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We present a new independent pipeline for the Cosmic Microwave Background bispectrum estimation of
primordial non-Gaussianity and release a public code for constraining bispectrum shapes of interest based
on the Planck 2018 temperature and polarization data. The estimator combines the strengths of the
conventional Komatsu-Spergel-Wandelt and modal estimators at the cost of increased computational
complexity, which has been made manageable through intensive algorithmic and implementation
optimization. We also detail some methodological advances in numerical integration over a tetrapyd—
domain where the bispectrum is defined on—via new quadrature rules. The pipeline has been validated
both internally and against Planck. As a proof-of-concept example, we constrain some highly oscillatory
models that were out of reach in conventional analyses using a targeted basis with a fixed oscillation
frequency, and no significant evidence for primordial non-Gaussianity of these shapes is found. The
methodology and code developed in this work will be directly applicable to future surveys where we expect
a notable boost in sensitivity.
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I. INTRODUCTION

To what degree the primordial perturbations are, if at all,
non-Gaussian, is a key question of cosmology with many
implications for early Universe physics [1–9]. Most theo-
retically well-motivated models predict various amplitudes
and shapes of primordial non-Gaussianity (PNG, see e.g. the
reviews of [1–4]), while the simplest single-field slow-roll
inflation predicts an undetectably small PNG [8]. In a non-
Gaussian universe, statistics beyond the two-point function
are required to capture the full statistical information. The
primordial bispectrum, or the harmonic counterpart of the
three-point function, is the next leading-order measure of
PNG.All cosmological datasets at present are consistentwith
vanishing PNG [10–15]. Among them, Planck’s Cosmic
Microwave Background (CMB) bispectrum analysis has
placed the most stringent constraints on PNG to date [12].
The CMB bispectrum estimation of PNG, often para-

metrized by its amplitude fNL, is a computationally chal-
lenging task.Anaïve computation is prohibitively expensive,
so all existing implementations utilize some simplifying
techniques. The Komatsu-Spergel-Wandelt (KSW) or KSW-
like estimators [16–20] and skew-Cl statistics [21] utilize
separable (or factorizable) bispectrum templates which

dramatically simplifies the integrals involved. The modal
estimator [22–24] uses separable modal expansions of the
primordial and the late-time bispectrum. The binned bispec-
trum estimator [25,26] compresses the data by binning the
bispectrum in harmonic spacewithminimal loss of optimality.
A great variety of physically well-motivated models have

been tested by the Planck Collaboration [10–12] using these
estimators. Among them are models with oscillations in the
bispectrum induced by, e.g., features in the inflationary
potential [27–34], a transient reduction in the speed of sound
[35–39], multifield dynamics [40–43], or resonances arising
in axionmonodromymodels [44–50] (see e.g., [2,51–53] for
reviews). Many of these models predict some enveloped
oscillations in the primordial power spectrum and/or bispec-
trum that are linearly or logarithmically spaced. Previous
works have placed constraints on these models using the
CMB power spectrum [54–70], bispectrum [10–12,71–74],
both in a joint analysis [75–77], and in combination with or
solely from large-scale structure data [78–82]. However,
despite its significant implications for early Universe phys-
ics, constraining highly oscillatory bispectrum shapes with
general (nonseparable) envelopes has been out of reach using
conventional methods due to computational challenges [12].
There remains a variety of such models that are yet uncon-
strained or only partially constrained.
Furthermore, to the authors’ knowledge, there currently is

nopublicly available code that allows one to get PlanckCMB
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constraints on a general bispectrum shape of interest.1

Having access to CMBbispectrum constraints would greatly
benefit researchers in testing various models of interest.
Motivated by these reasons, we developed an indepen-

dent bispectrum estimation pipeline CMB-BEST (a short-
hand for CMB Bispectrum ESTimator). The method
generalizes the KSW estimator by allowing a flexible
choice of basis functions, which is used for a modal-like
expansion of general bispectrum templates. It combines the
accuracy of KSW with the broad applicability of modal at
the cost of increased computational cost. We have exten-
sively optimized the algorithm and implementation of
CMB-BEST to make computation manageable. We have
also thoroughly tested the code for self-consistency and
against Planck’s modal estimator. Some new constraints on
a class of highly oscillatory templates, as well as repro-
ductions of the Planck 2018 analyses, are presented in this
paper as proof-of-concept examples.
We publicly release the frontend of our code as a Python

package named CMBBEST [85], where users can provide
general bispectrum shapes of interest and obtain Planck 2018
constraints on the correspondingfNL’s in amatter of seconds,
or minutes for a higher-resolution basis, on a laptop. This was
made possible by precomputing the computationally expen-
sive parts of the pipeline on supercomputing clusters and
providing the results as a data file.We plan on providingmore
basis function choices and future survey data in time.
There have been some methodological advances during

the development of CMB-BEST. This paper includes our
novel quadrature rule for efficient numerical integration of
functions over a “tetrapyd” domain where the bispectrum is
defined. The method is much more efficient and accurate
than the simple 3D trapezoidal rule and is expected to
benefit some numerical analyses of the large-scale structure
as well. The method is implemented and shared as a Python
package TETRAQUAD [86].
Upcoming CMB experiments such as the Simons

Observatory [87] and CMB-S4 [88,89] are expected to
dramatically improve the sensitivity in polarization mea-
surements. The future datasets, in combination with the
existing ones, will provide constraints on PNG that are
almost as stringent as they can be from the CMB alone [89].

The methodology and code developed here will be directly
applicable to upcoming surveys.
This paper is organized as follows. InSec. II,we review the

CMB bispectrum estimation procedure. Section III details
the main formalism of CMB-BEST and various basis
function choices made in this work. Section IV introduces
our novel numerical method for evaluating integrals over a
tetrapyd domain. Section V details the public release of our
code and provides some proof-of-concept examples of
CMB-BEST. Appendixes contain some computational
details and various consistency checks. The conclusion is
given in Sec. VI.

II. CMB BISPECTRUM ESTIMATION

In this section, we review how the CMB bispectrum can
be used to study PNG. We provide a derivation of the
CMB bispectrum estimator from the CMB bispectrum
likelihood written analogously to [4,77,90]. We note that
the core ideas behind this formalism are heavily based on
the original works on the topic [16–18,20,90–93], and the
formalism ismathematically equivalent to the ones described
in Planck PNGpapers [10–12]. This way of presentationwas
chosen to clearly state the assumptions we make to write
down the CMBbispectrum estimator and to draw parallels to
the CMB power spectrum likelihoods. We consider only the
CMB temperature here for simplicity, but the formalism
can be extended to include polarization, as described in
Appendix C.

A. CMB bispectrum likelihood

CMB observations provide us with the spherical har-
monic coefficients alm of the temperature or polarization
anisotropy maps. We are interested in their statistical
properties, most of which are captured by their angular
power spectrum estimated via

Ĉl ≡
X
m

1

2lþ 1
alma�lm: ð1Þ

This is a sufficient statistic only if the alm’s are Gaussian
distributed. Going 1 order beyond the power spectrum, we
can construct an estimate for the bispectrum as

B̂l1l2l3 ≡
X
mj

�
l1 l2 l3

m1 m2 m3

��
al1m1

al2m2
al3m3

− ½hal1m1
al2m2

iMCal3m3
þ ð2 cycÞ�

�
: ð2Þ

The weights are the Wigner-3j symbols related to angular
momentum conservation; B̂l1l2l3 vanishes unless l1, l2,
and l3 form a triangle. The two terms in square brackets,

cubic and linear in alm’s, together estimate the full
bispectrum hal1m1

al2m2
al3m3

i. The linear term is necessary
to reduce the variance of the estimate and keep it unbiased
in the presence of an anisotropic sky mask, which in-
troduces extra off diagonal correlations in the power
spectrum which correlate with alm’s. Gaussian simula-
tions are used for Monte Carlo approximations of the full

1Existing codes such as [83] and [84] do not apply to general
shapes.
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covariance appearing in the linear term. B̂l1l2l3 can be
understood as a summary statistic for the CMB 3-point
functions under the assumption of statistical isotropy.
We define the theoretical bispectrum as the expected

value of the estimate

Bth
l1l2l3

≡ hB̂l1l2l3i ¼ hl1l2l3b
th
l1l2l3

; ð3Þ

where hl1l2l3 is a geometric factor [(A3) in Appendix A]
and bl1l2l3 is the reduced bispectrum.
In order to write down the likelihood, we make the

following approximations:
(1) fB̂l1l2l3gl1≤l2≤l3 are multivariate normal dis-

tributed.
(2) fB̂l1l2l3gl1≤l2≤l3 have a diagonal covariance matrix

with diagonal entries ð6=Δl1l2l3ÞCl1Cl2Cl3 .
Here, the symmetry factor Δl1l2l3 ¼ 6, 3, 1 when there are
3, 2, 1 distinct values of lj ’s, respectively.
The first approximation is justified by the central limit

theorem, analogously to the power spectrum analysis.
There are Oðl1l2Þ independent terms appearing in (2)
for each ðl1;l2;l3Þ, so the weighted sum follows a near-
Gaussian distribution. We note that this approximation can
be inaccurate for a handful of terms for which l1 and l2 are
small (and so are l3 by the triangle condition).
Omitting the nondiagonal terms in the covariance matrix

is a choice to reduce computational complexity and was
studied in [17,20]. The values of diagonal entries then
follow by Wick’s theorem in the limit where alm’s are only
weakly non-Gaussian. The equivalent case for polarization
is given in Appendix C.
We note that, for a simple estimation of fNL using a

single bispectrum template, the second approximation only
affects the optimality of the estimator. The optimality of the
estimator has been tested thoroughly in Planck analysis
[10–12] using multiple pipelines and is shown to be near
optimal. This approximation therefore would have little
effect on our analysis. However, for future CMB surveys
which will grant access to higher l’s, this may no longer be
the case. Contributions from the connected 4-point func-
tions due to CMB lensing studied in [94], for example, are
expected to be more significant, and the approximation
above would underestimate the true covariance. Delensing
has been proposed as a solution in [94].
Under the assumptions above, our statistical model is

B̂ ¼ Bth þ ϵ; ð4Þ
where the errors ϵl1l2l3 are multivariate normal with
diagonal covariance. The CMB bispectrum likelihood is
thus given by2

LðBthjB̂Þ ¼ A exp

�
−
1

2

X
l1≤l2≤l3

Δl1l2l3

6Cl1Cl2Cl3

×

�
B̂l1l2l3 − Bth

l1l2l3

�
2
�
: ð5Þ

Thenormalization constantA¼ ð2πÞ−nB=2Q ½6Cl1Cl2Cl3Þ=
Δl1l2l3 �−1=2, wherenB denotes the number of ordered triplets
ðl1;l2;l3Þ in consideration.

B. CMB bispectrum estimator of fNL
In power spectrum analyses,ΛCDM or other models pro-

vide theoretical predictions of ClðθÞ’s through Boltzmann
solvers such as CAMB [95] and CLASS [96], where θ
denotes the model parameters. The likelihood, combined
with some priors on the parameters, then provides a posterior
distribution which places bounds on the parameters. A
similar analysis can be done for the bispectrum likelihood
with any n-parameter model BthðθÞ. However, since the
signal-to-noise ratio of theCMBbispectrum ismuch smaller,
the constraining power is often limited. Instead, we study
some bispectrum templates that are well-motivated by
models of the early Universe and perform a simple linear
fit, which constrains the amplitude of PNG. In our work, the
cosmological parameters are fixed to their best-fit values at
the power spectrum level, since their variation does not
significantly affect the bispectrum amplitude [11].
The bispectrum of the curvature perturbations at the end

of inflation is defined through

hζðk1Þζðk2Þζðk3Þi ¼ ð2πÞ3δð3Þðk1 þ k2 þ k3Þ
× Bζðk1; k2; k3Þ: ð6Þ

Given one or more bispectrum templates BðiÞ
ζ ðk1; k2; k3Þ,

we introduce some free parameters fðiÞNL to represent the
amplitude of PNG,

Bth
l1l2l3

ðfNLÞ ¼
X
i

fðiÞNLB
ðiÞ
l1l2l3

¼
X
i

fðiÞNLhl1l2l3b
ðiÞ
l1l2l3

;

ð7Þ

where the reduced CMB bispectra are related to their
primordial counterparts through

bðiÞl1l2l3 ¼
�
2

π

�
3
Z

drdk1dk2dk3ðrk1k2k3Þ2BðiÞ
ζ ðk1; k2; k3Þ

×
Y3
j¼1

½jljðkjrÞTljðkjÞ�: ð8Þ

Here, jlðkÞ denotes the spherical Bessel function. The
CMB transfer functions TlðkÞ are obtained from the
background cosmology which is fixed as ΛCDM best-fit

