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A few systematizing remarks concerning a spherically symmetric approximation in the description of
compact stars with gravitationally strong magnetic fields are given, including the problem of the definition
of mass accounting for the electromagnetic mass contribution. The problem of effective magnetic charges
associated with the approximation method is addressed. Two simple models of compact stars with
ultrastrong magnetic fields of 1017–1018 Gs are studied in the limiting approximation of exact spherical
symmetry, which is the limit of considered spherical approximations. Under this condition the character-
istics of the magnetized MIT-bag strange quark star show scaling with the bag constant, which can be
shown to be a result of a scaling symmetry of the equations of stellar structure. The model is compared with
a neutron star model described by the UV14þ TNI equation of state. At the strongest fields, the masses of
the modeled stars exceed values normally expected for compact stars and ascribed rather to black holes or
models with exotic equations of state. Based on the considered neutron star example, it seems that too
strong magnetic fields may render models of compact stars radially instable.
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I. INTRODUCTION

This work discusses some of the issues involved in
modeling the gravitational effect of strong magnetic fields
onto the structure of compact stars in the approximation of
spherical symmetry. Within the presented approach one
is led to a family of spherical models considered in the
above context. The related problem of mass definition in
the presence of magnetic fields will also be addressed.
Associated with this modeling approach is the issue of
effective magnetic charges that deserves a few words of
comment. A limiting exactly spherically symmetric model
will be applied to two models of compact stars with
ultrastrong magnetic fields, namely, a strange quark star
described by the simplest equation of state in the frame-
work of MIT bag model, and a neutron star described by
the UV14þ TNI equation of state. The obtained results
concerning the mass-radius diagram will not wander
astray from what is known for models of nearly spherical
compact stars with strong electric or magnetic fields. The
equations of gravitational equilibrium of the quark star in
the considered magnetic field exhibit a scaling symmetry
which explains the scaling of the stars’ global character-
istics with the bag constant, observed for numerical
solutions.

A. Characteristic scales of magnetic fields
in compact stars

Magnetic fields in neutron stars are typically on the order
of 1012–1013 Gs [1] or even as large as 1014–1016 Gs
(1014–1015 Gs [2], 8 × 1014 Gs [3], 3 × 1015 Gs [4]). The
surface magnetic fields determined observationally are of
1014–1015 Gs [5]. Originally millisecond rotational period
pulsars might generate ultra strong dipole fields, much
stronger than 1013 Gs, even as large as 3 × 1017 Gs [2].
With the virial argument at hand, stating that for a uniform
star the magnetic energy should not exceed the gravita-
tional energy, one arrives at fields as strong as 1018 Gs
inside neutron stars [6]. Considering ultrastrong fields of
1017–1018 Gs appears natural in the context of compact
stars, as suggested also by a simple dimensional analysis
discussed below, in Sec. I B. Fields as high as 1019 Gs can
be present at the cores of compact stars [7,8]. An upper
limit on the magnetic field sustained by a quark star is
roughly 1020 Gs [9]. A maximum field strength of 1.5 ×
1020 Gs follows from the requirement that the magnetic
energy density should not exceed the energy density of self-
bound quark matter [10].
Electromagnetic fields contribute to the stress-energy

tensor in the gravitational field equations. The resulting
anisotropic pressure and tension additional to the material
pressure, when comparable with that of matter, may alter
the structure of a gravitationally bound system. For
example, the maximum stable mass of magnetized white*Lukasz.Bratek@pk.edu.pl
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dwarfs was observed to exceed the Chandrasekhar limit
by almost 2M⊙ at core magnetic fields of 5 × 1014 Gs [11].
A substantial modification of mass was observed also for
neutron stars, quark stars [12] and other models of stars [13]
with ultra-strong core magnetic fields of 1017–1018 Gs. It
would be interesting to see the effect of fields that strong on
the characteristics of compact stars under various modeling
assumptions.

B. The gravitational scale of magnetic fields

The highest field magnitudes as summarized in Sec. I A,
agree with a gravitational scale of magnetic fields inferable
from a simple dimensional analysis.
In the strong field regime, the gravitational effect

of a magnetized star of radius R can be expected for
Gb2R2=c4 ∼ 1, which implies the magnetic field strength
scale of

b ∼
c2

R
ffiffiffiffi
G

p ¼
�
10 km
R

�
· 3.48 × 1018 Gs:

The number nb ¼ Gb2R2=c4 is linear in the gravitational
constant G and can be compared with other numbers
characterizing the stellar structure and linear in G. When
compared with nM ¼ 2GM=Rc2 involving a stellar mass
M, one obtains another scale of magnetic field

b ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Mc2

R3

r
¼

�
M
M⊙

�
1=2

�
10 km
R

�
3=2

· 1.89 × 1018 Gs:

At this scale, the magnetic and gravitational effects will be
comparable, not necessarily in the strong field regime only
(the magnetic energy density and that of matter are then
comparable). The numbers nb and nM scale differently with
the stellar size, however they are comparable for compact
stars with radii of several kilometers. In this case the
gravitational magnetic field scale is extremely high of
1017–1018 Gs. For quark stars one can make an indepen-
dent magnetic field scale estimation with the same order of
magnitude. At the quark star boundary surface, the energy
density of matter is determined by the bag constant:
ϵ ¼ 4B. On comparing this with the magnetic energy
density b2=8π, one is led to the following magnetic field
scale

b ∼
�

B
100 MeV · fm−3

�
1=2

· 4.01 × 1018 Gs:

Magnetic fields as strong as 1018 Gs are not physically
implausible. A substitute effective charge qm ¼ bR2 per
stellar mass M can be ascribed to each of the above three
estimates, respectively,

�
R

10 km
M⊙

M

�
· 6.77

ffiffiffiffi
G

p
;

�
R

10 km
M⊙

M

�
1=2

· 3.68
ffiffiffiffi
G

p
;

and
�
10 km
R

�
·
�
100 MeV · fm−3

B

�
1=2

· 20.8
ffiffiffiffi
G

p
:

These ratios are still negligible compared with the genuine
electric charge-to-mass ratio of the proton and the magnetic
charge-to-mass ratio of the hypothetical magnetic monop-
ole, respectively

qe
mp

∼ 1.11 × 1018
ffiffiffiffi
G

p
; and

qm
m

∼ 9.84 × 1015
ffiffiffiffi
G

p

(the latter was determined for the Dirac [14] elementary
magnetic charge qm ¼ e=2α and a mass α−1MW , with
MW ∼ 53 GeV being the upper bound for a typical vector
boson mass, as considered within t’Hooft field-theoretical
model of magnetic monopole [15]).

II. SPHERICAL SYMMETRY APPROXIMATION
AND EFFECTIVE MAGNETIC CHARGES

The influence of magnetic field on the structure of
compact stars, when these fields can be assumed strong
enough to have a substantial gravitational effect, can be
studied in the simplifying approximation of spherical
symmetry. The standard methods developed for spherical
stars can be then used, while the anisotropy of stresses
characteristic of magnetic fields can be still incorporated.
It was observed for magnetized white dwarfs models

[16] that for a toroidally dominated magnetic field the
stellar surface indeed deviates very little from a spherical
shape, while the star mass and the radius change substan-
tially with the field strength (isodensity contours become
prolate as one approaches the center). This quasisphericity
substantiated the assumption of spherical symmetry in
models of strongly magnetized white dwarfs [16]. But
quasisphericity is realistic only to some degree. For
example, the effect of poloidal fields is similar in effect
to a rotation—the star no longer remains spherical, oblate-
ness of the star surface is observed to increase with the
magnetic field strength [17]. Nonspherical corrections are
not included for fields below 2 × 1018 Gs as insignificant
by other arguments. However, for fields an order of
magnitude larger, magnetized strange stars may become
more susceptible to radial instabilities [9].
Spherical symmetry is incompatible with sourceless

magnetic fields. However, this symmetry can be assumed
as an approximation at the cost of introducing effective
magnetic charges. As it will become clear later, the charges
appear as the result of the averaging scheme adopted to
erase non-spherical components and should be regarded as
effective. One could rightfully object against considering
magnetic sources as realistic. Genuine magnetic monopoles
have not been detected so far, despite many dedicated
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experiments (for the recent advances in the theoretical
and experimental physics of magnetic monopoles and the
current state of magnetic monopole searches, see [18–20]).
Moreover, one can formulate theoretical arguments against
the existence of magnetic monopoles, in particular as
incompatible with the requirement of the positivity of
norm defined for quantum states of the infrared part of
the Maxwell electromagnetic field carrying the information
about the total electric and magnetic charges of an iso-
lated system [21–23]. On the other hand, there are also
compelling theoretical arguments for considering magnetic
monopoles as solitonic solutions in the theories of inter-
actions with an extended gauge symmetry group [15,24].
The spherical symmetry of the metric tensor assumed

for nearly spherical stars is broken by the gravitationally
strong magnetic fields. Nevertheless, this symmetry can be
retained approximately and some insight into the gravitat-
ing effect of magnetic stresses on the structure of compact
stars can be still gained. This is possible at the cost of
neglecting nonspherical corrections introduced by realistic
sourceless field both at the level of the equation of state and
at the level of the equations of the gravitational equilibrium.
There are two sources of anisotropy in the magnetic stress-
energy tensor, local and global. Local fields are micro-
scopically stochastic fields of which directions can be
averaged out to produce a large-scale and locally ordered
field. At the microscopic scale, the fields alter the equation
of state of the material constituting compact stars [9,10]. In
particular, the density of available states gets modified via
the Landau quantization mechanism, significant for fields
higher than 1019 Gs [5]. Global fields are considered on the
macroscopic scale. When strong enough they will affect
the spherical shape of the star, and therefore cannot be
described under spherical symmetry unless a coarse grained
order-of-magnitude description is sufficient.
In what follows, complete construction from the first

principles of a spherical model with magnetic fields is
discussed. A signature ð−;þ;þ;þÞ for the metric tensor
will be assumed from now on.

