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Spinning neutron stars (NSs) can emit continuous gravitational waves (GWs) that carry a wealth of
information about the compact object. If such a signal is detected, it will provide us with new insight into
the physical properties of matter under extreme conditions. According to binary population synthesis
simulations, future space-based GW detectors, such as LISA and TianQin, can potentially detect some
double NSs in tight binaries with orbital periods shorter than 10 minutes. The possibility of a successful
directed search for continuous GWs from the spinning NS in such a binary system identified by
LISA/TianQin will be significantly increased with the proposed next-generation ground-based GW
observatories, such as Cosmic Explorer and Einstein Telescope. Searching for continuous GWs from such a
tight binary system requires highly accurate waveform templates that account for the interaction of the NS
with its companion. In this spirit, we derive analytic approximations that describe the GWs emitted by a
triaxial nonaligned NS in a binary system in which the effects of spin-orbit coupling have been
incorporated. The difference with the widely used waveform for the isolated NS is estimated and the
parameter estimation accuracy of an example signal using Cosmic Explorer is calculated. For a typical tight
double NS system with a 6 min orbital period, the angular frequency correction of the spinning NS in this
binary due to spin precession is ~107% Hz, which is in the same order of magnitude as the angular
frequency of orbital precession. The fitting factor between the waveforms with and without spin precession
will drop to less than 0.97 after a few days (~10° s). We find that spin-orbit coupling has the potential to
improve the accuracy of parameter estimation, especially for the binary inclination angle and spin
precession cone opening angle, by up to 3 orders of magnitude.
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I. INTRODUCTION

Rapidly spinning neutron stars (NSs) are promising
sources of a long-lasting form of gravitational waves
(GWs), namely continuous waves (CWs) [1-5]. Detecting
these potential CWs would help us solve some of the
mysteries in NS physics, such as NS’s equation of state,
deformability, and magnetic field [6-8].

There are two types of simplified waveforms that are
commonly used in current searches for CWs emitted by
NSs (modeled as Newtonian rigid bodies) with Advanced
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LIGO [9] and Advanced Virgo [10]. One is the mass
quadrupole mode with a frequency at twice the rotation
frequency of the pulsar, which comes from a triaxial rigid
body rotating about one of its principal axes with assumed
principal moments of inertia I, < I, < I3 (hereafter referred
to as the triaxial aligned waveforms, e.g., [11-14]); the other
is the mode with frequencies at both once and twice the
rotation frequency, which comes from an axisymmetric freely
precessing rigid body with assumed I/, = I, # I3 (hereafter
referred to as the biaxial waveforms, e.g., [15-17]). Similar
two-frequency mode searches are also performed in [18-24].
The GW emission due to r-modes [25,26] in a rotating perfect
fluid star is not the subject of our work. So far, no credible
detection has been reported in these searches [5].

© 2023 American Physical Society
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The more general waveforms that come from a freely
precessing triaxial rigid body (hereafter referred to as the
triaxial nonaligned waveforms) were first calculated by
Zimmermann [27]. The dominant waveform components
are obtained by expanding the quadrupole moment formula
in terms of small parameters, such as wobble angle,
oblateness, and nonaxisymmetry parameters. These wave-
forms have been extended to include higher than first-order
expansion terms of the wobble angle and nonaxisymmetry
[28,29] in order to extract more physical information.

In addition to the waveform modeling of isolated NS
discussed above, there are also considerations about the NS
located in a binary system since the electromagnetic
observations show that nearly half of the known pulsars
within the most sensitive band of the ground-based GW
detectors belong to binary systems [30-32]. Some search
schemes are proposed for this type of CWs [30,33-36].
However, the waveform model used in these searches is
obtained by simply incorporating the Doppler frequency
modulation into the phase of the triaxial aligned waveforms
emitted by the isolated NS.

For future space-borne GW detectors, the detectability
and parameter estimation accuracy of double NS systems
that will merge within the next 10 Myr have been studied
for LISA [37] and TianQin [38]. Based on the merger rate
density (920 Gpc—3yr~!) inferred from GWTC-1 [39],
about 300 double NS systems are expected to be detected
in the mHz band during the 4-year observation period,
including binaries with orbital periods shorter than
10 minutes. Proposed next-generation ground-based GW
observatories, such as Cosmic Explorer [40] and Einstein
Telescope [41], are expected to operate concurrently with
LISA and TianQin in the 2030s. Searching for CWs from
the spinning NS in such a tight system identified by LISA
and/or TianQin requires consideration of the interaction of
the rapidly spinning NS with its companion.

In this paper, we incorporate the effects of spin-orbit
coupling to the GWs emitted by the spinning NS in a
circular orbital binary and extend the triaxial aligned NS to a
general triaxial nonaligned NS. Other effects, such as
magnetic dipole field [42], tidal interaction [43], and
radiation reaction [44] are neglected in the current work.
Spin-orbit coupling causes spin precession and orbital
precession around the total angular momentum [44].
Similar to the treatment in previous works, such as that
of LIGO [33], the GWs emitted by the spinning NS in a
binary are obtained by simply incorporating the Doppler
frequency modulation (including the effects of orbital
precession) into the phase of the triaxial nonaligned wave-
forms of the NS with spin precession. In contrast to the
isolated case (neglecting the electromagnetic and the
gravitational radiation-reaction torque as in [27]), the spin
angular momentum of the NS is no longer constant in the
binary. Instead, it will be precessed due to the spin-orbit
coupling. We analytically solve the spin precession equation

for the NS using the perturbation method to obtain the spin
angular frequency evolution and calculate the waveforms
based on the quadrupole moment formula. Next, the wave-
forms are expanded into some simple components in the
small parameter case for the subsequent analysis of CW
detection. Finally, using these easy-to-use waveform com-
ponents, we investigate the impact of spin-orbit coupling on
the parameter estimation accuracy of the spinning NS.
Calculations along these lines yield the following results:
(i) The waveforms of the NS undergoing spin precession
will deviate from the isolated ones after a few days (~10° s)
when the fitting factor between the two waveforms drops to
less than 0.97. (ii) Spin-orbit coupling has the potential to
improve the parameter estimation accuracy, specifically for
the cosine of the binary inclination cos 1 and spin precession
cone opening angle g, by up to 3 orders of magnitude.
The rest of this paper is organized as follows. In Sec. II,
we briefly review the mathematical formalism for GWs
from an isolated spinning NS, which will be used for
subsequent calculations for NS in a binary system.
Analytical approximations for the GWs from a spinning
NS in a binary system, taking into account spin-orbit
coupling effects, are given in Sec. III. The comparison
of results derived using waveforms with and without spin
precession is given in Sec. IV. The parameter estimation
accuracy of the waveforms with and without spin-orbit
coupling using Cosmic Explorer [40] are given in Sec. V.
Our conclusions are discussed in Sec. VI. Some details of
our calculation have been relegated to the appendix in order
to keep the main ideas of the paper as clear as possible.

