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The difficulty in describing the equation of state (EOS) for nuclear matter at densities above the
saturation density (ρ0) has led to the emergence of a multitude of models based on different assumptions
and techniques. These equations of state, when used to describe a neutron star (NS), lead to differing
values of observables. An outstanding goal in astrophysics is to constrain the dense matter EOS by
exploiting astrophysical and gravitational wave measurements. Nuclear matter parameters appear as Taylor
coefficients in the expansion of the EOS around the saturation density of symmetric and asymmetric
nuclear matter and provide a physically motivated representation of the EOS. In this paper, we introduce a
deep learning-based methodology to predict key neutron stars observables such as the NS mass, NS radius,
and tidal deformability from a set of nuclear matter parameters. Using generated mock data, we confirm
that the neural network model is able to accurately capture the underlying physics of finite nuclei and
replicate intercorrelations between the symmetry energy slope, its curvature, and the tidal deformability
arising from a set of physical constraints. We also test our network with mock data generated by a different
class of physics model, which was not part of the training, to explore the limitations of model dependency
in the results. We also study the validity of our trained model using Bayesian inference and show that the
performance of our model is on par with physics-based models with the added benefit of much lower
computational cost.
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I. INTRODUCTION

Neutron stars (NSs) are some of the most fascinating
astrophysical objects in multimessenger astronomy. They
contain matter at extreme conditions far beyond the ones
accessible in a terrestrial laboratory. The core of a NS is
believed to contain matter at a few times nuclear saturation
density, ρ0 [1–4].1 While the structure of a NS can be
determined using the Tolman-Oppenheimer-Volkoff
(TOV) equations [5,6], this requires the knowledge of
the dense matter equation of state (EOS). Understanding
the internal structure of neutron stars in terms of funda-
mental interactions between its constituents is an open
problem in nuclear physics. To understand the physics of
dense matter, at low densities of ρ ∼ 1–2ρ0, we can use
ab initio approaches derived from chiral effective field
theory [7–11]. At large densities of ρ ≥ 40ρ0, perturbative
quantum chromodynamics (QCD) calculations converge

and provide reliable estimates [11–14]. However, in the
intermediate-density region around ρ ∼ 2–10ρ0 which is
relevant for most structural descriptions of neutron stars,
reliable calculations from first principles are currently
unavailable [11,15]. Quantum field theory calculations
based on lattice QCD are challenging at these densities
due to the sign problem that arises in Monte Carlo
simulations [16]. As a result, structural descriptions of
neutron stars rely on relativistic and nonrelativistic phe-
nomenological models for the EOS. The nuclear matter
parameters (NMPs), which form the basis of the con-
struction of these equations of state for neutron star
matter, are not directly accessible. While lower-order
NMPs can be empirically extracted through finite nuclei
nuclear physics experiments [17–20], in order to constrain
higher-order NMPs, we need to rely on astrophysical
observations [21–23].
Recent developments in multimessenger astronomy have

provided important information about high-density nuclear
matter physics relevant for NSs. Constraining the EOS is
a joint task between nuclear physics and astrophysics.
Measured astrophysical quantities such as NS observables
can uncover properties of dense nuclear matter. Narrowing
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the constraints on NS observables, therefore, has the
ability to constrain the behavior of matter under extreme
conditions. It is expected that precise and simultaneous
measurements of NS properties like mass, radius, moment
of inertia, and tidal deformability may help constrain the
EOS to a narrow range [24–27]. High-mass pulsars like
PSR J1614–2230 (M ¼ 1.908� 0.016M⊙) [28–30], PSR
J0348–0432 (M ¼ 2.01� 0.04M⊙) [31], PSR J0740þ
6620 (M ¼ 2.07� 0.07M⊙ [32], and very recently PSR
J1810þ 1714 (M ¼ 2.13� 0.04M⊙) [33] have already
placed tight constraints on the EOS. Gravitational wave
(GW) signals emitted from a NS merger event depend
on the behavior of the neutron star matter at high densities
[34,35]. Therefore, the values of tidal deformability
obtained from GW events such as GW170817 associated
with a binary NS merger, as well as the simultaneous
measurement of NS masses and radii from high-precision
x-ray space missions, such as Neutron Star Interior
Composition Explorer (NICER), may help further con-
strain the EOS. Some current observational evidences are
the simultaneous measurements of NS mass 1.34þ0.15

−0.16M⊙
and radius 12.71þ1.14

−1.19 km for the pulsar PSR J0030þ 0451

by NICER [36]. Other independent analyses show that the
radius is 13.02þ1.24

−1.06 km and the mass is 1.44þ0.15
−0.14M⊙ [37].

However, the recent measurement of the equatorial circum-
ferential radius of the pulsar PSR J0740þ 6620 with mass
M ¼ 2.072þ0.067

−0.066M⊙ and R ¼ 12.39þ1.30
−0.98 km [68% confi-

dence interval (CI)] [38] cannot further constrain the EOS
which already predicts a NS with maximum mass more
than 2M⊙ [39].
The EOS—to a good approximation—can be expressed

in terms of NMPs at saturation density. The NMPs usually
considered for constructing the EOS are the incompress-
ibility coefficient, the skewness parameter of the symmetric
nuclear matter, the symmetry energy coefficient, its slope,
and the curvature parameters characterizing the density
dependence of the symmetry energy. Recently, there
has been a comprehensive analysis of correlations of
tidal deformability and other NS properties with NMPs
[21,40,41]; however, these correlations are found to be
model dependent [41,42]. Reference [43] shows that the
correlations are sensitive to finite nuclei properties, which
are accessible to laboratories. Therefore, finite nuclei
properties are important quantities to consider in a model
while determining the correlations between NS properties
and NMPs. Of late, the equations of state obtained by
several metamodels have gained popularity owing to their
cost effectiveness in big simulations [13,24,44]. These
models are constrained by ab initio theoretical calculations
of nucleon-nucleon chiral potentials for low-density neu-
trons and nuclear matter [45,46] and perturbative QCD for
asymptotically high-density regimes [13]. In the intermedi-
ate-density region, the EOS is evolved in a thermodynami-
cally consistent manner with either piecewise polytropic
segments [47–49], a speed-of-sound interpolation, or a