A. Magnetic stress-energy tensor

Having neglected electric forces, the stress-energy tensor
Tb
μν of Maxwell field can be rewritten as one for pure

magnetic field orthogonal to the 4-velocity vector uμ of the
frame in which the magnetic vector bα is defined as a linear
form 1

2
ϵαβμνuβFμν (up to a sign) of the Faraday tensor Fμν.

The Tb
μν must be symmetric, traceless and homogeneous of

degree 2 in bμ. Additionally, the plane spanned by null
directions uμ

ffiffiffiffiffiffiffiffiffiffi
bαbα

p � cbμ should be an invariant plane of
this tensor, with any vector from this plane being an
eigenvector to the eigenvalue − 1

8π bαb
α, the latter identified

as the energy density of the field bμ. Tb
μν has to be found

among linear combinations of symmetric tensors gμν, uμuν,
bμbν and bμuν þ uμbν (with only uμ and bμ at hand, there is

no more symmetric tensors—including also those involv-
ing explicitly the remaining tensor ϵαβμν—that would be
independent of the previous tensors). The conditions
determine the coefficients of this combination uniquely.
One obtains as a solution

Tb
μν ¼ ρb

�
uμuν
c2

�
þ pb

�
uμuν
c2

þ gμν

�
− 2τb

bμbν
b2

;

b2 ¼ bαbα; bαuα ¼ 0; ρb ¼ pb ¼ τb ¼
b2

8π
:

The above reasoning led us to a covariant form of magnetic
stress-energy tensor equivalent to that known from the
relativistic magnetohydrodynamical theory [25].
Furthermore, the field bμ may induce material magnetic

moments. Depending on the properties of matter, the
induced magnetic moment mμ per volume can be related
to bμ in a nontrivial fashion. The simplest model of
magnetization assumes local isotropy of the material, that
is, mμ ¼ χbμ with χ being a scalar. Similar as before, the
contribution of the magnetization to the stress-energy
tensor must be a linear combination Tχ

μν of independent
symmetric tensors. Since mμ and bμ are collinear in the
present case, again there are only 4 such tensors: gμν, uμuν,
bμbν, and uμbν þ uνbμ. The coefficients of this combina-
tion are found by the requirement that Tχ

μνuν ¼ 0 (no
associated additional material currents) and Tχ

μνbν ¼ 0
(the spatial stresses are transverse to bμ). By solving the
conditions, it follows that the simple magnetization field
contributes to the interaction part in the stress-energy tensor
through

1

8πχ
Tχ
μν ∝ pb

�
uμuν
c2

þ gμν

�
− τb

bμbν
b2

times a constant number.
The tensors Tb and Tχ are in some sense complementary

one to another: the vectors bμ and uμ span the eigenspace of
Tb and the kernel of Tχ. Of these two only Tb contributes to
the magnetic energy density ρb. Either Tb and Tχ introduce
locally anisotropic stresses: they consist of the isotropic
pressure (equal to or proportional to ρb) and a longitudinal
tension (reversing or canceling the effect of pressure in
the longitudinal direction). In both cases the stresses are
proportional to the magnetic field energy density. In effect,
Tb contributes a plane-isotropic transversal pressure and
equal in magnitude longitudinal tension, while Tχ contrib-
utes only a plane-isotropic transversal tension. It is clear
that when mμ is assumed proportional to bμ and depending
on the sign of χ, the only role of magnetization is to
increase or reduce the effect of magnetic pressure in the
transversal directions, while keeping it unaffected in the
longitudinal direction.
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B. Total gravitating stress-energy tensor

The matter stress-energy tensor will be taken to be that of
a fully isotropic perfect fluid

Tm
μν ¼ ρmuμuν þ pm

�
uμuν
c2

þ gμν

�
:

From the structure of the magnetic stress-energy tensors
it is clear that the gravitational effect of magnetic field can
be described in terms of the stress-tensor of an isotropic
perfect fluid augmented with additional anisotropic term
bμbν that introduces substantial tension in the direction of
the local field bμ. The total stress-energy tensor reads

Tμν ¼ ρuμuν þp

�
uμuν
c2

þ gμν

�
− τ

bμbν
b2

;

ρ¼ ρm þ ρb=c2; p¼ pm þ ð1þ ηÞpb; τ¼ τbð2þ ηÞ;

with pb, τb, ρb defined as earlier. Here, the parameter η can
be interpreted as a fraction of the magnetization pressure to
the magnetic pressure (η is equal to 8πχ times a constant
number, depending on notational conventions). When the
parameter χ is small, the magnetization effect can be
neglected by setting η ¼ 0.

C. Approximation of spherical symmetry

The isotropic, ideal fluid part of the electromagnetic
contribution to the above Tμν through ρ and p, is consistent
with the spherical symmetry. In contrast, the last, aniso-
tropic term is inconsistent with this symmetry, unless bμ is
purely radial. One cannot simply discard the part of the
anisotropic term violating this symmetry, because its
magnitude is comparable with that of the electromagnetic
pressure. The Einstein tensor with spherically symmetric
metric has off-diagonal components all vanishing, so the
corresponding components of the electromagnetic stress-
tensor must also be vanishing.
For consistency with the spherical symmetry, one can

perform various sorts of averaging of Tμν. Here, two most
natural are given. The first is the spherical averaging at a
point (ϑ, ϕ) over all directions of local magnetic fields,
assuming these directions are equally probable in a volume
element comprising some vicinity of that point. The
averaging is to be made by performing integration over
spherical angles λ and ψ in a local frame spanned at a given
point by unit vectors êr, êϑ, êϕ, in which bμ has been

decomposed into components bi ¼ bμbeiμ so that b⃗ðψ ; λÞ ¼ffiffiffiffiffiffiffiffiffiffi
bαbα

p ½cosψ êr þ sinψðêϑ cos λþ êϕ sin λÞ� in that frame.
In this case, one obtains an effective stress-energy tensor of
isotropic perfect fluid with the equation of state

pr ¼ pϑ ¼ pϕ ¼ ð1þ 2ηÞρb=3 ð1Þ

(for η ¼ 0 one recovers the equation of state of ultra-
relativistic gas). The idea of isotropic perfect fluid seems to
be a standard approximation in the context of magnetized
spherical compact stars, including models with modified
gravitation Lagrangians [26]. It was already considered in
the literature by Adam in 1986 [27] assuming effective
pressure ð1=3Þðpk þ 2p⊥Þ ¼ ð1=3Þρb in the context of
magnetized white dwarfs, with ρb dependent only of the
radius. Recently, this idea is used in various contexts and
with various assumptions about the magnetic pressure, e.g.,
equal to ρb (in the context of neutron stars) [26], ð1=3Þρb
(white dwarfs) [11] and ð−Þρb (strange magnetars) [13].
The magnetic pressure (or tension, depending on the sign)
is assumed to be a fraction of the material pressure—
similarly as it is assumed for the radiation pressure in
modeling the main-sequence ordinary stars [28]—or a
function of matter density. It is customary to parametrize
the magnetic energy density inside a compact star with the
particle concentration or the material energy density; this
allows to impose easily the constraints on the magnetic field
magnitude in the core and at the boundary surface [29].
In effect this all leads to a hydrostatic equilibrium equation
as if for an ordinary star under spherical symmetry. Because
the above averaging assumed local isotropy, the anisotropy
of magnetic stresses has been erased out. The anisotropy of
stresses characteristic of magnetic fields could be, never-
theless, recovered by hand with the help of an additional
function χðρbÞ in such a way that the trace of the stresses is
not changed, hence

pr ¼ ð1þ 2ηÞρp=3 − 2χðρpÞ;
pϑ ¼ pϕ ¼ ð1þ 2ηÞρp=3þ χðρbÞ:

The second kind of local averaging, respecting the global
spherical symmetry of the gravitating system as a whole, is
the weighted axial averaging at a point with respect to the
local radial direction êr. Now, various ψ can have various
weights, and the appropriate averaging integral is

ðFÞmean ¼
1

N

Z
2π

0

dλ
Z

π

0

Fðψ ; λÞwðψÞ sinψdψ ;

N ¼ 2π

Z
π

0

dψwðψÞ sinψ ; wðψÞ > 0;

where wðψÞ is a weighting function (the isotropic case is
recovered forwðψÞ ¼ 1). Denoting α ¼ Amean for Aðψ ; λÞ ¼
cos2 ψ (then 0 < α < 1), the general result is again an
effective diagonal magnetic stress tensor with

pr ¼ ðð1 − 2αÞ þ ηð1 − αÞÞρb;
pϑ ¼ pϕ ¼ ðαþ ηð1þ αÞ=2Þρb;

with the reservation that ρb and α, η have to be functions of
the radial variable only:
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ρb ¼ ρbðrÞ; α ¼ αðrÞ; η ¼ ηðrÞ:

For α closer to 0 the directions of magnetic field lines are
more transversal, for α closer to 1 they are more aligned in
the radial direction, and for α ¼ 1=3 they are isotropic (in all
cases local orientations along the field directions are still
irrelevant). In the limit α → 1 the magnetic stress tensor is
described by the plane-isotropic transverse pressure and the
radial tension

pr ¼ −ρb; pϑ ¼ pϕ ¼ ð1þ ηÞρb: ð2Þ

It should be noticed that the effective stress tensor defined by
Eq. (2) is formally the same as for a purely radial hedgehog
magnetic field with a unique orientation and with a given
distribution of (effective) magnetic charge uniquely deter-
mined by the given magnetic energy density. The effective
stress tensor Eq. (2) (as well as that for any α) is a particular
case of a spherically-symmetric anisotropic fluid [30] for
which the radial and tangential pressure are independent.
It should be also stressed that the averaging assumption is
not true when there are globally ordered large-scale stellar
magnetic fields. This means that the above approach can be
considered only as a coarse-grained approximation, none-
theless, correctly accounting for the magnetic energy amount
on any separate spherical shell.

