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Spinning neutron stars (NSs) can emit continuous gravitational waves (GWs) that carry a wealth of
information about the compact object. If such a signal is detected, it will provide us with new insight into
the physical properties of matter under extreme conditions. According to binary population synthesis
simulations, future space-based GW detectors, such as LISA and TianQin, can potentially detect some
double NSs in tight binaries with orbital periods shorter than 10 minutes. The possibility of a successful
directed search for continuous GWs from the spinning NS in such a binary system identified by
LISA/TianQin will be significantly increased with the proposed next-generation ground-based GW
observatories, such as Cosmic Explorer and Einstein Telescope. Searching for continuous GWs from such a
tight binary system requires highly accurate waveform templates that account for the interaction of the NS
with its companion. In this spirit, we derive analytic approximations that describe the GWs emitted by a
triaxial nonaligned NS in a binary system in which the effects of spin-orbit coupling have been
incorporated. The difference with the widely used waveform for the isolated NS is estimated and the
parameter estimation accuracy of an example signal using Cosmic Explorer is calculated. For a typical tight
double NS system with a 6 min orbital period, the angular frequency correction of the spinning NS in this
binary due to spin precession is ∼10−6 Hz, which is in the same order of magnitude as the angular
frequency of orbital precession. The fitting factor between the waveforms with and without spin precession
will drop to less than 0.97 after a few days (∼105 s). We find that spin-orbit coupling has the potential to
improve the accuracy of parameter estimation, especially for the binary inclination angle and spin
precession cone opening angle, by up to 3 orders of magnitude.
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I. INTRODUCTION

Rapidly spinning neutron stars (NSs) are promising
sources of a long-lasting form of gravitational waves
(GWs), namely continuous waves (CWs) [1–5]. Detecting
these potential CWs would help us solve some of the
mysteries in NS physics, such as NS’s equation of state,
deformability, and magnetic field [6–8].
There are two types of simplified waveforms that are

commonly used in current searches for CWs emitted by
NSs (modeled as Newtonian rigid bodies) with Advanced

LIGO [9] and Advanced Virgo [10]. One is the mass
quadrupole mode with a frequency at twice the rotation
frequency of the pulsar, which comes from a triaxial rigid
body rotating about one of its principal axes with assumed
principal moments of inertia I1 < I2 < I3 (hereafter referred
to as the triaxial aligned waveforms, e.g., [11–14]); the other
is the mode with frequencies at both once and twice the
rotation frequency,which comes from an axisymmetric freely
precessing rigid body with assumed I1 ¼ I2 ≠ I3 (hereafter
referred to as the biaxial waveforms, e.g., [15–17]). Similar
two-frequency mode searches are also performed in [18–24].
TheGWemission due to r-modes [25,26] in a rotating perfect
fluid star is not the subject of our work. So far, no credible
detection has been reported in these searches [5].
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The more general waveforms that come from a freely
precessing triaxial rigid body (hereafter referred to as the
triaxial nonaligned waveforms) were first calculated by
Zimmermann [27]. The dominant waveform components
are obtained by expanding the quadrupole moment formula
in terms of small parameters, such as wobble angle,
oblateness, and nonaxisymmetry parameters. These wave-
forms have been extended to include higher than first-order
expansion terms of the wobble angle and nonaxisymmetry
[28,29] in order to extract more physical information.
In addition to the waveform modeling of isolated NS

discussed above, there are also considerations about the NS
located in a binary system since the electromagnetic
observations show that nearly half of the known pulsars
within the most sensitive band of the ground-based GW
detectors belong to binary systems [30–32]. Some search
schemes are proposed for this type of CWs [30,33–36].
However, the waveform model used in these searches is
obtained by simply incorporating the Doppler frequency
modulation into the phase of the triaxial aligned waveforms
emitted by the isolated NS.
For future space-borne GW detectors, the detectability

and parameter estimation accuracy of double NS systems
that will merge within the next 10 Myr have been studied
for LISA [37] and TianQin [38]. Based on the merger rate
density (920 Gpc−3 yr−1) inferred from GWTC-1 [39],
about 300 double NS systems are expected to be detected
in the mHz band during the 4-year observation period,
including binaries with orbital periods shorter than
10 minutes. Proposed next-generation ground-based GW
observatories, such as Cosmic Explorer [40] and Einstein
Telescope [41], are expected to operate concurrently with
LISA and TianQin in the 2030s. Searching for CWs from
the spinning NS in such a tight system identified by LISA
and/or TianQin requires consideration of the interaction of
the rapidly spinning NS with its companion.
In this paper, we incorporate the effects of spin-orbit

coupling to the GWs emitted by the spinning NS in a
circular orbital binary and extend the triaxial aligned NS to a
general triaxial nonaligned NS. Other effects, such as
magnetic dipole field [42], tidal interaction [43], and
radiation reaction [44] are neglected in the current work.
Spin-orbit coupling causes spin precession and orbital
precession around the total angular momentum [44].
Similar to the treatment in previous works, such as that
of LIGO [33], the GWs emitted by the spinning NS in a
binary are obtained by simply incorporating the Doppler
frequency modulation (including the effects of orbital
precession) into the phase of the triaxial nonaligned wave-
forms of the NS with spin precession. In contrast to the
isolated case (neglecting the electromagnetic and the
gravitational radiation-reaction torque as in [27]), the spin
angular momentum of the NS is no longer constant in the
binary. Instead, it will be precessed due to the spin-orbit
coupling.We analytically solve the spin precession equation

for the NS using the perturbation method to obtain the spin
angular frequency evolution and calculate the waveforms
based on the quadrupole moment formula. Next, the wave-
forms are expanded into some simple components in the
small parameter case for the subsequent analysis of CW
detection. Finally, using these easy-to-use waveform com-
ponents, we investigate the impact of spin-orbit coupling on
the parameter estimation accuracy of the spinning NS.
Calculations along these lines yield the following results:
(i) The waveforms of the NS undergoing spin precession
will deviate from the isolated ones after a few days (∼105 s)
when the fitting factor between the two waveforms drops to
less than 0.97. (ii) Spin-orbit coupling has the potential to
improve the parameter estimation accuracy, specifically for
the cosine of the binary inclination cos ι and spin precession
cone opening angle θS, by up to 3 orders of magnitude.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the mathematical formalism for GWs
from an isolated spinning NS, which will be used for
subsequent calculations for NS in a binary system.
Analytical approximations for the GWs from a spinning
NS in a binary system, taking into account spin-orbit
coupling effects, are given in Sec. III. The comparison
of results derived using waveforms with and without spin
precession is given in Sec. IV. The parameter estimation
accuracy of the waveforms with and without spin-orbit
coupling using Cosmic Explorer [40] are given in Sec. V.
Our conclusions are discussed in Sec. VI. Some details of
our calculation have been relegated to the appendix in order
to keep the main ideas of the paper as clear as possible.

II. GRAVITATIONAL WAVEFORMS
FROM ISOLATED NS

Since the waveforms emitted by spinning NS undergoing
spin-orbit coupling are based on the waveforms emitted by
the isolated NS, we will first discuss the case for the
isolated NS. Following the conventions of Landau and
Lifshitz [45] and Zimmermann [27], in Fig. 1, the inertial
coordinate system is denoted as ðX; Y; ZÞwith basis vectors
ðex; ey; ezÞ and ez along the body’s angular momentum, and
the body coordinate system ðx1; x2; x3Þ with basis vectors
ðe1; e2; e3Þ parallel to the eigenvectors of the body’s
moment of inertia tensor and satisfying I3 > I2 ≥ I1.
The origins of the two systems are placed at the center
of mass of the NS. The Euler angles (θ;ϕ;ψ) describe the
orientation of the body coordinate system with respect to
the inertial coordinate system. We use the Latin subscripts
(e.g., x, y, z) for components evaluated in the inertial
coordinate system, and the Greek ones (e.g., μ, ν) in the
body coordinate system.
The metric perturbation under the transverse-traceless

gauge can be written in terms of two GW polarizations,
hTTjk ¼ hþðêþÞjk þ h×ðê×Þjk, with the polarization tensors
defined as
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êþ ≡ v̂ ⊗ v̂ − ŵ ⊗ ŵ; ê× ≡ v̂ ⊗ ŵþ ŵ ⊗ v̂; ð1Þ

where v̂ and ŵ are the transverse basis vectors
perpendicular to the wave’s propagation direction, and ⊗
denotes the tensor product. Without loss of generality, we
assume that the observer is located in the Y–Z plane with
colatitude i from the Z axis and distance D ¼ jDj. In this
configuration,

v̂≡ êy cos i − êz sin i; ŵ≡ −êx; ð2Þ

and the two GW polarizations can be written as [27]

hþ ¼ −
G
c4D

½ðRyμ cos i − Rzμ sin iÞ
× ðRyν cos i − Rzν sin iÞ − RxμRxν�Aμν; ð3aÞ

h× ¼ 2G
c4D

ðRyμ cos i − Rzμ sin iÞRxνAμν; ð3bÞ

where Einstein summation is performed for μ and ν, both of
which take the values f1; 2; 3g. The components of the
symmetric matrix Aμν are given by [27]