spectral interpolation [50,51]. These metamodels are lim-
ited to incorporating finite nuclei properties and differ on
results in establishing a bridge between NS properties
and NMPs. Nonparametric models of the NS EOS have
also been proposed based on Gaussian processes [52,53]
which use Bayesian methods to infer the EOS from
multimessenger data. These models are usually computa-
tionally expensive to implement or are highly sensitive to
the choice of the training datasets and, therefore, might be
limited by the current knowledge of the EOS [54].
Consequently, there is a need to search for alternative
approaches to construct a model-independent EOS.
In recent years, deep learning (DL) has been extensively

applied to a wide range of technological and scientific
tasks. DL algorithms, which are a class of machine learning
(ML) algorithms, are highly scalable and distributed
computational techniques with the ability to learn intricate
relationships from raw data using units called neurons
arranged in a stacked fashion. The advent of high-
performance computing and the development of parallel
devices like graphics processing units have rendered DL as
the primary choice of algorithms for tasks such as computer
vision [55] or natural language processing [56]. DL models
have been used as alternatives to conventional statistical
framework and have been successfully applied to many
problems in physics. Most applications of ML and DL in
physics have been in analyzing data obtained from data-
intensive experiments like LIGO for the detection and
denoising of GW signals [57–59] and the Large Hadron
Collider for particle track reconstruction or anomaly
detection [60–62]. Significant progress has also been
made in using these algorithms in the context of nuclear
physics [63] and neutron star physics [54,64,65]. While
these applications are certainly promising, it remains to be
seen up to what extent a DL model can supplement existing
physical models. Recent research also aims to address
whether a trained DL model can produce correct predic-
tions from experimental data alone and whether such
predictions are comparable to mesoscopic phenomenologi-
cal physics models [66]. Such ML- and DL-based models
do not have the feature richness possessed by physics-
based models, but they offer other benefits like cost
effectiveness when dealing with a large amount of exper-
imental or observational data. Recent works [15,64,67]
have studied the applications of machine learning methods
to the neutron star EOS. They employ a feed-forward
neural network (FFNN) to map neutron star data to EOS
parameters. Instead of considering the FFNN as merely an
interpolation tool between EOS NMPs and neutron star
observables, we adopt an approach similar to [54] by
treating the FFNN as a representation of the EOS itself.
In this paper, our focus is on implementing an artificial

neural network to emulate a physics model and assess
its accuracy through validation and inference tasks. Our
primary goal is to thoroughly examine the neural network’s
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ability to mimic the physics model and subsequently
utilize the trained network for computationally expensive
Bayesian inference tasks. To the best of our knowledge, the
use of neural networks in a Bayesian inference framework
has not been employed in nuclear astrophysics literature.
We show that we can indeed obtain results comparable to
physics models at a fraction of the computational cost. This
points out a novel utilization of machine learning and
neural network models in research. Let us however clarify
that we are not claiming that neural networks can replace
physics-based models. Our claim is that such models can
help us capture some of the features of the EOS at much
lower computational costs.
The paper is structured as follows: in Sec. II, we discuss

the parametrization of the EOS which leads to the emer-
gence of NMPs, followed by a brief review of the theory
of artificial neural networks and the DL approach used to
map NMPs to NS observables. This is followed by a
description of the Bayesian statistical framework. In
Sec. III, we test how well the best fit neural network
model captures correlations between EOS parameters. We
also perform a Bayesian analysis to compare our models
with a physics-based model and show that the computa-
tional cost is much less for our model. We finally end with
our conclusions in Sec. IV.

II. FRAMEWORK

In this section, we outline the different facets of
the adopted framework for our analysis. In Sec. II A, we
briefly describe the neutron star EOS and the nuclear matter
parameters involved in its construction. Then, in Sec. II B,
we describe the generation of the dataset used to train the
neural network model. Section II C describes at length
the DL approach used to construct a deep neural network
model which accepts nuclear matter saturation parameters
as inputs and produces neutron star properties obtained
from a set of realistic nuclear physics equations of state
as targets. Finally, in Sec. II D, we present a Bayesian
inference framework that is applied on the trained neural
network model to verify the performance of our model in
comparison with Skyrme models.

A. Nuclear matter parameters

The structure of neutron stars is obtained by solving the
TOVequation with a given EOS for the nuclear matter. The
EOS is expressed as the variation of pressure ewith density
ρ, over a wide range of densities. To a good approximation,
any EOS calculated from phenomenological nuclear mod-
els can be decomposed into two parts: (i) the EOS for
symmetric nuclear matter eðρ; 0Þ and (ii) a term involving
the symmetry energy coefficient SðρÞ and the asymmetry δ,

eðρ; δÞ ≃ eðρ; 0Þ þ SðρÞδ2; ð1Þ

where ρ ¼ ρn þ ρp is the baryon density, ρn and ρp are the
neutron and proton densities, respectively, and the asym-
metry δ ¼ ðρn − ρpÞ=ρ. We can then characterize the
density dependence of the energy density of symmetric
matter around the saturation density ρ0 in terms of a
few bulk parameters by constructing a Taylor expansion
around ρ0. That is,

eðρ; 0Þ ¼ e0 þ
K0

2

�
ρ − ρ0
3ρ0

�
2

þQ0

6

�
ρ − ρ0
3ρ0

�
3

þOð4Þ:

ð2Þ

The coefficients e0, K0, and Q0 denote the energy per
particle, the incompressibility coefficient, and the third
derivative of symmetric matter at saturation density,
respectively. Similarly, the behavior of the symmetry
energy around saturation can also be characterized in terms
of a few bulk parameters,

SðρÞ¼Jsym;0þLsym;0

�
ρ−ρ0
3ρ0

�
þKsym;0

2

�
ρ−ρ0
3ρ0

�
2

þOð3Þ;

ð3Þ

where Jsym;0 ¼ Sðρ0Þ is the symmetry energy at saturation
density. The incompressibility K0, the skewness coefficient
Q0, the symmetry energy slope Lsym;0, and its curvature
Ksym;0 evaluated at saturation density are defined in [68].
These quantities are the key NMPs that describe any EOS.
Hence, an EOS can be represented by a point in the seven-
dimensional parameter space of NMPs fe0;ρ0;K0;Q0;
Jsym;0;Lsym;0;andKsym;0g [43]. Symbolically, the jth EOS
in this space is written as