II. GRAVITATIONAL WAVEFORMS
FROM ISOLATED NS

Since the waveforms emitted by spinning NS undergoing
spin-orbit coupling are based on the waveforms emitted by
the isolated NS, we will first discuss the case for the
isolated NS. Following the conventions of Landau and
Lifshitz [45] and Zimmermann [27], in Fig. 1, the inertial
coordinate system is denoted as (X, Y, Z) with basis vectors
(e,.e,.e.) and e, along the body’s angular momentum, and
the body coordinate system (x;, x,, x3) with basis vectors
(e;,e,,e3) parallel to the eigenvectors of the body’s
moment of inertia tensor and satisfying I3 > I, > I;.
The origins of the two systems are placed at the center
of mass of the NS. The Euler angles (0, ¢, w) describe the
orientation of the body coordinate system with respect to
the inertial coordinate system. We use the Latin subscripts
(e.g., x, y, z) for components evaluated in the inertial
coordinate system, and the Greek ones (e.g., y, v) in the
body coordinate system.

The metric perturbation under the transverse-traceless
gauge can be written in terms of two GW polarizations,
hi = hi(é,) + hy(8y), with the polarization tensors
defined as

063035-2



EFFECTS OF SPIN-ORBIT COUPLING ON GRAVITATIONAL ...

PHYS. REV. D 108, 063035 (2023)

AZ

FIG. 1. The inertial coordinate system (X, Y,Z) and the body
coordinate system (x;, x,,x3) are both centered on the center of
mass (O) of the isolated NS. The x; — x, plane intersects the
X-Y plane at the line of nodes O|N. (0, ¢, w) are Euler angles.
The distant observer with position vector D is assumed in the Y-Z
plane at colatitude i from the Z axis.

e, =00 —-WwW, e =0@Ww+wen (1)
where © and W are the transverse basis vectors
perpendicular to the wave’s propagation direction, and ®
denotes the tensor product. Without loss of generality, we
assume that the observer is located in the Y-Z plane with
colatitude i from the Z axis and distance D = |D|. In this
configuration,

b=eé,cosi—eé,sini, W= -2, (2)

and the two GW polarizations can be written as [27]
|

cosy cos ¢ — cos @ siny sin ¢
R = | cos@siny cos ¢ + cosy sin ¢

sin @ sin y

According to Euler’s equations of free rotation of a rigid
body and the initial conditions (,(0) = a,,(0) =0,
Q3(0) = b), the angular frequencies in the body coordinate
system are [27]

Q, = acn(r, m), (6a)
=d M ]/25n T,m
Q3 = bdn(z, m), (6¢)

where cn, sn and dn are Jacobian elliptic functions [46]
with the parameters

G
h, = ~ap [(Ry,cosi—R,,sini)
X (Ry,cosi—R,sini)—R,R,JA,. (3a)
2G
hy, = =D (Ry,cosi—R.,sini)R,A,, (3b)
c

where Einstein summation is performed for u and v, both of
which take the values {1,2,3}. The components of the
symmetric matrix A,, are given by [27]

A= 2(A2£2% - A3Q§), (4a)
Ay = 2(A305 - AQ)), (4b)
Az =2(40,Q — A,Q3), (4c)

Ap =4y = (A —4,)QQ, + A3Q;, (4d)
Ayy = Ay = (8 = A3)QQ5 + AQ, (4e)

Az =Ap = (85— A)QQ) + A<, (4f)

with Ay =1, —-1;, Ay=1;-1,, Ay;=1,—1,. Here,
(1,2, Q3) denotes the angular frequency of NS in the
body coordinate system. The rotation matrix that trans-
forms from the body coordinate system to the inertial
coordinate system (e.g., R, denotes the entry in row x = 1
and column p = 2) is

—cosf@cosysing —sinycos¢  sin@sing
cos@cosycos¢g —sinysing —sinfcos¢ |. (5)
sin @ cos cosf

_ _ 112
o pe| BB 1) ’
L,

I, —1)l,a*
m = ( 2 1) la2 ) (8)
(Is — L)I3b
The Euler angles can be expressed in terms of Jacobian
elliptic functions and the fourth theta functions [46] (9, and
their derivatives 9):

cosf = %dn(r, m), (9a)

. 11(13—12) I/ZCH(T,m)
wv = (2020 e O
b =¢1+ b, (9¢)
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with § being the magnitude of the spin angular momentum
of the NS and ¢, , given by [29]

94 (% +ina, q)

i oy BB inaa) 10
exp [2ig; (1)] 84(%—iﬂ6¥,¢]> o
_2at_[S | 27xi8,(ina q)

by = T~ [11 T Y4(ina. q) - o)

Here, T is the period of the angular frequency in the body
coordinate system,
] 1/2 (1)
. 11
)

a satisfies sn2iaK(m)] = ilsb/(I,a). i is the imaginary
unit. g = exp[—zK (1 —m)/K(m)], where K(m) is the
complete elliptic integral of the first kind [46]. Since
cos ¢, has a period T’ which is generally not commensurate
with 7', the motion of the NS is usually nonperiodic. When
the NS becomes axisymmetric, 7/ — 2xzl,/S [27].

Explicit waveforms are usually expressed in a series
expansion of some small parameters [27-29]. To facilitate
the following calculation, we define the spinning NS’s free
precession angular frequency and rotation angular fre-
quency

4K (m) LI,
[(13 —0L)(I3 -1

2 2 2«
Q =— Q=——-——, 12
P T T (12)

and three parameters that characterize NS’s properties

IL—1,
e=——1, K=
I3

1 I3, -1 1
et et Bt yzb, (13)
161,151, bl

where € is called the oblateness (or poloidal ellipticity [5])
of the NS, x describes the (I, —I;) with respect to the
axisymmetric nonsphericity (I3 — I,), while y is called the
wobble angle. Their characteristic values are discussed in
[28]. For the small quantities above, the expansions of the
sines and cosines of the Euler angles [cf. Egs. (9)] in S-
aligned coordinate system up to terms of O(y?) and O(x?)
are [29]

cosd =1-y%/2,

sin@ = y + 8yksin®(12,),  (14a)

cos¢p = cos[t(Q, +Q,)], sing =sin[t(Q, +Q,)]. (14b)

cosy = sin (1Q,) + 8ksin (1€, cos? (1Q,)
+8x%(3sin (31Q,) — 13sin (1€2,)) cos? (1€,), (14c)

siny = cos (1Q,) — 8k sin® (1Q,) cos (1Q,)

+ 96k sin* (1Q,) cos (12,). (14d)

III. GRAVITATIONAL WAVEFORMS
FROM SPINNING NS IN A BINARY

Following the treatment in previous works, such as [33],
the GWs emitted by the spinning NS in a binary can be
obtained by incorporating the Doppler frequency modula-
tion (modulated by orbital precession) into the phase of
the triaxial nonaligned waveforms of the NS with spin
precession.