A11 ¼ 2ðΔ2Ω2
2 − Δ3Ω2

3Þ; ð4aÞ

A22 ¼ 2ðΔ3Ω2
3 − Δ1Ω2

1Þ; ð4bÞ

A33 ¼ 2ðΔ1Ω2
1 − Δ2Ω2

2Þ; ð4cÞ

A12 ¼ A21 ¼ ðΔ1 − Δ2ÞΩ1Ω2 þ Δ3Ω̇3; ð4dÞ

A23 ¼ A32 ¼ ðΔ2 − Δ3ÞΩ2Ω3 þ Δ1Ω̇1; ð4eÞ

A31 ¼ A13 ¼ ðΔ3 − Δ1ÞΩ3Ω1 þ Δ2Ω̇2; ð4fÞ

with Δ1 ≡ I2 − I3, Δ2 ≡ I3 − I1, Δ3 ≡ I1 − I2. Here,
ðΩ1;Ω2;Ω3Þ denotes the angular frequency of NS in the
body coordinate system. The rotation matrix that trans-
forms from the body coordinate system to the inertial
coordinate system (e.g., Rx2 denotes the entry in row x ¼ 1
and column μ ¼ 2) is

R ¼

0
B@

cosψ cosϕ − cos θ sinψ sinϕ − cos θ cosψ sinϕ − sinψ cosϕ sin θ sinϕ

cos θ sinψ cosϕþ cosψ sinϕ cos θ cosψ cosϕ − sinψ sinϕ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

1
CA: ð5Þ

According to Euler’s equations of free rotation of a rigid
body and the initial conditions (Ω1ð0Þ ¼ a;Ω2ð0Þ ¼ 0;
Ω3ð0Þ ¼ b), the angular frequencies in the body coordinate
system are [27]

Ω1 ¼ acnðτ; mÞ; ð6aÞ

Ω2 ¼ a

�
I1ðI3 − I1Þ
I2ðI3 − I2Þ

�
1=2

snðτ; mÞ; ð6bÞ

Ω3 ¼ bdnðτ; mÞ; ð6cÞ

where cn, sn and dn are Jacobian elliptic functions [46]
with the parameters

τ ¼ bt

�ðI3 − I2ÞðI3 − I1Þ
I1I2

�
1=2

; ð7Þ

m ¼ ðI2 − I1ÞI1a2
ðI3 − I2ÞI3b2

: ð8Þ

The Euler angles can be expressed in terms of Jacobian
elliptic functions and the fourth theta functions [46] (ϑ4 and
their derivatives ϑ04):

cos θ ¼ I3b
S

dnðτ; mÞ; ð9aÞ

tanψ ¼
�
I1ðI3 − I2Þ
I2ðI3 − I1Þ

�
1=2 cnðτ; mÞ

snðτ; mÞ ; ð9bÞ

ϕ ¼ ϕ1 þ ϕ2; ð9cÞ

FIG. 1. The inertial coordinate system ðX; Y; ZÞ and the body
coordinate system ðx1; x2; x3Þ are both centered on the center of
mass (O1) of the isolated NS. The x1 − x2 plane intersects the
X–Y plane at the line of nodes O1N. (θ;ϕ;ψ) are Euler angles.
The distant observer with position vectorD is assumed in the Y–Z
plane at colatitude i from the Z axis.
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with S being the magnitude of the spin angular momentum
of the NS and ϕ1;2 given by [29]

exp ½2iϕ1ðtÞ� ¼
ϑ4ð2πtT þ iπα; qÞ
ϑ4ð2πtT − iπα; qÞ ; ð10aÞ

ϕ2 ¼
2πt
T 0 ¼

�
S
I1

þ 2πi
T

ϑ04ðiπα; qÞ
ϑ4ðiπα; qÞ

�
t: ð10bÞ

Here, T is the period of the angular frequency in the body
coordinate system,

T ¼ 4KðmÞ
b

�
I1I2

ðI3 − I2ÞðI3 − I1Þ
�
1=2

: ð11Þ

α satisfies sn½2iαKðmÞ� ¼ iI3b=ðI1aÞ. i is the imaginary
unit. q ¼ exp½−πKð1 −mÞ=KðmÞ�, where KðmÞ is the
complete elliptic integral of the first kind [46]. Since
cosϕ2 has a period T 0 which is generally not commensurate
with T, the motion of the NS is usually nonperiodic. When
the NS becomes axisymmetric, T 0 → 2πI1=S [27].
Explicit waveforms are usually expressed in a series

expansion of some small parameters [27–29]. To facilitate
the following calculation, we define the spinning NS’s free
precession angular frequency and rotation angular fre-
quency

Ωp ≡ 2π

T
; Ωr ≡ 2π

T 0 −
2π

T
; ð12Þ

and three parameters that characterize NS’s properties

ϵ≡ I3 − I1
I3

; κ≡ 1

16

I3
I1

I2 − I1
I3 − I2

; γ ≡ aI1
bI3

; ð13Þ

where ϵ is called the oblateness (or poloidal ellipticity [5])
of the NS, κ describes the (I2 − I1) with respect to the
axisymmetric nonsphericity (I3 − I2), while γ is called the
wobble angle. Their characteristic values are discussed in
[28]. For the small quantities above, the expansions of the
sines and cosines of the Euler angles [cf. Eqs. (9)] in S-
aligned coordinate system up to terms of Oðγ2Þ and Oðκ2Þ
are [29]

cos θ ¼ 1 − γ2=2; sin θ ¼ γ þ 8γκsin2ðtΩpÞ; ð14aÞ

cosϕ¼ cos½tðΩrþΩpÞ�; sinϕ¼ sin½tðΩrþΩpÞ�; ð14bÞ

cosψ ¼ sinðtΩpÞþ8κ sinðtΩpÞcos2 ðtΩpÞ
þ8κ2ð3sinð3tΩpÞ−13sinðtΩpÞÞcos2 ðtΩpÞ; ð14cÞ

sinψ ¼ cos ðtΩpÞ − 8κ sin2 ðtΩpÞ cos ðtΩpÞ
þ 96κ2 sin4 ðtΩpÞ cos ðtΩpÞ: ð14dÞ

III. GRAVITATIONAL WAVEFORMS
FROM SPINNING NS IN A BINARY

Following the treatment in previous works, such as [33],
the GWs emitted by the spinning NS in a binary can be
obtained by incorporating the Doppler frequency modula-
tion (modulated by orbital precession) into the phase of
the triaxial nonaligned waveforms of the NS with spin
precession.
First, we calculate the GWs emitted by a spinning NS

undergoing spin precession. Consider a binary system
consisting of a spinning NS with spin angular momentum
S and a nonspinning NS (or a slowly spinning NS of
which the spin effects can be ignored). This is consistent
with the standard evolution scenario of the double NS
formed in an isolated system, in which one of the NSs is a
rapidly spinning millisecond pulsar and the other is a
normal pulsar [47,48]. If the companion star has spin, then
spin-spin coupling will also cause the rapidly spinning NS
to precess. The ratio of the precessional angular frequency
due to the spin-spin (SS) coupling to that due to the
spin-orbit (SO) coupling satisfies ΩpreðSSÞ=ΩpreðSOÞ <
4M=ð3M þm1Þðm2=MÞ1=2ðR2=rÞ1=2, where M¼m1þm2