D. Effective magnetic charges

The above construction in Sec. II C shows that the non-
spherical contribution due to the directional character of
the originally sourceless magnetic field, when negligible
in a given context, can be eliminated on the level of the
magnetic stress-energy tensor by a suitable averaging
consistent with the assumed symmetry or by other means,
and one can use an approximate effective stress-energy
tensor instead, which is simpler to tackle with. Once the
effective tensor is defined and plugged into the spherically
symmetric Einstein equations as a source of the gravita-
tional field, it becomes quite irrelevant the source of the
original complicated magnetic field that has been used to
produce the effective tensor.
The problem arises when one decides, nevertheless, to

interpret the effective stress-energy tensor back in terms of
a corresponding substitute magnetic field, consistently with
the assumed symmetry and without introducing effective
magnetic charge density at the same time. Surely, this will
not go in the approximation defined by Eq. (2) if one sets

bμeffðrÞ ¼ �ðêrÞμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρbðrÞ

p
;

giving rise to the effective magnetic charge density

ρeffðrÞ ¼
1

4πr2
ffiffiffiffiffiffiffiffiffiffiffiffi
grrðrÞ

p �
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρbðrÞ

p �
;r
:

After Adam [27], one can define a substitute field magni-
tude by averaging over spherical shells the magnitude
squared of the original field (presumably, with arbitrarily
curved or twisted lines):

b̃2ðrÞ ¼
Z

dΩb2ðr;ΩÞ; ρb ≡ b̃2ðrÞ=8π; pb ¼ ρb=3:

Such identified energy density and (isotropic) pressure are
then to be added to the density and pressure of matter
regarded as a locally isotropic perfect fluid. This agrees
with the approximation defined in Eq. (1). Similarly, in all
other sorts of spherical symmetry approximations, the
information about electromagnetic field is reduced to a
single scalar—the mean magnetic field magnitude—that
defines both the energy density and pressures on the
diagonal of the effective magnetic stress-energy tensor.
Upon averaging as presented in Sec. II C, the directional

information about the field has been lost. One can construct
a number of substitute fields that account for the same
b̃2ðrÞ, however with some effective magnetic charge
density, because spherical symmetry is incompatible with
Maxwell fields of magnetic type (except for Dirac’s point
monopole). The description of magnetized stars in the
approximation of spherical symmetry requires substantial
modification of the original stress tensor and these changes
can be described by effective charges. As will be illustrated
below, the scale of effective charges is determined by the
scale of magnetic energy density (and thus also by the scale
of magnetic stresses), which can be comparable with the
energy density of matter.
To give an example, take an ordinary dipole in

Minkowski spacetime as the original sourceless and non-
spherically symmetric field with off-diagonal stresses.

Then b2ðr; ϑÞ ¼ μ2

r6
ð1þ 3 cos2 ϑÞ, hence b̃2ðrÞ ¼ 2μ2=r6,

which gives the mean energy density ρ̃b ¼ μ2=4πr6.
Another sourceless field with the same mean energy
density is the longitudinal field

ffiffiffi
2

p
μêϕ=r3. Even though

the field alone is not spherically symmetric, the energy
density already is (the Adam integration needs not to be
carried out in this case), there is no off-diagonal stresses
unlike before, however the diagonal terms still violate
spherical symmetry: pr ¼ pϑ ¼ −pϕ ¼ ρ̃b.
The above mean energy density could be interpreted,

consistently with the spherical symmetry, as that of a sub-
stitute purely radial field b⃗ ¼ b̃ðrÞêr with the (nonintegr-

able at r ¼ 0) effective charge density ρeff ¼ −
ffiffi
2

p
4π μ=r

4, and
the corresponding transversal pressures and radial tension:
pϑ ¼ pϕ ¼ −pr ¼ ρ̃b. Since total flux of b⃗ through the

sphere at infinity is 0, a regularized field b⃗ϵ ¼ rμ
ffiffi
2

p
ðr2þϵ2Þ2 e⃗r

with ρϵeff ¼ μ
ffiffi
2

p ð3ϵ2−r2Þ
4πðr2þϵ2Þ3 integrable to 0 can be taken instead,

not to clash with the Gauss integral theorem for arbitrary

COMPACT STARS WITH ULTRASTRONG MAGNETIC FIELDS … PHYS. REV. D 108, 063034 (2023)

063034-5



small ϵ. Then the charge Qm ¼ 3
ffiffi
6

p
μ

16ϵ enclosed by the sphere
of radius

ffiffiffi
3

p
ϵ is canceled by the opposite charge −Qm

exterior to that sphere, both infinite in the limit ϵ → 0 (a
similar screening phenomenon of singular compensating
sources can be observed in other contexts—see, e,g., [31]).
These two example fields above are extremely non-

spherical, however they were used to illustrate the concept
of effective charges that appear as a result of some
kind of averaging under the assumed symmetry. What

is important, it that the amount of magnetic energy Eϵ ¼
μ2

3r3 ð1− 12
5
ϵ2=r2 þ…Þ exterior to any sphere of radius r ≫ ϵ

and associated with the original field is determined by the

amount of effective charge Qϵ ¼ −
ffiffi
2

p
μ

r ð1 − 2ϵ2=r2 þ…Þ
associated with the substitute hedgehog field and generated
in the same region: Q2

ϵ ≈ 6rEϵ, with the energy per
arbitrary spherical shell the same as for the original field
without charges. In other words, the effective charge
distribution is right that to produce the required amount
of magnetic energy in spherical shells through the origi-
nal field.

III. APPROXIMATION OF EXACT SPHERICAL
SYMMETRY

As have been already noticed in Sec. II C, the axial
averaging method led to the limiting diagonal stress tensor
defined by Eq. (2) which is in effect the same as due to
hedgehog magnetic field under exact spherical symmetry.
Exact spherical symmetry means that the Lie derivative of
the electromagnetic field vanishes with respect to any of the
three Killing vectors of the spherical symmetry. One can
show for a general spherically symmetric spacetime (with r
as the areal radius variable), that such a field must be of the
form Ftr ¼ −Frt ¼ uðrÞ, Fϑϕ ¼ −Fϕϑ ¼ vðrÞ sin ϑ with
other components of the Faraday tensor vanishing (sim-
ilarly, wt ¼ uðrÞ, wr ¼ vðrÞ and wϑ ¼ wϕ ¼ 0 for vectors).
This means coexistence of purely radial magnetic and
electric fields, varying only with r.
Unlike for electric fields, outside a star the energy

density of large-scale ordered magnetic fields can still be
large, however it must be due to sourceless magnetic fields
with energy density falling-off like r−6 (in agreement with
vanishing integrated charge), that is, faster than the energy
density of magnetic monopole, which falls off like r−4.
However, this concerns only the asymptotic behavior at a
very large distance from the star. In the close vicinity of the
star the magnetic energy density can be comparable with
that below the stellar surface.
On the side of the gravitational equilibrium equation

under the approximation of spherical symmetry, the mag-
netic field is described through a predefined mean value
energy density b̃2ðrÞ=8π accounting for that observed
inside real stars, and as far as one is interested only in

the interior mean magnetic energy density accounting for
that inside real stars or in its close vicinity, this approxi-
mation seems acceptable. However, this difference in the
electromagnetic energy behavior at very large distances
may lead to some discrepancy between the total esti-
mated mass.

A. Magnetically charged exterior
and interior solution

The Reissner-Nordström black hole metric

ds2 ¼ −c2fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2;

fðrÞ≡ 1 −
2Gm
rc2

þ Gq2e
c4r2

describes the exterior of a spherically symmetric electri-
cally charged and massive body. In addition to the mass m
and electric charge qe, in Einstein-Maxwell theory one can
also consider a point magnetic charge qm, because it is
located at the gravitational singularity. This amounts to
replacing the previous f with a new one

fðrÞ≡ 1 −
2Gm
rc2

þ Gðq2e þ q2mÞ
c4r2

:

The associated electric and magnetic fields are purely
radial, with physical values Er ≡ Fμνe

μ
t eνr ¼ qe=r2 and

Br ≡ Fμνe
μ
ϑe

μ
ϕ ¼ qm=r2, as determined with respect to

the orthonormal tetrad eμi of the local static observer.
It is interesting that the electric and magnetic part

contribution to the gravitational field are indistinguishable
from the standpoint of an electromagnetically neutral
particle moving in the gravitational field. In this context
it is unimportant whether the electromagnetic contribution
to the gravitational stellar mass is due to electric or
magnetic charge or a mixture of them.
Magnetic charges as such, even if effective, could not be

considered as stellar constituents consistently with Maxwell
equations, except for a single point magnetic charge at the
center of spherical symmetry (e.g., magnetically charged
black hole) or in form of a split monopole [32], (however
with additional effective currents of which gravitational
influence might also be important). Given that magnetic
monopoles have not yet been observed, the magnetic charge
density, if introduced, should be regarded as an effective
substitute used to model the gravitational influence of the
intense magnetic field on the stellar structure. With this
reservation, considering magnetically charged sources is
possible, however, in an extended Maxwell theory with
two gauge potentials [33], as will be discussed below.
The magnetic charge concept is unavoidable when

considering an electrically charged particle consistently
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with the laws of quantum mechanics and ordinary Maxwell
theory. A point-like elementary magnetic charge with
unique and quantized magnitude (and unspecified mass)
is possible at the expense of introducing an unobservable
singularity string emanating from the pole position point,
as predicted by Dirac in 1931 [14,34,35]. The quantization
of magnetic charge can be viewed as the condition for
the singularity string in the vector potential to be unob-
servable. Magnetic poles can be introduced also in terms of
field-theoretical concepts. They appear in non-Abelian
gauge field theories via a mechanism similar to that of a
monopole discovered independently by ’t Hooft [15] and
Polyakov [24]. They are spherically symmetric massive
spatially extended solitonic solutions characterized by a
topological charge that in the low energy regime of unified
theories of interactions can be reinterpreted in terms of
magnetic charge of a U(1) gauge potential, equivalent
to one of a genuine Maxwell theory. The resulting
magnetic field is asymptotically that of Dirac’s monopole.
Currently, no magnetic monopoles have been found despite
many attempts to detect them. The discussion on the
theoretical and experimental status of magnetic monopoles
can be found in [18,19]. A comprehensive review on
various aspects of the theory of magnetic monopoles is
presented in [36]. Recent advances in the physics of
magnetic monopoles are discussed in [20]. The issue of
(non-)existence of magnetic monopoles from the theoreti-
cal standpoint is briefly addressed and relevant original
literature cited in [37].
An alternative formulation of electrodynamics due to the