First, we calculate the GWs emitted by a spinning NS
undergoing spin precession. Consider a binary system
consisting of a spinning NS with spin angular momentum
S and a nonspinning NS (or a slowly spinning NS of
which the spin effects can be ignored). This is consistent
with the standard evolution scenario of the double NS
formed in an isolated system, in which one of the NSs is a
rapidly spinning millisecond pulsar and the other is a
normal pulsar [47,48]. If the companion star has spin, then
spin-spin coupling will also cause the rapidly spinning NS
to precess. The ratio of the precessional angular frequency
due to the spin-spin (SS) coupling to that due to the
spin-orbit (SO) coupling satisfies €2,.(SS)/€(SO) <
4M/(3M + m,)(my/M)'/?(R,/7r)"/?, where M=m, +m,
is the total mass of the binary, m, is the mass of the rapidly
spinning NS, m, and R, are the mass and the radius of the
companion, and r is the orbital separation (cf. Eq. (10.179) in
[49]). For a double NS system with an orbital period of
10 min, Q,,.(SS)/€,.(SO) < 0.01 for a companion with
maximum spin, i.e., the spin-spin precession angular fre-
quency is at least two orders of magnitude smaller than the
spin-orbit precession angular frequency, therefore we can
ignore the spin-spin coupling. Furthermore, in this work we
assume that the orbits of binary stars are circular. A recent
population synthesis simulation in [50] shows that the
eccentricities satisfy e <0.01 for the double NS systems
with orbital periods shorter than 10 min. On the other hand, in
the extreme cases where eccentricity is important, we need to
generalize our current work to incorporate the effects of
eccentricity. This can be a subject of our future work.

For a binary system in which only one of the bodies has
spin, the precession equations [44] for the spin of the body
and the orbit of the binary show that to a reasonable
approximation the total angular momentum J maintains its
direction, S keeps its magnitude constant and precesses
around J with

das
E:me X S, (15)
where
G 3M
o -2 (1422 1
=g (10 ) (16)

is the angular frequency of spin precession and orbital
precession induced by spin-orbit coupling. Although the
decreasing r and the magnitude of J due to the radiation
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reaction cause the magnitude Q.. of Q.. to vary with
time, for a typical double NS system with a merger time
~O(10* yr) and a half-year observation time (see Sec. IV),
the relative variation of Qpre is <1073, so we can assume that
Q. remains approximately constant in the case considered.
As shown in Fig. 2, (X, Y, Z,) is the coordinate system
with the origin placed at the center of mass (O;) of the
spinning NS and Z; axis parallel to J (hereafter referred to
as the J-aligned coordinate system), in which the distant
observer is assumed to be in the Y; — Z; plane with the
inclination ¢ and the position vector D. The opening angle
of § precession cone is #g. The coordinate system
(Xs, Y, Zg) constructed with Zg axis aligned with S is
referred to as the S-aligned coordinate system. Without loss
of generality, we assume that at initial time, the Xy axis
coincides with the X; axis, and S is in the Y; — Z; plane.
The evolution of S over time is represented by S(¢) with the
precession angle a = €. measured in the X; — Y plane.
To simplify the calculation of waveforms, we use a
similar convention for two polarization tensors [cf. Egs. (1)
and (2)] as in the calculation of the isolated NS in Sec. II, so
that the waveforms in Egs. (3) also apply to the triaxial
nonaligned NS in a binary, but with (i, R, A) in Egs. (3)
replaced by (1, R, A), which are the quantities calculated in
a coordinate system at rest with respect to the center of
mass of the spinning NS, i.e., the J-aligned coordinate
system shown in Fig. 2.
i—1, R >R, A > A. (17)
According to the discussion in [28], the small parameters
in Eq. (13) satisfy € < k << ypax and k ~ O(y?). Our goal is

FIG. 2. J-aligned coordinate system (X, Y,, Z;) with Z; axis
parallel to the total angular momentum J and S-aligned coor-
dinate system (X, Y, Zg) with Zg axis aligned with spin angular
momentum S are both centered at the center of mass (O;) of the
spinning NS, where spin-orbit coupling causes S to precess about
J atan angular frequency €. The opening angle of § precession
cone is Hg. Suppose that at initial time, Xg axis coincides
with X; axis, and S is in the Y; — Z; plane. The projection of
the spin evolution S(¢) coincides with O N in the X; — Y plane,
its precession angle a = Q.r. The distant observer with
position vector D is also assumed in the Y; — Z; plane at
colatitude : from J.

to expand the CWs of the spinning NS in a tight binary up
to order O(y*) and O(k). We first calculate R which
represents the rotation matrix from the body coordinate
system of the spinning NS to J-aligned coordinate system.
It can be obtained by the following rotation transforma-
tions: first, from the body coordinate system to the
S-aligned coordinate system by R [cf. Eq. (5)], and then
from the S-aligned coordinate system to the J-aligned
coordinate system by 7 s_, ;. Thus,

R:TS—)J'R’ (18)
where
cos(Qpret)  —sin(Qpt) 0
Tooy=| sin(Qyet) cos(Qt) 0
0 0 1
1 0 0
x| 0 cosfg sinfg |. (19)
0 —sinfg cosby

After inserting Eqgs. (14) into Eq. (18), R can be expanded
as Egs. (A2) given in Appendix A. Although R contains
O(k?) terms as in [29], we keep them in Egs. (A2) in order
to facilitate the generalization of the waveforms to higher
orders in the future.

Next, we need to calculate A which depends on the
angular frequencies w; of the spinning NS under spin-orbit
coupling. The (1, 1) and (1, 2) components of 4 read

A = 2(A2w§ - A3a)§), (20a)

-A12 = .A21 = (AI - A2)a)10)2 + A3d)3. (20b)
The other components of A are the same as the corre-
sponding ones of A in Egs. (4) but with €; replaced by ;.
Since in the body coordinate system S = S,e, = [ w,e; +
Lwse, + Izwse; and Q. = Qe =Q, R e, then
Eq. (15) can be expressed as follows

ds,

% e, +S,mwe, xe, =Q, R Se,xe, (21)

with components

da)1 Al

T 1—1602603 + % (Roalsw; — Rslhay),  (22a)
d A Q
02 22 ey 2 (Raliwr = Rolzw;).  (22b)
i L I
d A Q
dos _ = 0,0, + 2 (R Lo, - Roloy).  (22¢)
dr I3 I3
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The second terms on the right-hand sides are the spin-orbit
coupling terms.

Although the general solution of the above precession
Eqgs. (22) can be obtained numerically, the analytic solution is
more favorable for GW detection and parameter estimation
because it can be incorporated directly into search algorithms
and is more manageable and efficient in data analysis. We
expect the difference between the angular frequency of the
spinning NS in an isolated case and that in a binary system to
be small (see Fig. 3), since the spin-orbit coupling is of 1.5
post-Newtonian order [49]. In this sense, we use the pertur-
bation method to solve Egs. (22) analytically by assuming

w; 2 Q; +6Q; (i=1,2,3). (23)
Inserting the above expression into Eqs. (22) yields the
linearized evolution equations

A1523 _QpreRﬁIZ Algz +pr7€:213

dsQ, 0
ar I I
dsQ, | _ | Aa%+Q Rl 0 80, -Q R 13
dt - I, 1,
doQ, A3 —QueRopli  A3Q+Qu R 1p 0
dt 13 13
e (R 1595 — R41Q,)
5Q, 7, Uvnl3fd —R3lty
Qo
S 592 + IZn (Rz31191 - Rzll393)
593 Qe
. I};m (RleZQQ - RzZIl Ql)
(24)
1.5x1076 [
¥
=  1.x10°6
c
K}
©
g  5x107
[e}
)
& 0
[
=
2 -5.x107
g — 50
3 -1.x10° !
£ — 6Q,
~15x106} —— 603
0 500 1000 1500 2000 2500

Time [s]

FIG. 3. The analytic approximate solution for §Q; in Eqgs. (27)
and (28) during a free precession period (7' = 27/€2, = 2785 s).
Assume that the binary mass m; = m, = 2.0M, the orbital
period P, = 6 min, and the opening angle of the spin precession
cone is fg = 5x/12. The spinning NS’s characteristic parameters
are I3 =2.0x10%® kgm?, e =3.6x107%, x=1.75x 1074,
y=5.0x10"2 (equatorial ellipticity e=|I, —1,|/I; =
1.0 x 1078). Q5 (69Q3) can reach up to 1.45x107° Hz
(3.62 x 1078 Hz) for Q, = 628.32 Hz, Q, =226 x 1073 Hz,
Qe = 7.50 % 10~7 Hz obtained with the above values of the
parameters.