is the total mass of the binary, m1 is the mass of the rapidly
spinning NS, m2 and R2 are the mass and the radius of the
companion, and r is the orbital separation (cf. Eq. (10.179) in
[49]). For a double NS system with an orbital period of
10 min, ΩpreðSSÞ=ΩpreðSOÞ < 0.01 for a companion with
maximum spin, i.e., the spin-spin precession angular fre-
quency is at least two orders of magnitude smaller than the
spin-orbit precession angular frequency, therefore we can
ignore the spin-spin coupling. Furthermore, in this work we
assume that the orbits of binary stars are circular. A recent
population synthesis simulation in [50] shows that the
eccentricities satisfy e≲ 0.01 for the double NS systems
with orbital periods shorter than 10min.On the other hand, in
the extreme cases where eccentricity is important, we need to
generalize our current work to incorporate the effects of
eccentricity. This can be a subject of our future work.
For a binary system in which only one of the bodies has

spin, the precession equations [44] for the spin of the body
and the orbit of the binary show that to a reasonable
approximation the total angular momentum J maintains its
direction, S keeps its magnitude constant and precesses
around J with

dS
dt

¼ Ωpre × S; ð15Þ

where

Ωpre ¼
G

2c2r3

�
1þ 3M

m1

�
J ð16Þ

is the angular frequency of spin precession and orbital
precession induced by spin-orbit coupling. Although the
decreasing r and the magnitude of J due to the radiation
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reaction cause the magnitude Ωpre of Ωpre to vary with
time, for a typical double NS system with a merger time
∼Oð104 yrÞ and a half-year observation time (see Sec. IV),
the relative variation ofΩpre is≲10−5, sowe can assume that
Ωpre remains approximately constant in the case considered.
As shown in Fig. 2, ðXJ; YJ; ZJÞ is the coordinate system

with the origin placed at the center of mass (O1) of the
spinning NS and ZJ axis parallel to J (hereafter referred to
as the J-aligned coordinate system), in which the distant
observer is assumed to be in the YJ − ZJ plane with the
inclination ι and the position vector D. The opening angle
of S precession cone is θS. The coordinate system
ðXS; YS; ZSÞ constructed with ZS axis aligned with S is
referred to as the S-aligned coordinate system. Without loss
of generality, we assume that at initial time, the XS axis
coincides with the XJ axis, and S is in the YJ − ZJ plane.
The evolution of S over time is represented by SðtÞ with the
precession angle α ¼ Ωpret measured in the XJ − YJ plane.
To simplify the calculation of waveforms, we use a

similar convention for two polarization tensors [cf. Eqs. (1)
and (2)] as in the calculation of the isolated NS in Sec. II, so
that the waveforms in Eqs. (3) also apply to the triaxial
nonaligned NS in a binary, but with (i, R, A) in Eqs. (3)
replaced by (ι,R,A), which are the quantities calculated in
a coordinate system at rest with respect to the center of
mass of the spinning NS, i.e., the J-aligned coordinate
system shown in Fig. 2.

i → ι; R → R; A → A: ð17Þ

According to the discussion in [28], the small parameters
in Eq. (13) satisfy ϵ ≪ κ ≪ γmax and κ ∼Oðγ2Þ. Our goal is

to expand the CWs of the spinning NS in a tight binary up
to order Oðγ2Þ and OðκÞ. We first calculate R which
represents the rotation matrix from the body coordinate
system of the spinning NS to J-aligned coordinate system.
It can be obtained by the following rotation transforma-
tions: first, from the body coordinate system to the
S-aligned coordinate system by R [cf. Eq. (5)], and then
from the S-aligned coordinate system to the J-aligned
coordinate system by T S→J. Thus,

R ¼ T S→J · R; ð18Þ

where

T S→J ¼

0
BB@

cosðΩpretÞ − sinðΩpretÞ 0

sinðΩpretÞ cosðΩpretÞ 0

0 0 1

1
CCA

×

0
BB@

1 0 0

0 cos θS sin θS
0 − sin θS cos θS

1
CCA: ð19Þ

After inserting Eqs. (14) into Eq. (18), R can be expanded
as Eqs. (A2) given in Appendix A. Although R contains
Oðκ2Þ terms as in [29], we keep them in Eqs. (A2) in order
to facilitate the generalization of the waveforms to higher
orders in the future.
Next, we need to calculate A which depends on the

angular frequencies ωi of the spinning NS under spin-orbit
coupling. The (1, 1) and (1, 2) components of A read

A11 ¼ 2ðΔ2ω
2
2 − Δ3ω

2
3Þ; ð20aÞ

A12 ¼ A21 ¼ ðΔ1 − Δ2Þω1ω2 þ Δ3ω̇3: ð20bÞ

The other components of A are the same as the corre-
sponding ones of A in Eqs. (4) but with Ωi replaced by ωi.
Since in the body coordinate system S ¼ Sμeμ ¼ I1ω1e1 þ
I2ω2e2 þ I3ω3e3 and Ωpre ¼ Ωpreez ¼ ΩpreRzμeμ, then
Eq. (15) can be expressed as follows

dSμ
dt

eμ þ Sμωνeν × eμ ¼ ΩpreRzμSνeμ × eν; ð21Þ

with components

dω1

dt
¼ Δ1

I1
ω2ω3 þ

Ωpre

I1
ðRz2I3ω3 −Rz3I2ω2Þ; ð22aÞ

dω2

dt
¼ Δ2

I2
ω3ω1 þ

Ωpre

I2
ðRz3I1ω1 −Rz1I3ω3Þ; ð22bÞ

dω3

dt
¼ Δ3

I3
ω1ω2 þ

Ωpre

I3
ðRz1I2ω2 −Rz2I1ω1Þ: ð22cÞ

FIG. 2. J-aligned coordinate system ðXJ; YJ; ZJÞ with ZJ axis
parallel to the total angular momentum J and S-aligned coor-
dinate system ðXS; YS; ZSÞ with ZS axis aligned with spin angular
momentum S are both centered at the center of mass (O1) of the
spinning NS, where spin-orbit coupling causes S to precess about
J at an angular frequencyΩpre. The opening angle of S precession
cone is θS. Suppose that at initial time, XS axis coincides
with XJ axis, and S is in the YJ − ZJ plane. The projection of
the spin evolution SðtÞ coincides with O1N in the XJ − YJ plane,
its precession angle α ¼ Ωpret. The distant observer with
position vector D is also assumed in the YJ − ZJ plane at
colatitude ι from J.
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The second terms on the right-hand sides are the spin-orbit
coupling terms.
Although the general solution of the above precession

Eqs. (22) can be obtained numerically, the analytic solution is
more favorable for GW detection and parameter estimation
because it can be incorporated directly into search algorithms
and is more manageable and efficient in data analysis. We
expect the difference between the angular frequency of the
spinning NS in an isolated case and that in a binary system to
be small (see Fig. 3), since the spin-orbit coupling is of 1.5
post-Newtonian order [49]. In this sense, we use the pertur-
bation method to solve Eqs. (22) analytically by assuming

ωi ≈Ωi þ δΩi ði ¼ 1; 2; 3Þ: ð23Þ
Inserting the above expression into Eqs. (22) yields the
linearized evolution equations

0
BBB@

dδΩ1

dt
dδΩ2

dt
dδΩ3

dt

1
CCCA¼

0
BBB@

0
Δ1Ω3−ΩpreRz3I2

I1

Δ1Ω2þΩpreRz2I3
I1

Δ2Ω3þΩpreRz3I1
I2

0
Δ2Ω1−ΩpreRz1I3

I2
Δ3Ω2−ΩpreRz2I1

I3

Δ3Ω1þΩpreRz1I2
I3

0

1
CCCA

×

0
BB@

δΩ1

δΩ2

δΩ3

1
CCAþ

0
BBB@

Ωpre

I1
ðRz2I3Ω3 −Rz3I2Ω2Þ

Ωpre

I2
ðRz3I1Ω1 −Rz1I3Ω3Þ

Ωpre

I3
ðRz1I2Ω2 −Rz2I1Ω1Þ

1
CCCA:

ð24Þ

According to Appendix C, δΩ3 ≪ δΩ1;2, so the
contribution of δΩ3 can be ignored when solving for
δΩ1;2. For a typical double NS system with 6 min
orbital period discussed below, Ωpre=Hz≲ ϵ ≪ κ ≲ γ2.
We first expand Ωi [cf. Eqs. (6)] to leading order. The
combination of Eqs. (7), (11), and (12) gives τ ¼
ð2KðmÞ=πÞtΩp ¼ ð1þOðmÞÞtΩp. From Eqs. (8) and
(13), we have m ¼ 16γ2κ. Therefore, τ ≃ tΩp to lead-
ing order. In a similar way, to leading order, the
Jacobian elliptic functions become cnðτ; mÞ ≃ cosðtΩpÞ,
snðτ; mÞ ≃ sinðtΩpÞ, and dnðτ; mÞ ≃ 1, and the factor
½I1ðI3 − I1Þ=I2=ðI3 − I2Þ�1=2 ≃ 1. Consequently, we have
the leading order result

