranteed in this case.
If one pushes to larger scales than plotted (l < 5), both
estimators become suboptimal; this occurs since the bis-
pectrum becomes mask dominated, thus our diagonal-
in-l S−1 weighting is far from the true inverse-pixel
covariance. In this regime, a more nuanced weighting,
for instance invoking conjugate-gradient-descent inversion,

TABLE II. Runtimes of the ideal and unwindowed bispectrum estimators, applied to every combination of fields and parities across
9 linear bins with l∈ ½2; 440Þ, giving 2448 bins (some of which are later dropped). The ideal estimator requires six harmonic transforms
for each linear bin (for the two spins, and three T=E=B maps), with the remaining computation involving only real-space summation;
however, the normalization requires an Oðl3

maxÞ sum, which takes an additional ≈10 hours to compute on a 40-core machine. The same
scaling holds for the three-field term of the optimal estimator; however, the one-field term requires the above transformations for each of
Nit ¼ 100Monte Carlo realizations (including permutations of data and fields), leading to the significantly larger computation time. For
the optimal Fisher matrix, we require around 4600 harmonic transforms per realization for a uniform mask (to define theQ3 derivatives);
this increases to around 54,000 for a nontrivial mask, since one must perform forward and reverse transforms to applyW toQ3, for both
its spin-0 and spin-2 components, and for two possible weightings.

Mask Ideal Fisher (h) Optimal Fisher Ideal numerator (s) Optimal numerator [3-field] (s) Optimal numerator [full] (m)

Uniform 10 770 s × 100 37 37 230
Galactic 10 1280 s × 100 36 36 158

17Note that the total number of bispectrum bins, Nbin, scales as
N3

l if one considers all possible triangle configurations.
18Note that the algorithm is constructed so as to reduce

memory requirements for all steps apart from the (irreducible)
Q3 maps, i.e., it minimizes storage and recomputation of
intermediate products.

19Repeating the exercise with a uniform mask finds exquisite
agreement in all bins, as expected.
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may be of use. Finally, we note that on these range of
scales, the one-field term has little effect; for more complex
masks, it may serve to reduce the large-scale variance,
particularly when coupled with an accurate estimate
of S−1.20

Figure 5 shows the structure of the (inverted) optimal
Fisher matrix, alongside the empirical correlations esti-
mated from the 1000 GRF simulations. We observe a
complex geometric structure coupled across bins and
fields; this arises from the power spectrum correlations
between T, E, and B (which break parity in our testing
suite). That this is far from diagonal implies that comput-
ing the polarized binned bispectra is nontrivial; the

results would be biased if one assumes a diagonal
normalization term (which is often the case in unpolarized
analyses e.g., [69]). If one zooms in sufficiently, a
complex structure within each submatrix becomes visible;
this is induced both by intrinsic correlations between
fields and the nonuniform mask. The latter effect
contributes at the ∼5% level (coupling adjacent bins),
but is significantly amplified if the bin width is reduced. In
all cases, the correlation structure is well-recovered from
the suite of simulations again validating our estimator.
Finally, we note that similar results can be obtained with
significantly fewer realizations used to create the Fisher
matrix; reducing from Nit ¼ 100 to Nit ¼ 10 changes the
measured bispectra by at most 0.007σ.

D. Trispectrum

Finally, we validate the trispectrum estimators. Our
procedure is essentially identical to that for the lower-order
statistics; we check both the mean and the variance of the
estimator using suites of simulations with and without a

FIG. 3. Measured and theoretical bispectra from a suite of masked simulations, measured using the unwindowed and idealized
estimators of this work. This figure is analogous to Fig. 1, but includes all ten nontrivial bispectrum field configurations and both parities
(indicated by the titles, with � indicating χ ¼ �1). In each subpanel, the bins are stacked in one dimension and increase in magnitude
from the left to the right of the figure. We show the mean bispectra measured from 1000 simulations from both types of estimators, and
compare this to the injected parity-even signal (red curve). We find that the theory is well-recovered in all relevant cases, with null results
seen in correlators for which is does not contribute. The errors strongly depend on the bin configuration, with particularly large values
seen if puχ ¼ −1 and all three bins are equal (since this term vanishes in the thin-bin limit).