Cabibbo and Ferrari idea [33], in which both the electric
and magnetic field may be expressed in terms of a pair of
gauge potentials [38], allows to regard electric and mag-
netic charges on a similar footing as gauge charges. This
theory can be expressed in terms of two antisymmetric
fields Fμν and Gμν, with electric vector Fi0 − �Gi0 and
magnetic pseudo- vector Gi0 þ �Fi0 (here, the star denotes
the Hodge dual). The stress-energy tensor involves two
terms for the two tensor fields separately, which are of the
same form as the stress-energy tensor in Maxwell theory,
and additional cross-terms ensuring that the two kind of
charges may interact with each other [38]. In this theory,
one can consider a situation in which electric charges are
absent, hence one is left with a theory similar to ordinary
Maxwell theory with only magnetically charged sources.
This is what is assumed in what follows.
The interior metric of a spherically symmetric distribu-

tion of magnetically charged static star must agree with
the magnetized Reissner-Nordstrom exterior solution at the
radius of vanishing pressure of stellar material. The
matching condition allows to identify the mass of the star,
including the electromagnetic contribution to the mass.
This correspondence suggest to parametrize the metric
components in terms of a formal (for the time being) mass
function MðrÞ such that, for r < R:

gtt ¼ −c2 expð2ΦðrÞÞ; grr ¼ 1 −
2GMðrÞ

rc2
þGQ2

mðrÞ
c4r2

;

ð3Þ

whereQmðrÞ is the total magnetic charge enclosed within a
sphere of areal radius r, and ΦðrÞ determines the redshift
formula. For r > R the metric is that of Reissner-
Nordström with constant parameters M ¼ MðRÞ and
Qm ¼ QmðRÞ. Given an equation of state relating proper
mass density ρðrÞ and partial pressure pðrÞ of a perfect
fluid and their functional relation to the magnetic field, the
structure functions MðrÞ and QðrÞ define the equilibrium
solution. The physical magnetic field strength bðrÞ is
related to the effective charge QmðrÞ through

bðrÞ ¼ QmðrÞ
r2

:

This simple relation between bðrÞ and QmðrÞ was the
motivation to express here the equations in terms of b
instead of the Grt component of the electromagnetic tensor
unsuitable to correctly measure the physical field strength
in the strong field regime (GrtðrÞ ¼ bðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p
).

The matching conditions with the external magnetically
charged Reissner-Nordström metric in the adopted spheri-
cal coordinates require the continuity of gtt and grr at the
boundary point r ¼ R defined by the condition of vanish-
ing pressure p ¼ 0. This allows to identify the total massM
and the total effective magnetic charge Qm ¼ R2bR corre-
sponding to the value of magnetic field bR measured at
the boundary. The structure function MðrÞ, although over-
lapping with the mass at the matching point with the
exterior Reissner-Nordström metric, is not necessarily the
true mass function in the star interior.

B. The issue of mass definition in the presence
of gravitationally strong electromagnetic field

The identification of the true mass function is difficult in
general relativity. A possible choice is the notion of mass
provided by Komar integral [39] when the spacetime
possesses a timelike Killing vector. This integral can be
regarded as a generalization of the Gauss theorem. In
the Newtonian gravitation, the theorem is used to relate the
mass bounded by a closed surface, with the flux of the
gravitational field through that surface. The Komar integral
can be represented as an integral of a surface two-form
involving the timelike Killing vector ξ:

−
c

16πG
∯∂V

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∇αξβϵαβμνdxμ ∧ dxν ð4Þ

One may prefer this notation as more convenient in
the context of differential forms calculus than another
notation used for the same integral in [40]. The integration
in Eq. (4) is taken over a closed surface ∂V bounding a
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three-dimensional spatial region V. Now, by applying the
Stokes theorem and making use of Einstein equations, the
Komar integral can be recast as a volume integral over
the interior of region V:

2

c3

Z Z Z
V

�
Tμν −

1

2
Tgμν

�
nμξνdV;

where dV is the proper volume element of the constant-time
surface and nμ is a unit vector normal to that surface. The
result of applying the Komar mass formula to the metric
tensor Eq. (3) over a region V bounded by a sphere of areal
radius r allows us to define a mass function:

MKðrÞ ¼
Z

r

0

4πr2eΦðr̃Þdr̃
�
ρðr̃Þ þ 3pðr̃Þ

c2 þ b2ðr̃Þ
4πc2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMðr̃Þ

c2 r̃ þ G
c4 r̃

2b2ðr̃Þ
q ;

which gives

MKðrÞ ¼
1

c2
R3b2ðRÞ

�
1 −

R
r

�
þMKðRÞ for r > R:

The above integral agrees with the Tolman energy—in the
absence of electromagnetic field one gets an expression
equivalent to one for the energy of a sphere of perfect fluid
as obtained by Tolman [41], which in the Newtonian limit
and when the pressure is low, consists of the proper energy
of the sphere’s material and of the potential gravitational
energy. The proportionality factor in the magnetic field
contribution can be made clear in terms of an energy
density u ¼ b2=8π, a radial tension pr ¼ −u and trans-
versal pressures pϑ ¼ pϕ ¼ u (as it results from the form
of the stress-energy tensor for a purely radial magnetic or
electric field shown later in Sec. III C), which sum up to
2u ¼ b2=4π, in analogy to the energy density and pressures
of a fluid which sum up to ρc2 þ 3p.
Let us see what this definition of massMK leads to in the

case of pure electric or magnetic field. In the limit of
extremely weak field, consider a uniformly charged ball of
radius a and total charge Q, which means that QðrÞ ¼
Q · ðr=aÞ3 for 0 < r < a and QðrÞ ¼ Q for r > 0. Then

MKðrÞ ¼ 1
5
Q2

ac2 ðr=aÞ5 for 0 < r < a, MKðrÞ ¼ Q2

ac2 ð65 − a
rÞ

for r > a. The total Komar mass is MKð∞Þ ¼ 2 3
5
Q2

ac2, that
is, twice the textbook value obtained from the integrated
electromagnetic energy density. This means that the gravi-
tational mass is twice greater than the electromagnetic
mass. This result is striking, however it can be understood
with a simple example. Consider a uniform ultrarelativistic
gas or the photon gas for which p ¼ 1

3
ρc2, enclosed inside

the same ball of radius a. Then ρþ 3p=c2 ¼ 2ρ inside the
ball and 0 outside the ball. In Minkowski spacetime the
integration over whole space gives MK ¼ 2ρV, where V is

the ball volume. This is twice the total integrated energy
density of that gas.
Another definition of mass of a star with strong electro-

magnetic field comes from studying the gravitational
effect of the star on an electromagnetically neutral test
particle in orbit around the star. In the limit of Newtonian
mechanics of the Reissner–Nordström metric, at a large
distance, the particle has the gravitational potential energy

UðrÞ ¼ − GM
r þ GQ2

m
2c2r2, which means that a noncircular

bound orbit is not an ellipse but a rosette. The effective
gravitational stellar mass, as determined in the Newtonian
regime for a circular orbit of radius a, would be

Ma ¼ M − Q2
m

2c2a. Hence, the mass ascertained at the infinity
in the Newtonian weak field limit overlaps with the stellar
mass M∞ ¼ M ≡MðRÞ the same as following from the
matching condition of the interior and exterior metric.
As one can infer, the gravitational equilibrium equations

(as given later in Sec. III C) resulting from Einstein
equations with the metric parametrization Eq. (3) adopted
here to conform with the external Reissner–Nordström
metric, lead for r > R to the mass function MðrÞ ¼ M
constant outside the star (the effective charge does not
accumulate exterior to the star), where

M ¼ 1

2c2
R3b2ðRÞ þ

Z
R

0

4πr2dr

�
ρðrÞ þ 1

c2
b2ðrÞ
8π

�
: ð5Þ

The integral in Eq. (5) includes the contribution from the
matter energy density and from the energy density of the
electromagnetic field inside the star (there is no explicit
contribution from pressures and tensions in contrast to
Tolman mass). The free term outside the integration sign in
Eq. (5) coincides with the electromagnetic energy of the
monopole field integrated outside the star out to infinity.
The contribution of the free term to the total mass is of
the order

1

2c2
R3b2ðRÞ ≈

�
b

1018 Gs

�
2
�

R
10 km

�
3

· 0.280M⊙:

It is important, that the definition of total mass Eq. (5),
when applied to the example of uniform charged ball
discussed earlier, leads in the weak field limit to MðRÞ ¼
3
5
Q2

m
c2a, which agrees with the classical result in electrody-

namics for the total electromagnetic energy (the Komar-
Tolman mass was twice greater). This coincidence can be
used in favor of the definition of the star total mass, as
defined in Eq. (5), rather than in favor of the more natural
from another perspective Komar-Tolman mass.
The above discussion can be summarized as follows:

the active gravitational mass of a star as ascertained
by electromagnetically neutral distant test body in orbit
around the star, consists of the active gravitational mass of
the material forming the star and of the gravitational active
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mass of the whole electromagnetic field associated with
that star (including the field in the star exterior).
The electromagnetic field density is nonzero outside the

star, hence the amount of electromagnetic mass enclosed
within concentric spheres should grow with the radius
also in the star exterior. In the limit of infinite radius
one obtains a net contribution to the whole gravitating
mass as detectable based on the motions of very remote
electromagnetically neutral objects. However, what is
observed contrary to intuition, the mass function no longer
increases outside the star surface, and equals the mass
determined by the matching condition at the star surface,
already including the whole electromagnetic energy present
outside the star.
From the above discussion it also follows, that this is

MðRÞ as defined in Eq. (5) which should be identified as
the total stellar mass and therefore it should appear on the
M-R diagram. Furthermore, MðrÞ is a formal metric
structure function for r < R with the dimension of mass
that only coincides with the stellar mass at r ¼ R, however
MðrÞmay not necessarily be a reliable mass function in the
stellar interior. Definition of mass function is notoriously
difficult in general relativity theory.

C. Equations of the gravitational equilibrium

As observed in [5] the magnetization of matter is
negligible even at the field strength of 1019 Gs—the
magnetic pressure is at least one order of magnitude higher
than the magnetization pressure. A similar conclusion was
arrived at in [10]. The magnetization pressure did not affect
the results obtained for white dwarfs exhibiting highly
super-Chandrasekhar masses in the presence of strong
magnetic fields [42], magnetization was neglected also
in [11]. Therefore, the magnetization tensor, which would
otherwise contribute to the matter tensor, will be neglected
also here by setting η ¼ 0. Similarly as in [12], it will be
assumed that realistic fields only minimally affect the
spherical shape of a compact star.
Assuming the limiting exact spherically-symmetric

model Eq. (2) with η ¼ 0, the physical components of
the total stress tensor (in the local orthonormalized basis)
are then simply:

Tt̂ t̂ ¼ c2ρþ b2

8π
; Tr̂ r̂ ¼ p −

b2

8π
;

T ϑ̂ ϑ̂ ¼ Tϕ̂ ϕ̂ ¼ pþ b2

8π

[the effect of magnetization in this case would be to
increase the transversal pressures by a fraction of the
electromagnetic density, cf. Eq. (2)]. The form of the above
stress tensor without off-diagonal terms and expressed by
electromagnetic density and electromagnetic pressure sca-
lars, does not differ from the form of stress-energy tensors
assumed in the context of magnetized compact stars in the

literature (e.g., like that with α parameter in Sec. II C). As in
the literature, one can assume arbitrary functional forms
relating the electromagnetic field energy density to the
density of matter (however, without paying attention to
the effective charges that are produced this way—see the
discussion in Sec. II D).
The profiles of magnetic field amplitude and matter

density in the star interior are not exactly known; nonuni-
form magnetic field, lead to stronger field estimates in the
core [10]. In what follows, the proper magnetic charge
density (as defined in the fluid rest frame) will be assumed
proportional to the proper energy density of matter (sim-
ilarly as once assumed for degenerate Fermi gas [43]),
which leads to:

Q0
mðrÞ ¼

4πr2ffiffiffiffiffiffi
grr

p KρðrÞ;

with K being the magnetic charge–to–mass ratio. As
discussed earlier in Sec. II D, the magnetic charge is
effective—it appears as the consequence of the exact
spherical symmetry assumption.
The proportionality of the charge density and the material

energy density seems quite reasonable an assumption as
can be seen in the context of models of electrically charged
stars [44]. As already noticed in Sec. I B, the charge-to-
mass ratio of the order of

ffiffiffiffi
G

p
required for a substantial

gravitational effect to occur, is negligible in comparison
with the charge-to-mass ratio of charged nucleons, or
hypothetical magnetic charges. In the case of electric
charges, a charge-to-mass ratio that low allowed to safely
assume that the equation of state of nuclear matter was not
much affected [44]. A continuous distribution of electric
charge was considered in the literature in the context of
compact star models, however together with a thin layer of
opposite charge making the star electrically neutral at large
radii [45]. Since magnetic fields are large-scale fields
present also outside compact stars, the screening layer of
compensating opposite magnetic charges in the spherical
model will be ignored.
Using the solar mass M⊙, the speed of light c and the

gravitational constant G as quantities providing three inde-
pendent mechanical units, here introduced are relativistic
units of length ru ≔

GM⊙
c2 ∼ 1.477 km, pressure or energy

density pu≔
M⊙c2

4πr3u
∼27.55GeV=fm3∼4.415×1037 erg=cm3,

and of the electric or magnetic charge qu ≔ M⊙
ffiffiffiffi
G

p
(with

qu=r2u ∼ 2.355 × 1019 Gs as the derived unit of magnetic
strength). In this units it is convenient to use dimensionless
counterparts of the following dimensional quantities: x ≔
r=ru as the radial variable (areal radius in spherical geom-
etry), cumulative mass function M ≔ MðrÞ=M⊙, cumula-
tive function of the substitute magnetic charge Q ≔
QmðrÞ=qu, local isotropic pressure P ≔ pðrÞ=pu, baryon
number density ν ≔ nBðrÞr3u, and the charge-to-mass ratio
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κ ≔ K=
ffiffiffiffi
G

p
. The equations of the gravitational equilibrium

of a magnetized star can now be put in a dimensionless form

M0 ¼
�
1þ κΓ

Q
x

�
x2x0R; Q0 ¼ κΓx2x0R;

N 0 ¼ Γx2x0ν

x0 ¼ −x2
�
Γ2ðRþ PÞ

�
Mþ Px3 −

Q2

x

�
− κΓQR

�−1
;

where the prime sign denotes differentiation with respect to
pressure P. The function Γ is the relativistic factor in the
volume element 4πΓr2dr in spherical coordinates with r as
the areal radius:

Γ ¼
�
1 −

2M
x

þQ2

x2

�−1=2
:

In the above equations there is a single free parameter κ
and four variables x, M, Q, N which will be regarded as
functions dependent of the independent pressure variable P.
It should be stressed, that the mass function M, in addition
to stellar material, includes the contribution from magnetic
field. The value ofM at the stellar boundary is precisely the
gravitational active mass felt by an asymptotic test body in
orbit around the star, as discussed in Sec. III B.
By specifying the equation of state RðPÞ, the numerical

value of the central pressure Pc and of the parameter K,
these equations are numerically integrated unless P ¼ 0,
then the radius R, mass MðRÞ and surface magnetic field
BðRÞ of the magnetized star are determined from

R ¼ ruxð0Þ; MðRÞ ¼ M⊙Mð0Þ; BðRÞ ¼ qu
r2u

Qð0Þ
x2ð0Þ

(the limit of a star without magnetic field is obtained
for κ ¼ 0). The singular point of the system of differential
equations at x ¼ 0 for P ¼ Pc should be avoided by
the numerical integrator. For this reason, one should
map the initial condition to a neighboring regular point
Pi ¼ ð1 − ϵÞPc with ϵ small enough, and only then
start the integration. In the leading order of approxi-
mation, the initial conditions mapped to Pi are: xi ¼ffiffiffi
ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Pc=ð3P2

c þ 4PcRc þ ð1− κ2ÞR2
cÞ

p
, μi ¼ ðRc=3Þx3i ,

Qi ¼ κμi, N i ¼ x3i νðPcÞ=3, Rc ≔ RðPcÞ. In fact, here
was used a higher order series expansion in the parameter ϵ
with its value chosen so as the series cutoff error be
negligible compared with the accuracy of the numerical
integrator (this was done here separately for a neutron and a
quark star, as then higher derivatives of the equation of state
RðPÞ appear). In contrast to the method of integration with
x as the independent variable (for which the stellar radius,
and so the integration region, is not a priori specified), with
the present method the integration region is specified by the
interval ðPc; 0Þ, however a singularity at the stellar surface

P ¼ 0 /if there is a boundary/ may appear, which one
should take additional care of, for equations of state for
which Rð0Þ ¼ 0 (for example, RðPÞ ¼ Pn with n > 0).