According to Appendix C, 6Q; < 5Q;,, so the
contribution of 0Q; can be ignored when solving for
0Q,. For a typical double NS system with 6 min
orbital period discussed below, Q,./Hz <e <k < 2.
We first expand Q; [cf. Egs. (6)] to leading order. The
combination of Egs. (7), (11), and (12) gives 7=
(2K(m) /7)1, = (1 + O(m))1Q2,. From Egs. (8) and
(13), we have m = 16y’k. Therefore, 7~1Q, to lead-
ing order. In a similar way, to leading order, the
Jacobian elliptic functions become cn(z,m) =~ cos(#€2,),
sn(z, m) ~sin(#€,), and dn(z,m)~1, and the factor
[I,(Iy=1,)/1,/(I; — I,)]"/> ~ 1. Consequently, we have
the leading order result

Q = acos(1,), (25a)
Q, = asin(1Q,), (25b)
Q, = b. (25¢)

By inserting Egs. (25) and (A2) into Eq. (24), we expand
the linearized evolution equations up to order O(y?) and
O(k), and ignore higher order terms such as O(y%k),
O(yQpre), and O(k€L,.). To give analytic approximations
for 6€;, we further simplify the equations by setting
1+ e=~1 and discard O(Q) in O(Qpy) + O(be) due to
O(b) ~ 2 x 100 Hz. Finally, we obtain

dsQ
- L be(=1 + 16K)5Q, + bQyp, sin O sin(1,),  (26a)

dsQ
2 o~ bedQ + bQy, sin Og cos(1,). (26b)

Setting the initial conditions (5€;(0),5Q,(0),5Q5(0)) =
(0,0,0), and ignoring O(be) in O(be) + O(Q,) due to
b ~ Q. the integration of Eqgs. (26) yields

0Q =~ Q. sinfscos(theV 1 — 16x) — cos(1Q,)],  (27a)
8Q, =~ Q. sin g [sin(theV'1 — 16k) + sin(#€L;)]. (27b)

Using Egs. (27), the integration of the third row in Eq. (24)
leads to

8 =~ y Q. sin Og[cos(1(Q, + ;) — 1]. (28)

The error of this analytic approximation is shown and
discussed in Appendix C.

Now, A can be calculated by inserting Q; [cf. Egs. (25)]
and 6Q; [cf. Egs. (27) and (28)] into Eqs. (20). The result is
given in Eqs. (A1) of Appendix A.

With R and A, the waveforms emitted by the spinning
NS undergoing spin precession can be expressed in terms
of the series expansion as follows
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hy =0+ 0P 40 4. (29a)
he =h + 0D+ 4 (29b)
where
1) Gb’Lyey , - .
hy’ = 1D [cos(#(, + €,))[sin(265) (6 sin* 1 — (3 + cos(21)) cos (21 ) ) + 4 c0s(26;) cOs (1, ) sin(21)]
¢
+ 2[=2cos O sin(21) sin(1Qpe ) + (3 + cos(21)) sin O sin(2:Q,,. )] sin(#(€2, + Q,))]. (30a)
Gb’I
Al = 4D3€y [cos(#(Q, + ,))[2 sinzcos(20s) sin(1Q,;.) — cos 1sin(26;) sin(21Q,;. )]
c
+ 2[sinzcos O cos(1Q ) — cos1c0s (21, ) sin O] sin(#(L, + Q,))]. (30b)
16Gb%I 0 0
hY = 47D3€K [(3 + cos(21)) {cos4 <2S> o8 (2t(Qpre + 1)) + c08(2(Qpre — ;) )sin? <ZS>]
¢
+ cos(21€;) [3sin?Osin?t 4 cos(1Q,y, ) sin(265) sin(2:)] — 2 sin O sin(2¢) sin(1Qe ) sin(Zth)} , (30¢)
16Gb*1
h® = 64736'( [cos(26Q2,)[~2 sin 1 5in(205) sin(1Qyre) — cos 1(3 + cos(205)) sin(26Qe)]
— 4[cos 1¢cos Og cos(21Ly. ) + sinzcos(1€2y. ) sin O] sin(2£€2, )], (30d)

27 2
(3) _Gb 136']/ 95 . 95
hy’ = —ap {(3 +cos(21)) [cos4 (? cos(21(Qpre +Q +Q,)) 4 cos(2£(Qpe — Q, — Q) )sin’ >
+cos(2¢(Q, +Q,))[3sin?Ogsin®t + cos (1Qe ) sin(26s) sin(21)] — 2 sin O sin(2:) sin (18 ) sin(2£(L, + Qp))} . (30e)
(3) Gb213€}’2 . . . .
hy’ = —ap [cos(2¢(2, 4 ;))[2 sin(26;) sin 1 sin (1) + (3 + cos(26s)) cos 1 sin(21Q,. )]
c

+ 4[cos O cos(2tQ. ) cos 1 4- cos(1L,;. ) sin O sin 7] sin(2¢(Q, 4 ;))].

Note that 1 in the above expressions is the angle between
J and the line of sight, not to be confused with the
inclination defined by the angle between S and the line
of sight for the isolated case.

Here, hi‘?x are of order O(y), hf)x are of order O(x),

h@x are of order O(y?). Note that only the waveform
components up to terms of O(y), O(k) and O(y*) are
shown here, according to the discussion of the character-
istic value of y and « in [28]. The O(€,,.) components (see
Appendix B), and higher-order O(yx), and O(x?) compo-
nents can be ignored for the parameter values we adopt in
the following analysis.

Then, the waveforms of the spinning NS in a binary
system with spin-orbit coupling effects considered are

(30f)

completed by incorporating the Doppler frequency modu-
lation of this NS around the binary barycenter (BB) into the
phases of waveforms Egs. (30), which is done by the
second term on the right-hand side of Eq. (36) in Sec. V. We
leave this for further discussion in Sec. V, where this
Doppler modulation and the Doppler modulation due to the
motion of the GW detector around the solar system
barycenter (SSB) are combined, as in [33].

IV. COMPARISON WITH WAVEFORMS
FROM ISOLATED NS

As a limiting case, when the spinning NS is isolated and
spin S is along the z-axis of the coordinate system, i.e.,
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Q. = 05 = 0, the waveforms in Egs. (30) will reduce to
those given in [29]:

_ Gb?Izey sin(21) cos(1(Q, + ;))

(1)
A, 5 : (31a)
2Gb*I;ey sinisin(t(Q, + Q,
b s€y 14 (£(€2 ))’ (31b)
c*D
h(f) _ 32Gb*Izex(1 +4cos2 1) cos(21€2,) ’ (310)
c*D
hD 64Gb?Iex cos1sin(21Q,) ’ (31d)
c*D
ho = 2Gh* Iiey* (1 + cosiz) cos(21(Q, + Q,))  Gle
c*D
A4Gb’Iey? cosisin(2t(Q, + Q,

c*D

Note that some of the signs in the above equations are
reversed because the convention for the inclination (z) we
use here [27] is equivalent to (z — 1) in [29].