Ω1 ¼ a cosðtΩpÞ; ð25aÞ

Ω2 ¼ a sinðtΩpÞ; ð25bÞ

Ω3 ¼ b: ð25cÞ

By inserting Eqs. (25) and (A2) into Eq. (24), we expand
the linearized evolution equations up to order Oðγ2Þ and
OðκÞ, and ignore higher order terms such as Oðγ2κÞ,
OðγΩpreÞ, and OðκΩpreÞ. To give analytic approximations
for δΩi, we further simplify the equations by setting
1þ ϵ ≃ 1 and discard OðΩpreÞ in OðΩpreÞ þOðbϵÞ due to
OðbÞ ∼ 2π × 100 Hz. Finally, we obtain

dδΩ1

dt
≃ bϵð−1þ 16κÞδΩ2 þ bΩpre sin θS sinðtΩrÞ; ð26aÞ

dδΩ2

dt
≃ bϵδΩ1 þ bΩpre sin θS cosðtΩrÞ: ð26bÞ

Setting the initial conditions ðδΩ1ð0Þ; δΩ2ð0Þ; δΩ3ð0ÞÞ ¼
ð0; 0; 0Þ, and ignoring OðbϵÞ in OðbϵÞ þOðΩrÞ due to
b ≃Ωr, the integration of Eqs. (26) yields

δΩ1 ≃Ωpre sin θS½cosðtbϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16κ

p
Þ − cosðtΩrÞ�; ð27aÞ

δΩ2 ≃Ωpre sin θS½sinðtbϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16κ

p
Þ þ sinðtΩrÞ�: ð27bÞ

Using Eqs. (27), the integration of the third row in Eq. (24)
leads to

δΩ3 ≃ γΩpre sin θS½cosðtðΩp þΩrÞÞ − 1�: ð28Þ

The error of this analytic approximation is shown and
discussed in Appendix C.
Now, A can be calculated by inserting Ωi [cf. Eqs. (25)]

and δΩi [cf. Eqs. (27) and (28)] into Eqs. (20). The result is
given in Eqs. (A1) of Appendix A.
With R and A, the waveforms emitted by the spinning

NS undergoing spin precession can be expressed in terms
of the series expansion as follows

FIG. 3. The analytic approximate solution for δΩi in Eqs. (27)
and (28) during a free precession period (T ¼ 2π=Ωp ¼ 2785 s).
Assume that the binary mass m1 ¼ m2 ¼ 2.0M⊙, the orbital
period Pb ¼ 6 min, and the opening angle of the spin precession
cone is θS ¼ 5π=12. The spinning NS’s characteristic parameters
are I3 ¼ 2.0 × 1038 kgm2, ϵ ¼ 3.6 × 10−6, κ ¼ 1.75 × 10−4,
γ ¼ 5.0 × 10−2 (equatorial ellipticity ε≡ jI1 − I2j=I3 ¼
1.0 × 10−8). δΩ1;2 (δΩ3) can reach up to 1.45 × 10−6 Hz
(3.62 × 10−8 Hz) for Ωr ¼ 628.32 Hz, Ωp ¼ 2.26 × 10−3 Hz,
Ωpre ¼ 7.50 × 10−7 Hz obtained with the above values of the
parameters.
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hþ ¼ hð1Þþ þ hð2Þþ þ hð3Þþ þ � � � ð29aÞ

h× ¼ hð1Þ× þ hð2Þ× þ hð3Þ× þ � � � ð29bÞ

where

hð1Þþ ¼ Gb2I3ϵγ
4c4D

½cosðtðΩp þΩrÞÞ½sinð2θSÞð6 sin2 ι − ð3þ cosð2ιÞÞ cosð2tΩpreÞÞ þ 4 cosð2θSÞ cosðtΩpreÞ sinð2ιÞ�
þ 2½−2 cos θS sinð2ιÞ sinðtΩpreÞ þ ð3þ cosð2ιÞÞ sin θS sinð2tΩpreÞ� sinðtðΩp þ ΩrÞÞ�; ð30aÞ

hð1Þ× ¼ Gb2I3ϵγ
c4D

½cosðtðΩp þΩrÞÞ½2 sin ι cosð2θSÞ sinðtΩpreÞ − cos ι sinð2θSÞ sinð2tΩpreÞ�
þ 2½sin ι cos θS cosðtΩpreÞ − cos ι cosð2tΩpreÞ sin θS� sinðtðΩp þ ΩrÞÞ�; ð30bÞ

hð2Þþ ¼ −
16Gb2I3ϵκ

c4D

�
ð3þ cosð2ιÞÞ

�
cos4

�
θS
2

�
cosð2tðΩpre þ ΩrÞÞ þ cosð2tðΩpre − ΩrÞÞsin4

�
θS
2

��

þ cosð2tΩrÞ½3sin2θSsin2ιþ cosðtΩpreÞ sinð2θSÞ sinð2ιÞ� − 2 sin θS sinð2ιÞ sinðtΩpreÞ sinð2tΩrÞ
�
; ð30cÞ

hð2Þ× ¼ 16Gb2I3ϵκ
c4D

½cosð2tΩrÞ½−2 sin ι sinð2θSÞ sinðtΩpreÞ − cos ιð3þ cosð2θSÞÞ sinð2tΩpreÞ�
− 4½cos ι cos θS cosð2tΩpreÞ þ sin ι cosðtΩpreÞ sin θS� sinð2tΩrÞ�; ð30dÞ

hð3Þþ ¼Gb2I3ϵγ2

c4D

�
ð3þ cosð2ιÞÞ

�
cos4

�
θS
2

�
cosð2tðΩpreþΩrþΩpÞÞþ cosð2tðΩpre−Ωr−ΩpÞÞsin4

�
θS
2

��

þ cosð2tðΩrþΩpÞÞ½3sin2θSsin2ιþ cosðtΩpreÞsinð2θSÞsinð2ιÞ�−2sinθS sinð2ιÞsinðtΩpreÞsinð2tðΩrþΩpÞÞ
�
; ð30eÞ

hð3Þ× ¼ Gb2I3ϵγ2

c4D
½cosð2tðΩp þ ΩrÞÞ½2 sinð2θSÞ sin ι sinðtΩpreÞ þ ð3þ cosð2θSÞÞ cos ι sinð2tΩpreÞ�

þ 4½cos θS cosð2tΩpreÞ cos ιþ cosðtΩpreÞ sin θS sin ι� sinð2tðΩp þ ΩrÞÞ�: ð30fÞ

Note that ι in the above expressions is the angle between
J and the line of sight, not to be confused with the
inclination defined by the angle between S and the line
of sight for the isolated case.
Here, hð1Þþ;× are of order OðγÞ, hð2Þþ;× are of order OðκÞ,

hð3Þþ;× are of order Oðγ2Þ. Note that only the waveform
components up to terms of OðγÞ, OðκÞ and Oðγ2Þ are
shown here, according to the discussion of the character-
istic value of γ and κ in [28]. The OðΩpreÞ components (see
Appendix B), and higher-order OðγκÞ, and Oðκ2Þ compo-
nents can be ignored for the parameter values we adopt in
the following analysis.
Then, the waveforms of the spinning NS in a binary

system with spin-orbit coupling effects considered are

completed by incorporating the Doppler frequency modu-
lation of this NS around the binary barycenter (BB) into the
phases of waveforms Eqs. (30), which is done by the
second term on the right-hand side of Eq. (36) in Sec. V. We
leave this for further discussion in Sec. V, where this
Doppler modulation and the Doppler modulation due to the
motion of the GW detector around the solar system
barycenter (SSB) are combined, as in [33].