D. Formal resemblance to models
with radial electric field

Under exact spherical symmetry, the static model with
effective magnetic charges is formally identical with the
static model with electric charges. In this symmetry, the
gravitational effects associated with the presence of strong
electric fields can be expected also to occur in the presence
of strong magnetic fields.
Both models have their pros and cons. Intense, large-

scale interior electric fields due to the electric charge
separation or induced by the presence of large amounts
of net electric charges are rather not to be expected—matter
must be electrically neutral on the macroscopic scales,
much lower than the star radius. In contrast, large-scale
magnetic fields are present inside and outside compact
stars, however they are induced by stationary electric
currents or other magnetization effects (excluding magnetic
monopoles) of macroscopically electrically neutral matter.
In other words, both of the static spherical models with
electric and magnetic fields are excluded in the context of
compact stars, because matter must be magnetically and
electrically neutral.
However, this argument does not apply if one tries to

model the gravitational effect of strong electric and
magnetic field as such due to their energy density and
pressure, disregarding at the same time the effects respon-
sible for the generation mechanisms of such fields, which
cannot be described in static and spherically symmetric
space-time (eg. massive and rotating aligned magnetic
dipole with a net angular momentum and its associated
stationary circular source electric currents in a strong
gravitational field regime, must be described in an axisym-
metric stationary spacetime, cf. even for a much more
simple case of electrically charged magnetic dipole [46]).
The idea of relativistic electrically charged perfect fluid

can be traced back to Bekenstein [47]. In his work,
the analog of Oppenheimer-Volkoff equation [48] with
electrostatic fields appears in the context of the spherical
gravitational collapse of electrically charged matter. It is
not a priori clear from this equation whether it is the
Coulombic repulsion or the gravitational attraction due to
the corresponding electromagnetic stresses that prevails in
the strong field regime. The equilibrium equation was
solved assuming a power-law ansatz for the electric charge
distribution in the incompressible fluid [49]. It turned out
that solutions are possible with a radius lower than the
Buchdahl [50] limiting value of 9=8 of the Schwarzschild
radius (saturated by the incompressible neutral matter), in
this respect see also [51]. Charged (not necessarily perfect
fluid) systems can be also studied as such, which may lead
to new interesting interior exact solutions, e.g., [52,53].
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The idea of charged systems was also applied to study
compact stellar objects. However, Bekenstein [47] found
unnecessary considering such generalization for the study
of neutron star structure. The reason for this is twofold.
First, for the electric field to have a gravitational effect, its
energy density would have to approach the values of the
core pressures of 1034–1036 dyne cm−2. But the required
electric fields would have to exceed by a factor 105 the
critical field of 1016 volt cm−1 for pair creation, and there-
fore the electric field would destroy itself. Second, due to
its high conductivity, the core could not sustain large
electric fields which would cause a rapid transfer of the
charge to the surface.
In order to see how the presence of various amount of net

electric charge would affect the structure of a compact
system (without worrying about mechanisms that could
generate the required amount of charge) a completely
degenerate Fermi gas with a charge density proportional
to the matter density was investigated in the context of
neutron stars in [43]. It turned out, that the critical mass
characteristic of degenerate configurations can be substan-
tially altered (even doubled) in the presence of a net charge,
however, exceeding much the values admitted by known
at that time charge generation mechanism. As remarked
therein, such calculations should, nevertheless, be taken to
see to what degree the presence of various amount of net
charge affects the stellar structure.
Ultrastrong electric fields of 1018 volt cm−1, or even

much beyond this value, are expected in an extremely thin
dipolar layer region formed on the surfaces of strange quark
matter stars. The corresponding electromagnetic stresses
are comparable with the energy density of strange matter
itself, in the result of which the predicted masses and
radii of strange stars, as described by the MIT bag model
equation of state, are appreciably increased [45]. Assuming
that the electric charge density follows that of mass density
of polytropic matter with some charge-to-mass parameter,
it can be shown that any appreciable gravitational effect of
electric fields would be seen only with extremely large
electric fields of 1021 volt cm−1 and the corresponding
integrated charge of 1020 Coulomb [44,54]. A similar
conclusion could be reached by applying a simple dimen-
sional analysis analogous to that presented in Sec. I B:
comparing GQ2=ðc4r2Þ and 2GM=ðrc2Þ to unity gives the
electric field scale Q=r2 ∼ 3.53 × 1021 volt cm−1 and the
scale of charge Q ∼ 2M

ffiffiffiffi
G

p
∼ 3.43 × 1020 Coulomb at a

unit solar mass. The amount of charge is huge compared
with the electron escape effect of Qesc ¼ 100 Coulomb per
solar mass known for bound systems [55], that can be
interpreted as a separation charge (roughly, Qesc ¼
GM⊙mp=qe ∼ 154.2 Coulomb from the balance of the
electric and the gravitational force in the weak field limit),
however still reasonable—the charge-to-mass ratio is a tiny
fraction 1.8 × 10−18 of that for the proton.

IV. RESULTS

The assumed magnetic field corresponds to an effective
magnetic monopole charge with the proper volume density
proportional to the proper energy density of matter forming
the star. The equation of the gravitational equilibrium
involves an additional term due to the presence of a
large-scale magnetic field that modifies the mass-radius
diagram. Below are considered two simple matter forms
constituting the compact stars—strange quark matter
described by the equation of state ρc2 ¼ 4Bþ 3p within
the MIT bag model (and neglected strange quark mass),
and neutron matter described by the UV14þ TNI equation
of state [56]. This enables to see the difference in the
influence of the magnetic field on the stellar structure for
two families of stars. In the case of quark stars, we adopt
for comparison three values for the bag constant: 70, 80 and
90 MeV=fm3. The equations of state are compared in
figure Fig. 1. The magnetic field changes the position of
the maximum mass of a star in the diagram showing the
family of compact star models parametrized with the
central pressure on the radius–mass plane, as seen in
figures Figs. 2 and 3. It can be noticed, that the influence
of magnetic field is relatively stronger than the influence
due to variations in the model parameters (e.g., of the bag
constant in the case of quark star) or in the qualitative
properties introduced by the equation of state (MIT bag
model vs. UV14þ TNI neutron matter). This influence is
substantial for strong magnetic fields of 1017–1018 Gs for
which the gravitational effect of the electromagnetic stress-
energy is comparable with that of matter.
The maximum mass of a strange star with neglected

magnetic field for B ¼ 90 MeV=fm3 is 1.6M⊙ at the
corresponding radius 8.74 km. A decrease of bag constant

FIG. 1. The equation of state of neutron matter (UV14þ TNI)
[thick curve] compared with the MIT-bag model equation of
state with bag constant B ¼ 57 MeV · fm−3 and massless strange
quark [straight thin line]. The tangent dotted straight line corres-
ponds to B ∼ 90.3 MeV · fm−3. The pressure at the turning point
in the plot of NS matter corresponds to 1.443 ∼MeV · fm−3.
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to B ¼ 70 MeV=fm3 increases the maximum mass to
1.82M⊙ at the increased radius 9.91 km. With the surface
magnetic field of 5 × 1017 Gs, the maximum mass for B ¼
70 MeV=fm3 is 2.11M⊙ at the radius 10.3 km. With the
magnetic field increased to 1.22 × 1018 Gs the maximum
mass strongly increases further to 3.81M⊙ at the radius
12 km. For the neutron star with neglected magnetic field,
the maximum mass is 1.83M⊙ at the radius 9.31 km, which
are values similar to those for the quark star. With the
magnetic field of 5.5 × 1017 Gs the maximum mass
increases to 2.05M⊙ at the radius 9.59 km, and with still
stronger surface magnetic field of 1.14 × 1018 Gs the
maximum mass increases to 3.06M⊙ at the radius
10.81 km. This shows that in the presence of strong stellar
magnetic fields the masses of compact stars can reach values
exceeding those normally expected for compact stars.
The observed effect of magnetic fields on the mass of a

quark star, as depicted in Fig. 4, is comparable to that

obtained in [12]. For the core magnetic field of
∼4 × 1017 Gs, the maximum mass obtained in that work
is ∼2.2M⊙ at a bag constant 60 MeV · fm−3, while in our
model of magnetized quark star with a similar bag constant

FIG. 2. The characteristics of magnetized strange quark stars
in the studied model. Top panel: total mass vs radius diagram;
and bottom panel: the mass vs surface magnetic field diagram;
for SQM magnetized stars for different values of the K ratio
parameter (three bag constants are shown in gray shades: 70, 80,
and 90 MeV · fm−3, respectively, from dark gray to light gray).
The chord lines in both figures connect maximum mass positions
on the diagrams, with the lowest mass value corresponding to no
magnetic field and increasing with the K ratio parameter (which
changes starting from 0 out to 0.9

ffiffiffiffi
G

p
in steps of 0.1

ffiffiffiffi
G

p
).

FIG. 3. The characteristics of magnetized neutron stars in the
studied model. Top panel: total baryon number vs central pressure
diagram, Middle panel: total mass vs radius diagram and bottom
panel: the surface magnetic field vs total mass diagram. The
curves in the figures represent the same sequence of magnetized
neutron stars shown for several values of the K ratio parameter
(here, K ¼ s1=3

ffiffiffiffi
G

p
with s starting from 0 in steps of 0.025 out to

smax ¼ 0.95 corresponding to Kmax ∼ 0.983
ffiffiffiffi
G

p
). The chord lines

in the middle and bottom diagrams connect the maximum mass
positions on the curves, with the lowest mass value corresponding
to K ¼ 0 (no magnetic field) and increasing with K.
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57 MeV · fm−3 the maximummass ∼2.2M⊙ is obtained for
the surface magnetic field of about 4 × 1017 Gs. The
maximum masses obtained here in the range 4–8M⊙
corresponding to surface magnetic fields of the order of

1018 Gs are closer to the masses expected for black holes
than for compact objects. Comparably high maximum
masses were obtained in [44] for compact stars described
by the polytropic equation of state in the presence of a
strong electric field. From the diagrams of total mass
against central pressure presented there, it follows that
the maximum mass at the charge-to-mass ratio of ∼0.87G
is about 4M⊙, while the maximum mass of a magnetized
neutron star obtained in the present model at the same
charge–to–mass ratio is about 4.5M⊙.
The gravitational effect of extremely strong magnetic

fields of 1017–1018 Gs is more pronounced for quark stars
as compared with neutron stars. An important feature that
distinguishes strange stars from neutron stars is that the
effects associated with the magnetic field disappear rapidly
as the mass and radius of the strange star decrease. The
situation is different for neutron stars—here the gravita-
tional effect of magnetic field is particularly visible for stars
with masses lower than the maximum mass. For example,
as seen in the top panel in figure Fig. 4, a neutron star of
mass 0.5M⊙ (at a radius of 11 km) in the absence of
magnetic field, would attain a mass of about 1M⊙ (at a
similar radius of 11 km) in the presence of magnetic field of
8 × 1016 Gs, and if the field were of the order of 1018 Gs
the mass would exceed 2M⊙.
It is interesting to see that magnetic fields, even as strong

as 1018 Gs, neither change qualitatively the mass-radius
profile nor the central pressure-mass profile for quark stars.
The only effect of the enhanced magnetic field is the
increase in mass and radius for the most massive quark
stars, as can be noticed in Fig. 2. This lack of qualitative
change will become clear later in Sec. V—it can be shown
that the characteristic of quark stars scaling of masses and
radii with the bag constant, still holds in the presence of
magnetic field in the considered model.
In Fig. 3 analogous results are shown for neutron stars.