2We denote the likelihood as LðθjdataÞ≡ PðdatajθÞ, which is
the probability of observing the data given the model with
parameters θ.
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parameters to the CMB power spectrum likelihood. For
Planck data, the bispectrum analyses are insensitive to this
choice of background parameters [10–12].
In most cases, a model of inflation predicts a bispectrum

whose shape is approximated by a single template, so an
independent analysis with a single fNL parameter suffices.
However, if a class of models predicts bispectra that are
expressed as linear combinations of two or more templates,
then it is appropriate to have a joint analysis with multiple
fNL parameters at once. The Planck team provides joint
constraints to the equilateral and orthogonal shapes [12],
for example, since general single-field inflation models
often yield a combination of the two.
The CMB bispectrum likelihood is then a function

of fðiÞNL’s:

−2 ln LðfNLjB̂Þ ¼ ðconstÞ − 2
X
i

Sif
ðiÞ
NL þ

X
i;j

Fijf
ðiÞ
NLf

ðjÞ
NL;

ð9Þ

where we have defined

Si ≡
X

l1≤l2≤l3

Δl1l2l3

6Cl1Cl2Cl3

B̂l1l2l3B
ðiÞ
l1l2l3

ð10Þ

¼
X
lj;mj

Gl1l2l3
m1m2m3

bðiÞl1l2l3

6Cl1Cl2Cl3

×

�
al1m1

al2m2
al3m3

− ½hal1m1
al2m2

ial3m3
þ ð2 cycÞ�

�
;

ð11Þ

Fij ≡
X

l1≤l2≤l3

Δl1l2l3

6Cl1Cl2Cl3

BðiÞ
l1l2l3

BðjÞ
l1l2l3

ð12Þ

¼
X

l1;l2;l3

h2l1l2l3b
ðiÞ
l1l2l3

bðjÞl1l2l3

6Cl1Cl2Cl3

: ð13Þ

We have replaced the sums over l1 ≤ l2 ≤ l3 with the
ones over l1, l2, l3 using the symmetry factor Δl1l2l3
above. The Gaunt integral comes from the geometric
factors given in (A3).
The CMB bispectrum estimator is the maximum like-

lihood estimator (MLE) of (9):

dfNLðiÞ ¼ X
j

ðF−1ÞijSj: ð14Þ

Assuming that the assumptions made above are valid, the

MLE is unbiased so that hdfNLðiÞi ¼ fðiÞNL. Furthermore, the
estimator is optimal by the Gauss-Markov theorem; it has
the smallest variance amongst all unbiased estimators

constructed from B̂l1l2l3 . Its variance is then given by
the Cramér-Rao bound which is expressed in terms of the
Fisher information matrix Fij as

CovðcfNLÞ ¼ F−1: ð15Þ

Therefore, the marginal error on the parameter fðiÞNL is equal
to σðfðiÞNLÞ ¼ ðF−1Þii (no summation implied). Note that
this is in general different from an independent analysis

with one bispectrum template, for which σðfðiÞNLÞ ¼ ðFiiÞ−1
(no sum).
In practice, we use simulations (FFP10 end-to-end CMB

maps [97,98]) with Gaussian initial conditions to obtain the

sample variance of fðiÞNL, instead of directly using the Fisher
error bar above. In a weakly non-Gaussian regime with a
sufficient number of simulations, this variance accurately
represents the variance of the estimator dfNL. The simu-
lations are also used to approximate the full nondiagonal
covariance hal1m1

al2m2
iMC appearing in (11).

C. Beam, noise, sky mask, and lensing

Our observations of the CMB are subject to having a
finite beam width, discrete pixelization, instrumental noise,
partial sky coverage, and CMB weak lensing. We outline
here how these effects are taken into account.
The window function Wl is a product of the beam

and pixel window functions. We use the Planck CMB
maps produced using the SMICA component-separation
method [99]. The maps have an effective beam full width
at half maximum (FWHM) of 5 arcmin for temperature
and 10 arcmin for polarization. Having a finite beam
width limits the resolution and suppresses powers in
high-l multipoles. The beam window function is given
by expð−lðlþ 1Þ=2σ2beamÞ, where σbeam ¼ ðFWHMÞ=ffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
, for temperature and polarization. Discrete pixe-

lizations also have a similar effect of suppressing small-
scale powers. Using the HEALPix pixelization [100] with
Nside ¼ 2048, the pixel window function is computed using
the Python library HEALPY [101].
We obtain the power spectra of instrumental noise, Nl,

from 300 end-to-end simulated noise maps [97,98]. This
yields consistent results when compared with the SMICA
postcomponent-separation noise. We further assume that
the temperature and E-mode polarization noises are uncor-
related and that their three-point functions vanish. The
noise terms therefore only appear in CTT

l and CEE
l .

The sky masks for temperature and polarization maps
with fTsky ¼ 0.779 and fEsky ¼ 0.781 [99] have been used
for our analysis. Assuming statistical isotropy of the
Universe, the expectation value h·i gains a factor of fsky.
Furthermore, sharp discontinuities in the CMB map
due to sky masks have been shown to cause numerical
issues for the bispectrum analysis [102]. In particular, the
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small-scale powers boosted by sharp cut sky correlate with
the large-scale multipoles from the mask shape, inducing
a significant bias of local-type bispectrum. We therefore
adopt the method of [102] and inpaint the CMB maps
around the edges of sky masks via linear isotropic dif-
fusion. Inpainting smooths the mask around the edges and
hence transfers the mask-induced small-scale CMB powers
to larger scales.
The CMB gets weakly lensed by matter as it travels from

the last scattering surface to us. This weak lensing affects
the CMB power spectrum by smoothing out the acoustic
peaks slightly [103]. For the CMB bispectrum, small-scale
powers induced by lensing correlate with the integrated
Sachs-Wolfe (ISW) contributions to the large-scale modes,
which creates a bias in the squeezed shape [104,105]. The
lensing-ISW bias is given by [106]

blensing−ISWl1l2l3
¼ 1

2
½l1ðl1 þ 1Þ − l2ðl2 þ 1Þ þ l3ðl3 þ 1Þ�

× C̃TT
l1
CTϕ
l3

þ ð5 permsÞ; ð16Þ

where CTϕ
l is the temperature and lensing potential cross

power spectra. A tilde above Cl signifies that it is a lensed
quantity. We explicitly include the bias above in our
analysis.
In summary, the statistical model (4) is modified as the

following:

B̂l1l2l3 ¼ fskyWl1Wl2Wl3ðBth
l1l2l3

þBlensing−ISW
l1l2l3

Þþ ϵl1l2l3 ;

ð17Þ

where the error has a vanishing mean and a diagonal
covariance equal to

Covðϵl1l2l3Þ ¼ fskydiag

�
6

Δl1l2l3

ðW2
l1
Cl1

þ Nl1ÞðW2
l2
Cl2

þ Nl2ÞðW2
l3
Cl3

þ Nl3Þ
�
; ð18Þ

and Blensing−ISW
l1l2l3

¼ hl1l2l3b
lensing−ISW
l1l2l3

.

III. HIGH-RESOLUTION CMB BISPECTRUM
ESTIMATOR

Computation of the CMB bispectrum estimator (14)
can be prohibitively expensive; the most naive method
would require summing over Oðl5

maxÞ ∼Oð1016Þ terms.
All existing techniques rely on one or more tricks and/or
assumptions to simplify the computation process. The
KSW estimator [16] utilizes separable bispectrum tem-
plates for which the three-dimensional integral dk1dk2dk3
splits into a product of three separate one-dimensional
integrals. The formalism is fast and efficient but is restricted

to a limited range of separable templates. The modal
estimator [22–24] expands the primordial and late-time
bispectra in terms of separable basis functions. The
bispectrum information is compressed with respect to the
basis and stored. This allows fast and thorough analyses of
general bispectrum templates. Lastly, the binned bispec-
trum estimator [25,26] bins the bispectrum into different l
bins, which makes the total size more computationally
tractable with minimal loss of optimality. We refer to [11]
and references therein for detailed reviews on the CMB
bispectrum estimation.
In this section, we introduce our novel, independent

CMB bispectrum estimator CMB-BEST, which combines
ideas from the KSWestimator [16] and the modal estimator
[22,23]. While being computationally more expensive than
the two, CMB-BEST combines the best of both worlds to
be general and efficient, and has the flexibility in the choice
of basis for high-resolution analyses.

A. CMB-BEST formalism

In CMB-BEST, the primordial bispectra are expanded
using separable basis functions similar to modal [22],
followed by the compression of the CMB bispectrum
information with respect to this basis in a way similar to
the KSW estimator [16]. We detail the formalism here.
Given a choice of one-dimensional mode functions qpðkÞ,

a given primordial bispectrum template is expanded as

ðk1k2k3Þ2Bζðk1; k2; k3Þ
¼

X
p1;p2;p3

αp1p2p3
qp1

ðk1Þqp2
ðk2Þqp3

ðk3Þ: ð19Þ

The expansion above holds for bispectrum templates
that are accurately represented using the basis functions
Qp1p2p3

ðk1; k2; k3Þ≡ qp1
ðk1Þqp2

ðk2Þqp3
ðk3Þ.3 Note that, by

symmetry, the above is equivalent to having the sum over
p1 ≥ p2 ≥ p3 with an additional symmetry factor Δp1p2p3

.
This convention will be used in the next section, where
different choices of mode functions and the expansion
procedure are discussed. Here, there are no restrictions to
each pj which runs from 1 to pmax, the number of mode
functions.
The basis functions are products of terms that depend on

only one of the k’s. The reduced bispectrum simplifies
thanks to this separability:

bl1l2l3 ¼
X
pj

αp1p2p3

Z
drq̃p1

ðl1; rÞq̃p2
ðl2; rÞq̃p3

ðl3; rÞ;

ð20Þ

3The truncation error is small as long as B is within or
close to the function space spanned by the basis functions
fqp1

ðk1Þqp2
ðk2Þqp3

ðk3Þg.
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where the projected mode functions are defined as

q̃pðl; rÞ≡ 2r
2
3

π

Z
dkqpðkÞTlðkÞjlðkrÞ: ð21Þ

In the modal estimator [22], another set of mode functions
is introduced in the l space to form a late-time basis so
that bl1l2l3 ¼

P
pj
α̃p1p2p3

Q̃p1p2p3
ðl1l2l3Þ. This effec-

tively removes the line-of-sight integral
R
dr appearing

in (20) and reduces the computational complexity by a
couple of orders of magnitude. The expansion accurately
approximates most bispectrum templates; the correlation
levels between the template and the basis expansion vary
between ∼0.95 and ∼0.99 for modal analysis in Planck
[10]. However, for bispectrum templates motivated by
feature or resonance models, the modal estimator had
limited coverage compared with the KSW-type estimators
[12]. In CMB-BEST, we do not perform this second late-
time basis expansion step and instead follow a KSW-like
formalism to compute the estimator exactly, albeit with
increased computational complexity.
We define the filtered maps from alm’s as

MðiÞ
p ðn̂; rÞ≡X

l;m

q̃pðl; rÞ
Cl

almYlmðn̂Þ: ð22Þ

The observed map corresponds to i ¼ 0 in our notation
above, while i ¼ 1;…; Nsim signify the FFP10 end-to-end
CMB and noise map numbers [97,98] under Gaussian
initial conditions. As described in Sec. II, these simulations
are used for two purposes: first to approximate the full
covariance matrix hal1m1

al2m2
iMC appearing in the linear

term of (11), and second to form a set of fNL estimates
which is used as a null test to evaluate the statistical
significance of fNL estimated from observations.
The CMB bispectrum estimator for a single bispectrum

template can then be written as

dfNLðiÞ ¼ 1

F

X
lj;mj

Gl1l2l3
m1m2m3

bl1l2l3

6Cl1Cl2Cl3

�
aðiÞl1m1

aðiÞl2m2
aðiÞl3m3

−
�

1

Nsim − 1

X
j≠i

aðjÞl1m1
aðjÞl2m2

aðiÞl3m3
þ ð2 permsÞ

��
:

ð23Þ

¼ 1

6F

X
p1;p2;p3

αp1p2p3

�
βcub;ðiÞp1p2p3

− 3βlin;ðiÞp1p2p3

�
; ð24Þ

where

βcub;ðiÞp1p2p3
≡
Z

dr
Z

d2n̂MðiÞ
p1
ðn̂;rÞMðiÞ

p2
ðn̂;rÞMðiÞ

p3
ðn̂;rÞ; ð25Þ

βlin;ðiÞp1p2p3
≡ 1

Nsim − 1

X
j≠i

Z
dr

Z
d2 ˆ̂nMðjÞ

p1
ðn̂; rÞ

×MðjÞ
p2
ðn̂; rÞMðiÞ

p3
ðn̂; rÞ: ð26Þ

Computing the βcub and βlin is the most time-consuming
step of CMB-BEST. Once they are computed, any given
bispectrum template can be constrained instantly after a
primordial basis expansion, which normally takes less than
a minute on a laptop.
The normalization, directly related to the Fisher infor-

mation, is obtained similarly by exploiting separability and
the relation (A8) for h2l1l2l3 ;

F ¼ 1

6

X
pj;p0

j

αp1p2p3
Γp1p2p3;p0

1
p0
2
p0
3
αp0

1
p0
2
p0
3
; ð27Þ

where

Γp1p2p3;p0
1
p0
2
p0
3
≡

Z
dr

Z
dr0

Z
dμγp1p0

1
ðμ; r; r0Þ

× γp3p0
3
ðμ; r; r0Þγp3p0

3
ðμ; r; r0Þ; ð28Þ

γpp0 ðμ; r; r0Þ≡X
l

2lþ 1

ð8πÞ1=3Cl
q̃pðl; rÞq̃p0 ðl; r0ÞPlðμÞ:

ð29Þ

Here, PlðμÞ’s denote the Legendre polynomials.
Lastly, we summarize the key differences of CMB-BEST

with two of the main methods used in Planck in Table I.
Note that the binned bispectrum estimator [25] is omitted in
the table since its core idea is different and hard to compare
with CMB-BEST, but it is one of the main approaches used
extensively in the Planck analyses.
The relative computational complexities shown in

Table I are rough order-of-magnitude estimates. Directly
comparing the computational costs between methods is
difficult for two reasons. First, the relative complexity
between methods depends on many different factors such
as the resolution (number of basis elements) and the
number of inflation models under study. Modal and
CMB-BEST scale cubically with the number of mode
functions used, but only need to be run once per basis set to
constrain a wide class of models simultaneously. While the
KSWestimator is faster, it has to be run for each individual
model. Second, the computational resources required to run
the codes also depend strongly on their implementational
optimizations. For example, the modal code has been
improved by several orders of magnitude thanks to
High-Performance Computing (HPC) optimization [107],
and some simple cache optimization of CMB-BEST led to
a factor of 2 improvement as detailed in Appendix E.
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With these caveats in mind, we quote the number of
CPU core hours required for the baseline (pmax ¼ 10)
and high-resolution (pmax ¼ 30) runs of CMB-BEST
to be 3,000 and 80,000, respectively. Note that the
public code we present in Sec. V runs in a matter of
minutes on a laptop since the computationally heavy
parts of the pipeline are precomputed and provided as a
data file.

B. Basis expansions

Computing the quantities β (25) and Γ (28) are computa-
tionally expensive but need to be performed only once per

data and basis set. Afterward, CMB-BEST can rapidly
constrain bispectrum shapes of interest through a two-
step procedure: (1) expand the shape function with respect
to a separable basis, and (2) compute fNL and σðfNLÞ via
some simple matrix multiplications of the expansion
coefficients with β and Γ. We provide the precomputed
data for various basis sets together with our public code
(detailed in Sec. VA) for the two steps.
We expand a given bispectrum shape Sðk1; k2; k3Þ ¼

ðk1k2k3Þ2Bζðk1; k2; k3Þ in terms of the basis functions as
follows. First, we simplify our basis functions by sym-
metrizing over ðk1; k2; k3Þ:

X
p1;p2;p3

αp1p2p3
qp1

ðk1Þqp2
ðk2Þqp3

ðk3Þ ¼
X

p1;p2;p3

αp1p2p3

1

6

�
qp1

ðk1Þqp2
ðk2Þqp3

ðk3Þ þ ð5 permsÞ
�

ð30Þ

¼
X

n↔ðp1;p2;p3Þ
αnQnðk1; k2; k3Þ; ð31Þ

where n is an index mapped one-to-one with a triplet
ðp1; p2; p3Þ satisfying p1 ≥ p2 ≥ p3. Note that αn ¼
Δp1p2p3

αp1p2p3
, which contains an extra symmetry factor.

To obtain αn, we solve the following linear equation:

X
n0
hQn;Qn0 iαn0 ¼ hQn; Si; where ð32Þ

hf; gi≡
Z
VT

d3kwðkÞfðkÞgðkÞ: ð33Þ

The inner product h·; ·i of two functions over the tetrapyd
domain is defined for some weight function wðkÞ.
Mathematically, solving (32) for α is equivalent to finding
an orthogonal projection of S into the function space

spanned by the basis functions fQng. The truncation error
of this basis representation comes from the component of S
that is perpendicular to this function space.
For small basis sizes, we can directly invert the matrix

Γnn0 ≡ hQn;Qn0 i to solve the linear equation for α.
However, this can become numerically unstable for larger
bases since some basis functions become more degenerate,
which degrades the condition number of Γ.4 Instead of a
direct inversion, we use the conjugate gradient method
[108] to obtain an approximate solution for (32) with only
marginal residual errors. This iterative method is applicable

TABLE I. Comparison of CMB-BESTwith the two conventional bispectrum estimators [16,22] used in Planck analyses [10–12]. The
core ideas for data/information reduction for different approaches are detailed in the text. Bζðk1; k2; k3Þ and Bth

l1l2l3
correspond to the

primordial bispectrum template and its late-time harmonic counterpart, respectively.

Estimation accuracy
Relative computational

complexity
(rough estimate)Core idea

Separable
templates

Nonseparable
templates

KSW [Komatsu et al. 2005] Use separable templates Exact Not applicable ∼1 per model

Modal [Fergusson et al. 2010] Expand Bζðk1; k2; k3Þ and
Bth
l1l2l3

using separable
basis functions

As good as the
Bth
l1l2l3

expansion
As good as the
Bth
l1l2l3

expansion
∼30

CMB-BEST [this work] Expand Bζðk1; k2; k3Þ using
separable basis functions

Exact As good as the
Bζðk1; k2; k3Þ expansion

∼10; 000

4Note that even though the Legendre mode functions are
orthogonal in one dimension, the three-dimensional basis func-
tions constructed are no longer orthogonal on the (nonseparable)
tetrapyd domain.
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here because Γ is symmetric and positive definite by
construction, and it can retrieve the exact solution when
the matrix is accurately invertible. We found that the
iterative algorithm implemented in the Python library
SciPy [109] is numerically stable and efficient for our
purposes.

C. Basis function choices

One of the greatest strengths of CMB-BEST lies in its
flexibility with the choice of mode functions from which
the basis set is constructed. Adopting a small set of specific
mode functions provides fast and precise results for some
specific bispectrum templates of interest. On the other
hand, a general basis set allows us to constrain a broad
range of inflationary models simultaneously but requires
more computational resources upfront. In this section, we
describe three types of basis sets studied in this work.
The first and simplest basis set consists of monomial

mode functions of the form

qpðkÞ ¼ kp−1; for p ¼ 0; 1; 2; 3: ð34Þ

The three most standard bispectrum templates—local,
equilateral, and orthogonal—can be expressed as a sum
of separable terms above. For example, the local template,
for example, is given by

Slocalðk1k2k3Þ≡ ðk1k2k3Þ2Blocal
Φ ðk1; k2; k3Þ

¼ 2A2

�
k21
k2k3

þ k22
k3k1

þ k23
k1k2

�
; ð35Þ

where A is the primordial gravitational potential (Φ)
power spectrum amplitude, which relates to the usual
scalar (curvature ζ) power spectrum amplitude through
A ¼ 2π2ð3=5Þ2As due to different conventions.5 Decom-
position coefficients αp1p2p3

for the local template are
given exactly and have three nonzero components:
α300 ¼ α030 ¼ α003 ¼ 2A2. Coefficients for the equilateral
and orthogonal templates are obtained in a similar fashion.6

Choosing the monomial functions and using the exact
α’s above render CMB-BEST to be completely equivalent
to the KSW estimator. We will refer to this basis set as
“Monomials.”
For general analyses on a wide range of bispectrum

templates, we restrict the k range to ½kmin; kmax� and define
the following mode functions:

q0ðkÞ ¼ kns−2; ð36Þ

qpðkÞ ¼ PpðμðkÞÞ; p ¼ 1; 2;…; pmax − 1;

where μðkÞ≡ −1þ 2ðk − kminÞ
kmax − kmin

: ð37Þ

FIG. 1. Some examples of our Legendre basis functions, evaluated on a sliced tetrapyd domain with k1 ≥ k2 ≥ k3. The basis functions
are defined as Qp1p2p3

ðk1; k2; k3Þ≡ qp1
ðk1Þqp2

ðk2Þqp3
ðk3Þ, where qpðkÞ are defined in (37). Here we plot p1 ¼ p2 ¼ p3 ¼ p, where p

equals (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6. A single color map is used across the plots: red and blue correspond to þ1 and −1,
respectively. Note that this figure has been borrowed from the first author’s thesis of [110] under Open Access.

5The factor of ð3=5Þ2 comes from the fact that Φ ¼ 3
5
ζ at

superhorizon scales. The other factor of 2π2 is from the relation
between the power spectrum PðkÞ and the dimensionless power
spectrum PðkÞ: PðkÞ ¼ ð2π2=k3ÞPðkÞ.

6In practice, we account for a nonunit ns by modifying the

basis as qpðkÞ ¼ k2
h
k�ðk=k�Þð4−nsÞ=3

i
p−3

for p ¼ 0, 1, 2, 3. The

pivot scale k� ¼ 0.05 Mpc−1 so that PζðkÞ ¼ Askns−1.
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Many bispectrum templates have terms that depend on k−1

which is captured by q0ðkÞ. The number of modes, pmax,
determines the maximum order of the Legendre polyno-
mials PpðμÞ included. Our baseline analysis uses
pmax ¼ 10, while the high-resolution one has pmax ¼ 30.
The latter yields 4960 basis functions in total after
accounting for symmetries. We refer to this basis set as
“Legendre.” Some of the basis functions in the Legendre
basis set are shown in Fig. 1.
As promised in the name “high-resolution CMB bispec-

trum estimator,” CMB-BEST allows targeted analysis
on complex, nonseparable bispectrum shapes with high-
frequency oscillations, which has not been constrained so
far due to computational challenges. Given an oscillation
frequency ω� of interest, a targeted oscillatory basis can be
constructed as the following:

q0ðkÞ ¼ kns−2 sinðω�kÞ; q1ðkÞ ¼ kns−2 cosðω�kÞ; ð38Þ

q2pðkÞ ¼ PpðμðkÞÞ sinðω�kÞ;
q2pþ1ðkÞ ¼ PpðμðkÞÞ cosðω�kÞ;

p ¼ 1; 2;…; ðpmax=2Þ − 1: ð39Þ

This basis set can be thought of as a tensor product between
the Legendre basis set and fsinðω�kÞ; cosðω�kÞg. A bis-
pectrum shape with linearly spaced oscillations and some
envelope function f can be rewritten as

Sðk1; k2;k3Þ ¼ fðk1; k2;k3Þ sinðω�ðk1þ k2þ k3Þ
þϕÞ ¼ Im½eiϕfðk1;k2; k3Þeiω�k1eiω�k2eiω�k3 �:

ð40Þ

Therefore, the expansion coefficients of S with respect to
the targeted oscillatory basis can be obtained by first
expanding the envelope A using a Legendre basis of order
pmax=2 and then taking a tensor product with the oscillatory
part: −α000 ¼ α011 ¼ α101 ¼ α110 ¼ cos ϕ and −α001 ¼
−α010 ¼ −α100 ¼ α111 ¼ sin ϕ.

IV. NUMERICAL INTEGRATION
OVER TETRAPYD

In this section, we present our novel method for a precise
and efficient numerical integration over the “tetrapyd”
volume, which appears frequently in bispectrum analyses
including CMB-BEST. The method shows excellent perfor-
mance, especially for integrands that are well approximated
by polynomials, showing orders of magnitude improvement
in precision with many fewer evaluation points compared
with simple trapezoidal rule, as will be discussed below.