IV. COMPARISON WITH WAVEFORMS
FROM ISOLATED NS

As a limiting case, when the spinning NS is isolated and
spin S is along the z-axis of the coordinate system, i.e.,
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Ωpre ¼ θS ¼ 0, the waveforms in Eqs. (30) will reduce to
those given in [29]:

hð1Þþ ¼ Gb2I3ϵγ sinð2ιÞ cosðtðΩp þ ΩrÞÞ
c4D

; ð31aÞ

hð1Þ× ¼ 2Gb2I3ϵγ sin ι sinðtðΩp þΩrÞÞ
c4D

; ð31bÞ

hð2Þþ ¼ −
32Gb2I3ϵκð1þ cos2 ιÞ cosð2tΩrÞ

c4D
; ð31cÞ

hð2Þ× ¼ −
64Gb2I3ϵκ cos ι sinð2tΩrÞ

c4D
; ð31dÞ

hð3Þþ ¼ 2Gb2I3ϵγ2ð1þ cos2 ιÞ cosð2tðΩp þ ΩrÞÞ
c4D

; ð31eÞ

hð3Þ× ¼ 4Gb2I3ϵγ2 cos ι sinð2tðΩp þ ΩrÞÞ
c4D

: ð31fÞ

Note that some of the signs in the above equations are
reversed because the convention for the inclination (ι) we
use here [27] is equivalent to (π − ι) in [29].
For small equatorial ellipticity ε≡ jI1 − I2j=I3 ≃ 16ϵκ

and γ ¼ 0, hð1Þþ;× ¼ hð3Þþ;× ¼ 0 and hð2Þþ;× will reduce to the
triaxial aligned waveforms (e.g., Eq. (4.223) of [51]). If

κ ¼ 0 and γ ≠ 0, hð2Þþ;× ¼ 0, hð1Þþ;× and hð3Þþ;× will reduce to the
biaxial waveforms (cf. Eq. (1) of [52]).
The values of the parameters used in the following

analysis are intended to make the signal amplitude as large
as possible under current observational and theoretical
constraints. The NSs, measured by pulsar timing [53] or
GW observation [54], can have masses up to about two
solar masses. The widely accepted range of the moment of
inertia for NSs resides in 1–3 × 1038 kgm2 (see [55] and
references therein). The parameters that characterize the
properties of the spinning NS are in accordance with the
discussion in [28], in which ϵ ≪ κ ≪ γmax and κ ∼Oðγ2Þ.
Recent observations from Advanced LIGO and Advanced
Virgo constrain two recycled pulsars (PSR J0437-4715
and PSR J0711-6830) to have equatorial ellipticities
(ε≡ jI1 − I2j=I3 ≃ 16ϵκ) of less than 10−8 [56]. An ellip-
ticity of 10−8 is also a typical value used in searching for
CWs from small-ellipticity sources [57]. Population syn-
theses of Galactic disk double NS systems detectable by
LISA [37,50,58] and TianQin [38] suggest that the exist-
ence of double NSs with orbital periods as low as 6 minutes.
We assume that the orbital period under consideration is
6 minutes, which maximizes the strength of the orbital
precession. Based on the current observations of 22 double
NSs [31,32], we select 10 ms as the typical spin period of
the rapidly spinning NS [38], and 1 kpc as the typical
distance since about half of the known double NSs are
located near that value [31,32].

As an example, we assume the component masses
of a double NS system m1 ¼ m2 ¼ 2.0M⊙, the orbital
period Pb ¼ 6 min, and the opening angle of S precession
cone is θS ¼ 5π=12. The spinning NS’s characteristic
parameters are I3 ¼ 2.0 × 1038 kgm2, ϵ ¼ 3.6 × 10−6,
κ ¼ 1.75 × 10−4, γ ¼ 5.0 × 10−2 (equatorial ellipticity
ε≡ jI1 − I2j=I3 ¼ 1.0 × 10−8). From Eqs. (16) and (12),
one can obtain Ωr ¼ 628.32 Hz, Ωp ¼ 2.26 × 10−3 Hz,
and Ωpre ¼ 7.50 × 10−7 Hz. During a free precession
period (T ¼ 2π=Ωp ¼ 2785 s), Fig. 3 shows the approxi-
mate solution for δΩi in Eqs. (27) and (28), which can reach
up to 1.45 × 10−6 Hz for δΩ1;2 and 3.62 × 10−8 Hz for
δΩ3. Note that the jagged profiles in this figure are due to a
reduced sampling rate over a long spin precession period,
as in the following figures.
Figure 4 shows the different waveform components with

spin precession incorporated during a spin precession
period (Tpre ¼ 2π=Ωpre ¼ 8.382 × 106 s). The values of
the parameters used here are the same as in Fig. 3, and we
set the spin period of the NS Ps ¼ 10 ms, the inclination
angle of J with respect to the line of sight ι ¼ π=4, and the
distance to the observer D ¼ 1 kpc. The modulated ampli-
tude profiles for a binary depend on ι, θS, and Ωpre, which
can be several times larger or smaller than the isolated case
for different waveform components. The amplitude mod-
ulations shown here are only due to the NS’s spin
precession caused by spin-orbit coupling, the Doppler
modulation will be included in Sec. V (see the discussion
at the end of Sec. III).
According to Eqs. (31), the GW angular frequency

components of an isolated NS are Ωisoþ;× ¼ Ωr þΩp, 2Ωr,
and 2ðΩr þ ΩpÞ for both þ and × polarizations. Spin-orbit
coupling in the binary can split these frequencies in the
following way

Ωisoþ → Ωisoþ � nΩpre ðn ¼ 0; 1; 2Þ; ð32aÞ

Ωiso
× → Ωiso

× � nΩpre ðn ¼ 1; 2Þ: ð32bÞ

Similar to the analysis of the GW spectrum of isolated
systems [28], the spectral analysis of the above frequency
components can be used to infer the orbital period of the
binary and the characteristic parameters of the NS.
In order to quantitatively measure the degree of matching

between these two types of waveforms, one can calculate
the fitting factor (FF) [59] between the genuine GW
waveforms generated by the spinning NS in a binary
(denoted as hb) and the ones by an isolated NS (denoted
as hi), given the latter has been used in the matched filtering
of CW data analysis

FF≡max
λ

ðhb; hiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhb; hbÞðhi; hiÞ
p ; ð33Þ
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where λ is the set of the parameters that characterize
the waveforms. For a quasimonochromatic signal, the
inner product ðhb; hiÞ can be simplified as ðhb; hiÞ≡R Tobs
0 hbðtÞhiðtÞdt, where Tobs is the observation time.
Figure 5 shows the FFs of different waveform components
in hb and hi as a function of Tobs. As we can see, the two
waveforms only match well (FF > 0.97) within roughly a
few days [∼Oð105 sÞ] and then start to diverge rapidly.

V. DETECTING GW FROM SPINNING NS
IN A BINARY

A. Signal model in detector coordinate system

The GW strain signal from a spinning triaxial nonaligned
NS in a binary can be written as a sum of different
waveform components hnðtÞ (n ¼ 1, 2, 3) as follows [17]

hðtÞ¼
X3
n¼1

hnðtÞ¼
X3
n¼1

ðFþðtÞHðnÞ
þ ðtÞþF×ðtÞHðnÞ

× ðtÞÞ; ð34Þ

where HðnÞ
þ;×ðtÞ are the Doppler-modulated waveforms (cf.,

Eqs. (38) below), and Fþ;×ðtÞ are the antenna pattern
functions of GW detector, of which the explicit expressions
can be found in [17]. Fþ;×ðtÞ depend on a set of parameters
listed below: γo characterizes the orientation of the detector
with respect to the local geographical directions, ζ denotes
the angle between the interferometer arms, λ is the
geographical latitude of the detector’s site, ðα; δÞ are the
right ascension and declination of the source, ψp is the GW
polarization angle, ΩEr is the rotational angular frequency
of the Earth, and ϕr is the initial phase of the Earth’s diurnal
motion.
Below we will consider how to incorporate Doppler

modulation into the phases of the waveforms from the
spinning NS undergoing spin precession [cf., Eqs. (30)].
Figure 6 shows the binary coordinate system ðXb; Yb; ZbÞ
with Zb axis aligned with the binary’s total angular

FIG. 5. The fitting factors between the isolated case and the one
with spin precession for different waveform components shown
in Fig. 4.