EOSj ¼ fe0; ρ0; K0; Q0; Jsym;0; Lsym;0; andKsym;0gj
≈N ðμ;ΣÞ; ð4Þ

where N ðμ;ΣÞ is a multivariate Gaussian distribution with
μ being the mean value of the nuclear matter parameters p
and a covariance matrix Σ. The diagonal elements of Σ
represent the variance or the squared error for the param-
eters pi. The off-diagonal elements of Σ are the covariances
between different parameters pi and pj, and denote the
correlation coefficient between them. Hence, given a mean
μ and covariance matrix Σ, a large number of equations of
state can be obtained.
While the Taylor expansion of the symmetric and

asymmetric energy is only truly accurate around the
saturation density, we can treat these expansions as a
parametrization of the EOS—similar to other adopted
parametrizations—with the condition that this representa-
tion asymptotically approaches the Taylor expansion in the
limit ρ → ρ0 [21,69]. This lets us ignore any issue arising
with the convergence of the approximation. However, the
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higher-order NMPs obtained via this parametrization
might markedly diverge from the actual nuclear matter
expansion coefficients. They can be thought of as effective
parameters that incorporate the effects of missing higher-
order terms. Moreover, Refs. [26,69] indicate that an
EOS obtained from the Skyrme framework can be well
reproduced by considering Taylor coefficients until the
third or fourth order.

B. Dataset generation

In our analysis, the input data used to train an artificial
neural network are the seven key nuclear matter parameters
that govern the equation of state fe0; ρ0; K0; Q0; Jsym;0;
Lsym;0; Ksym;0g. Six neutron star properties are the target
variables: the maximum NS mass Mmax, the maximum
NS radius Rmax, the radius for 1.4M⊙ NS R1.4, and the tidal
deformability ΛM for NS having mass M∈ ½1.0; 1.4;
1.8�M⊙. We generate our dataset by sampling points from
the multivariate Gaussian distribution N ðμ;ΣÞ, where μ is
the mean vector with components μi ¼ E½pi� and Σ is the
covariance matrix with entries Σij ¼ E½ðpi − μiÞðpj − μjÞ�,
for a NMP p.2 This method closely follows the procedure
for generating the Case-II dataset in Ref. [43]. We assume
an a priori intercorrelation coefficient between Lsym;0 and
Ksym;0 of 0.8, which is a reasonable choice for nuclear
physics models that satisfy finite nuclear properties.
Models that satisfy finite nuclear properties exhibit differ-
ent correlations between NMPs and NS properties as
compared to metamodels or nuclear physics models for
infinite nuclear matter that do not respect finite nuclear
properties [41,42]. Therefore, we consider Case-II data of
Ref. [43] to mimic the microphysics information of finite
nuclear properties. Figure 1 presents the 7 × 7 matrix for
the correlation coefficients between the NMPs in the
sampled data. The central values and uncertainties on each
NMP in the constructed distribution are listed in Table I.
We then construct the Skyrme EOS from a drawn NMP

sample and check whether the EOS (a) predicts a NS
maximum mass above 2M⊙, (b) predicts a tidal deform-
ability for a NS with M ¼ 1.4M⊙ below 800, and (c) sat-
isfies the causality condition, i.e., the speed of sound

cs ¼
ffiffiffiffi
dp
de

q
≤ c at the center of maximum mass NS, where

c is the speed of light in vacuum. Any samples that
generate equations of state that do not satisfy these
conditions are discarded. For each EOS, the TOV and
deformability equations [70] are solved to obtain the six
aforementioned NS observables. Naturally, realistic NS
observations accrue experimental and instrumental errors,
which result in corresponding uncertainties while recon-
structing the NMPs. For simplicity, we choose to

disregard NS observational errors and uncertainties while
training the model. Following this procedure, we obtain
2106 filtered NMPs and corresponding NS observables
which form the dataset.

C. Artificial neural networks

Artificial neural networks (ANNs) are a class of machine
learning algorithms that have found widespread use over
the past decade. The popularity of ANNs arises from their
ability to model complex nonlinear relationships within
data and their potential to generalize to a wide class of
functions. An ANN with sufficiently many layers or
neurons is theoretically capable of representing any con-
tinuous function [71,72]. Therefore, as a general rule,

FIG. 1. Correlations among the various NMPs for the sampled
dataset. Correlations among the off-diagonal pairs corresponding
to Lsym;0 − Ksym;0 are the only nontrivial values. The figure
displays sample statistics that reveal insignificant correlations
between other NMPs.

TABLE I. The mean value μpi and error
ffiffiffiffiffiffiffiffiffi
Σpipi

p
for the nuclear

matter parameters pi employed for the multivariate Gaussian
distribution (MVGD). All quantities are in units of MeV except
for ρ0 which is in units of fm−3.

NMP MVGD Training Set

pi μpi
ffiffiffiffiffiffiffiffiffi
Σpipi

p
μpi

ffiffiffiffiffiffiffiffiffi
Σpipi

p
e0 −16.0 0.25 −15.99 0.25
ρ0 0.16 0.005 0.158 0.005
K0 230 20 242 15
Q0 −300 100 −307 70
Jsym;0 32 3 32.65 2.8
Lsym;0 60 20 73 12
Ksym;0 −100 100 −20 50