A. Tetrapyd quadrature

The primordial bispectrum is defined on a “tetrapyd”
domain specified by triangle inequalities and the observa-
tional limits of the k range

VTðkmin; kmaxÞ≡ fðk1; k2; k3Þ∶2 maxfk1; k2; k3g ≤ k1

þ k2 þ k3 and kmin ≤ k1; k2; k3 ≤ kmaxg:
ð41Þ

Volume integrals over this domain are not separable; they
cannot be rewritten as three independent one-dimensional
integrals, unlike the integral over the cube ½kmin; kmax�3. It is
therefore difficult to simplify these integrals without
introducing one or more extra integration variables.
The simplest way to numerically compute the volume

integrals over the tetrapyd domain is, therefore, to approxi-
mate it with a weighted sum of the integrand evaluated at a
finite number of points:Z

VTðkmin;kmaxÞ
dVfðkÞ ≈

XN
n¼1

wnfðxnÞ: ð42Þ

Such a method of numerical integration is often referred to
as quadrature, or cubature in this case since it is a volume
integral [111].
One of the simplest quadratures in one dimension is the

trapezoidal rule with a uniformly spaced grid. Similarly, one
can create a uniform grid inside the three-dimensional
tetrapyd. Each grid point is weighted proportional to what
fraction of its voxel (volume pixel: a cube with the grid point
in the center and shares sides with neighboring grid points)
intersects with the tetrapyd. This approach can yield robust
results for various integrands and is sensitive to sharp local
oscillations if there are any. However, it is computationally
expensive to achieve high numerical precision using this
method, because the number of grid points required for a
three-dimensional volume scales up rapidly with the grid
density.
Efficient quadrature rules for various three-dimensional

volumes including spheres, tetrahedra and pyramids have
been studied (e.g., [111,112]), but not for a rather complex
shape of tetrapyd, to the authors’ knowledge. Inspired by
the Gaussian quadrature rules that yield exact results for the
first M orthogonal polynomials, we seek a (approximate)
tetrapyd quadrature satisfying the following conditions:
(1) Polynomials Pðk1; k2; k3Þ ¼ kp1k

q
2k

r
3 are evaluated

almost exactly for pþ qþ r <M, for some M.
(2) The nodes fxng and weights fwng are invariant

under the permutations of ðk1; k2; k3Þ, which are the
symmetries that the tetrapyd volume enjoys.

(3) The weights are non-negative (wn ≥ 0) for numerical
stability.

Note that a quadrature rule over VTðkmin; kmaxÞ can be
easily obtained from that of VTðkmin=kmax; 1Þ after a suitable
rescaling. We define kr ≡ kmin=kmax. Next, by symmetry,
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Z
VTðkr ;1Þ

dVfðk1; k2; k3Þ ¼
1

6

Z
VTðkr;1Þ

dV½fðk1; k2; k3Þ þ 5 perms� ð43Þ

¼
Z
VT=6ðkr;1Þ

dV½fðk1; k2; k3Þ þ 5 perms�; ð44Þ

where

VT=6ðkr; 1Þ≡ fðk1; k2; k3Þ∶k1 ≤ k2 þ k3 and kr ≤ k3 ≤ k2 ≤ k1 ≤ 1g: ð45Þ

It is therefore sufficient to find a quadrature rule for the symmetric functions fðk1; k2; k3Þ overVT=6ðkr; 1Þ. The quadrature rule
can be extended symmetrically anytime to cover VTðkr; 1Þ and satisfy the second condition above.

B. Orthogonal polynomials

To find a quadrature rule that exactly evaluates the integrals of polynomials over a tetrapyd, we first need an analytic
formula for the integrals. We make use of the following expression for the integrals of kp1k

q
2k

r
3 over a unit tetrapyd:Z

VTð0;1Þ
dVkp1k

q
2k

r
3 ¼

1

ðpþ 1Þðqþ 1Þðrþ 1Þ −
�

Γð1þ qÞΓð1þ rÞ
ð3þ pþ qþ rÞΓð3þ qþ rÞ þ ð2 permsÞ

�
; ð46Þ

where ΓðnÞ denotes the gamma function. We have also derived (by hand) the full analytical expression for VTðkr; 1Þ, which
generalizes (46). This result can be found in Appendix B.
Next, we define an inner product over the tetrapyd as

hf; giVTðkr;1Þ ≡
Z
VTðkr ;1Þ

dVfðkÞgðkÞ: ð47Þ

It is possible to use different weight functions for the integral, but the analytic formulas provided here will work only if they
are of form ðk1k2k3Þa. We orthogonalize and normalize the symmetric polynomials with respect to this inner product using
the modified Gram-Schmidt process (MGS). In our public code TETRAQUAD, MGS has been modified further to be slower
but numerically more stable. The first four orthonormalized symmetric polynomials over VTð0.1; 1Þ, for example, are given
as follows:

P0ðk1; k2; k3Þ ¼ 1.4540; ð48Þ

P1ðk1; k2; k3Þ ¼ 9.4663
k1 þ k2 þ k3

3
− 5.6334; ð49Þ

P2ðk1; k2; k3Þ ¼ 43.945
k21 þ k22 þ k23

3
− 51.129

k1 þ k2 þ k3
3

þ 12.439; ð50Þ

P3ðk1; k2; k3Þ ¼ 40.363
k1k2 þ k2k3 þ k3k1

3
− 13.116

k21 þ k22 þ k23
3

− 29.586
k1 þ k2 þ k3

3
þ 8.3660: ð51Þ

By orthogonality, all Pd for d > 0 integrate to zero over the tetrapyd. Therefore, an exact quadrature rule of orderM should
satisfy X

n

wnPdðxnÞ ¼ 0 for 0< d <M and
X
n

wn ¼ volðVTðkr; 1ÞÞ: ð52Þ

Note that the above would guarantee all symmetric polynomials of total order less than that of PM to be evaluated exactly.

C. Finding approximate quadrature

In this work, we find an approximate quadrature rule by fixing some grid points fxng and solving the following non-
negative least squares problem (NNLS):
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Minimize LðwÞ ¼ kPw − ak2 subject to wn ≥ 0; ð53Þ
where the M × N matrix P satisfies Pdn ¼ PdðxnÞ, w ¼
ðw1; w2;…; wNÞT, and a ¼ ðvolðVTðkr; 1ÞÞ; 0; 0;…; 0ÞT.
Having LðwÞ ¼ 0 would mean that the polynomials
P0;…; PM−1 are evaluated exactly using the quadrature.
In our code, we use the Python library SciPy [109] to solve
NNLS using an active set method [113]. We will refer to
this novel quadrature rule on tetrapyd as “Tetraquad.”
The parameters M and N are free for us to choose. The

numerical precision of the approximate quadrature mainly
depends on M, as it dictates the maximum order of
polynomials the quadrature can handle with guaranteed
accuracy. On the other hand, N, the number of grid points
(and weights), should be sufficiently large so that there are
enough free variables wn to minimize the error LðwÞ.
We have chosen to solve the optimization problem

above instead of inverting directly (w ¼ P−1a) for two
reasons. First, the matrix P is often singular and therefore
challenging to invert. We found that this is especially
problematic for grid points that are regularly spaced
inside the tetrapyd volume. Second, the direct inversion
does not guarantee our requirement that the weights are
non-negative, which is crucial for the numerical stability.
Solving the non-negative least squares problem has

another advantage; the optimal solution often leaves many
of the wn’s exactly equal to zero. In fact, we found that less
than 10% of the weights remained nonzero in most cases
when using a grid uniformly spaced within the tetrapyd.
This allows us to drop the grid points that do not contribute
to the quadrature, which in turn effectively decreases N
without degrading accuracy.

Figure 2 visualizes two quadrature rules over VTð0.1; 1Þ:
the simple uniform quadrature (left) and our new tetrapyd
quadrature (right). The spheres are located at the points xn
in (42) where the integrands are evaluated, and their sizes
are proportional to weights wn. Larger spheres are also
painted with darker colors for better visualization. As
expected, the uniform quadrature has equally sized spheres
except near the planes that enforce the triangle inequalities,
which cut down the voxel volumes and reduce the weights.
Starting with N ¼ 15 points on each dimension, the uni-
form quadrature amounts to 2517 grid points in total, or
519 with symmetry. On the other hand, the tetrapyd
quadrature only has 302 points or 72 with symmetry.
Note that more central points in the tetrapyd tend to have
larger weights. Both quadratures respect the symmetry
enjoyed by VT (S3).

D. Numerical validation

We use our public code TETRAQUAD to obtain numerical
quadrature rules for VTð0.001; 1Þ and test how accurately
they can evaluate the integral of kp1k

q
2k

r
3. We compare the

result with the uniform quadrature, which has a uniformly
spaced grid and weights proportional to the voxel volumes,
as described in the previous section.7 The results are shown
in Fig. 3.

FIG. 2. Three-dimensional visualization of the numerical quadrature rules on the tetrapyd domain VTð0.1; 1Þ (black edges) inside a
unit cube (gray edges). The position and the relative size of each sphere correspond to the given quadrature’s evaluation point and its
weight, respectively. Shown on the left side is the “uniform” quadrature with 2517 points which directly generalizes the trapezoidal rule.
The right-hand plot is obtained TETRAQUAD (N ¼ 15,M ¼ 40), which achieves ∼2 orders of magnitude higher precision with a smaller
subset of 302 evaluation points.

7In practice, we use a Monte Carlo method to compute the
volumes of voxels that are sliced by the surfaces of tetrapyd;
100,000 sample points are drawn uniformly from the cube, and
we count the fraction of samples that lie inside the tetrapyd.
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We find that the TETRAQUAD quadrature with 182 points
yields orders of magnitude better precision compared with
the simple uniform quadrature with 681,750 points (200 on
each axis, restricted to VT=6). This quadrature is obtained by
minimizing the error of polynomials of total orders up to
50, but we see that the error remains small (<10−3) for total
orders up to 100. Note that the number of polynomials
kp1k

q
2k

r
3 of total order d is equal to the nearest integer to

ðdþ 6Þ2=12,8 so there are ∼d3=36 linearly independent
polynomials with total order less than equal to d. Our 182
points quadrature remains accurate for more than 30,000
independent polynomials.
Next, we investigate how the accuracy of our quadrature

scaleswith the number of grid points. Figure 4 showshow the
fractional errors of integrating k151 k152 k153 and cosð2πðk1 þ
k2 þ k3ÞÞ dependon thenumber of grid points. The latterwas

chosen to test how robust the quadrature is when applied to
nonpolynomial functions. An analytic expression for the
integrals of sinðωðk1 þ k2 þ k3Þ þ ϕÞ over tetrapyd was
used to evaluate the numerical accuracy.
For grid sizes less than 50, Tetraquad shows comparable or

sometimes worse performance compared with the uniform
quadrature of similar grid size. However, it improves much
faster with the grid size and becomes a few orders of
magnitude more precise than the uniform quadrature by
100þ grid points for both of the test functions. It is alsoworth
noting that Tetraquad remains accurate for functions that are
not polynomials. We have not increased the number of grid
points of Tetraquad beyond 150 in the plot due to increased
computational cost, but also as we expect the errors to
become even smaller. Only ≈ 10% of the initial grid points
remain nonzero after the computation of Tetraquad, so the
largest Tetraquad quadrature in Fig. 4 started with 1500
points. The memory and computational cost hence scales
rapidly with the number of grid points. We found the
Tetraquad rule shown in Fig. 3 to be sufficient for our
purposes.

FIG. 3. Numerical accuracy of our quadrature rule on integrating fðk1; k2; k3Þ ¼ kp1k
q
2k

r
3 over the tetrapyd VTð0.001; 1Þ: (a) a

polynomial of total order 45 and (b) a sinusoidal function of the overall scale. We compare the result with the simple three-dimensional
trapezoidal rule on a uniform grid (“Uniform”). Our quadrature (“Tetraquad”) achieves much lower fractional error with significantly
fewer grid points and has fractional error <10−3 for polynomials with total orders (pþ qþ r) up to 100.

8This is equal to the number of partitions of nþ 3 into exactly
three parts, or equivalently, the number of partitions where the
maximum partition size exactly equal to 3. The proof is given
in [114].
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V. RESULTS AND DISCUSSION

We implemented CMB-BEST using C and Python
independently from other existing pipelines. Details about
the implementation and high-performance computing opti-
mization can be found in Appendix C.

A. Public release of the code

We release the public code for obtaining the Planck
2018 CMB constraints on given bispectrum shapes of
interest—effectively the CMB bispectrum likelihood—as a

Python package CMBBEST, which can be found at Ref. [85]
together with the installation guidelines and an example
notebook. The code requires a set of precomputed data for
some basis functions. Provided with the code is an HDF5
data file that contains the precomputed results for the
Planck 2018 CMB temperature and polarization dataset
under the monomials and Legendre basis functions.