FIG. 4. The waveform components from the triaxial nonaligned NS with spin precession incorporated (blue) during a spin precession
period and in comparison with those from the isolated NS (red). The values of the parameters used here are the same as in Fig. 3, and set
the spin period of the NS Ps ¼ 10 ms, the inclination angle of J with respect to the line of sight ι ¼ π=4, and the distance to the observer
D ¼ 1 kpc. The modulated amplitude profiles in a binary depend on ι, θS, andΩpre, which can be several times larger or smaller than the
isolated case for different waveform components. The inset in each subplot shows the waveform during the first spin period of the NS.
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momentum J and the motion of spinning NS within it.
ðXL; YL; ZLÞ is the coordinate system with ZL axis aligned
with the binary’s orbital angular momentum L (hereafter
referred to as L-aligned coordinate system), in which
XL − YL represents the orbital plane. The origins of these
two frames are both placed at the BB (O). The opening
angle of L precession cone is θL. Suppose that at initial
time, S and L are both in the Yb − Zb plane and the
spinning NS sits on the Xb axis. After a period of time t, the
orbital plane precessed by ϕN, the spinning NS’s position
vector and the orbital longitude are r1 and ψ1, and its spin is
SðtÞ. (The Y-axes not drawn in Fig. 6 are determined by the
right-hand rule.)
In the L-aligned coordinate system, the position vector of

the spinning NS r1L ¼ ðr1 cosðωbtÞ; r1 sinðωbtÞ; 0Þ. By two
rotation transformations (first rotates by θL clockwise about
the XL axis, and then rotates by ϕN clockwise about the Zb
axis), the position vector r1 in the binary coordinate system
can be given by

r1 ¼ r1

0
B@

cosψ1 cosϕN − cos θL sinψ1 sinϕN

cos θL sinψ1 cosϕN þ cosψ1 sinϕN

sin θL sinψ1

1
CA ð35Þ

with ψ1 ¼ ωbt and ϕN ¼ Ωpret.
In the detector coordinate system, the Doppler shift of

the GW frequency f0 from the spinning NS in a binary
system can be expressed as the combination of detector
Doppler shift around the SSB and source Doppler shift
around the BB

ΔfD ≈ f0

�
n · drd=dt

c
þ nb · dr1=dt

c

�
; ð36Þ

with [17]

n · rd ¼ RE½cos λ cos δ cosðα − ϕr −ΩErtÞ
þ sin λ sin δ� þ RES½cos α cos δ cosðϕo þ ΩEotÞ
þ ðcos εe sin α cos δþ sin εe sin δÞ sinðϕo þ ΩEotÞ�

ð37Þ

being the projection of the detector’s position vector rd
along the spinning NS’s line of sight n in SSB coordinate
system, where RE and RES are the mean radius of the Earth
and the mean distance from the Earth’s center to the SSB,
ΩEo is the mean orbital angular frequency of the Earth, ϕo is
the initial phase of the Earth’s annual motion, and εe is the
ecliptic obliquity. −nb ¼ ð0; sin ι; cos ιÞ is the SSB’s loca-
tion in the binary coordinate system, orbital radius r1 ¼
G1=3m2=ðωbMÞ2=3 and angular frequency ωb ¼ 2π=Pb for
a circular orbit. If there is no orbital precession, i.e.,
Ωpre ¼ 0, then the Doppler shift in Eq. (36) reduces to
the simple case as Eq. (6) in [33].
Since the waveform components in Eqs. (30) can be

decomposed into a series of sine and cosine functions in
which the frequencies are linear combinations of Ωr, Ωp,

and Ωpre, the Doppler-modulated waveforms HðnÞ
þ;×ðtÞ in

Eq. (34) can be obtained by

HðnÞ
þ ðtÞ ¼ hðnÞþ ðΩl → Ωl þ 2πΔfDÞ; ð38aÞ

HðnÞ
× ðtÞ ¼ hðnÞ× ðΩl → Ωl þ 2πΔfDÞ; ð38bÞ

with l∈ fr; p; preg.
The binary is assumed to follow an invariant circular

orbit when calculating the Doppler shift of the spinning NS.
In fact, the orbit is constantly shrinking due to gravitational
radiation. According to the orbital velocity evolution
equation (dðv=cÞ=dt ∝ ðv=cÞ9, cf. [60]), its relative varia-
tion is ≲10−5 for a half-year observation, resulting in a
relative variation for the Doppler shift of ≲10−5. Thus, we
can ignore the reaction of gravitational radiation on the
orbit for the observation time under consideration.

B. Effects of spin-orbit coupling
on parameter estimation

In addition to spin precession, spin-orbit coupling also
causes orbital plane precession, which is expected to
introduce additional information into the Doppler-
modulated waveforms HðnÞ

þ;×ðtÞ [cf. Eqs. (38)]. We use
the Fisher information matrix (FIM) to obtain a quantitative
assessment of the parameter estimation accuracy for GW
detection (e.g., see [61]). For GW signal hðtÞ [cf. Eq. (34)]
with parameter set λ, FIM is defined as

FIG. 6. The binary coordinate system ðXb; Yb; ZbÞ and the
motion of the spinning NS within it. ðXL; YL; ZLÞ is the
coordinate system with ZL axis aligned with the binary’s orbital
angular momentum L, XL − YL represents the orbital plane. The
opening angle of L precession cone is θL. The distant detector
with position vector D is assumed in the Yb − Zb plane at
colatitude ι from J.
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Γij ≡
�
∂h
∂λi

;
∂h
∂λj

�
: ð39Þ

For a monochromatic signal of frequency f, the noise-
weighted inner product ða; bÞ ≃ 2

SnðfÞ
R Tobs
0 aðtÞbðtÞdt [62],

where SnðfÞ is the power spectral density of the instru-
mental noise at frequency f, and Tobs is the observation
time. The optimal signal-to-noise ratio (SNR) for signal
detection is defined as SNR≡ ðh; hÞ1=2. The root-mean-
square (RMS) error of parameter λi is estimated as
Δλi ¼

ffiffiffiffiffiffi
Σii

p
, where the covariance matrix Σ is the inverse

of the FIM, i.e., Σ ¼ Γ−1. We extend the parameter set in
[61], as our work considers the spin-orbit coupling for a
triaxial nonaligned NS, which results in a parameter set
λ ¼ ðln h10; ln h20; ln h30; α; sin δ; lnPb; cos ι; θS; ψp; lnΩr;
lnΩpÞ, in which the amplitudes for the different waveform
components are defined as

h10¼
2Gb2I3ϵγ

c4D
; h20¼

64Gb2I3ϵκ
c4D

; h30¼
4Gb2I3ϵγ2

c4D
:

ð40Þ

Logarithms are taken for some parameters because the
relative errors for themaremoremeaningful than the absolute
errors. For example, Δ lnh10 ¼ Δh10=h10 is simply the
relative error in h10. Since J ¼ Lþ S, then θL is related
to θS by S=sinðθLÞ ¼ L=sinðθSÞ. According to Eq. (16) and
Kepler’s third law, Ωpre ∝ P−5=3

b and r1 ∝ P2=3
b . Therefore,

the parameters ðθL;Ωpre; r1Þ are related to θS and Pb used in
the FIM, so they are not included in the parameter set λ.
Similar to the sky localization error defined in [63],we define
the corresponding one for a source located at ðα; δÞ,
ΔΩ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣααΣsin δ sin δ − Σ2

α sin δ

q
.