2E½X� is the expectation value of a random variable X and is
defined as E½X� ¼ R∞−∞ xpðxÞ, where pðxÞ is the probability
density function.
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a more complex network with a larger number of param-
eters is able to learn more abstract features from the data.
Feed-forward neural networks are the simplest type of

neural network architecture. For an input x, the objective of
a FFNN is to approximate some true mapping f�ðxÞ by a
mapping fðx; θÞ, parametrized by a set of weights θ.
A typical feed-forward neural network consists of a number
of processing units called neurons, arranged into one or
many layers composed in a sequential fashion. A neuron
performs a linear operation by aggregating weighted inputs
received from neurons in the previous layer. A FFNN
generally consists of an input layer, followed by one or
more hidden layers, and a final output layer consisting of
one or more neurons. Computation in a FFNN flows in a
linear fashion, starting at the input layer and moving
successively through the hidden layers until it reaches
the output layer. Figure 2 provides an illustration of a
simple feed-forward neural network with one input layer,
two hidden layers, and an output layer.
The parameters θ typically represent the weights

assigned to a connection between neurons in adjacent
layers. The training data provide noisy approximate exam-
ples of f�ðxÞ and each x is paired with a corresponding
label y. The goal of a learning algorithm is to learn a
particular value of θ that results in the best function
approximation. During the training procedure, the learning
algorithm does not say what each layer does but instead
decides how to use these layers to produce an optimal

approximation of f�. As the training data do not show
the desired output for intermediate layers, they are called
hidden layers. The number of hidden layers decides the
depth of the network, and the dimensionality or the number
of neurons in each hidden layer determines the width of
the network. To introduce nonlinearity in the computation
between two successive layers within the model, a non-
linear function, called the activation function, acts element-
wise on the output of one hidden layer, and the output of the
function is passed to the next layer in the computation. For
most modern neural networks, the default recommendation
is to use the rectified linear unit (ReLU) [73,74] activation,
defined as gðzÞ ¼ maxf0; zg. Other commonly used
choices for the activation function include the tanh function
or the logistic function. For a textbook review of neural
networks and training algorithms, see Ref. [75].
The ability of neural networks to model highly nonlinear

relationships between input and output variables makes
them ideal for estimating neutron star properties from the
equation of state parameters. This is important because the
relationships between these two quantities are expected
to be nontrivial and involve multiple intermediate steps
composed of nonlinear operations. Moreover, a neural
network offers two major advantages over a conventional
approach with traditional physics models:
(1) An ANN can efficiently map the sample NMPs to

NS properties without calculating the EOS from
nuclear physics models. Similar works [76,77]
demonstrate that ANNs offer up to a twofold
speedup over conventional astrophysical models.

(2) ANNs can also accurately capture finite nuclear
information, which can be computationally expen-
sive to verify with a traditional physics model in a
Bayesian setting.

At this step, we wish to note that other machine learning
models can also be used for an identical purpose, albeit with
varying degrees of success. We performed a preliminary
comparison of FFNNs with other ML models, specifically
linear regression, support vector regression, and XGBoost
(eXtremeGradient Boosting) [78].We observed that FFNNs
outperformed all the other models in the study, and there-
fore, we chose to use FFNNs for this work.
In supervised learning instances, the dataset is generally

partitioned into nonoverlapping training, testing, and val-
idation sets. The training dataset is used by the neural
network to learn, the validation set is used to see whether
the network is learning properly during the training
procedure and to select the optimal values for the hyper-
parameters, and the testing dataset is used to assess the
performance of the trained model. It should be noted that
the model does not see any instances from the testing
dataset until after the training is completed. Accordingly,
we randomly partition the original generated dataset
following a 70%-20%-10% split into a training set, a
validation set, and a testing set consisting of 1515, 422,

FIG. 2. An example of a fully connected feed-forward neural
network with two hidden layers. Each hidden layer consists of m

neurons, denoted by aðlÞj , where l denotes an index over the
hidden layers and the index j runs over the dimension of the
hidden layer. This particular network accepts an n-dimensional
input through the input layer (in green), passes the input through
the hidden layers (in lavender), and produces a k-dimensional
output at the output layer (in red). Solid lines between individual
nodes denote weighted connections that are learned during the
training procedure. Activation functions are not shown in this
figure.
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and 169 instances, respectively. Before training, the fea-
tures in the split datasets are standardized by removing the
mean and scaling them to unit variance. Standardization of
data is a common requirement for many ML algorithms as
they tend to perform poorly if the individual features are not
standard normally distributed, i.e., Gaussian with unit
variance and zero means. Standardization is performed
using Scikit-Learn’s [79] StandardScaler method. The output
of the network is scaled back to the original distribution
before computing the loss.
The choice of the ANN architecture, such as the number

of layers and the number of neurons in each layer,
represents a trade-off between the quality of fit and the
overfitting problem. The model should contain suffi-
ciently many trainable parameters to learn the ground
truth function accurately. At the same time, the ANN must
avoid overfitting the training data by losing its ability to
generalize well. As there is no panacea for choosing an
optimal model configuration, the final architecture for the
ANN was chosen based on empirical tests performed on
the data and selecting the set of configurations that
performed best on the validation set. Our network consists
of two hidden layers with 15 neurons each and uses the
ReLU activation function, which is a standard choice for
most deep learning applications and is known to mitigate
the vanishing gradients problem [80]. The ReLU activa-
tion function behaves as an identity function for
positive inputs and saturates at 0 for negative inputs.
No activation function is applied to the input or the output
layer. The design of our feed-forward architecture is
summarized in Table II.
The neural network is implemented and trained using

the PYTHON Keras library [81] with a TensorFlow [82]
backend. Neural network parameters are initialized
with the Glorot uniform distribution [83]. We use the
Adam optimizer [84] to update the weights of the ANN.
For training, we use an initial learning rate of 1 × 10−3

and the training data are batched into batches of size 16.
Training is performed for a total of 40 epochs or until
the validation loss stops decreasing. The model is
trained on a 2-core Intel Xeon CPU @ 2.20 GHz. The
network seeks to optimize a root-mean-square error
(RMSE) loss between the predictions and actual neutron
star properties.