1. Description

Speaking in the language of the CMB-BEST formalism,
CMBBEST contains the Cython code for the basis expansion

FIG. 4. Numerical accuracy of our quadrature rules with varying grid sizes on integrating two test functions over the tetrapyd
VTð0.001; 1Þ. We compare the result with the simple three-dimensional trapezoidal rule on a uniform grid (“Uniform”) as before. For
both test functions, we see that our quadrature rule performs and scales better; its precision is several orders of magnitude better with the
same number of grid points. Note that analytical forms of the two integrals were used to compute the errors. Tetraquad rules with a larger
number of grid points are not shown due to increased computational cost.
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given in (19) to compute the expansion coefficients α from
a given bispectrum shape. The data file provided contains
the precomputed values of βcub in (25), βlin in (26), and Γ in
(28). The fNL estimate then follows from simple matrix
multiplications given by (24). The error σðfNLÞ is com-
puted from the sample variance of the fNL estimates for
Gaussian simulations. The Fisher errors in (24) are also
computed for reference.
Planck 2018 best-fit parameters [12] were used to

compute the CMB transfer functions, with the exception
of the scalar amplitude As and tilt ns, which can be varied in
the code. The Planck 2018 CMB map from SMICA
component separation [99], together with the 160 FFP10
end-to-end simulated maps [97,98] with Gaussian initial
conditions were used.

2. Outputs

CMBBEST outputs the fNL constraints for the given set

of models as fðiÞNL � σðfðiÞNLÞ, together with the expansion
coefficients αðiÞ and the Fisher matrix Fij. If the Fisher
matrix is invertible, the marginalized constraints from a
joint analysis are provided as well. The package provides
some utility functions to save the results in various formats
including pandas data frames and LATEX tables.

3. Conventions

Our conventions follow the Planck PNG conventions
closely [10–12]. The “Model” instance of CMBBEST is
specified by the shape function SΦ defined as

SΦðk1; k2; k3Þ≡ ðk1k2k3Þ2BΦðk1; k2; k3Þ; ð54Þ

where the primordial potential bispectrum BΦ satisfies

hΦðk1ÞΦðk2ÞΦðk3Þi ¼ ð2πÞ3δð3Þðk1 þ k2 þ k3Þ
× BΦðk1; k2; k3Þ: ð55Þ

The Fourier convention with
R
dx and

R
dk=ð2πÞ is used

throughout this work. Under this convention, the local
shape function is given by [reiterating (35) but with a
nonunit ns]

SlocalΦ ðk1; k2; k3Þ

≡ 6A2
1

3

�
k21

k2−ns2 k2−ns3

þ k22
k2−ns3 k2−ns1

þ k23
k2−ns1 k2−ns2

�
; ð56Þ

where the power spectrum amplitude A follows the con-
vention in [12]: PΦðkÞ ¼ Akns−4. Note that this is different
but closely related to the scalar power spectrum amplitude
As that appears in the power spectrum analyses such
as [12] via A ¼ 2π2ð3

5
Þ2k1−ns� As, where the pivot scale

k� ¼ 0.05 Mpc−1. A detailed comparison between these

somewhat confusing conventions is given in Appendix D.
Lastly, note that the shape functions are often normalized
with a factor of 6A2 so that, in ζ space, Sζðk�; k�; k�Þ ¼
9
10
ð2πÞ4As

2.

4. Caveats

The CMBbispectrum constraints obtained from CMBBEST

are as accurate as the basis expansion. While we have
extensively tested that our basis set can accurately handle
most classes ofmodels studied in Planck, we advise the users
to keep an eye on the convergence statistics included in the
resulting constraints. The “convergence correlation” is
defined as r≡ hS; Sproji=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS; SihSproj; Sproji

p
and measures

the “cosine” between the original and projected (basis-
expanded) shape functions. This value should be close to
1. The “convergence epsilon” ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − r2Þ
p

is a rough
estimate of the expected level of the offset in fNL caused by
the inaccurate expansion, as discussed in the appendix
of [10]. We currently provide two different resolutions for
the Legendre basis: pmax ¼ 10 and pmax ¼ 30. For most
smooth shape functions, the standardpmax ¼ 10basis should
be sufficient. The higher resolution settingwithpmax ¼ 30 is
desired for more oscillatory shape functions. A rule of thumb
is that the Legendre basis would struggle to decompose a
shape functionwithmore thanpmax oscillations in thek range
of ½2 × 10−4; 2 × 10−1�.

TABLE II. Comparison between fNL constraints for the stan-
dard templates by CMB-BEST and Planck using the Planck
2018 SMICA maps. The Planck results are quoted from [12]. For
CMB-BEST, the monomials (34) and Legendre basis (37) have
been used, while for Planck, the KSW, binned, and modal 2 [24]
estimator results are shown. The results are based on independent
single-shape analyses with the lensing-ISW bias subtracted
and errors corresponding to 68% confidence levels. SMICA
foreground-cleaned maps have been used.

fNL � σðfNLÞ
Template Analysis Method T Tþ E

Local CMB-BEST KSW −1.7� 6.0 −1.1� 5.1
Legendre −1.4� 6.4 −1.1� 5.3

Planck 2018 KSW −0.5� 5.6 −0.9� 5.1
Binned −0.1� 5.6 −2.5� 5.0
Modal −0.6� 6.4 −2.0� 5.0

Equilateral CMB-BEST KSW 14� 66 −22� 49
Legendre 15� 66 −22� 49

Planck 2018 KSW 7� 66 −18� 47
Binned 26� 69 −19� 48
Modal 34� 67 −4� 43

Orthogonal CMB-BEST KSW −9� 40 −31� 24
Legendre −9� 40 −32� 24

Planck 2018 KSW −15� 36 −37� 23
Binned −11� 39 −34� 24
Modal −26� 43 −40� 24
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B. Planck 2018 constraints

CMB-BEST has been thoroughly tested on internal
consistency and validated against Planck’s modal estimator.
In this section, we reproduce some results from the Planck
2018 analysis [12] on the standard templates: local, equi-
lateral and orthogonal. We note that the analyses shown in
this part aremostly not newandare basedheavily on [10–12].
The following part (Sec. V C) shows some new constraints
on highly oscillatory templates not studied by Planck.
A comparison between the constraints from CMB-BEST

and those of Planck is shown in Table II. Both themonomials
basis set (34),which is equivalent toPlanck’sKSWestimator,
and the Legendre basis (37) have been used for consistency
checks. All results shown assume the ΛCDM baseline
cosmology with the background parameters fixed to the
best-fit values for Planck 2018 power spectrum TTTEEEþ
lowEþ lensing [115], although it has been shown that the
bispectrum constraints are not very sensitive to these choices
[11]. Following Planck, we use the multipole range of 2 ≤
l ≤ 2500 for temperature and 4 ≤ l ≤ 2000 for E-mode
polarization.
We find that the constraints from CMB-BEST are con-

sistent with Planck and the differences are within the scatter
between Planck’s own estimators, which is explained in
the appendix of [10]. The results between the “KSW” and
“Legendre” basis sets of CMB-BEST are entirely consistent
as well. The small differences in the estimated fNL and error
bars, mainly noticeable in the local template, come from the
fact that the Legendre basis has a truncated k range, which
slightly reduces the power at very lowl’s. This indeed affects
the local constraints the most as it reduces the power of
squeezed configurations (e.g. b2ll) and hence increases
the error bars by up to 6%. We thoroughly investigated
both internal and external consistency by a map-by-map

validation of CMB-BEST bases against the modal estimator
using 160 Gaussian simulations, which is detailed in
Appendix F, Sec. XII A. We found the results from the
two independentmethods to be consistent on these simulated
maps. Note also that the mean squared error (MSE) in the
basis expansion for each of these models is kept less than
10−8 in all cases.
The constraints can be understood as hypothesis tests for

the individual templates with f̂NL as a test statistic: testing
the alternative hypothesis H1∶ fNL ≠ 0 against the null
hypothesis H0∶ fNL ¼ 0. The fNL estimates of the 160
simulated maps follow a Gaussian distribution with zero
mean under the null hypothesis. If the p value of the
observation f̂NL with respect to this distribution is suffi-
ciently low (e.g. <0.01),9 we would reject the null
hypothesis. As can be seen from Table II, we do not have
sufficient evidence to reject the null hypotheses of fNL ¼ 0
for the three standard templates.
The constraints above are from independent single-shape

analyses; for each template and the corresponding Btemp
l1l2l3

,

we consider the model Bth
l1l2l3

¼ fNLB
temp
l1l2l3

. If the model
is correct and the template is an accurate representation of
the primordial bispectrum, then the result is an estimate of
the amplitude of PNG in the given shape. Various infla-
tionary models that predict different amounts of fNL can be
constrained by this estimate.
Alternatively, we could do a joint analysis where our

theoretical bispectrum is given by a linear combination of
either all or some of the templates under consideration.
Here, for demonstration purposes, we assume that a model

FIG. 5. Correlation matrix for the standard templates: local, equilateral and orthogonal. On the left is the correlation (“cosine”)
between templates in the primordial ðk1; k2; k3Þ space, while on the right is the correlation between single fNL estimates obtained from
160 simulated maps. Both temperature and polarization maps were used for the latter. We find that the standard templates are mostly
orthogonal to each other in both the primordial and late-time spaces, with the exception of local and orthogonal which are more
correlated late time.

9In principle, the p-value threshold should be set before seeing
the data.
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predicts a bispectrum shape that is represented as a linear
combination of all three standard templates: Bth

l1l2l3
¼

flocalNL Blocal
l1l2l3

þ fequilNL Bequil
l1l2l3

þ forthoNL Bortho
l1l2l3

. The fNL esti-
mate is given by (14) in this case. For templates that are
orthogonal in shape [with respect to the inner product (33)],
the Fisher matrix tends to be diagonal, and the constraints
are nearly identical to those of single-shape analyses.
Figure 5 shows correlations between the three standard
templates, both in the primordial space with the inner
product (33) and in the fNL estimates. The templates are
weakly correlated as expected, with some noticeable
correlations between the local and orthogonal templates.
A joint analysis was performed to obtain the likelihood

LðBthjB̂Þ ¼ LðflocalNL ; fequilNL ; forthoNL jB̂Þ as defined in (5).

The marginalized likelihood of the three fNL parameters
is shown in Fig. 6, plotted using the Python library GetDist

[116]. Overall, there is no evidence for a nonzero fNL.
The likelihood in Fig. 6 is plotted under the assumption

that fB̂l1l2l3g is multivariate normal distributed with
diagonal covariances equal to ð6=Δl1l2l3ÞCl1Cl2Cl3 , as
we discussed when writing down the likelihood in (5). The
validity of this assumption for this analysis is tested in
Appendix F, Sec. XII B, using the simulated maps. The
Fisher matrix slightly underestimates the error (up to 10%
in orthogonal), but the estimator remains nearly optimal in
all cases.
Assuming that the likelihood is an accurate representa-

tion of the CMB bispectrum statistics, there can be multiple

FIG. 6. The CMB bispectrum likelihood for a joint analysis on the local, equilateral and orthogonal templates using CMB-BEST. The
contours and line plots show marginalized likelihoods obtained from the temperature-only (T) and temperatureþ polarization (Tþ E)
data. Note that the Fisher matrix was used in the likelihood, which is an accurate description with only a slight underestimation of the
errors (see Appendix F, Sec. XII B, for details). The lensing-ISW bias has been taken into account. The dashed lines correspond to
fNL ¼ 0 in each plot. CMB-BEST’s Legendre basis set was used for this analysis.
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interpretations of the results depending on one’s statistical
alignments. A frequentist would interpret the contours as
the distribution of fNL estimates we could have obtained
under different realizations of the Universe and indepen-
dent observations. They would conclude that there is no
significant evidence for rejecting the null hypothesis of
f̂NL ¼ 0. When testing an early Universe model that
predicts fNL ¼ x for some x, the likelihood can similarly
be used to construct a p-value test for a rejection/non-
rejection of the model.
On the other hand, a Bayesian-minded person may

interpret the contours as the posterior distributions for
fNL when the prior is flat and wide. The posterior
distribution represents the probability distribution of each
fNL given the model and the data. Alternatively, the
constraints from the large-scale structure surveys (LSS)
can be used as priors. As the current constraints from LSS
are weaker in comparison, the posteriors would appear
similar to the plots in Fig. 6. The Bayesian model
comparison methods such as Akaike information criteria
or Bayes factors could be used to compare different models
from various templates against the model without PNG.
Note that unfortunately the constant term appearing in (9)
is not computed directly in CMB-BEST, KSW or modal
estimator, so the likelihood is determined only up to a
constant multiplicative factor.