For small equatorial ellipticity & = |I; — I,|/I5 ~ 16¢x
and y =0, 1, = h?), =0 and A, will reduce to the
triaxial aligned waveforms (e.g., Eq. (4.223) of [51]). If
k=0andy # 0, h7, =0, and 1), will reduce to the
biaxial waveforms (cf. Eq. (1) of [52]).

The values of the parameters used in the following
analysis are intended to make the signal amplitude as large
as possible under current observational and theoretical
constraints. The NSs, measured by pulsar timing [53] or
GW observation [54], can have masses up to about two
solar masses. The widely accepted range of the moment of
inertia for NSs resides in 1-3 x 10°® kgm? (see [55] and
references therein). The parameters that characterize the
properties of the spinning NS are in accordance with the
discussion in [28], in which € < k < ¥ma and k ~ O(7?).
Recent observations from Advanced LIGO and Advanced
Virgo constrain two recycled pulsars (PSR J0437-4715
and PSR JO711-6830) to have equatorial ellipticities
(e = I, = I,|/I5 =~ 16¢xk) of less than 10~ [56]. An ellip-
ticity of 1078 is also a typical value used in searching for
CWs from small-ellipticity sources [57]. Population syn-
theses of Galactic disk double NS systems detectable by
LISA [37,50,58] and TianQin [38] suggest that the exist-
ence of double NSs with orbital periods as low as 6 minutes.
We assume that the orbital period under consideration is
6 minutes, which maximizes the strength of the orbital
precession. Based on the current observations of 22 double
NSs [31,32], we select 10 ms as the typical spin period of
the rapidly spinning NS [38], and 1 kpc as the typical
distance since about half of the known double NSs are
located near that value [31,32].

As an example, we assume the component masses
of a double NS system m; = m, = 2.0M, the orbital
period P, = 6 min, and the opening angle of S precession
cone is g = 5x/12. The spinning NS’s characteristic
parameters are Iy = 2.0 x 10 kgm?, € =3.6x 107,
k=175%x10"* y=5.0x10"2 (equatorial ellipticity
e=|l, = L,|/I; = 1.0 x 107®). From Egs. (16) and (12),
one can obtain Q = 628.32 Hz, Q, =2.26 x 10~ Hz,
and €. =7.50 x 10”7 Hz. During a free precession
period (T = 27/€, = 2785 s), Fig. 3 shows the approxi-
mate solution for 6Q2; in Egs. (27) and (28), which can reach
up to 1.45 x 107 Hz for 6Q;, and 3.62 x 1078 Hz for
0€23. Note that the jagged profiles in this figure are due to a
reduced sampling rate over a long spin precession period,
as in the following figures.

Figure 4 shows the different waveform components with
spin precession incorporated during a spin precession
period (T = 27/, = 8.382 x 10° s). The values of
the parameters used here are the same as in Fig. 3, and we
set the spin period of the NS P, = 10 ms, the inclination
angle of J with respect to the line of sight 1 = z/4, and the
distance to the observer D = 1 kpc. The modulated ampli-
tude profiles for a binary depend on 1, 0, and €., which
can be several times larger or smaller than the isolated case
for different waveform components. The amplitude mod-
ulations shown here are only due to the NS’s spin
precession caused by spin-orbit coupling, the Doppler
modulation will be included in Sec. V (see the discussion
at the end of Sec. III).

According to Egs. (31), the GW angular frequency
components of an isolated NS are Qif°, = Q, + Q,, 2Q,,
and 2(Q, + Q,) for both + and x polarizations. Spin-orbit
coupling in the binary can split these frequencies in the
following way

Qijo - Qijo + nQpre (l’l =0.1, 2)’ (323)
Q- QF° +nQ,. (n=1,2). (32b)

Similar to the analysis of the GW spectrum of isolated
systems [28], the spectral analysis of the above frequency
components can be used to infer the orbital period of the
binary and the characteristic parameters of the NS.

In order to quantitatively measure the degree of matching
between these two types of waveforms, one can calculate
the fitting factor (FF) [59] between the genuine GW
waveforms generated by the spinning NS in a binary
(denoted as hy,) and the ones by an isolated NS (denoted
as h;), given the latter has been used in the matched filtering
of CW data analysis

FF = max (Ao, 1)

2/ (hy ) (i hy)

(33)
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FIG. 4. The waveform components from the triaxial nonaligned NS with spin precession incorporated (blue) during a spin precession
period and in comparison with those from the isolated NS (red). The values of the parameters used here are the same as in Fig. 3, and set
the spin period of the NS P, = 10 ms, the inclination angle of J with respect to the line of sight 1 = 7 /4, and the distance to the observer
D =1 kpc. The modulated amplitude profiles in a binary depend on 1, 0g, and €2,,,., which can be several times larger or smaller than the
isolated case for different waveform components. The inset in each subplot shows the waveform during the first spin period of the NS.

where A is the set of the parameters that characterize
the waveforms. For a quasimonochromatic signal, the
inner product (hy,h;) can be simplified as (hy, h;) =
fOT s by (£)hi(t)dt, where T, is the observation time.
Figure 5 shows the FFs of different waveform components
in &y, and h; as a function of T,,. As we can see, the two
waveforms only match well (FF > 0.97) within roughly a
few days [~O(10° s)] and then start to diverge rapidly.

0.98

& 0.96
0.94
0.92 1
0 100000 200000 300000 400000 500000
Time [s]
FIG. 5. The fitting factors between the isolated case and the one

with spin precession for different waveform components shown
in Fig. 4.

V. DETECTING GW FROM SPINNING NS
IN A BINARY

A. Signal model in detector coordinate system

The GW strain signal from a spinning triaxial nonaligned
NS in a binary can be written as a sum of different
waveform components £,(¢) (n = 1, 2, 3) as follows [17]

3

h(r)=Zhn<r>=i(m(r)Hi")<t>+FX<z>H&"><z>>, (34)

n=1 n=1

where H Sf)x (t) are the Doppler-modulated waveforms (cf.,
Eqgs. (38) below), and F, ,(f) are the antenna pattern
functions of GW detector, of which the explicit expressions
can be found in [17]. F, , () depend on a set of parameters
listed below: y,, characterizes the orientation of the detector
with respect to the local geographical directions, { denotes
the angle between the interferometer arms, 1 is the
geographical latitude of the detector’s site, (a,§) are the
right ascension and declination of the source, y, is the GW
polarization angle, Qg, is the rotational angular frequency
of the Earth, and ¢, is the initial phase of the Earth’s diurnal
motion.

Below we will consider how to incorporate Doppler
modulation into the phases of the waveforms from the
spinning NS undergoing spin precession [cf., Egs. (30)].
Figure 6 shows the binary coordinate system (X, Y, Z,)
with Z, axis aligned with the binary’s total angular
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momentum J and the motion of spinning NS within it.
(Xp,Y,Z;) is the coordinate system with Z; axis aligned
with the binary’s orbital angular momentum L (hereafter
referred to as L-aligned coordinate system), in which
X; — Y, represents the orbital plane. The origins of these
two frames are both placed at the BB (O). The opening
angle of L precession cone is ;. Suppose that at initial
time, § and L are both in the Y, — Z, plane and the
spinning NS sits on the X, axis. After a period of time ¢, the
orbital plane precessed by ¢y, the spinning NS’s position
vector and the orbital longitude are r; and v, and its spin is
S(1). (The Y-axes not drawn in Fig. 6 are determined by the
right-hand rule.)