D. Bayesian statistical framework

The Bayesian statistical framework allows us to carry out
a detailed analysis of the parameters of a model for a given
set of fit data [85–87]. The hypothesis or the prior knowl-
edge of the model parameters and various constraints on
them is encoded through the prior distributions. The
technique yields a joint posterior distribution of the model
parameters by updating the probability for the hypothesis
using the available observational data according to the
Bayes theorem. The posterior distribution of the model
parameters θ can be written as

PðθjDÞ ¼ LðDjθÞPðθÞ
Z

; ð5Þ

where θ and D denote the set of model parameters and the
fit data, respectively. PðθjDÞ is the joint posterior proba-
bility of the parameters, LðDjθÞ is the likelihood function,
PðθÞ is the prior for the model parameters, and Z is the
evidence. The posterior distribution of a given parameter
an be obtained by marginalizing PðθjDÞ over remaining
parameters. The marginalized posterior distribution for a
parameter θi is obtained as

PðθijDÞ ¼
Z

PðθjDÞ
Y
j≠i

dθj: ð6Þ

A major contribution of this study is to demonstrate how
a neural network can be effectively integrated within a
Bayesian inference framework for astrophysical use cases.
In particular, we demonstrate the effect of intercorrelations
between symmetry energy parameters on NS properties.
We sample NMPs within a Bayesian framework in two
different ways: (i) sampling all the NMPs randomly with-
out any intercorrelations among them and (ii) sampling all
the NMPs randomly, except for the pair Lsym;0-Ksym;0

which is set to a correlation coefficient of 0.9. Then, we
compare the posterior distribution of the NMPs for both
cases under certain constraints on NS properties.
For the sampling process, we use the Gaussian likelihood

function defined as

LðDjθÞ ¼
Y
j

 
1ffiffiffiffiffiffi
2π

p
σj

!
exp

�
−
1

2

XNd

i¼1

�
di −mjðθÞ

σj

�
2
�
:

ð7Þ

Here the index j runs over all the data, dj and mj are the
data and the corresponding model values, respectively, the
model m is parametrized by a set of parameters θ, and σj
are the adopted uncertainties. The evidence is used to
compare the compatibility of different models with the
available data. In our present work, the evidence Z is not
relevant and thus can be ignored. To obtain the margin-
alized posterior distributions of the NMPs within the

TABLE II. Neural network architecture used in this work. The
input layer consists of seven neurons corresponding to nuclear
matter parameters. In the output layer, the six neurons correspond
to the six neutron star properties.

Layer Number of neurons Activation function

0 (input) 7 None
1, 2 15 ReLU
3 (output) 6 None
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Bayesian framework, we require a set of fit data, a model,
and a set of priors for the nuclear matter parameters.
The likelihood function for a given set of fit data is
evaluated for a sample of NMPs populated according to
their prior distributions. The joint probability distribution
of the NMPs is obtained using the product of the like-
lihood function and the prior distribution. The fit data for
the likelihood function is provided by the neural network
for a sample drawn from the prior distribution. To
compute the likelihood, we use the maximum neutron
star mass Mmax, the maximum radius Rmax, the radius
R1.4, and the tidal deformability Λ1.4 from the set of
outputs generated by the neural network for a given input
of NMPs. Instead of using a distinct value for each data
point, we fix di in Eq. (7) to a mean value μj. Therefore,
for our study, Eq. (7) is modified to for a set of NMPs
p and the neural network ANNð·Þ which accepts NMPs as
inputs. We define the set of priors over the NMPs as a
multivariable Gaussian distribution. The mean and stan-
dard deviation on each NMP in the distribution are listed
in Table III.

1. The log-likelihood

The log-likelihood for NS mass, radius for 2.07 and
1.4M⊙ neutron star are defined as follows:

log χðMmaxÞ ¼ log

�
1

exp½Mcal−Mobs
−0.01 � þ 1

�
; ð8Þ

log χðR2.07Þ ¼ −0.5
�
R2.07cal − R2.07obs

ΔR2.07

�
2

þ log½2πΔR2
2.07�;

ð9Þ

log χðR1.4Þ ¼ −0.5
�
R1.4cal − R1.4obs

ΔR1.4

�
2

þ log½2πΔR2
1.4�:

ð10Þ

The calculations are performed for a set of NS observa-
tional properties, such as maximummass (Mmax), the radius
at NS mass (R2.07), and at 1.4M⊙ (R1.4) listed in Table IV.
Bayesian parameter estimation is commonly carried out

using the Markov chain Monte Carlo (MCMC) algorithm.
This algorithm updates the existing parameters with a new
set of parameters with a probability proportional to the
ratio of the two points. However, MCMC approaches
can lead to issues with converging to a stable posterior.
To overcome this problem, we use the dynamic nested
sampling algorithm [88–90]. In dynamic nested sampling,
the posterior is broken into many nested “slices” with an
initial n-live number of points that vary dynamically as the
sampling progresses; samples are generated from each of
them and then recombined to construct the posterior
distribution. We use the DYNESTY dynamic nested sam-
pling algorithm interfaced in BILBY [87] with 5000 n-live
points to sample from the posterior distributions of the
nuclear matter parameters. DYNESTY enables flexible
Bayesian inference over complex multimodal distribu-
tions without needing to converge to the posterior before
generating valid samples [90].

III. RESULTS

In this section, we present the main findings of our
analysis. After selecting the best model, which we call the
NS-ANN, by performing a grid search over hyperpara-
meters, such as the model depth, model width, learning

TABLE III. The mean value μpi and error
ffiffiffiffiffiffiffiffiffi
Σpipi

p
for the nuclear

matter parameters pi in the prior multivariate Gaussian distri-
bution. All quantities are in units of MeVexcept for ρ0 which is in
units of fm−3.

NMP P1 P2

pi μpi
ffiffiffiffiffiffiffiffiffi
Σpipi

p
μpi

ffiffiffiffiffiffiffiffiffi
Σpipi

p
e0 −15.99 0.25 −15.99 0.50
ρ0 0.158 0.005 0.158 0.01
K0 242 15 242 30
Q0 −307 70 −307 140
Jsym;0 32.65 2.8 32.65 5.6
Lsym;0 73 12 73 24
Ksym;0 −20 50 −20 100

TABLE IV. The constraints imposed in the Bayesian inference:
Observed maximum mass of NS, radius of 2.07M⊙ NS, radius of
1.4M⊙ NS.

Constraints

Quantity Value/band Ref.

Mmax >2.0M⊙ [91]
R2.07 12.4� 1.0 km [91]
R1.4 13.02� 1.24 km [37]

TABLE V. RMSE on the test set, defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPN

i¼1ðŷi − yiÞ2
p

, where N is the a total number of
samples in the test set. We also show the root-mean-square
relative error (RMSE=ȳÞ × 100, where ȳ ¼ ð1=NÞPN

i¼1 yi is the
mean of the true value. All quantities are dimensionless except
Rmax and R1.4, which are in units of kilometers, and Mmax, which
is in units of M⊙.