C. Targeted oscillatory basis

Having validated the pipeline internally and against
Planck, we present some new constraints on fNL for
templates that have not been studied before in Planck
analysis [12]. Motivated by various inflationary models
which predict linearly spaced oscillations in the bispec-
trum, we consider the bispectrum shapes of form

ðk1k2k3Þ2Bðk1; k2; k3Þ ¼ fðk1; k2; k3Þ
× sinðωðk1 þ k2 þ k3Þ þ ϕÞ;

ð57Þ

where fðk1; k2; k3Þ is some envelope function of choice and
ω and ϕ parametrize the overall linearly spaced oscillations.
The case where fðk1; k2; k3Þ ¼ 1was thoroughly studied

using a KSW-like estimator [12,72] up to oscillation
frequencies 0 ≤ ω ≤ 3000 in units of Mpc. This was viable
due to the separability of linear oscillations. However, such
a trick does not immediately apply to a more complex type
of envelope function f, and it is challenging to go to a
highly oscillatory regime; the polynomial basis of the
modal estimator often lacks resolution, and the oscillations
are washed out by binning in the binned estimator.
Planck’s modal studied general oscillatory templates up
to ω≲ 350 Mpc.
Using the flexibility of mode function choices in

CMB-BEST, we can construct a targeted basis with a

fixed value of ω as shown in (39). This allows us to
study general shape functions fðk1; k2; k3Þ with a fixed
oscillation frequency ω. As a part of the proof of concept,
we performed a targeted analysis on ω ¼ 1000 Mpc.
This frequency was chosen somewhat arbitrarily for
demonstration purposes, but in future analyses, notice-
able oscillatory signals found in the power spectrum or
bispectrum could guide this choice. The results are
summarized in Table III. Overall, we find no significant
evidence from the CMB bispectrum for nonzero PNG in
these templates.
The templates are normalized so that the envelope

part fðk1; k2; k3Þ follows the conventions from Planck
[10]. The “constant” envelope is equivalent to the constant
feature models studied in Planck [12]. For the “exponen-
tial” envelope, we set fðk1; k2; k3Þ ∝ exp ½−ðð1=3Þ×
ðk1 þ k2 þ k3Þ − k�Þ2=2d2�, where k� ¼ 0.05 Mpc−1 and
d ¼ 0.02 Mpc−1 were chosen as an example. All con-
straints shown are independent single-shape analyses.
In order to test the ability of the CMB-BEST to dif-

ferentiate these oscillatory templates, we plot the cor-
relation matrix between the fNL estimates obtained
from 160 Gaussian simulations. The results are shown
in Fig. 7.
We find that the sine and cosine templates with out-of-

phase oscillations always remain relatively uncorrelated,
while within the same phases of oscillations, the local,
equilateral and orthogonal templates all show strong
correlations (≥0.88) in the fNL values they retrieve from
the simulations. The in-phase templates are as uncorre-
lated in the primordial space as the correlation between
the envelopes shown in Fig. 5 since our basis expansion

TABLE III. Constraints on some highly oscillatory bispectra
from CMB-BEST’s targeted basis. Templates are products of
the standard templates with linear oscillations Sðk1; k2; k3Þ ¼
fðk1; k2; k3Þ sinðωðk1 þ k2 þ k3Þ þ ϕÞ for ω ¼ 1000 Mpc,
where f is the local, equilateral, or orthogonal template. The
constant and exponential envelopes are defined in the text.
Overall, we do not find evidence for PNG with oscillations
with ω ¼ 1000 Mpc.

Envelope shape Phase fNL � σðfNLÞ fNL=σðfNLÞ
Local sin −0.39� 0.98 −0.40

cos −1.4� 1.1 −1.3

Equilateral sin 0.29� 0.32 0.91
cos 0.48� 0.46 1.1

Orthogonal sin 0.11� 0.12 0.91
cos 0.16� 0.17 0.98

Constant sin −17� 14 −1.2
cos 12� 15 0.76

Exponential sin −14� 27 −0.51
cos −16� 24 −0.66
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for the envelope is accurate (MSE less than 10−8).
The differences, however, appear to get washed out by
the projection effects; the templates predict nearly iden-
tical CMB bispectrum despite having different envelopes.
The constant and exponential envelopes are found to be

mostly uncorrelated with the templates with local, equi-
lateral and orthogonal envelopes. The two of them are
highly correlated themselves, which suggests that most of
the bispectrum signatures from oscillations come from the
enveloped region around K ¼ 0.15 Mpc−1.
A joint analysis between these enveloped shapes can

cover models which predict different oscillation phases at
different limits. For example, considering the local and
equilateral envelopes only, the best-fit bispectrum for
the 4-parameter model is given by

Bbfðk1; k2; k3Þ ¼ 5.46BLocalðk1; k2; k3Þ sinðωK þ 38°Þ
þ 1.46BEquilðk1; k2; k3Þ sinðωK þ 30°Þ;

ð58Þ

where K ≡ k1 þ k2 þ k3 and ω ¼ 1000 Mpc. Note that
oscillations have similar but different phases in the equi-
lateral and squeezed limits. A single-shape analysis on this
template gives the constraint 1.00� 0.49 with a 2.1σ-level
significance, which is not very high especially given that we
had three free parameters to fit for. We conclude that there is
no significant evidence for these highly oscillatory
(ω ¼ 1000 Mpc) templates with the Planck data.

VI. CONCLUSION

In this work, we presented the formalism and implemen-
tation of our new high-resolution bispectrum estimator
CMB-BEST. We publicly release the frontend of our code
as CMBBEST [85], together with a data file containing pre-
computed results from the computation-heavy parts of the
pipeline, so that researchers can obtain Planck CMB bispec-
trum constraints for their theoretical bispectrum predictions
using our code.
CMB-BEST is formulated and coded for general choices

of mode functions and can be used for various purposes.
When using a small set of monomials as mode functions, the
code is equivalent to the KSW estimator and gives quick
constraints on the standard bispectrum templates. Using a
larger set of Legendre polynomials allows for an extensive
analysis covering a broad range of models. Lastly, a targeted
oscillatory basis enables an in-depth, high-resolution analy-
sis of models with a specific oscillation frequency.
We have thoroughly optimized the code, tested the

consistency of the results, and showed a proof-of-concept
example of a high-resolution bispectrum analysis. In doing
so, we came up with some methodological advances in
algorithmic optimization and numerical computation. In
particular, TETRAQUAD is a code for computing numerical
quadrature rules for integrating functions over a tetrapyd
domain. The quadrature rule is efficient, accurate and
completely general, and is expected to benefit various
bispectrum analyses in CMB and LSS.
We plan on studying various inflationary models using

this code, and extend the methodology and code to existing
and future CMB data, including the upcoming Simons
observatory.

Code and data availability. Our codes CMBBEST and
TETRAQUAD are publicly available and can be found in [85]
and [86], respectively.
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APPENDIX A: SPHERICAL HARMONICS
RELATED IDENTITIES

In this section, we quote useful identities related
to spherical harmonics that appear in the bispectrum

FIG. 7. Correlation matrix for highly oscillatory bispectrum
templates obtained using CMB-BEST’s targeted basis. The
models considered are the same as in Table III and are described
in the text.
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formalism. The equations are quoted from various sources
including [3,103,110].
The Gaunt integral is defined as an integral of spherical

harmonics Ylm over the sphere S2:

Gl1l2l3
m1m2m3

≡
Z

d2n̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂Þ: ðA1Þ

It can be rewritten in terms of the Wigner 3j symbols as
follows:

Gl1l2l3
m1m2m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

m1 m2 m3

��
l1 l2 l3

0 0 0

�
ðA2Þ

¼
�
l1 l2 l3

m1 m2 m3

�
hl1l2l3 : ðA3Þ

The Wigner 3j symbols are normalized so that

X
mj

�
l1 l2 l3

m1 m2 m3

�
2

¼ 1; ðA4Þ

and therefore

X
mj

�
l1 l2 l3

m1 m2 m3

�
Gl1l2l3
m1m2m3

¼ hl1l2l3 ; ðA5Þ

X
mj

ðGl1l2l3
m1m2m3

Þ2 ¼ h2l1l2l3
; ðA6Þ

as long as ðl1;l2;l3Þ form a triangle.
When m1 ¼ m2 ¼ m3 ¼ 0, a useful identity relates

Wigner 3j symbols with Legendre polynomials:�
l1 l2 l3

0 0 0

�
2

¼ 1

2

Z
1

−1
dμPl1ðμÞPl2ðμÞPl3ðμÞ: ðA7Þ

It immediately follows that

h2l1l2l3 ¼
2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

8π

×
Z

1

−1
dμPl1ðμÞPl2ðμÞPl3ðμÞ: ðA8Þ

APPENDIX B: ANALYTIC FORMULA
FOR INTEGRALS OF POLYNOMIALS

OVER A GENERAL TETRAPYD

In this section, we write down the analytic formula
for the integral of polynomials over a general tetrapyd
defined as

VTðα; 1Þ≡ fðk1; k2; k3Þ∶2 maxfk1; k2; k3g ≤ k1 þ k2

þ k3 and α ≤ k1; k2; k3 ≤ 1g; ðB1Þ

for 0 ≤ α ≤ 1=2. Note that the integral over VTðkmin; kmaxÞ
can be derived from that of VTðkmin=kmax; 1Þ. We have
derived the formula given here by hand with occasional aid
from Mathematica [117].
Instead of the tetrapyd with a rather complicated shape,

we consider a cube ½α; 1�3 and the volumes inside this cube
excluded by the tetrapyd

Vcube ¼ VTðα; 1Þ ∪ V1 ∪ V2 ∪ V3; ðB2Þ

V1 ≡ fðk1; k2; k3Þ∶k2 þ k3 ≤ k1 and α ≤ k2; k3 ≤ k1 ≤ 1g;
ðB3Þ

V2 ≡ fðk1; k2; k3Þ∶k3 þ k1 ≤ k2 and α ≤ k3; k1 ≤ k2 ≤ 1g;
ðB4Þ

V3 ≡ fðk1; k2; k3Þ∶k1 þ k2 ≤ k3 and α ≤ k3; k1 ≤ k3 ≤ 1g:
ðB5Þ

Since each set on the right-hand side of (B2) is disjoint, we
have Z

VTðα;1Þ
dVkp1k

q
2k

r
3 ¼ Icube − I1 − I2 − I3: ðB6Þ

The integral over the cube is straightforward due to
separability:

Icube ¼
Z
½α;1�3

dVkp1k
q
2k

r
3 ¼

ð1− αpþ1Þð1− αqþ1Þð1− αrþ1Þ
ðpþ 1Þðqþ 1Þðrþ 1Þ :

ðB7Þ

On the other hand,

I1 ¼
Z
V1

dk1dk2dk3k
p
1k

q
2k

r
3 ðB8Þ

¼
Z

1−α

α
dk2

Z
1−k2

α
dk3

Z
1

k2þk3

dk1k
p
1k

q
2k

r
3 ðB9Þ
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¼ 1

pþ 1

Z
1−α

α
dk2

Z
1−k2

α
dk3k

q
2k

r
3½1 − ðk2 þ k3Þpþ1� ðB10Þ

..

.

¼ 1

pþ 1

Z
1

2α
dssqþrþ1ð1 − spþ1ÞBeta

�
α

s
; 1 −

α

s
;qþ 1; rþ 1

�
ðB11Þ

..

.

¼ Betaðα; 1 − α; qþ 1; rþ 1Þ
ðpþ qþ rþ 3Þðqþ rþ 2Þ

−
1

ðpþ 1Þðqþ 1Þðrþ 1Þ
�ðrþ 1Þαrþ1ð1 − αÞqþ1

qþ rþ 2
þ ðqþ 1Þαqþ1ð1 − αÞrþ1

qþ rþ 2
− αqþrþ2

�

þ αpþqþrþ3

ðpþ 1Þðpþ qþ rþ 3Þ
�
ð−1ÞqBeta

�
2;
1

α
;pþ 2; qþ 1

�
þ ð−1ÞrBeta

�
2;
1

α
;pþ 2; rþ 1

��
: ðB12Þ

Above, we used a change of variables ðk2; k3Þ ¼ ðst; sð1 − tÞÞ and integration by parts with du ¼ sqþrþ1ð1 − spþ1Þds and
v ¼ Betaðαs ; 1 − α

s ; qþ 1; rþ 1Þ. The incomplete beta function is defined as

Betaðx; y;p; qÞ≡
Z

y

x
dt tp−1ð1 − tÞq−1; ðB13Þ

so that Betað0; 1;p; qÞ corresponds to the usual (complete) beta function. The integrals I2 and I3 are obtained similarly by
cycling ðp; q; rÞ around. Although the definition originally restricts x and y to [0, 1], the function can be analytically
continued to the region outside. We compute these by using the ordinary hypergeometric function 2F1ða; b; c; zÞ and its
relation to the incomplete beta function [118]:

Betaðx; y;p; qÞ ¼ ypð1 − yÞq
p 2F1ðpþ q; 1;pþ 1; yÞ − xpð1 − xÞq

p 2F1ðpþ q; 1;pþ 1; xÞ: ðB14Þ

In our public code TETRAQUAD, the hypergeometric func-
tion is computed using mpmath [119], a Python library for
arbitrary-precision arithmetic. Note that the formula above
holds from general p, q, r that are not necessarily integers.