In the following analysis, since the sensitivity of Einstein
Telescope [41] in the frequency bandof interest is not as good
as that of Cosmic Explorer, we use Cosmic Explorer, which
consists of two facilities (one 40 km on a side and one 20 km
on a side), eachwith a single L-shaped detector [40]. Various
angular parameters are taken as ζ ¼ π=2; λ ¼ 0.764;
γo ¼ 1.5; ϕr ¼ ϕo ¼ 0; α ¼ 1.209; δ ¼ 1.475; ψp ¼ 1.0.
Assuming a 40 km arm length with a low-frequency
optimized sensitivity is used, the amplitude spectral density
of the instrumental noise

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ

p ¼ 1.36 × 10−25 Hz−1=2

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snð2f0Þ

p ¼ 1.66 × 10−25 Hz−1=2 for f0 ¼ 100 Hz,
the observation time Tobs ¼ 2Tpre ¼ 1.676 × 107 s.
After calculating the FIM numerically withMathematica

for Eq. (39), the RMS errors of the estimated parameters for
a typical spinning NS in a binary (the parameters used
here are the same as in Figs. 3 and 4) are shown in Fig. 7 as
red downward-pointing triangles. For comparison, the
results without spin-orbit coupling are represented by blue
open squares and the results for the triaxial aligned case

are shown as black circles. For the first three Doppler-
modulated signal components hnðtÞ (n ¼ 1, 2, 3) in
Eq. (34), their SNRs are 104, 8.5, and 7.6, respectively.
In comparison, the corresponding SNRs are 74.3, 12.6, and
11.3 for the signals without spin-orbit coupling. The total
SNR for the triaxial aligned case is also 12.6 as that for h2
without spin-orbit coupling, since the SNRs for h1 and h3
become zero when γ ¼ 0 (cf. Sec. IV). The spin and orbital
precession modulated signal h1ðtÞ increases its SNR by
40% compared with the case without spin-orbit coupling,
while the other two signals h2ðtÞ and h3ðtÞ both decrease by
33%. We can get some clues to understand the changes in
SNRs from the limiting case of the waveforms in Sec. IV.
From Eqs. (31) (ι corresponds to ι − θS under spin-orbit

coupling), we can see that hð1Þþ;× is proportional to sinð2ιÞ or
sin ι, while hð2Þþ;× and hð3Þþ;× are proportional to ð1þ cos2 ιÞ or
cos ι. The spin-orbit coupling makes ι larger during one
precession period (cf. ι − θS in Fig. 2), therefore the SNR of
h1ðtÞ becomes larger and that of h2ðtÞ and h3ðtÞ becomes
smaller.
The fractional estimation errors for three amplitudes are

inversely proportional to their SNRs. So the parameter
estimations for the triaxial nonaligned cases are more
accurate than those for the triaxial aligned case. For the
triaxial nonaligned case, the precession improves the sky
localization by a factor of two and slightly improves the
estimation of the orbital period. The improvement in sky

FIG. 7. The RMS errors (red downward-pointing triangles) of
the signal parameters for a typical spinning NS in a binary using
Cosmic Explorer detector. The effects of spin-orbit coupling are
considered in the waveforms. For comparison, the blue open
squares represent the result without spin-orbit coupling and the
black circles represent the triaxial aligned case (the parameters
ðh10; h30;ΩpÞ do not exist in this simplest model, cf. Sec. IV).
The error of the sky location ðα; δÞ is combined into the elliptical
area ΔΩ. The parameter estimations for the triaxial nonaligned
cases are more accurate than those for the triaxial aligned case.
After taking into account spin-orbit coupling, the estimation
accuracy of the parameters cos ι and θS (in green shadow) are
improved by about 3 orders of magnitude.
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localization is small because for double NS systems, whose
orbital angular momentum is very close to the total angular
momentum, the modulation of the orbital angular momen-
tum is relatively small. The most significant improvement
comes from the estimation of the angles cos ι and θS, both
of which are improved by about 3 orders of magnitude.
This is because these two angles are encoded in the
amplitudes of the waveforms [cf., Eqs. (30)], and they
modulate the profiles of the waveforms in Fig. 4.

VI. CONCLUSIONS

In this work, we calculate the gravitational waveforms of
a triaxial nonaligned NS in a compact binary system in
which the effects of spin-orbit coupling have been incor-
porated. Then, we compare our waveforms with the ones
commonly used in current CWs searches. Finally, we
evaluated the parameter estimation accuracy for the signal
detected by the proposed next-generation GW detector
using the Fisher information matrix method.
For a tight double NS system with a 6-min orbital period,

by solving the precession equation with the perturbation
method, we find that spin precession-induced correction to
the spin angular frequencies of NS is in the same order of
magnitude as the angular frequency of orbital precession.
The fitting factor between the waveforms with and without
spin precession will drop to less than 0.97 after a few days.
The analytic waveforms show that spin-orbit coupling
introduces additional modulation information that will help
in improving the accuracy of parameter estimation in CW
detection.
The double NS system (consisting of a rapidly spinning

NS and a nonspinning NS) considered in this work can be
seen as a dual-line GW source, in which the orbital motion
of the binary will emit low-frequency GWs in the mHz

band in addition to the high-frequency GWs from the
spinning NS. This dual-line GW source is of astrophysical
interest, such as constraining the NS’s moment of inertia
and ellipticity using the ratio of the strain amplitudes of the
low- and high-frequency GWs [64] or combining the
angular momentum loss of the NS [65]. Since the angular
frequency of the orbital precession contains information
about the orbital period and mass of the binary, we can use
it to infer binary parameters by combining information
from the emitted GWs of the dual-line sources, and such
studies are currently under our investigation.
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APPENDIX A: EXPRESSIONS FOR R AND A

The symmetric matrix A used in calculating the wave-
forms [cf. Eqs. (30)] can be explicitly expressed as follows

A11 ¼ 2bI3ϵ½16bκ þ γ sinðtΩpÞ½bγ sinðtΩpÞ þ 2Ωpre sin θS sinðtΩrÞ��; ðA1aÞ

A22 ¼ 2bI3ϵ½−16bκ þ γ cosðtΩpÞ½bγ cosðtΩpÞ þ 4Ωpre sin θS sin2ðtΩr=2Þ��; ðA1bÞ

A33 ¼ −2bγI3ϵ½bγ þ 4Ωpre sin θS sinðtΩr=2Þ sinðtð2Ωp þΩrÞ=2Þ�; ðA1cÞ

A12 ¼ −bγI3ϵ½bγ sinð2tΩpÞ þ 2Ωpre sin θS½sinðtΩpÞ − sinðtðΩp −ΩrÞÞ��; ðA1dÞ

A23 ¼ b2I3ϵγ sinðtΩpÞ; ðA1eÞ

A31 ¼ bI3ϵ½bγ cosðtΩpÞ þΩpre sin θS�: ðA1fÞ

The transformation matrix R used in calculating the waveforms [cf. Eqs. (30)] can be explicitly expressed
as follows
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Rx1 ¼ sinðtΩpÞ½cosðtΩpreÞ cosðtðΩp þΩrÞÞ − cos θS sinðtΩpreÞ sinðtðΩp þ ΩrÞÞ�

þ 1

2
cosðtΩpÞ½cosðtΩpreÞ½16κ sinðtΩpÞðcosðtΩrÞ þ κ½3 cosðtð2Ωp −ΩrÞÞ − 8 cosðtΩrÞ þ cosðtð2Ωp þΩrÞÞ�Þ

þ ðγ2 − 2Þ sinðtðΩp þ ΩrÞÞ� þ sinðtΩpreÞ½−2γ sin θS þ cos θSððγ2 − 2Þ cosðtðΩp þ ΩrÞÞ
þ 16κ sinðtΩpÞð3κ sinðtð2Ωp − ΩrÞÞ þ ð8κ − 1Þ sinðtΩrÞ − κ sinðtð2Ωp þ ΩrÞÞÞÞ��; ðA2aÞ

Rx2 ¼
1

2
sinðtΩpÞ½sinðtΩpreÞððγ2 − 2Þ cos θS cosðtðΩp þ ΩrÞÞ − 2γð1þ 8κÞ sin θSÞ þ ðγ2 − 2Þ cosðtΩpreÞ sinðtðΩp þΩrÞÞ�

− cosðtΩpÞ½cos θS sinðtΩpreÞð8κ½cosðtΩrÞ þ κð3 cosðtð2Ωp −ΩrÞÞ − 8 cosðtΩrÞ þ cosðtð2Ωp þΩrÞÞÞ� sinðtΩpÞ
− sinðtðΩp þ ΩrÞÞÞ þ cosðtΩpreÞðcosðtðΩp þΩrÞÞ þ 8κ sinðtΩpÞ½sinðtΩrÞ þ κð−3 sinðtð2Ωp − ΩrÞÞ
− 8 sinðtΩrÞ þ sinðtð2Ωp þ ΩrÞÞÞ�Þ�; ðA2bÞ