ŷ RMSE ðRMSE=ȳÞ × 100

Mmax 0.024 1.1
Rmax 0.088 0.8
R1.4 0.194 1.5
Λ1.0 123.800 3.7
Λ1.4 19.239 4.3
Λ1.8 5.344 8.2
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rate, etc., we determine its performance on the test set. We
wish to reemphasize that the test set is never used during
training or the validation phase. Evaluating the model’s
performance on this set quantifies the generalization
capacity of the model, i.e., its predictive power on unseen
data. The RMSE values obtained for each NS observable on
the testing dataset are summarized in Table V. We also
include the root-mean-square relative error as it provides a
scale-independent measure of the generalization capacity
and eases comparison between multiple dependent varia-
bles. In Fig. 3, we plot the loss as a function of training
time, which is called the learning curve. The learning curve

plots the root-mean-square error on the y axis against the
number of elapsed epochs—or the number of full passes
over the training dataset—on the x axis. We plot two
different learning curves for a single training instance:
one for the training loss (in blue) and the other for the
validation loss (in red). Figure 3 also plots a 1σ (68% con-
fidence interval) region centered around the training curves
computed for ten independent runs to indicate the degree
of variability observed by training the model on different
subsets of the original dataset. The training and validation
losses are the loss functions computed for the training set
and validation sets, respectively. The former is a metric of
how well the ANN learns the training data, while the latter
indicates how well the model is able to predict by general-
izing the learned information. For a NS mass of 1.4M⊙, we
have a prediction error below 2% for the radius R1.4 and 5%
for the tidal deformability Λ1.4. This implies that using the
ANN, we can infer Λ1.4 and R1.4 with an average error of
19.239 and 0.194 km, respectively. The NS maximummass
Mmax and the maximum radius Rmax are also predicted with
an error below 2%. Moreover, the saturation of the loss
curves for the training and validation sets indicates that the
training has converged to a minimum and that the model
can generalize sufficiently well.
Once we have successfully and efficiently learned the

nonlinear mapping between the empirical nuclear matter
parameters and the NS observables, we must first prove the
correctness of the NS-ANN model before using it in the
context of a Bayesian inference framework to constrain
the NMPs. In Fig. 4 we plot the 1σ confidence ellipses for
ΛM versus Lsym;0 andKsym;0 for NS massM ¼ 1.0, 1.4, and
1.8M⊙ predicted by the NS-ANN for three different
pseudosets of NMPs. These pseudo-NMP distributions
were constructed as a multivariate Gaussian distribution

FIG. 3. Learning curves for the training (blue, solid) and
validation (red, dashed) datasets plotted against the number of
elapsed epochs. The shaded region around the solid curve
indicates a 1σ or 68% CI region around the central value
computed for ten independent training runs.

FIG. 4. The 1σ confidence ellipses in the planes of ΛM-Lsym;0 (top) and ΛM-Ksym;0 (bottom) withM ¼ 1.0, 1.4, and 1.8M⊙ generated
by the NS-ANN model for the correlation coefficient r between Lsym;0 and Ksym;0 set to 0.3, 0.6, and 0.9.
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by setting the intercorrelation between Lsym;0 and Ksym;0 to
r ¼ 0.3, 0.6, and 0.9, and all other parameters of the
distribution to values listed in Table I. Once again, all
NMPs that generate equations of state that do not satisfy
the conditions from Sec. II C are discarded. We use the
NS-ANN model for each NMP in the dataset to generate a
corresponding set of NS observables. Through this analy-
sis, we wish to establish that a neural network is capable
of replicating the underlying microphysical information

conveyed by a conventional EOS model. The values of the
correlation coefficients for the results illustrated in the
figure are summarized in Table VI. For the first set, we
observe that the correlations of Λ1.0;1.4;1.8 with Ksym;0 are
χ ∼ 0.5–0.8, and those with Lsym;0 are χ ∼ 0.2–0.8. For the
second set, we see a nontrivial narrowing of the confidence
ellipses, indicating stronger correlations of Λ1.0 and Λ1.4
with Lsym;0 and Ksym;0, χ ∼ 0.7–0.8, while these correla-
tions become moderate for Λ1.8. We also observe that the
ΛM − Lsym;0 correlations decrease with increasing mass of
NS, while an opposite trend is observed for ΛM − Ksym;0

correlations. Moreover, for the same NS mass, ΛM − Lsym;0

correlations are much more sensitive to Lsym;0 − Ksym;0

correlations over ΛM − Ksym;0 correlations. These results
help emphasize that the correlations of the tidal deform-
ability with Lsym;0 and Ksym;0 are sensitive to the physical
correlations among the empirical NMPs arising from a set
of physical constraints [26,27]. Additionally, the observa-
tions made in this analysis are in excellent agreement with
results from previous studies performed on observing the
effect of correlations of the tidal deformability with the
slope of the symmetry energy and its curvature [40,43,92].

TABLE VI. The values of the correlation coefficients for
Λ1.0;1.4;1.8 with Lsym;0 and Ksym;0 for three different Lsym;0 −
Ksym;0 correlation coefficients r.

r Λ1.0 Λ1.4 Λ1.8

0.3 Lsym;0 0.81 0.56 0.23
Ksym;0 0.57 0.78 0.81

0.6 Lsym;0 0.86 0.69 0.43
Ksym;0 0.69 0.80 0.79

0.9 Lsym;0 0.91 0.84 0.71
Ksym;0 0.86 0.86 0.79

TABLE VII. The median and the minimum (min) and maximum (max) values of the associated 90% confidence intervals for the
NMPs and the NS properties obtained from Skyrme, DDB, and DDB-FL datasets. We also indicate these quantities for maximum
relative residual errors σrr on the NS properties.