20The utility of the one-field term depends also on the
contributions from various scales within each bin, and thus the
Gaunt factor weights wl1l2l3

m1m2m3
. Whilst this factors out for thin bins

with Δl ¼ 1, it may lead to some weighting schemes being
preferred in practice [such as the ðl1

0
l2

0
l3

0
Þweights used for parity-

even only analyses.]

OLIVER H. E. PHILCOX PHYS. REV. D 108, 063506 (2023)

063506-26



Galactic mask. To check for bias, we consider the indi-
vidual four-, two-, and zero-field terms in the estimator
explicitly rather than attempting to inject a trispectrum
directly; since the full estimator is the sum of these
components and the odd-parity estimator differs from the
even only by a factor of ð−1Þl1þl2þl3þl4 , this is a sufficient
test (and indeed, that used in [52]). To keep computation
times reasonable, we restrict to 4 l-bins evenly spaced in
l5=2, with lmin ¼ 2 and lmax ¼ 483,21 and use the same
binning for all legs, though note that PolyBin can use
different binning to highlight squeezed (large l2, l4)
and flattened (small L) configurations. As before, we drop
the first l-bin in the final analysis (after accounting for bin
leakage), since it is mask dominated, and our choice of S−1

weighting is far from optimal in this case. Here, we
consider both parities, but now restrict to field configura-
tions containing at most one B mode. This emulates
physical scenarios when one is interested in computing
scalar physics from T and E modes, but wishes to limit
E-to-B mode leakage at leading order. In total, we use

12 fields and 2 parities, giving a total of 820 bins in the
output data vector. Finally, we compute the ideal trispectra
only from 100 GRF simulations due to its large computa-
tional requirements (but use 1000 for the unwindowed
estimators). In all cases, we use 100 Monte Carlo realiza-
tions to compute the disconnected contributions.
The computational scalings of the trispectrum are akin to

those of the bispectrum. First, one computes the �1H maps,
requiring OðNlÞ harmonic transforms, then obtains the
AðL;MÞ fields, which scales as N2

l. The four-field term of
the trispectrum numerator is computed as a harmonic-space
summation, yielding an overall complexity of OðN2

lÞ. The
two- and zero-field terms require computation of H and A
for Nit=2 pairs of simulations, thus the final scaling is
OðNitN2

lÞ. This is slower than the bispectrum, but notably
much reduced compared to the total number of trispectrum
bins (which scales as N5

l). For the Fisher matrix, Q4

requires a harmonic transform for each A field and
L-bin (i.e., a total of ∼N3

l), then a harmonic transform
to form QX

4;lm, giving a total of OðN4
lÞ operations. In the

presence of a nontrivial mask, these must be additionally
transformed into real space, yielding a total complexity of

FIG. 4. As Fig. 3, but displaying the empirical bispectrum variances calculated from GRF simulations; these are in good agreement
with the expected variances across all correlators, implying that our estimators are close to optimal. We find that removal of the one-field
term in the estimators (purple) significantly enhances the variances on large scales.

21These are defined by the bin edges f2; 5; 62; 212; 483g.
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OðNitNbinÞ from Nit realizations. As before, this requires
memory proportional to Nbin (precisely 8Nbin times the
dimensionality of map, due to the various permutations and
weightings required), which may be limiting in practice.
Whilst the above demonstrates that trispectrum computa-
tion is expensive, it is not parametrically harder than the
bispectrum, and, furthermore, computation of the full

Fisher matrix is usually faster than the ideal equivalent,
since the latter requires a summation over Oðl6

maxÞ
individual multipoles (including correlations between
L bins).
The trispectrum runtimes are enumerated in Table III.