In the L-aligned coordinate system, the position vector of
the spinning NS ry; = (r; cos(wyt), ry sin(wyt), 0). By two
rotation transformations (first rotates by 0; clockwise about
the X axis, and then rotates by ¢, clockwise about the Z,,
axis), the position vector r; in the binary coordinate system
can be given by

COS | COS (hyy — cos By siny sin ¢y

r;=r; | cos@; siny, cosgdy + cosy singy (35)

sin @y siny,

with y; = wyt and gy = Q1.

In the detector coordinate system, the Doppler shift of
the GW frequency f, from the spinning NS in a binary
system can be expressed as the combination of detector
Doppler shift around the SSB and source Doppler shift
around the BB

(36)

Afp zfo(

n-drd/dt+nb-dr1/dt>

C c

FIG. 6. The binary coordinate system (X,,Y,,Z,) and the
motion of the spinning NS within it. (X;,Y;,Z;) is the
coordinate system with Z; axis aligned with the binary’s orbital
angular momentum L, X; — Y, represents the orbital plane. The
opening angle of L precession cone is #;. The distant detector
with position vector D is assumed in the Y, —Z, plane at
colatitude : from J.

with [17]

n-ry = RglcosAcosdcos(a — ¢, — Q1)
+ sinAsin 8] + Rgg[cos acos § cos(p, + Qg,t)
+ (cos &, sinacos § + sin g, sin ) sin(¢, + Qgo?)]
(37)

being the projection of the detector’s position vector ry
along the spinning NS’s line of sight n in SSB coordinate
system, where Ry and Rgg are the mean radius of the Earth
and the mean distance from the Earth’s center to the SSB,
Qg, is the mean orbital angular frequency of the Earth, ¢, is
the initial phase of the Earth’s annual motion, and &, is the
ecliptic obliquity. —ny, = (0, sin¢, cos:) is the SSB’s loca-
tion in the binary coordinate system, orbital radius r; =
G'Pm,/(@,M)*? and angular frequency @, = 27/ Py, for
a circular orbit. If there is no orbital precession, i.e.,
Q. = 0, then the Doppler shift in Eq. (36) reduces to
the simple case as Eq. (6) in [33].

Since the waveform components in Eqgs. (30) can be
decomposed into a series of sine and cosine functions in
which the frequencies are linear combinations of Q,, Q,,

and €., the Doppler-modulated waveforms Hf)x(t) in
Eq. (34) can be obtained by

HT)(I) — hgf)(gl - Q; +27Afp), (38a)
HY (1) = h(Q — @+ 2nAfp).  (38b)

with [ € {r, p, pre}.

The binary is assumed to follow an invariant circular
orbit when calculating the Doppler shift of the spinning NS.
In fact, the orbit is constantly shrinking due to gravitational
radiation. According to the orbital velocity evolution
equation (d(v/c)/dt « (v/c)?, cf. [60]), its relative varia-
tion is <1073 for a half-year observation, resulting in a
relative variation for the Doppler shift of <107>. Thus, we
can ignore the reaction of gravitational radiation on the
orbit for the observation time under consideration.

B. Effects of spin-orbit coupling
on parameter estimation

In addition to spin precession, spin-orbit coupling also
causes orbital plane precession, which is expected to
introduce additional information into the Doppler-
modulated waveforms HS:)X(t) [cf. Egs. (38)]. We use
the Fisher information matrix (FIM) to obtain a quantitative
assessment of the parameter estimation accuracy for GW
detection (e.g., see [61]). For GW signal h(¢) [cf. Eq. (34)]
with parameter set A, FIM is defined as
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~ [oh oh
ri=(=—.,>). 3
(aﬂ,.’a/l) (39)

For a monochromatic signal of frequency f, the noise-
weighted inner product (a, b) ~ Sim fOT“’S a(t)b(r)dr [62],
where S,(f) is the power spectral density of the instru-
mental noise at frequency f, and T, is the observation
time. The optimal signal-to-noise ratio (SNR) for signal
detection is defined as SNR = (h, h)'/2. The root-mean-
square (RMS) error of parameter 4; is estimated as
Al; = /Z;;, where the covariance matrix X is the inverse
of the FIM, i.e., £ = I'"!. We extend the parameter set in
[61], as our work considers the spin-orbit coupling for a
triaxial nonaligned NS, which results in a parameter set
A= (Inhyg,Inhyg, In h3g, @, sind, In Py, cos, Os,y,, In Q.
InQ,), in which the amplitudes for the different waveform
components are defined as

B 64Gb>Iex

B 4Gb*15ey?
c*D N '

c*D
(40)

th = ’ 20 30
Cc

Logarithms are taken for some parameters because the
relative errors for them are more meaningful than the absolute
errors. For example, Alnhyg = Ahyg/hyy is simply the
relative error in hy. Since J = L + S, then 0, is related
to O by S/sin(0;) = L/sin(0s). According to Eq. (16) and
Kepler’s third law, Qpre x Py 3/3 and r| « Pi/ 3 Therefore,
the parameters (6, Q... ;) are related to g and Py, used in
the FIM, so they are not included in the parameter set A.
Similar to the sky localization error defined in [63], we define
the corresponding one for a source located at (a,d),

AQ = 27T\/2(1(12Sin(ssin5 - 22

asind*

In the following analysis, since the sensitivity of Einstein
Telescope [41] in the frequency band of interest is not as good
as that of Cosmic Explorer, we use Cosmic Explorer, which
consists of two facilities (one 40 km on a side and one 20 km
on a side), each with a single L-shaped detector [40]. Various
angular parameters are taken as { = x/2,41 = 0.764,
Yo=15¢. = ¢, = 0, = 1.209,6 = 1.475,y, = 1.0.
Assuming a 40 km arm length with a low-frequency
optimized sensitivity is used, the amplitude spectral density

of the instrumental noise +/S,(fy) = 1.36 x 107> Hz~!/?

and +/S,(2f,) = 1.66 x 1072 Hz"'/2 for f, = 100 Hz,
the observation time Ty = 27T = 1.676 x 107 s.