Input Output

90% CI Skyrme ML

NMP Median Min Max 90% CI 90% CI

Skyrme e0 −16.01 −16.39 −15.59 NSP Median Min Max Median Min Max σrr
ρ0 0.160 0.152 0.168 Mmax 2.09 1.87 2.24 2.08 1.89 2.24 2.2
K0 231 200 261 Rmax 10.74 9.77 11.85 10.75 9.80 11.84 1.5
Q0 −292 −457 −140 R1.4 12.82 11.56 14.10 12.81 11.60 14.02 2.1

Jsym;0 32 27 37 Λ1.0 3279 1994 5323 3279 1973 5280 6.8
Lsym;0 67 42 94 Λ1.4 435 234 729 430 232 722 7.0
Ksym;0 −63 −169 73 Λ1.8 63 21 118 63 22 116 15.5

DDB e0 −16.10 −16.41 −15.80 DDB ML σrr
ρ0 0.153 0.147 0.158 Mmax 2.14 2.02 2.35 2.21 1.95 2.39 9.4
K0 232 201 275 Rmax 11.33 10.97 11.81 10.54 9.83 11.27 11.3
Q0 −108 −256 129 R1.4 12.63 12.07 13.22 12.26 11.35 13.46 7.7

Jsym;0 32 29 35 Λ1.0 2802 2171 3702 2829 1869 3911 16.5
Lsym;0 41 24 65 Λ1.4 455 339 626 385 247 582 34.7
Ksym;0 −116 −150 −73 Λ1.8 79 52 125 70 28 110 65.4

DDB-FL e0 −16.12 −16.43 −15.83 DDB-FL ML σrr
ρ0 0.155 0.152 0.159 Mmax 2.07 2.01 2.16 2.05 1.93 2.18 6.6
K0 216 202 225 Rmax 11.13 10.94 11.30 10.32 9.90 10.97 10.5
Q0 −188 −260 −144 R1.4 12.43 12.12 12.82 12.37 11.81 13.40 4.7

Jsym;0 32 29 35 Λ1.0 2612 2271 3379 2678 2146 3880 12.6
Lsym;0 51 43 72 Λ1.4 396 337 486 343 257 497 28.7
Ksym;0 −123 −152 −70 Λ1.8 62 49 76 47 27 75 64.1
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At this point we also wish to note that there exists a strong
model-independent intercorrelation between Lsym;0 and
Jsym;0, but this correlation does not disrupt the relationships
between some NS properties, such as tidal deformability,
radius, and NMPs [43], and as a result it is not covered in
this study.
As a next step, we apply our trained NS-ANNmodel to a

dataset acquired from a different class of physics models in
order to assess the model-dependent uncertainty related to
neutron star properties.
The nuclear matter parameters are known to be model

dependent and hence also the properties of stars or equations
of state [93–95]. In Table VII, we compare theNS properties
obtained using a dataset generated by a density-dependent
meson coupling framework called the Density dependent
Bayesian (DDB) model. This model is constructed using a

Bayesian inference approach in conjunction with minimal
constraints on the nuclear saturation properties, the maxi-
mum mass of a neutron star exceeding 2M⊙, and a low-
density EOS calculated using chiral effective field theory. In
the first horizontal panel, we show that NS properties
predicted by the NS-ANN ML model match well with
the theoretical predictions of the Skyrme model. In the
second horizontal panel, thenwe apply our trainedNS-ANN
model to a dataset generated by DDB. It can be seen that the
residual errors on the NS properties (NSPs) are much larger
in this case. We posit that this wider uncertainty might arise
due to input parameters (NMPs) in the DDB dataset lying
outside the parameter space covered by the training set. To
avoid any extrapolation error, we then filter the DDB
according to the parameter space of the training sets. We
call this set DDB-FL and apply the NS-ANN on this set.

FIG. 5. Comparison of neutron star properties obtained from Bayesian posterior for prior set P1 with ANN and Skyrme model,
including NS maximummass (Mmax), radius for a 2.07M⊙ NS, radius (R1.4) and tidal deformability (Λ1.4) for a 1.4M⊙ NS, and square of
the speed of sound (C2

s) at the center of the maximum mass NS. The vertical lines represent the 68% CIs, and the light and dark
intensities represent the 1σ, 2σ, and 3σ CIs, respectively.
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It can be seen that the dispersion is still large. The NS-ANN
model is trained on data obtained from the nonrelativistic
Skyrmemodel, so it is unsurprising that it fails to completely
capture the features of the relativistic DDB model.

A. Validity of NS-ANN model in Bayesian inference

In this section, we apply our NS-ANN model in a
Bayesian inference framework. The primary objective is to
validate the trained model’s effectiveness in computation-
ally expensive calculations of this type. The results will be
analyzed in two parts: (i) the posterior of neutron star
properties will be compared between trained NS-ANNs and
Skyrme models in Bayesian inference, and (ii) the CPU
time will be compared between the two models.

B. Comparison between NS-ANN and Skyrme

As discussed above, Bayesian inference requires three
ingredients: (a) the model, (b) the fit data or likelihood,

and (c) prior. We will perform identical Bayesian inference
calculations with both Skyrme and NS-ANN models and
compare their posteriors. The input priors are the nuclear
matter parameters, namely e0, ρ0, K0, Q0, Jsym;0, Lsym;0,
and Ksym;0. In Table III, we have defined two multivariate
Gaussian priors, P1 and P2. P1 represents the prior validity
in which the neural network is originally trained, while
in P2, we have doubled the uncertainty to evaluate the
performance of the NS-ANN model. The likelihood for our
calculation is defined in Sec. II D 1 for the fit data described
in Sec. IV. In the likelihood, we have only considered
observed NS properties because we are motivated to
compare the performance of the NS-ANN trained model
with the Skyrme nuclear physics model within observa-
tional constraints.
We used the PYMULTINEST sampler to sample our

parameter. In Fig. 5, we compared the Bayesian posterior
results for the neutron star properties obtained from
the prior set P1 with the NS-ANN and Skyrme model.