Our conclusions are similar to those of the power spectrum
and bispectrum; the four-field term of the estimator is fast

FIG. 5. Correlation matrices corresponding to the unwindowed bispectrum measurements shown in Fig. 3. As in Fig. 2, the lower-half
matrix shows the theoretical correlation obtained from the inverse Fisher matrix, whilst the upper half shows that extracted from a suite
of 1000 mocks. We demarcate components with χ ¼ 1 and χ ¼ −1 by dashed lines, with individual sub-boxes showing the correlations
between pairs of bispectra. The covariance matrix has a complex structure sourced by different polarized components and the survey
mask, which is excellently reproduced by the theoretical prediction.

TABLE III. Computation times for ideal and unwindowed trispectrum estimators, as in Tables I and II. Here, we use 4 linear bins with
l∈ ½2; 483Þ across 24 combinations of fields and parities, giving 1996 bins (of which we later remove the low-l contributions). Here, the
four-field (disconnected plus connected) term of the trispectrum estimator requires ≈100 harmonic transforms to define the numerator
(from each computation of H and A fields), with the estimation of the disconnected (i.e., Gaussian) terms increasing this by a factor
proportional to Nit ¼ 100 (with a coefficient larger than one, due to the extra permutations present in these terms). The ideal estimator
requires much more time to compute than the optimal form; this is due to the internal Oðl3

maxÞ summations in the two- and zero-field
terms, which make this estimator impractical in realistic settings. The Fisher matrix requires 65,000 harmonic transforms per realization
(reducing to 13,000 transforms if the mask is uniform), due to computation of the Q4 derivatives. In this instance, computation of the
ideal Fisher matrix is not feasible (even at lmax ¼ 483), due to the internal Oðl6

maxÞ summation over Wigner 6j symbols. This remains
true even if one assumes an (inexact) diagonal approximation, which reduces the sum to Oðl5

maxÞ.
Mask Ideal Fisher (day) Optimal Fisher Ideal numerator (m) Optimal numerator [4-field] (s) Optimal numerator (m)

Uniform >7 22 m × 100 705 15 78
Galactic >7 36 m × 100 708 14 92
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to compute, with a factor of Nit slow-down when we add
the two- and zero-field terms. In contrast to the bispectrum,
these terms must be present in the estimator if χpu ¼ 1;
else, the trispectrum is dominated by the Gaussian power
spectrum contributions. This additionally implies that Nit
must be relatively large and the fiducial spectrum must be
close to the truth, else residual Gaussian pieces will
dominate the error (though this is second order in
Csim
l − Ctrue

l ). To compute such terms with the idealized
trispectrum estimator, an Oðl3

maxÞ summation over Wigner
3j symbols is required; in practice, this is computationally
expensive (taking 10 hours in this example), thus the ideal
form is unlikely to be of practical use. For our choice of
binning, the optimal trispectrum Fisher matrix requires
only ≈2× the computation time of the bispectrum result;
this is well within the capabilities of most clusters. As
before, this is usually limited by memory; at Nside ¼ 256
with 1996 bins (before removal of low-l bins), a total of
210 GB of data products is stored in memory for efficient

computation. On a high-memory node, computations
requiring tenfold more memory would also be practical;
beyond this, one must compute the outer products element-
wise, leading to an algorithm with quadratic complexity, as
for the bispectrum. Finally, we note that the ideal trispec-
trum Fisher matrix is impractical to compute, even for
relatively low lmax. With our choice of binning, neither the
ideal Fisher matrix nor its diagonal limit could be computed
within a few node-days; this further supports the windowed
estimators, which avoid having to perform such a sum.
Figures 6 and 7 display the trispectra estimated from our

GRF simulations and their variances. In all cases, we find
trispectra consistent with zero; this is as expected, and
implies that the subtraction of the disconnected trispectrum
components is proceeding correctly. Here, we find that
Nit ¼ 100 is sufficient to recover unbiased trispectra,
noting that the error bar on the two- and zero-field
contributions scales as N−1=2

it . Turning to the variances,
we again find that the unwindowed estimates are in