Rx3 ¼ γ cos θSð1þ 4κ − 4κ cosð2tΩpÞÞ cosðtðΩp þ ΩrÞÞ sinðtΩpreÞ þ
1

2
ðγ2 − 2Þ sin θS sinðtΩpreÞ

þ γ cosðtΩpreÞð1þ 8κ sin2ðtΩpÞÞ sinðtðΩp þ ΩrÞÞ; ðA2cÞ

Ry1 ¼
1

2
½2ðcosðtðΩp þΩrÞÞ sinðtΩpÞ þ 4κ½cosðtΩrÞ þ κð3 cosðtð2Ωp −ΩrÞÞ − 8 cosðtΩrÞ

þ cosðtð2Ωp þΩrÞÞÞ� sinð2tΩpÞÞ sinðtΩpreÞ þ cosðtΩpÞð2γ cosðtΩpreÞ sin θS þ ðγ2 − 2Þ sinðtΩpreÞ sinðtðΩp þΩrÞÞÞ
þ cos θS cosðtΩpreÞð−ðγ2 − 2Þ cosðtΩpÞ cosðtðΩp þ ΩrÞÞ þ 2 sinðtΩpÞ sinðtðΩp þ ΩrÞÞ þ 8κ sinð2tΩpÞ½sinðtΩrÞ
þ κð−3 sinðtð2Ωp − ΩrÞÞ − 8 sinðtΩrÞ þ sinðtð2Ωp þΩrÞÞÞ�Þ�; ðA2dÞ

Ry2 ¼
1

2
½2γð1þ 8κÞ cosðtΩpreÞ sin θS sinðtΩpÞ þ cos θS cosðtΩpreÞð−ðγ2 − 2Þ sinðtΩpÞ cosðtðΩp þΩrÞÞ

þ 8κ½cosðtΩrÞ þ κð3 cosðtð2Ωp −ΩrÞÞ− 8 cosðtΩrÞ þ cosðtð2Ωp þΩrÞÞÞ� sinð2tΩpÞ − 2 cosðtΩpÞ sinðtðΩp þΩrÞÞÞ
þ sinðtΩpreÞð−2 cosðtΩpÞ cosðtðΩp þΩrÞÞ þ ðγ2 − 2Þ sinðtΩpÞ sinðtðΩp þΩrÞÞ þ 8κ sinð2tΩpÞ½3κ sinðtð2Ωp −ΩrÞÞ
þ ð8κ − 1Þ sinðtΩrÞ− κ sinðtð2Ωp þΩrÞÞ�Þ�; ðA2eÞ

Ry3 ¼ γ cos θSð−1 − 4κ þ 4κ cosð2tΩpÞÞ cosðtðΩp þ ΩrÞÞ cosðtΩpreÞ −
1

2
ðγ2 − 2Þ sin θS cosðtΩpreÞ

þ γ sinðtΩpreÞð1þ 8κ sin2ðtΩpÞÞ sinðtðΩp þ ΩrÞÞ; ðA2fÞ

Rz1 ¼ γ cos θS cosðtΩpÞ þ
1

2
sin θS½ðγ2 − 2Þ cosðtðΩp þ ΩrÞÞ cosðtΩpÞ − 2 sinðtΩpÞ sinðtðΩp þ ΩrÞÞ

þ 8κ sinð2tΩpÞð3κ sinðtð2Ωp −ΩrÞÞ þ ð8κ − 1Þ sinðtΩrÞ − κ sinðtð2Ωp þ ΩrÞÞÞ�; ðA2gÞ

Rz2 ¼ γð1þ 8κÞ cos θS sinðtΩpÞ þ
1

2
sin θS½ðγ2 − 2Þ cosðtðΩp þ ΩrÞÞ sinðtΩpÞ þ 2 cosðtΩpÞ sinðtðΩp þΩrÞÞ

− 8κ½cosðtΩrÞ þ κð3 cosðtð2Ωp − ΩrÞÞ − 8 cosðtΩrÞ þ cosðtð2Ωp þ ΩrÞÞÞ� sinð2tΩpÞ�; ðA2hÞ

Rz3 ¼
1

2
ð2 − γ2Þ cos θS þ γ cosðtðΩp þΩrÞÞ sin θSð1þ 8κ sin2ðtΩpÞÞ: ðA2iÞ

APPENDIX B: EXPRESSIONS FOR OðΩpreÞ WAVEFORM COMPONENTS

The waveform components to the order OðΩpreÞ can be expressed as follows

hðpreÞþ ¼ GbI3ϵΩpre sin θS
4c4D

½cosðtΩrÞðsinð2θSÞð−ð3þ cosð2ιÞÞ cosð2tΩpreÞ þ 6 sin2 ιÞ þ 4 cosð2θSÞ cosðtΩpreÞ sinð2ιÞÞ
þ 2ð−2 cos θS sinð2ιÞ sinðtΩpreÞ þ ð3þ cosð2ιÞÞ sin θS sinð2tΩpreÞÞ sinðtΩrÞ�; ðB1aÞ

hðpreÞ× ¼ GbI3ϵΩpre sin θS
c4D

½cosðtΩrÞð2 cosð2θSÞ sin ι sinðtΩpreÞ − cos ι sinð2θSÞ sinð2tΩpreÞÞ
þ 2ð− cos ι sin θS cosð2tΩpreÞ þ cos θS cosðtΩpreÞ sin ιÞ sinðtΩrÞ�: ðB1bÞ
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We can see that there are components with frequencies of
Ωr, Ωr �Ωpre, and Ωr � 2Ωpre in these waveforms. Since

hðpreÞþ;× =hð1Þþ;× ∼ Ωpre sin θS=ðbγÞ; hðpreÞþ;× =hð2Þþ;× ∼ Ωpre sin θS=

ð16bκÞ, and hðpreÞþ;× =hð3Þþ;× ∼Ωpre sin θS=ðbγ2Þ, for typical

parameters used as in Fig. 3, these hðpreÞþ;× components are

negligible compared to hð1Þþ;×, h
ð2Þ
þ;×, and hð3Þþ;×.

APPENDIX C: THE RESIDUAL
OF TWO SOLUTIONS

To confirm the fidelity of the approximate calculation,
we use Euler angles to accurately calculate the angular
frequency. Although this method can give the exact
solution ωE

i , it is too complicated to give a simple analytical
waveform like Eqs. (30). They can be calculated as (an
overdot represents d=dt) [45]

ωE
1 ¼ ϕ̇b sin θb sinψb þ θ̇b cosψb; ðC1aÞ

ωE
2 ¼ ϕ̇b sin θb cosψb − θ̇b sinψb; ðC1bÞ

ωE
3 ¼ ϕ̇b cos θb þ ψ̇b; ðC1cÞ

with the Euler angles derived from the primitive (no
approximation) rotation matrix [cf., Eq. (18)],

θb ¼ arccosðRz3Þ; ðC2aÞ

ϕb ¼ arctan

�
−
Rx3

Ry3

�
; ðC2bÞ

ψb ¼ arctan

�
Rz1

Rz2

�
: ðC2cÞ

The absolute errors between the approximate angular
frequency ωi and the exact angular frequency ωE

i are shown
in Fig. 8. During two orbital precession periods, the relative
deviation of the analytic approximation from the exact
solution is ≲10−9 for ω1;2 and ≲10−13 for ω3. Therefore,
the solution of the angular frequency is accurate enough for
the calculation of the waveforms.

APPENDIX D: EFFECTS OF ORBITAL
PRECESSION ON DOPPLER SHIFT

The Doppler shift correction is defined as

δðΔΩnÞ ¼ ΔΩn − ΔΩnðΩpre ¼ 0Þ ðD1Þ

with n ¼ fr; p; preg. It measures the effects of spin-orbit
coupling on the phase of GWs of the spinning NS in a
binary. As seen in Fig. 9, the deviation of the GW
frequency can reach ∼0.5% for f0 and ∼1% for 2f0 if
we do not consider the orbital plane precession.

FIG. 8. The absolute errors between the approximate angular
frequency ωi and the exact angular frequency ωE

i during two
orbital precession periods. The parameters used here are the same
as in Fig. 3.

FIG. 9. The Doppler shift corrections to the different frequency
components in the waveforms caused by orbital plane precession
during one orbital precession period. For visualization purposes,
δðΔΩpÞ and δðΔΩpreÞ are magnified by a factor of 105 and 108,
respectively. The parameters used here are the same as in Fig. 3.
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