Here, the situation is different—an increase in the magnetic
field leads to a qualitative change in the shapes of profiles.
At the highest magnetic field values, a second maximum
appears on the central pressure-mass diagram with a branch
of probably instable stellar configurations.
An interesting difference between quark and neutron

stars can be seen in Fig. 5, where the magnetic field profile
in a star is plotted as a function of the radial variable at a
fixed value of the K-ratio parameter. For all of quark stars
enumerated with the central pressure, below the critical
value at the given K (in the stability region), the magnetic
field strength profile increases with the radial variable
attaining the maximal value at the surface of the star. Using
the analogy to the uniformly charged sphere, one can say
that the degree of accumulation of the charge prevails the
degree of attenuation of the resulting field as the distance
from the center increases. This situation only changes for
central pressures above the critical value at a given K, in
which case one can expect that stars are instable against

FIG. 4. Comparison of results for quark stars and neutron stars.
Characteristics of strange quark stars and neutron stars for various
K-ratio parameters. Top panel: mass–radius diagrams; Middle
panel: central pressure–mass diagrams; Bottom panel: mass–
surface magnetic fields diagrams. In all panels, neutron stars are
represented with thin lines corresponding to the lines shown in
Fig. 3 (with Kmax ∼ 0.983

ffiffiffiffi
G

p
). Quark stars are represented in all

panels with thick black lines for a bag constant 57 MeV · fm−3

and with thick gray lines for a bag constant 87 MeV · fm−3 (in the
case of quark stars, the lines correspond to the K-ratio parameters
that changes from 1

ffiffiffiffi
G

p
down to 0 in steps of 0.025

ffiffiffiffi
G

p
).
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radial perturbations. Then the magnetic field strength
profile initially grows with the radial variable, attains its
maximum value somewhere inside the star, and then the
field strength decreases as one approaches the star surface.
A different behavior can be observed for neutron stars as

seen in the middle and bottom panels in Fig. 5. The region

with the magnetic field strength decreasing with the radial
variable (and thus with the mass function value), after
reaching its maximum somewhere inside the star, is already
observed for central pressures below the critical value for a
given K. This behavior can be also observed for neutron
stars with extremely high total masses (i.e., with the largest
magnetic fields) as seen in the bottom panel of Fig. 5.
However, in this case this behavior occurs also for central
pressures beyond a critical value for which one can expect
that stars are instable against radial perturbations.
Figure 6 shows the lines of surface magnetic field of

maximum mass stars parametrized with the K-ratio. For
quark stars the maximum mass grows with the surface
magnetic field. For neutron stars the surface magnetic field
of maximum mass stars cannot exceed the limiting value
of ∼1.37 × 1018 Gs. This result is interesting as it sets the
upper limit for magnetic fields for the maximum mass
neutron stars. This limit agrees as to the order of magnitude
with the expectation based on a simple virial argument [6].
The interesting feature of magnetized neutron stars is the

onset of new maxima on the pressure–mass diagram as seen
in the middle panel in figure Fig. 4 for stronger magnetic
fields. The classical criterion of stability of stars requires
that the mass of a stable star should grow with the central
pressure—the derivative of total mass with respect to the
central pressure should be positive. For small K there is
only one maximum at some limiting central pressure above
which the star is instable, like for ordinary star without
magnetic field. When K increases, a new maximum
emerges below the limiting pressure and with it a region

FIG. 5. Magnetic field profile lines in stellar interiors shown as
a function of local cumulative mass variable for various central
pressures of 10s dyne · cm−2 in steps of Δs ¼ 0.3 (the higher s
the higher magnetic field/more elevated line). Top panel: a
strange quark star with bag constant B ¼ 57 MeV · fm−3, K ¼
0.3

ffiffiffiffi
G

p
, starting with s ¼ 38.3 down to 33.5. Middle panel: a

neutron star forK ¼ 0.3
ffiffiffiffi
G

p
, starting with s ¼ 36.3 down to 32.4.

Bottom panel: a neutron star for K ¼ 0.98
ffiffiffiffi
G

p
, starting with

s ¼ 36.3 down to 31.5.

FIG. 6. Surface magnetic field vs total mass diagram for
maximum-mass compact stars. Each line is parametrized with
the K ratio parameter growing along every line in the direction
from the left to the right. The maximum-mass neutron star is
shown with the dot-dashed line (this is the crossing line in the
bottom panel of Fig. 3). On this line the maximum surface field of
1.367 × 1018 Gs is attained at the total mass 4.75M⊙. The other
three solid lines are the maximum-mass strange quark stars
corresponding to three bag constants 70, 80 and 90 MeV · fm−3,
shown in gray shades—from darker to lighter, respectively (these
are the three crossing lines of which parts are shown in the bottom
panel of Fig. 2).

BRATEK, JAŁOCHA, and KUTSCHERA PHYS. REV. D 108, 063034 (2023)

063034-14



of central pressures appears where the derivative is neg-
ative. This suggests that sufficiently strong magnetic fields
may render the star instable.

V. SCALING OF QUARK STAR STRUCTURE

Witten [57] found that the properties of a stable quark
star of maximum mass, as described within the simple
quark star model with neglected quark masses, scale with
the bag constant B. Namely, the maximummass scales with
B asMðBÞ ¼ MðB0Þ

ffiffiffiffiffiffiffiffiffiffiffi
B0=B

p
, at the same time the radius of

the star scales as RðBÞ ¼ RðB0Þ
ffiffiffiffiffiffiffiffiffiffiffi
B0=B

p
and the central

density as ρcðBÞ ¼ ρcðB0ÞðB=B0Þ, where MðB0Þ, RðB0Þ,
ρcðB0Þ are the values obtained from numerical integration
of the equations of stellar structure at some arbitrary
reference bag constant B0. The scaling relations hold to
a very good approximation also for maximum mass stars in
other models of strange quark stars [58].
It turns out, that similar scaling relations can be observed

for the present model with magnetic field. Remarkably, by
applying this scaling to the mass-radius diagrams shown in
the top panel of figure Fig. 2, it turns out that all curves
corresponding in this diagram to the same value of the
K-ratio parameter can be made to overlap (exactly to within
numerical inaccuracies) with any other curve with the same
K, in particular, the one corresponding to some reference
value B0 of the bag constant. Moreover, a similar scaling
can be observed for the diagram of surface magnetic field
versus radius, shown in the bottom panel of figure Fig. 2 or
for other such diagrams. This observation suggests that
there are K-dependent scaling relations which connect all
stars with the same K and various B, thus not only the
particular maximum mass stars.
To verify this expectation, one can investigate scaling

properties of the equations for the gravitational equilibrium
of magnetized stars as given in section Sec. III C. To this
end one has to assume R ¼ 3P þ 4β and ν ¼ ðβþ PÞ3=4
in these equations, respectively, for the energy density and
particle number density, as required by the form of the
quark matter considered. Next, one can assume a general
scaling transformation law for all quantities and functions
in these equations: starting with P ¼ P̃λ for the indepen-
dent variable, N ðPÞ ¼ λnÑ ðλ−1PÞ, xðPÞ ¼ λrx̃ðλ−1PÞ,
QðPÞ ¼ λqQ̃ðλ−1PÞ,MðPÞ ¼ λmM̃ðλ−1PÞ for the depen-
dent variables (supplemented with the resulting scaling
relations for the derivatives, e.g., x0ðPÞ ¼ λr−1x̃0ðP̃Þ, etc)
with exponents n, r, q, m being the unknown homogeneity
degrees, and finally β ¼ λbβ̃ for the bag constant (leaving κ
unaffected by this transformation). On substituting these
relations into the equilibrium equations and by requiring
that one should end up with the same form of equations to
be satisfied by the new quantities with the tilde sign, one is
left with several conditions to be satisfied by the exponents.
This way one is led to the following result: b ¼ 1,
n ¼ −3=4, r ¼ −1=2, q ¼ −1=2, m ¼ −1=2. Being the

symmetry of the equations of structure, this scaling is
deeply rooted in the model and is not only a mere symmetry
of some global characteristics of the considered star.
Coming back to the CGS units, denoting the tilded
quantities as the reference values with subscript 0 and
noticing that λ ¼ β=β̃ ¼ B=B0, this implies, in particular,
the scaling relations:

Pc ¼ Pc0
B
B0

; N ¼ N0

�
B0

B

�þ3=4
; R ¼ R0

�
B0

B

�
1=2

;

Q ¼ Q0

�
B0

B

�
1=2

; M ¼ M0

�
B0

B

�
1=2

;

respectively, for the central pressure Pc and the corre-
sponding total baryon number N, radius R, total effective
charge Q, and total mass M (note that except for Pc all the
quantities concern the star surface defined by the scaling-
invariant condition P ¼ 0). From this and the defining
relation HðrÞ ¼ QðrÞ=r2 it follows that surface magnetic
field H scales as