FIG. 6. Comparison of measured and theoretical trispectra from a suite of masked simulations, across a wide range of bins, fields, and
parities. Since no trispectrum is injected, the mean of the estimators should be zero; the null results in the figure show this holds true in
practice. Strong detections of the disconnected trispectrum can be seen in the four-field term; further analysis of these contributions is
shown in Fig. 9. Some parity-odd bins appear to have very large variances; these correspond to configurations that vanish in the exact
thin-bin limit due to the restriction to odd l1 þ l2 þ l3 þ l4. These were excluded from previous work [52], but included here for full
generality.
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excellent agreement with predictions from the inverted
Fisher matrix, across all scales considered. As discussed
above, the ideal Fisher matrices cannot be computed
explicitly; here, we obtain them by applying the optimal
pipeline without a window function (which is exact,
in the limit of infinite Monte Carlo simulations).
These are in fair agreement with the empirical variances
from the ideal estimators (when weighting by
hW8i=hW4i2), though we again stress that this relation is
only expected to be approximate. For a trivial mask, the
ideal and optimal estimator are in excellent agreement, as
expected.
The correlation structure is considered in detail in Fig. 8.

We find significant covariance at Oð10%Þ between differ-
ent combinations of fields, principally sourced by the
intrinsic TE, TB, and EB power spectra in our testing
suite. Spectra with χ ¼ 1 and χ ¼ −1 are largely uncorre-
lated, but we observe highly nontrivial patterns within each
trispectrum configuration. As for the scalar case [52], this is
partly due to an internal degeneracy in the trispectrum
definition due to the two possible tetrahedron diagonals;

further correlations also arise from the masking, which
correlates adjacent-in-l bins (which are not always adja-
cent in one-dimensional projections). We find no evidence
for deviation of the inverse Fisher matrix from the empirical
correlations; furthermore, the complex structure of this
matrix is important to take into account any studies
requiring the statistical properties of trispectra. Finally,
we note that our Fisher matrices are highly converged;
using only Nit ¼ 10 simulations to define the Fisher matrix
changes the trispectra by at most 0.018σ, thus our choice is
overly conservative.
Whilst the above results demonstrate that the trispectrum

estimators do not induce spurious signals, they do not
sufficiently demonstrate that our pipeline is unbiased
(though agreement of empirical and theoretical variances
is itself a strong constraint). To further test the approach,
we consider the individual components of the tri-
spectrum applied to unwindowed GRF data. In this regime,
we have a definite prediction of the four-, two-, and
zero-field components, with E½F 4t̂0� ¼ E½F 4t̂4� ¼
−ð1=2ÞE½F 4 t̂2�, and

FIG. 7. As Fig. 6, but displaying the theoretical and empirical trispectrum variances. We find excellent agreement across the range of
scales considered (5 ≤ l < 483), implying that the unwindowed forms are approximately minimum variance, and thus close to optimal.
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E½F 4 t̂0�uχðb; BÞ ¼
δKχpu;1

Δu
4ðbÞ

X
L

ΘLðBÞΘl1ðb1ÞΘl2ðb2Þ
�
l1 l2 L

−1 −1 2

�
2 ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

× ð−1Þl1þl2þL
�
δKb1b3δ

K
b2b4

C−1;u1u3
l1

C−1;u2u4
l2

þ δKb1b4δ
K
b2b3

C−1;u1u4
l1

C−1;u2u3
l2

�
; ð112Þ

upon realization averaging. This is nonzero only for
particular configurations, in particular pairs of equal bins
with nonvanishing two-point correlators. Figure 9 displays
all such contributions relative to the theoretical model, and,
in every case, we find good agreement, which implies that
the sum of the three contributions is consistent with zero (as
previously noted). The dominant source of noise here is the
zero-field (data-independent term); for a single simulation,
this is relatively small compared to the scatter in the four-
field term, but contributes an additional source of variance
that should be included in any likelihood analysis. Since the
parity-breaking spectra not shown above differ only by a
factor of ð−1Þl1þl2þl3þl4 , this test should be sufficient to
convince us that our pipeline is unbiased.