After calculating the FIM numerically with Mathematica
for Eq. (39), the RMS errors of the estimated parameters for
a typical spinning NS in a binary (the parameters used
here are the same as in Figs. 3 and 4) are shown in Fig. 7 as
red downward-pointing triangles. For comparison, the
results without spin-orbit coupling are represented by blue
open squares and the results for the triaxial aligned case

g e ogo
R S B S e O N M et
5 AR -
T S A
[2] ' ' ' ' '
= : ‘ : ‘ : ‘
- g Y o
O a0 : : : ﬁ :
10 W with Qe S S S S S SO Lot
O triaxial aligned é
Alnhyg Alnhgg Alr;hw 20 All:\pb Acosi A'es Ay, AInQ, AInQ,
Parameter Set
FIG. 7. The RMS errors (red downward-pointing triangles) of

the signal parameters for a typical spinning NS in a binary using
Cosmic Explorer detector. The effects of spin-orbit coupling are
considered in the waveforms. For comparison, the blue open
squares represent the result without spin-orbit coupling and the
black circles represent the triaxial aligned case (the parameters
(h10. h39. ;) do not exist in this simplest model, cf. Sec. IV).
The error of the sky location (a, §) is combined into the elliptical
area AQ. The parameter estimations for the triaxial nonaligned
cases are more accurate than those for the triaxial aligned case.
After taking into account spin-orbit coupling, the estimation
accuracy of the parameters cos: and Oy (in green shadow) are
improved by about 3 orders of magnitude.

are shown as black circles. For the first three Doppler-
modulated signal components £,(r) (n=1, 2, 3) in
Eq. (34), their SNRs are 104, 8.5, and 7.6, respectively.
In comparison, the corresponding SNRs are 74.3, 12.6, and
11.3 for the signals without spin-orbit coupling. The total
SNR for the triaxial aligned case is also 12.6 as that for 4,
without spin-orbit coupling, since the SNRs for /; and /5
become zero when y = 0 (cf. Sec. IV). The spin and orbital
precession modulated signal %,(f) increases its SNR by
40% compared with the case without spin-orbit coupling,
while the other two signals &, (¢) and k5 () both decrease by
33%. We can get some clues to understand the changes in
SNRs from the limiting case of the waveforms in Sec. IV.
From Egs. (31) (¢ corresponds to 1 — 8¢ under spin-orbit

coupling), we can see that hQ?X is proportional to sin(2:) or

sinz, while h(f?x and hf’)x are proportional to (1 + cos? 1) or
cost. The spin-orbit coupling makes i larger during one
precession period (cf. 1 — 6 in Fig. 2), therefore the SNR of
hy(t) becomes larger and that of h,() and h3(f) becomes
smaller.

The fractional estimation errors for three amplitudes are
inversely proportional to their SNRs. So the parameter
estimations for the triaxial nonaligned cases are more
accurate than those for the triaxial aligned case. For the
triaxial nonaligned case, the precession improves the sky
localization by a factor of two and slightly improves the
estimation of the orbital period. The improvement in sky
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localization is small because for double NS systems, whose
orbital angular momentum is very close to the total angular
momentum, the modulation of the orbital angular momen-
tum is relatively small. The most significant improvement
comes from the estimation of the angles cos: and g, both
of which are improved by about 3 orders of magnitude.
This is because these two angles are encoded in the
amplitudes of the waveforms [cf., Eqgs. (30)], and they
modulate the profiles of the waveforms in Fig. 4.

VI. CONCLUSIONS

In this work, we calculate the gravitational waveforms of
a triaxial nonaligned NS in a compact binary system in
which the effects of spin-orbit coupling have been incor-
porated. Then, we compare our waveforms with the ones
commonly used in current CWs searches. Finally, we
evaluated the parameter estimation accuracy for the signal
detected by the proposed next-generation GW detector
using the Fisher information matrix method.

For a tight double NS system with a 6-min orbital period,
by solving the precession equation with the perturbation
method, we find that spin precession-induced correction to
the spin angular frequencies of NS is in the same order of
magnitude as the angular frequency of orbital precession.
The fitting factor between the waveforms with and without
spin precession will drop to less than 0.97 after a few days.
The analytic waveforms show that spin-orbit coupling
introduces additional modulation information that will help
in improving the accuracy of parameter estimation in CW
detection.

The double NS system (consisting of a rapidly spinning
NS and a nonspinning NS) considered in this work can be
seen as a dual-line GW source, in which the orbital motion
of the binary will emit low-frequency GWs in the mHz

|

Ay = 2bI5€[16bk + y sin(1Q,) [by sin(1€2,) 4 2Q,. sin O sin (7L, )]].
Ay = 2b13€[—16bk + y cos(1Q,)[by cos(1€,) + 4Q sin G sin? (1, /2)]].,
Azy = =2byl5e[by + 4Q,, sin O sin (1L, /2) sin(#(2L, + Q,)/2)],

A = —bylze[by sin(21Q,) + 2Q,,. sin g [sin(1Q,,) — sin(#(Q, — ,))]].

./423 = b213€}/ Sin(pr),

Az = blze[by cos(19,) + Qe sin 6.

band in addition to the high-frequency GWs from the
spinning NS. This dual-line GW source is of astrophysical
interest, such as constraining the NS’s moment of inertia
and ellipticity using the ratio of the strain amplitudes of the
low- and high-frequency GWs [64] or combining the
angular momentum loss of the NS [65]. Since the angular
frequency of the orbital precession contains information
about the orbital period and mass of the binary, we can use
it to infer binary parameters by combining information
from the emitted GWs of the dual-line sources, and such
studies are currently under our investigation.

ACKNOWLEDGMENTS

Y. W. gratefully acknowledges support from the National
Key Research and Development Program of China
(No. 2022YFC2205201 and No. 2020YFC2201400), the
National Natural Science Foundation of China (NSFC)
under Grants No. 11973024, Major Science and
Technology Program of Xinjiang Uygur Autonomous
Region (No. 2022A03013-4), and Guangdong Major
Project of Basic and Applied Basic Research (Grant
No. 2019B030302001). T. L. is supported by NSFC Grant
No. 12003008 and the China Postdoctoral Science
Foundation Grant No. 2020M682393. J.-W. C. acknowl-
edges the support from China Postdoctoral Science
Foundation under Grant No. 2021M691146. S.D.M. is
supported by U.S. National Science Foundation (NSF) Grant
No. PHY-2207935. We thank the anonymous referee for
helpful comments and suggestions.

APPENDIX A: EXPRESSIONS FOR R AND A

The symmetric matrix .4 used in calculating the wave-
forms [cf. Egs. (30)] can be explicitly expressed as follows

(Ala)

(Alb)
(Alc)
(Ald)
(Ale)

(AIf)

The transformation matrix R used in calculating the waveforms [cf. Eqs. (30)] can be explicitly expressed

as follows
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R, = sin(1€,)[cos (182 ) cos(1(L, + L)) — cos O sin(1Q,,. ) sin(#(L, + ;))]
+ %cos(tQp)[cos(tQpre)[MK sin(7Q,)(cos(1Q;) + k[3 cos(#(2Q, — Q,)) — 8 cos(#L,) + cos(#(2Q, + L;))])

+ (r* = 2) sin(#(Q, + ©,))] + sin(1Qye ) [-27 sin 5 + cos O5((r* — 2) cos(#(LQ, + &;))
+ 16k sin(1Q,) (3x sin(#(2Q, — Q,)) + (8x — 1) sin(rQ,) — k sin(#(2Q, + Q,))))]]. (A2a)

Ry = %sin(tQp)[sin(tQpre)((y2 —2) cos O cos(1(Q, + Q) — 27(1 + 8k) sin ) + (y* — 2) cos(1Qe ) sin(1(LQ, + ,))]

— cos(182,)[cos g sin (1, ) (8k[cos (L2, ) + k(3 cos(#(2Q2, — Q,)) — 8 cos(1;) + cos(1(2Q, + Q,)))] sin(1L,)

— sin(#(, + €,))) + cos (1) (cos(#(L, + ;) + 8k sin(rQ,)[sin(1L,) + x(—3 sin(¢(2Q, — L;))