H ¼ H0

�
B
B0

�
1=2

;

which means that the magnetic pressure or energy density
scales the same way as the matter pressure, in agreement
with expectations.
With the above scaling symmetries at hand, it would

suffice to find characteristics of the star (for example, the
total baryon number) only for some reference bag constant
and various values of the parameter K. The characteristics
for all other B at the same K’s could be then easily found,
without the necessity of performing additional numerical
integration (the curves presented in the diagrams were
prepared for different B by independent integration, and
this scaling indeed applies).
In Figs. 7 and 8 the scaling property is illustrated on the

example of total baryon number and total mass of quark
stars considered as functions of the central pressure. For
the purpose of comparison of the results for various bag
constants, it is convenient to express the baryon number in
solar masses assuming some arbitrary mass (e.g., the proton
mass) as the reference mass per baryon (this is not the
genuine baryon mass that would be obtained by integrating
the proper energy density over the proper volume element).
For a given parameter K the baryon number curves are
different for different bag constants, as seen in the top
panel of figure Fig. 7. On rescaling the values of central
pressures Pc and the values of baryon numbers NB
according to the transformation rules Pc → ðB0=BÞPc

and NB → ðB=B0Þ3=4NB discussed above, the curves get
overlapped with the one corresponding to the reference bag
constant B0 ¼ 60 MeV · fm−3 at the same K, as seen in the
bottom panel of this figure.
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The behavior of the total mass M can be compared with
the behavior of baryon number NB by considering their
ratio as a function of the central pressure. The result is
shown in the top panel of figure Fig. 8 (with proton mass as
the reference mass). However, the mass in the nonrelativ-
istic limit should be equal to the baryon mass for almost
uniform density stars, in which case one should take the
energy per baryon mbðBÞ ¼ ð108π2Bℏ3c−5Þ1=4 as the
reference baryon mass, which, in addition, has the same
scaling property as the ratio M=NB. In effect, the dimen-
sionless function M=ðNBmBÞ is scaling-invariant and it is
equal to 1 in the limit of vanishing mass (thus also

independent of K in this limit and, consequently, indepen-
dent of the magnetic field in this limit). The rescaled
diagrams are shown in the bottom panel of Fig. 8 assuming
the reference bag constant B0 ¼ 60 MeV · fm−3 as before.
Now one can observe the real change inM=ðNBmBÞ due to
the increase in value of parameterK only, independent of B,
and indirectly, the influence of magnetic field. Judging
on this diagram, one can surmise that the dependence of
the solutions on the magnetization parameter K is more
complicated that a mere rescaling.

FIG. 7. Top panel: total baryon number for SQM magnetized
stars for different values of the K ratio parameter (which changes
starting from 0 out to 0.9

ffiffiffiffi
G

p
in steps of 0.1

ffiffiffiffi
G

p
) presented in gray

shades for three bag constants: 70, 80, and 90 MeV · fm−3

(respectively, from dark gray to light gray). For each bag constant
(gray shade), the curve with the lowest maximum baryon number
corresponds to K ¼ 0 (no magnetic field) and the maximum
increases with K. Note, that the baryon number has been
expressed in conventional solar masses by adopting proton mass
as a reference mass for a single baryon (this is not the genuine
baryon mass). Bottom panel: the total baryon number NB

rescaled to the reference bag constant B0 ¼ 60 MeV · fm−3

according to the rescaling P → ðB0=BÞP, NB → ðB=B0Þ3=4NB—
the curves with different bag constants (different shades in the top
panel) got exactly overlapped with each other.

FIG. 8. Top panel: the total baryon number compared with the
total mass (presented as a ratioM=NB) for SQMmagnetized stars
shown for different values of the K ratio parameter (which
changes starting from 0 out to 0.9

ffiffiffiffi
G

p
in steps of 0.1

ffiffiffiffi
G

p
) and

presented in gray shades for three bag constants: 70, 80, and
90 MeV · fm−3 (respectively, from dark gray to light gray). For
each bag constant (gray shade), the curve with the shallowest
global minimum corresponds to K ¼ 0 (no magnetic field) and
the minimum decreases with increasing K. Note, that in this ratio
the baryon number has been conventionally multiplied by the
proton mass as a reference mass so that the ratio becomes
dimensionless and comparable with unity. Bottom panel: a
diagram showing the ratio curves of the top panel rescaled
according to P → ðB0=BÞP (with the reference bag constant
B0 ¼ 60) and M=ðNBmpÞ → M=ðNB ·mbðBÞÞ (with mbðBÞ de-
fined in the text), so that the ratio becomes rescaling-invariant and
equal to 1 in the limit of small central pressures for all B and
K—the curves with different bag constants (different shades in
the top panel) got exactly overlapped with each other.
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VI. SUMMARIZING REMARKS
AND CONCLUSIONS

For the quark star the realistic large-scale magnetic
fields cannot be spherically symmetric. In this work some
systematizing remarks concerning the spherical symmetry
approximation in the description of compact stars with
magnetic field were given.
Magnetic stress-energy tensor, including also the sim-

plest magnetization model, can be formed uniquely by
algebraical requirements out of a magnetic vector defined
by the static observer (Sec. II A). Then a local averaging
respecting the global spherical symmetry leads to a general
form of the total stress-energy tensor expressed by the
magnetic field energy density and two radius-dependent
parameters η and α, one characterizing the induced mag-
netization and the other the proportions of the principal
magnetic stresses (Sec. II C) aligned with local radial and
transversal directions.
This averaging erases to a large extent the information

about the directional character of the original large-scale
and sourceless magnetic field. So it should come as no
surprise that this approximation is possible at the cost
of introducing effective magnetic charges (Sec. II D). The
density of these charges is right that to reproduce the
required magnetic energy density (this was illustrated with
a simple example). However, the effective charges should
not be regarded as real, because they are the result of the
adopted approximation.
The limiting model for α ¼ 1, which is exactly spheri-

cally symmetric (the symmetry concerns also the magnetic
field), is formally identical with a model of magnetically
charged spherical star. It may seem odd, at first glance, the
idea of considering such a model. However, as a limit, the
model is worth considering as another handy approxima-
tion within a class of considered models. Similar to any
model with 0 < α < 1 (including models considered in the
literature, e.g. α ¼ 1=3 [27]) it allows to introduce the
gravitational effect of strong magnetic fields with a
prescribed magnetic energy density into the description of
a nearly spherical compact star and study the resulting
changes. It is true that the effective magnetic charges appear
in this approach, however, the magnetic field in the limiting
case α ¼ 1 is not claimed here to be due to genuine magnetic
monopoles, even though one can admit that considering the
existence of magnetic monopoles is a legitimate question
that is taken seriously in theoretical physics.
In this work also the problem of mass definition in

the presence of magnetic fields was addressed as one of
importance in the context of magnetized compact stars
(Sec. III B). Two physically clear definitions of mass were
compared, one based on the Gauss concept—the integrated
flux of the gravitational field through a sphere at infinity—
and the other which can be inferred based on the motion
of electromagnetically neutral distant test bodies. In the
general-relativistic context, these are the Komar-Tolman

mass and the mass defined by a matching condition with
the exterior metric. Both concepts of mass lead to different
results in the presence of electromagnetic field, which can
be seen on simple examples (in particular, for a uniform
ball of massless electromagnetic charges the Komar mass
would be twice the second kind of mass).
The gravitational effect of ultra–strong magnetic fields of

1017–1018 Gs was studied in the framework (Sec. III C)
of exact spherical symmetry approximation (α → 1) for
two simple models of compact stars. Namely, the strange
quark star (described by the simplest equation of state in
the framework of MIT bag model) and a neutron star
(described by the UV14þ TNI equation of state). The
obtained results (Sec. IV) do not wander astray from what
is known for other models of nearly spherical compact stars
with strong electric or magnetic fields.
The gravitational effect of magnetic fields in the range

1012–1015 Gs is negligible for compact stars. For gravita-
tionally moderate fields of 1016–1017 Gs the masses and
radii of compact stars are changed at the level of a few
percent. For this effect to be noticeable the field should be
as large as 1017–1018 Gs. Magnetic fields that strong alter
the mass-radius relation to a degree comparable or greater
than that introduced by modifying the equations of state
(or their parameters, such as the bag constant) describing
the material of compact stars. For gravitationally moderate
fields it may become difficult to discriminate between
compact stars with different equations of state, even if there
are good observational data for the masses and sizes of
these objects.
Magnetic fields even sa strong as 1018 Gs do not

qualitatively affect the mass-radius and central pressure-
mass diagrams for strange quark stars (for stars with the
highest central pressures a substantial increase of the
mass and radius is observed with growing field strength).
For neutron stars, a qualitative change is observed for the
highest magnetic fields—a second maximum appears on
the central pressure-mass diagram with a region of prob-
ably instable stellar configurations. Remarkably, one can
observe (Fig. 6) that the surface magnetic field for
maximum mass neutron stars cannot exceed the limiting
upper value of 1.37 × 1018 Gs. This limit agrees as to the
order of magnitude with the expectation based on a simple
virial argument. One should expect that sufficiently strong
magnetic fields may render the stars instable. A question
that arises is to what extent the prediction of spherically
symmetric models is changed for more realistic large-scale
ordered magnetic fields that violate spherical symmetry.
In view of these results, it is found important to stress

that extremely strong magnetic fields elevate masses of
compact stars to values exceeding those normally expected
for such objects (Fig. 4) and, therefore, ascribed rather to
black holes or models with exotic equations of state. This
has observational implications—finding a compact object
with a mass of a few solar masses, with simultaneous strong
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evidence for the presence of the boundary surface, might
point to extremely strong magnetic field present in such an
object as another possibility worth of considering among
other hypotheses such as exotic constituents of the star.
However, it should be emphasized that this problem
requires further research, as the most extreme magnetic
fields affect the equation of state [59–62], softening the
neutron star matter, with the result that maximummasses in
the presence of ultra-strong magnetic fields could turn out

to be much lower. In addition, the matters get complicated
by the fact that the state functions of neutron and quark
stars may respond differently to the magnetic field.
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