VIII. SUMMARY

In this work, we have presented minimum-variance
estimators for the polyspectra of scalar and tensor fields

defined on the two-sphere, derived by extremizing the
theoretical likelihood of the dataset. We have considered
both the general forms (with an arbitrary weighting scheme
S−1) and the idealized limits, and, in all cases, given practical
algorithms and efficient code for their computation. Such
approaches can be used to measure binned correlators for a
range of spin-0 and spin-2 fields, and take into account the
effects of leakage between different bins, polarizations, and
parities, due to effects such as intrinsic correlations, survey
masks, and inpainting.All estimators have beenverified using
suites of Gaussian and non-Gaussian simulations, and are
found to yield unbiased results, with variances approaching
the optimal limits. Furthermore, they can be efficiently
computed using spin-weighted spherical harmonic trans-
forms and Monte Carlo summation [with normalization
matrices requiring only Oð10Þ realizations], with the
higher-point optimal estimators becoming significantly more
practical to implement than their idealized equivalents.

FIG. 8. As Fig. 5, but comparing the correlation matrix of the unwindowed trispectrum measurements to that predicted from the
inverse Fisher matrix shown in Figs. 6 and 7. Although the empirical data (obtained from 1000 mocks) is somewhat noisy, we find
excellent agreement for all scales and parities considered.
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It is interesting to consider potential applications of the
above techniques. A particularly promising avenue is the
investigation of inflationary higher-point functions, as traced
by large-scale CMB temperature and polarization anisotro-
pies. Whilst some of this work has already been performed in
the context of Planck e.g., [7,16,43,60,76–78], many further
studies are possible, and allow for novel connections to

theoretical disciplines such as the “Cosmological Collider”
program, through the empirical search for signatures of
primordial particle interactions e.g., [50]. Much of this work
will benefit from the addition of the trispectrum, in particular
its polarized components, which to our knowledge, have not
been previously been considered. For the Planck bispectrum,
addition of polarization modes to the temperature three-point

FIG. 9. Comparison of the four-, two-, and zero-field terms entering the unwindowed trispectrum estimator, averaged over 1000 GRFs
with a uniform mask. In each case, we compare the measured numerator to the theoretical prediction given in (112), normalizing by the
standard deviation of the full statistic. Results are displayed for all combinations of fields and bins where the disconnected term is
nonzero. In all cases, we find good agreement though note that the zero-field term exhibits largest variation since this is an average over
only Nit ¼ 100 simulations, as opposed to the 1000 used in the four-field term. This serves to validate that the trispectrum estimators are
unbiased (noting that parity-odd estimators differ only by a sign, and the full estimator is the sum of the above components).
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function was found to the roughly double the sensitivity to
primordial physics, as evidence through bounds on the non-
Gaussianity parameter fNL [7]; a similar result can likely be
obtained for the associated parameters gNL (and possibly
τNL) arising in the four-point function. Measurements of the
parity-odd E mode trispectrum (and its combination with T,
e.g., TTTE), would bolster the sensitivity to sources of
primordial parity-violation, improving upon the results of
[60,66]. The B modes could also be of use, and would allow
connection between inflationary gravitational wave theory
and observations e.g., [79–81].
Though this paper has been framed in the language of

CMB analyses, this is not a restriction, and the technology
contained within can be similarly applied to any other
spin-zero and/or spin-two field defined on the two-sphere.
Another interesting cosmological candidate is the meas-
urement of higher-order cosmic shear correlators, and
their connection to the spin-zero galaxy overdensity.
Historically, most analysis of higher-order shear correla-
tors has been performed in position space, rather than
harmonic space; the techniques developed in this work
allow for efficient computation of the shear bispectra and

beyond, in a manner that can be simply connected to
observations. This obviates common problems such as the
difficulty of convolving theory models with masks for
statistics beyond the power spectrum, and should facilitate
tighter constraints to be wrought on cosmological and
astrophysical parameters, in combination with conven-
tional two-point analysis. Finally, we hope that applica-
tions may be found beyond cosmology; many other fields
consider stochastic spherical data, such as climate science
and geology, and could potentially benefit from such
techniques.
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