APPENDIX C: BISPECTRUM ESTIMATOR
INCLUDING POLARIZATION

In this section, we generalize the CMB bispectrum
likelihood (5) to include both CMB temperature and
E-mode polarization.
For simplicity, we assume that the covariance matrix is

diagonal: �
aX1

l1m1
aX2

l2m2

�
¼ CX1X2

l1
δl1l2δm1−m2

; ðC1Þ

where X ¼ T;E denotes temperature and E-mode polari-
zation, respectively.
The CMB bispectrum now consists of multiple parts:

TTT, TTE, TEE and EEE. The bispectrum estimate (2) can
be generalized as

B̂X1X2X3

l1l2l3
≡X

mj

�
l1 l2 l3

m1 m2 m3

�
½aX1

l1m1
aX2

l2m2
aX3

l3m3

−
�
haX1

l1m1
aX2

l2m2
iaX3

l3m3
þ ð2 cycÞ�

�
: ðC2Þ

¼
X
mj

�
l1 l2 l3

m1 m2 m3

�
ðBX1X2X3Þl1l2l3m1m2m3

: ðC3Þ

As discussed in [24,120], it is convenient to work
with linear combinations of X ¼ T;E in which the
covariance matrix CX1X2

l at each multipole l is diagonal.
Considering the Cholesky decomposition of C−1

l ¼ LT
lLl,

where

Ll ≡
0
B@

1ffiffiffiffiffiffi
CTT
l

p 0

−CTE
lffiffiffiffiffiffi

CTT
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
l CEE

l −ðCTE
l Þ2

p CTT
lffiffiffiffiffiffi

CTT
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
l CEE

l −ðCTE
l Þ2

p

1
CA: ðC4Þ
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The Cl’s here include the corrections from the beam and noise. We now work with X̃ ¼ T̃; Ẽ obtained by transforming
X ¼ T;E through L. The CMB transfer function TlðkÞ and observed alm’s transform as

TX̃
l ðkÞ ¼

X
X

LX̃X
l TX

l ; and aX̃lm ¼
X
X

LX̃X
l aXlm: ðC5Þ

It follows that

�
aX̃1

l1m1
aX̃2

l2m2

�
¼ δl1l2δm1−m2

.

Analogously to the temperature-only analysis, we assume that fB̂l1l2l3gl1≤l2≤l3 have a diagonal covariance matrix with

diagonal entries ð6=Δl1l2l3ÞCl1Cl2Cl3 , but now with 2 × 2 matrices CX1X2

l . Under this assumption, the CMB bispectrum
likelihood can be written as

LðBthjB̂Þ ∝ exp

�
−
1

2

X
l1≤l2≤l3

X
Xj;X0

j

�
Δl1l2l3

6

�
B̂X1X2X3

l1l2l3
− Bth;X1X2X3

l1l2l3

�

ðC−1
l1
ÞX1X0

1ðC−1
l2
ÞX2X0

2ðC−1
l3
ÞX3X0

3

�
B̂
X0
1
X0
2
X0
3

l1l2l3
− B

th;X0
1
X0
2
X0
3

l1l2l3

���
: ðC6Þ

After the transformation from X to X̃, the likelihood (C6) simplifies to

LðBthjB̂Þ ∝ exp

�
−
1

2

X
l1≤l2≤l3

X
X̃j

Δl1l2l3

6

�
B̂X̃1X̃2X̃3

l1l2l3
− Bth;X̃1X̃2X̃3

l1l2l3

�
2
�
: ðC7Þ

Given a set of bispectrum templates and their amplitude parametrized by fNL,

Bth;X1X2X3

l1l2l3
¼ hl1l2l3

X
i

fðiÞNLb
ðiÞ;X1X2X3

l1l2l3
: ðC8Þ

The maximum likelihood estimator for fNL is then given by

dfNLðiÞ ¼ X
j

ðF−1ÞijSj; ðC9Þ

where

Si ≡ 1

6

X
lj;mj;X̃j

Gl1l2l3
m1m2m3

bðiÞ;X̃1X̃2X̃3

l1l2l3

�
aX̃1

l1m1
aX̃2

l2m2
aX̃3

l3m3
−
�
haX̃1

l1m1
aX̃2

l2m2
iaX̃3

l3m3
þ ð2 cycÞ

��
; ðC10Þ

Fij ≡ 1

6

X
lj;X̃j

h2l1l2l3b
ðiÞ;X̃1X̃2X̃3

l1l2l3
bðjÞ;X̃1X̃2X̃3

l1l2l3
: ðC11Þ

The CMB-BEST formalism can effectively exploit the
separability of the summation over X̃. The projected modes
defined in (21) are extended to polarization:

q̃X̃pðl; rÞ≡ 2r
2
3

π

Z
dkqpðkÞTX̃

l ðkÞjlðkrÞ: ðC12Þ

The filtered maps (22) for the Tþ E analyses have a simple
summation over X̃ as follows:

MðiÞ
p ðn̂; rÞ≡ X

l;m;X̃

q̃X̃pðl; rÞaX̃lmYlmðn̂Þ: ðC13Þ

The rest of the CMB-BEST formalism is identical to those
described in the main text. Therefore, adding polarization
does not significantly affect the computational complexity;
it only doubles the number of spherical harmonic trans-
forms (SHT) needed to obtain the filtered maps.

APPENDIX D: PRIMORDIAL POWER
SPECTRUM AMPLITUDE CONVENTIONS

Here, we clarify and relate the different notations used in
(a) Planck 2018 constraints on PNG [12], (b) Planck 2018
cosmological parameters [115], and (c) Xingang Chen’s
review on PNG [2] for the primordial power spectrum
amplitudes.
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In [12], the primordial power spectrum PΦðkÞ is
defined as

PΦðkÞ ¼ Akns−4; ðD1Þ

so that

hΦðk1ÞΦðk2Þi ¼ PΦðk1Þð2πÞ3δð3Þðk1 þ k2Þ: ðD2Þ

This is the dimensionful primordial power spectrum. Note
that A is written as ΔΦ in [23].
The dimensionless primordial power spectrum Pζ

(denoted Pζ in [2]) is defined from

hΦðk1ÞΦðk2Þi ¼
PΦðk1Þ
2k31

ð2πÞ5δð3Þðk1 þ k2Þ; ðD3Þ

so that

PΦðkÞ ¼
k3

2π2
PΦðkÞ: ðD4Þ

At superhorizon scales, the Bardeen potential Φ and
the curvature perturbation ζ are related via Φ ¼ ð3=5Þζ.
Hence,

PΦðkÞ ¼
�
3

5

�
2

PζðkÞ; PΦðkÞ ¼
�
3

5

�
2

PζðkÞ: ðD5Þ

In [115], the scalar amplitude As and the spectral index
ns are defined through the dimensionless curvature power
spectrum:

PζðkÞ ¼ As

�
k
k�

�
ns−1

; ðD6Þ

for some pivot scale k� ¼ 0.05 Mpc−1 so that Pðk�Þ ¼ As.
This As is identical to P̃ζ in [2].
Putting these all together, we relate A from [12] and As

from [115] as follows:

Akns−4¼PΦðkÞ¼
2π2

k3

�
3

5

�
2

PζðkÞ¼
2π2

k3

�
3

5

�
2

As

�
k
k�

�
ns−1

;

ðD7Þ

and therefore

A ¼ 2π2
�
3

5

�
2

k1−ns� As: ðD8Þ

Above is the final conversion relation between the ampli-
tude Planck PNG paper’s [12] amplitude A and the Planck
parameter estimation paper [115].

APPENDIX E: IMPLEMENTATION AND
OPTIMIZATION

The CMB-BEST formalism significantly reduces the
computational complexity of CMB bispectrum estimation,
but obtaining the linear term βlin in (26) can still be
prohibitively expensive unless thoroughly optimized.
Better performance also means higher resolution, as we
may include mode functions in our basis.
Here, we detail our optimization process: algorithm

design, parallel computing, and data locality improve-
ments. Throughout this section, the tensors and functions
are treated as discrete multidimensional arrays. Our nota-
tion for indices and their limits are summarized in Table IV.
A simple trapezoidal rule is used for most numerical
integrals except the μ integral in (28), where the Gauss-
Legendre quadrature computed from the public code
Quadpts [121] is used for the highly oscillatory inte-
grand. Multidimensional arrays are stored in the row-major
order following the C convention. The HEALPix library [100]
is used for pixelization of the sky, and its component library
Libsharp [122] for the SHTs. Note that a large portion of the
material in this Appendix is adapted from [110].

A. Algorithm

There are three key quantities to be precomputed and
stored for CMB-BEST: Γ (28), βcub (25), and βlin (26). The
matrix Γ directly relates to the Fisher information matrix for
the estimator, while the two β’s provide the amplitude of
fNL for each of the CMB observations and simulations.

TABLE IV. Our index conventions for discretized arrays and their range.

Index Range Description

r ½0; NrÞ Line-of-sight integral r grid index.
p; pj ½0; pmaxÞ Mode number. pj is a shorthand for ðp1; p2; p3Þ.
i, j ½0; Nsim� Map number. Index i ¼ 0 corresponds to the observed map, while i > 0

corresponds to different FFP10 simulated maps [97].
n ½0; NpixÞ Map pixel number.
l; m ½lmin;lmax� Spherical harmonic multipole moments. Note − l ≤ m ≤ l.
μ ½0; NμÞ Grid index for the Gauss-Legendre quadrature.
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In most cases, the bottleneck point of our pipeline is
computing the linear term βlin. Even though the Γ matrix
scales more rapidly with the number of basis functions
(∝ p6

max) than the β’s (∝ p3
max), it does not involve operations

with high-resolutionmaps and remains subdominant in terms
of the total cost in the regime we consider (pmax ≤ 30).
The discretized versions of (25) and (26) are given by

βcubði; p1; p2; p3Þ ¼
X
r

X
n

Mðr; i; p1; nÞ

·Mðr; i; p2; nÞ ·Mðr; i; p3; nÞ; ðE1Þ

βlinði; p1; p2; p3Þ ¼
X
r

X
j≠i

X
n

Mðr; j; p1; nÞ

·Mðr; j; p2; nÞ ·Mðr; i; p3; nÞ; ðE2Þ
respectively. The order of indices is chosen such that the
following calculations have optimal memory layouts. Some
integral weights and factors are absorbed into arrays for
brevity.
First, note that the data arrays for different values of r are

completely independent of each other. This provides us with
a natural way to split tasks. We compute and save contri-
butions to β’s for each r separately and summed over at the
endwithminimal overhead. Therefore, throughout the rest of

this chapter, we assume that r is fixed and drop the r
dependence in the descriptions of our algorithms.
The filteredmap arraysMði; p; nÞ are obtained as follows.

A given map i is first transformed into spherical harmonic
coefficients aðiÞðl; mÞ’s via SHT.We then compute q̃ðp; lÞ �
aði;l; mÞ=CðlÞ from (22) through inverse SHT to synthe-
size the filtered maps.
As a rough guide to the size of each summation, we

typically have Nsim ¼ 160 simulations, pmax ¼ 30 modes,
and Npix ¼ 50, 331, 648 pixels.10 Considering the fact that
one double-precision array of size ∼50 million pixels takes
about 400 MB of memory space, this is indeed a task for
supercomputers.
Finding the optimal algorithm for β computation was

about reducing the computational complexity while keeping
the memory footage in check. Computing and saving
some intermediate quantities often reduce the computational
complexity but can often be infeasible due to maximum
memory restraints. We describe our final algorithm below as
Algorithm1.Amore detailed reasoning can be found in [110].
The trick is to reduce the amount of memory required at

the cost of doubling the SHTs for computing Mði; p; nÞ’s

Algorithm 1. Computing β’s: Fast and memory efficient.