— 8sin(rQ,) + sin(#(2Q, + ,)))])]. (A2b)
R,z = ycosOg(1 + 4k — 4k cos(21€2,)) cos(#(L, + ;) sin(1Q,.) + % (y* = 2) sin O sin(1Qe)

+ 7 cos(1Qpe ) (1 + 8k sin?(1Q,)) sin(#(2, + Q,)), (A2c)
Ry = % [2(cos(#(Q, + L)) sin(2Q,,) + 4x[cos(2Q,) + k(3 cos(#(2Q, — Q;)) — 8 cos(L2,)
+ cos(1(2Q, + Q,)))] sin(2€2,) ) sin(1Qy.) 4 cos(1€2,) (27 cos(1Qy ) sin G5 + (y* — 2) sin(1Qye) sin(1(Q, + Q,)))
+ cos O cos(1Qye ) (—(7> — 2) cos(19,) cos(1(L, + L)) + 2sin(rQ,) sin(r(L, + ;) + 8k sin(21€, ) [sin (L)
+ k(=3 sin(#(292, — Q;)) — 8 sin(#L;) + sin(#(2Q, +,)))])]. (A2d)
1
2
+ 8k[cos(1€2;) + k(3 cos(#(2Q, — Q;)) — 8 cos(1L;) 4 cos(¢(2Q, + Q,)))] sin(2:Q,,) — 2 cos(1L,) sin(#(L, +Q,)))

+ sin(1Q,. ) (—2 cos(1Q, ) cos(1(Q, + Q) + (y* — 2) sin(1Q,) sin(1(Q, + L)) + 8k sin(2Q,) [3x sin(1(2Q, — Q;))
+ (8x — 1) sin(rQ,) — K sin(#(2Q2, + Q;))])]. (A2e)

Ry = =[2r(1 + 8k) cos(1Qyy ) sin O sin(1€2,) + cos G5 cos (1 ) (—(y> — 2) sin(1Q,) cos(#(2, + ;)

Rys = 7008 Og(—1 — 4 + 4 cos(212)) cos(1(Q + @) cos(1Qye) — % (% — 2) sin O cos (12,.)

oy sin(19e) (1 4+ 8esin(1€,)) sin(1(Q, + ). (A2f)
R,y = 7c0s s cos(1€y) + 5 5infs[(72 — 2) cos(1(2 + ) cos(1€,) ~ 2sin(1€,) sin(1(€, + )

+ 8k sin(269,) (3 sin(1(29, — Q,)) + (8x — 1) sin(1Q,) — xsin(1(20, + Q,)))]. (A2g)
Rz = 7(1+ 8x) cos O in(1Qy) -+ 5 sin (72 ~ 2) os(1(€2, + Q1)) sin(12) + 2cos (1) sin(1 (€, + )

_ Bfeos(1) + k(3 cos(1(22, — 1)) — Beos(1Q,) + cos(1(2Q, + ©,)))] sin(212,)]. (A2h)

R =7(2—7%)cosbs +ycos(1(Q, + Q) sinO(1 + 8k sin*(1€,)). (A2i)

N[ =

APPENDIX B: EXPRESSIONS FOR 0(,,.) WAVEFORM COMPONENTS

The waveform components to the order O(€,,.) can be expressed as follows

Gbl;eQ,,. sin g
h&pre) = %sms [cos(7€2,)(sin(265) (—(3 + c0s(21)) cos(21Qe ) + 6 5in* 1) + 4 cos(26) cos (1) sin(21))
c
+ 2(=2 cos @ sin(21) sin(1Qy. ) + (3 + cos(21)) sin G sin(21Q,,.)) sin (1€, )], (Bla)
re) _ GbI3eQp sin 6 o . .
AP — 364—stms [cos(#€2,)(2 cos(26s) sinzsin(1€,,.) — cos 1sin(26;) sin(2:Q,,. ) )
c
+ 2(—cos zsin O cos(21Q; ) + c0s O cos (1) sin¢) sin(rQ,)]. (B1b)
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We can see that there are components with frequencies of
Q, Q +Q, and Q 4 2Q, . in these waveforms. Since

WP /0, ~ Qe sin 0/ (by), KPS /hD, ~ Qe sin 65/

(16bx), and AP /0, ~ Q. sin6s/(by?), for typical

parameters used as in Fig. 3, these h(fi) components are

negligible compared to h(j’)x, hf)x, and h@x.

APPENDIX C: THE RESIDUAL
OF TWO SOLUTIONS

To confirm the fidelity of the approximate calculation,
we use Euler angles to accurately calculate the angular
frequency. Although this method can give the exact
solution @¥, it is too complicated to give a simple analytical
waveform like Eqgs. (30). They can be calculated as (an
overdot represents d/dr) [45]

w? = ¢y sin Oy sinyry, + Oy cos yy, (Cla)
% = ¢y, sin @y cos yr, — Gy sinyry, (C1b)
% = ¢y, cos O, + vy, (Clc)

15x1077F
1.x1077 F
¥
=  5.x10°8}
o
]
' 0
=
3 -5.x1078}
<
-1.x107f — w1—w’1-:
S15x10T[ — wawh
0 5.0x 108 1.0x 107 1.5x107
o]
= -2.x1071
L
g 1l
5 -4.x10
e
=]
S —6.x10"11}
Q
<
-8.x10" 1
— w3—w§
0 5.0x 108 1.0x 107 1.5x 107
Time [s]
FIG. 8. The absolute errors between the approximate angular

frequency w; and the exact angular frequency w? during two
orbital precession periods. The parameters used here are the same
as in Fig. 3.

with the Euler angles derived from the primitive (no
approximation) rotation matrix [cf., Eq. (18)],

0, = arccos(R3), (C2a)
RxB
¢, = arctan <— ) C2b
b R (C2b)
R
= arctan| —— |. C2
W, = arctan < Rz2> (C2c)

The absolute errors between the approximate angular
frequency w; and the exact angular frequency w? are shown
in Fig. 8. During two orbital precession periods, the relative
deviation of the analytic approximation from the exact
solution is <107 for w;, and <107!* for w;. Therefore,
the solution of the angular frequency is accurate enough for
the calculation of the waveforms.

APPENDIX D: EFFECTS OF ORBITAL
PRECESSION ON DOPPLER SHIFT

The Doppler shift correction is defined as

5<Agn) = AQ, - AQ, (Qpre =0) (Dl)

with n = {r, p, pre}. It measures the effects of spin-orbit
coupling on the phase of GWs of the spinning NS in a
binary. As seen in Fig. 9, the deviation of the GW
frequency can reach ~0.5% for f, and ~1% for 2f if
we do not consider the orbital plane precession.

T T T T
3 0.0001 4
18 0
- 0.0003

— 5(AQ))
— 5(AQy)*10°

Source Doppler Shift Correction [Hz]
o

-3} 6(AQye)*10°

4 x10° 6 x10° 8 x10°

Time [s]

0 2x10°

FIG. 9. The Doppler shift corrections to the different frequency
components in the waveforms caused by orbital plane precession
during one orbital precession period. For visualization purposes,
5(AQ,) and 5(AQ,,.) are magnified by a factor of 103 and 10,

respectively. The parameters used here are the same as in Fig. 3.
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