1: Allocate mðp; nÞ ▹ Memory ∼ pmax · Npix

2: Allocate Cðp1; p2; nÞ ▹ Memory ∼ p2
max · Npix

3:
4: for each map i do
5: for each mode p do ▹OðNsims · pmax · N

3=2
pix Þ

6: compute Mði; p; nÞ by SHT and store in mðp; nÞ
7: end for
8:
9: for each pair of modes ðp1; p2Þ do
10: for each pixel n do ▹ OðNsim · p2

max · NpixÞ
11: Cðp1; p2; nÞþ ¼ mðp1; nÞ ·mðp2; nÞ
12: end for
13: end for
14: end for ▹ Cðp1; p2; nÞ ready
15:
16: for each map i do
17: for each of mode p do ▹ OðNsim · pmax · N

3=2
pix Þ

18: compute Mði; p; nÞ by SHT and store in mðp; nÞ
19: end for
20:
21: for each set of modes ðp1; p2; p3Þ do
22: for each pixel n do ▹ OðNsim · p3

max · NpixÞ
23: βcubði; p1; p2; p3Þþ ¼ mðp1; nÞ ·mðp2; nÞ ·mðp3; nÞ
24: βlinði; p1; p2; p3Þþ ¼ Cðp1; p2; nÞ ·mðp3; nÞ
25: end for
26: end for
27: end for

10This value corresponds to Nside ¼ 2048 in HEALPix:
Npix ¼ 12N2

side.

HIGH-RESOLUTION CMB BISPECTRUM ESTIMATOR WITH … PHYS. REV. D 108, 063504 (2023)

063504-23



which are subdominant. The quantity Cðp1; p2; nÞ is
precomputed during the first round of SHTs. This quantity
is then used during the second round of SHTs to compute
the ß s for each map. Algorithm 1 requires memory of size
≈p2

maxNpix and has leading computational complexity
of OðNsimp3

maxNpixÞ.
SHTs have a subdominant contribution to the total

computation time even after becoming doubled in number.
One of the main strengths of Algorithm 1 is that both the
memory and computation time scale linearly with the
number of simulations used, Nsims. In the future when a
larger number of Gaussian simulations is required to
acquire a more accurate estimate of the linear term, it is
straightforward to adapt our method accordingly.

B. Parallelism

In order to fully benefit from modern computer archi-
tecture, we introduce parallelism in multiple levels of
CMB-BEST for optimal performance on supercomputers.
Following [107], we discuss parallelization at three

different levels. They mostly correspond to nodes, cores,
and registers/cache in modern computer clusters. Each level
has distinct characteristics which make them ideal for
different parallelization techniques. We make full use of
each level in our methodology.
The first level of parallelism relates to dividing the main

work into many computation-heavy tasks with limited data
communication between them. Since the tasks are largely
independent, each of them can be assigned to independent
nodes or to the message passing interface (MPI) [123]
ranks. We exploit this level of parallelism in CMB-BEST
by splitting the line-of-sight integration over r; almost no
data are shared between different r’s despite the heavy
operations within each of them. CMB-BEST scales well
with the number of computing units assigned for each r
point (or several r points).
The second level of parallelism is for multiple computa-

tional subtasks on a single set of data. Most modern
supercomputers use multicore processors. Each core, or
processing unit, can run one or more threads, executing
instructions independently from each other while sharing
memory space. MPI would not be as effective here due to
the large amount of data sharing required; ranks would
have to either continuously communicate with each other,
or store duplicate copies of the data. This type of paral-
lelism is required in the SHTs and map operations of CMB-
BEST. We use open multiprocessing (OpenMP) [124] for
multithreading in C for this purpose.
The third level of parallelism applies to the identical

arithmetic operations applied to multiple data items, ideally
adjacent in memory space: single instruction, multiple
data. Many procedures in CMB-BEST involve large array
operations which benefit from this type of parallelism.
We use advanced vector extensions (AVX) supported by
Intel processors to exploit this, especially for operations

involving large filtered map arrays. In particular, Intel’s
Xeon Phi series’ AVX-512 implementation, where the 512-
bit registers hold up to eight double-precision floating
numbers [107], provided a major boost to the computa-
tion speed.

C. Data locality

We implemented Algorithm 1 and profiled it using the
Intel VTune Amplifier. Our program was found to be
memory bound, meaning its speed is limited mainly by
the speed of memory access. The CPU speed, rate of the file
I/O, and MPI communication all have subdominant con-
tributions in comparison. This is somewhat expected since
our method deals with large map arrays. The number of
operations on each data element is small compared with the
size of data, causing the CPUs to be “starved” for data to
work on most of the time. Our final set of optimization
focuses on improving memory access patterns.
CPUs of most modern computers contain a small amount

of memory attached to them called a cache. Recently used
data and instructions are stored in cache memory so that
reusing them is more efficient; accessing them is much
faster than loading from the main, larger memory often
shared with other CPUs. A cache is often divided into
multiple levels. The smallest and fastest is the L1 cache,
which is the first level a CPU checks for data. When the
required data are not stored in the L1 cache, a cache miss
occurs. The system then has to look further down the cache
levels to fetch the desired data, incurring a large time loss.
As the cache “caches” memory locations in units of cache
lines, or chunks of memory containing multiple data
elements, accessing memory locally significantly increases
the chance of cache hits and boosts overall performance.
CMB-BEST has been modified in two ways to improve

data locality and memory performance. The first one was
simple yet effective; we made sure to initialize large arrays
within the same OpenMP construct as the main computa-
tion loop. This guarantees the physical memory of array
elements to be allocated near the cores where they are going
to be used. Memory access during the main computation
loop is therefore much faster than it would be otherwise.
Systems with nonuniform memory access especially ben-
efit from this method. For CMB-BEST, we gained a two-
times speedup compared with when a single master thread
initialized the entire array.
The second optimization centers around cache blocking,

a technique used to maximize data reuse. The most
expensive loop from Algorithm 1 is:

for each set of modes ðp1; p2; p3Þ do
for each pixel n do
βcubði; p1; p2; p3Þþ ¼ mðp1; nÞ ·mðp2; nÞ ·mðp3; nÞ
βlinði; p1; p2; p3Þþ ¼ Cðp1; p2; nÞ ·mðp3; nÞ

end for
end for
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In every outermost loop, four large arrays are read from
memory: mðp1; ·Þ, mðp2; ·Þ, mðp3; ·Þ, and Cðp1; p2; ·Þ.
Each of them takes up around 400 MB of memory.
Since their size is greater than the cache storage capacity,
data in front of them are gone from the cache by the time a
loop over n completes. All four arrays will then have to be
loaded from the main memory again when the next iteration
starts.
To allow different parts of the array to be reused before

they are lost in cache, we divide the large arrays into
equally sized blocks that fit inside the cache memory. We
restructure the loop as follows:

for each block b do
for each set of modes ðp1; p2; p3Þ do

for each pixel n0 in block do
βcubði; p1; p2; p3Þþ ¼ mðp1; n0Þ ·mðp2; n0Þ ·mðp3; n0Þ
βlinði; p1; p2; p3Þþ ¼ Cðp1; p2; n0Þ ·mðp3; n0Þ

end for
end for

end for

New pixel numbers are calculated as n0 ¼ B · bþ n,
where B is the size of each block and 0 ≤ n < B. We have
not changed the total number of arithmetic operations
required, so the computational complexity remains the
same. Meanwhile, data locality within each block is greatly
improved, as each of the blocked arrays is now small
enough to fit in the cache. Each data element is accessed in
closer succession temporarily as well.
One caveat here is that having too many blocks may

degrade the overall performance. There exists a non-
negligible overhead coming from an extra for loop and
the OpenMP construct used over n0. The block size divided
by the number of cores should not be smaller than the size
of cache lines either. The optimal size of cache blocks
depends on the memory architecture of the processor used.
This often needs to be found empirically. For our imple-
mentation, we found the optimal number of blocks to be
128, yielding a three-times speedup compared with the
original code without cache blocking.

APPENDIX F: VALIDATION

1. Map-by-map validation of CMB-BEST

In this section, we show map-by-map validation of the
CMB-BEST pipeline against the modal estimator used in
Planck analyses.
Figures 8 and 9 show comparisons between the

Monomials and Legendre basis sets of CMB-BEST. A
total of 160 Planck’s FFP10 SMICA-component-separated
simulations [97,99] were used for this analysis. For each
simulated map, we compare the fNL’s of the standard
templates that have been computed using two different

bases. The two of them agree almost exactly, with a map-
by-map correlation of more than 0.99 in all cases.
Despite using identical datasets, we see a small scatter

between the Monomials and Legendre basis sets in the local
fNL. This is mainly due to the limited k range of the
Legendre basis: ½2.08 × 10−4; 2.08 × 10−1� Mpc−1. The
range has been set wide enough to cover the scales where
CMB information comes from, but also narrow enough to
have enough resolution for expanding oscillatory templates
with polynomials of maximum order pmax. Loss of large-
scale information with k < 2.08 × 10−4 has a small effect
on equilateral and orthogonal shapes, but affects the local
shape through the squeezed limit. The error bar σðfNLÞ is
about 7% smaller for the Monomials basis for this reason.
Choosing a wider k range for the Legendre basis has been
shown to remove this scatter [110].
We also perform a map-by-map comparison of the CMB-

BEST pipeline with Planck’s modal estimator. The results
are shown in Fig. 10. Overall, we find the two methods to
be consistent and have fNL correlations varying between
0.93 and 0.97. The level of scatter shown here is within the
bounds seen between the different estimators used in
Planck [10]. The local template shows a slightly higher
level of discrepancy due to the limited k range in the
Legendre basis mentioned above. For a detailed analysis of
the reason why different estimators are not perfectly
correlated, we refer to the appendix of [10].

2. Optimality of the bispectrum estimator

In this section, we test the optimality of CMB-BEST
estimation to evaluate the validity of the Fisher matrix
approximation for writing down the CMB bispectrum
likelihood (5).
The error given by the Fisher matrix in the likelihood

is a rather theoretical quantity; it measures the expected
scatter of the estimated fNL values across different real-
izations of the Universe. Unfortunately, we only have one
universe to observe from, so simulated maps are used
instead. As before, 160 CMB maps from FFP10 simula-
tions after SMICA component separation [97–99] are
plugged into CMB-BEST pipeline to compute the fNL
estimates. The simulations are based on Gaussian initial
conditions.
The analysis would benefit from having more simula-

tions, but the publicly available maps from the Planck
Legacy Archive are only usable up to simulation number
160,11 since the ones after then are currently erroneous.
Their temperature and polarization maps yield angular

11The files are named dx12_v3_smica_cmb_mc_00xxx_raw.-
fits, where xxx corresponds to the simulation number.
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power spectra that are consistent with the background
cosmology, but the cross spectra (CTE

l ) are completely
inconsistent.
Figures 11 and 12 show comparisons between the

distribution of the fNL estimates from simulations and
the expected distribution computed using the Fisher matrix.

The Python library GetDist [116] was used to plot the sample
points as contours. The irregular shapes of the contours are
mainly due to the limited number of simulations used.
Overall, we find that the Fisher matrix well approximates
the error except for a slight underestimation between the
4% and 10% level.

FIG. 8. A map-by-map comparison of the fNL estimates evaluated using the Monomials (KSW) and Legendre basis sets for three
standard templates. The Planck 2018 CMB temperature map and 160 FFP10 simulations have been used, each representing a single
point on the scatter plot (left). Details of the linear regression to data (red) are annotated below. Shown on the right-hand side are plots of
the differences in the fNL values for each map, together with the 1σ and 2σ intervals shaded in blue. In the ideal case where the two basis
sets yield identical results, we should see all the points lie on the line y ¼ x for the left plot and y ¼ 0 for the right plot. For more
information on each of the three theoretical templates used, see e.g., [10].
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FIG. 9. A map-by-map comparison of the fNL estimates evaluated using the Monomials (KSW) and Legendre basis sets for three
standard templates. The same as Fig. 8 but using both temperature and E-mode polarization.
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FIG. 10. A map-by-map comparison of the fNL estimates obtained from the CMB-BEST’s Legendre basis set against the modal
estimator results of the Planck 2018 analysis [12]. The first 160 FFP10 simulations are used here. On the left-hand side are scatter plots
where each simulation is represented by a point according to fNL estimates of standard templates. Their linear best-fit lines are shown in
red. Differences in the estimates from the two routines are shown map-by-map on the right-hand side, together with the 1σ and 2σ levels
shaded in blue. Overall, CMB-BEST and modal are in good agreement without any significant systematic errors.
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FIG. 11. Comparison between the likelihoods estimated from the Fisher matrix and from fNL estimates of 160 FFP10 simulated
temperature maps, under Gaussian initial conditions. The dashed lines indicate the marginal fNL estimates from observations. The two
likelihoods are consistent with each other, even though the Fisher one underestimates the marginalized error by up to 10%. Note that the
contour looks slightly irregular due to the limited number of samples.
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