FIG. 6. Same as Fig. 5 but for prior set P2.
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This included the NS maximum mass (Mmax), radius for
a 2.07M⊙ NS, radius (R1.4), tidal deformability (Λ1.4) for a
1.4M⊙ NS, and the square of the speed of sound (C2

s) at
the center of the maximum mass NS. We also compared
the same for the prior set P2 in Fig. 6. In both figures, the
joint distribution of NS properties is represented by
corner plots, which are obtained from Bayesian inference
posteriors. Each variable in a corner plot is plotted on one
of the axes, and its distribution is shown by its diagonal.
Off-diagonal plots show the joint distributions of each
pair of variables. Using it to understand how variables are
related is a useful tool. Now, it is time to compare their
accuracy and validity.
In Table VIII, we compared the relative % residuals of the

NS-ANN model with the Skyrme model for both P1 and P2.
It is worth noting that the results for P1 are very comparable
to the original physics model. This is expected because P1 is
the prior range in which the NS-ANN was originally trained.
The relative % residuals for the NS maximum mass, radius
for 2.07 and 1.4M⊙ NS, and tidal deformability for 1.4M⊙
NS are ∼1%, while the square of the speed of sound is ∼3%
at the center of the maximum mass NS. However, in the case
of P2, all the residuals are noticeably increased, with the tidal
deformability of 1.4M⊙ NS and the square of the speed of
sound at the center of the maximum mass NS being around
∼5%. It should be emphasized that the neural network model
can be trusted for interpolation but used with caution
for extrapolation. The main advantage of this type of
ANN model is that it can produce very fast draft results
for computationally expensive calculations.

C. CPU Time

In Table IX, we compared the CPU time for NS-ANN
and Skyrme models for both prior sets. The timing tests
were performed on a 12-core Intel i7-8700K CPU @
3.70 GHz. It is noteworthy that the NS-ANN model is
approximately 500 times faster than the Skyrme model. It is
exciting that the neural network model can be employed in
computationally expensive calculations to obtain fast draft
results. This will help in reducing carbon emissions and

help reduce the environmental cost of using high computa-
tional power for the preliminary testing of any model.

IV. CONCLUSIONS

We have demonstrated the application of ANNs to
analyze NS observables like the radius, mass, and tidal
deformability from a set of seven parameters, or nuclear
saturation properties that characterize the equation of state
of cold dense matter. We have shown that a neural network
that models such a mapping is able to learn the micro-
physics information of finite nuclei, which are the inter-
correlations arising between the NMPs. Moreover, we
delved into the utilization of ANNs as a complement to
theoretical models, enabling them to undertake computa-
tionally demanding tasks, such as Bayesian inference
studies to constrain nuclear models. This study demon-
strates that neural networks or some advanced AI tools not
only function as efficient surrogates for traditional physics-
based EOS models but also have the potential to eventually
replace phenomenological models, particularly for compu-
tationally intensive or high-dimensional problems.
Let us briefly summarize what we have done in this

work. First, we generate a set of pseudo-NMP data using
the Skyrme model. A suitable set of NMPs are chosen so
that the resulting neutron star equations of state are
consistent with the currently observed maximum mass of
∼2M⊙ and satisfy causality constraints. Next, we train an
artificial neural network on this dataset to learn a nonlinear
mapping between the set of nuclear matter parameters and
NS observables. We demonstrate that the ANN is capable
of inferring, with reasonable accuracy, NS observables
from empirical parameters, as compared to conventional
physics models which require the computation of an EOS
followed by tedious equation solving. This NS-ANNmodel
is then validated to ensure that it satisfies the microphysics
information of finite nuclear matter. More specifically,
we study whether a trained ANN model is able to capture
correlations between the tidal deformability for a NS with
mass 1.4M⊙, Λ1.4 and the symmetry energy slope Lsym;0 as
well as its curvature Ksym;0. We find that the NS-ANN
model learns a mapping that is sensitive to Lsym;0 − Ksym;0

correlations in agreement with previous studies. Using the
Bayesian inference framework, we determine the extent to
which the neural network can replicate the physics model

TABLE VIII. The maximum relative residual for the maximum
mass of a NS, denoted as Mmax, is attained. Additionally, we
determine the radius R2.07 for a 2.07 solar mass (M⊙) NS, the
radius R1.4, and the dimensionless tidal deformability Λ1.4 for a
1.4M⊙ NS, as well as the squared speed of sound at the core of
the NS with maximum mass. These quantities are obtained using
the prior sets P1 and P2.

Mmax R2.07 R1.4 Λ1.4 C2
s

NS Units M⊙ km km � � � c2

Maximum
relative
% residual

P1 0.3 0.6 0.3 1.2 2.5
P2 0.8 1.6 1.5 5.3 5.1

TABLE IX. CPU inference time estimates for the ANN model
and a Skyrme model to infer NS observations from a set of NMPs
for prior sets P1 and P2. The timing tests were performed on a
12-core Intex i7-8700K CPU @ 3.70 GHz. The inference is
performed with a batch size of one.

Model P1 P2

ANN 2.23 min 3.08 min
Skyrme 16 h 27 min 19 h 55 min
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and then utilize the trained neural network for inference
tasks, which typically involve computationally expensive
calculations. By doing so, we are able to achieve results that
are comparable to the physics model while significantly
reducing the computational time required.
Presently, our framework is a proof of concept that

demonstrates the applicability of ANNs to NS physics.
For a more realistic application of our framework, empiri-
cal uncertainties ought to be considered. This can be
achieved, for example, by using a class of ANNs called
Bayesian neural networks to perform the inference task.
Bayesian networks have the ability to cast the problem
into a probabilistic domain by inferring probability dis-
tributions over a prior of NMP inputs. A model that
predicts uncertainties will also be able to potentially
further reveal the effects of NS observational constraints
on the NMPs. Presently, the entire domain of validity of
the ANN cannot be automatically ensured. Due to a lack
of training data for some parts in the modeled output
space, the ANN might be unable to accurately predict
regions that have not been learned.
While the current study employs traditional methods and

neural network models for Bayesian analysis, we recognize
the emerging potential of more sophisticated techniques.
Specifically, normalizing flows and convolutional varia-
tional autoencoders (CVAEs) offer promising avenues
for future work. Normalizing flows and CVAEs are power-
ful methods able to model complex probability distribu-
tions [96]. Although normalizing flows provide an accurate
evaluation of likelihood, they can be computationally
demanding, especially when dealing with high-
dimensional data. On the other hand, CVAEs are efficient
and can handle large datasets, but only offer approximate
likelihood evaluations. They may be useful when handling
gridlike data, such as images. The decision to use either

method depends on task requirements, such as exact
likelihood estimation and computational efficiency.
This work is limited only to hadronic NS compositions,

i.e., the set of β-equilibrated equations of state employed in
this work is composed of neutrons, protons, electrons, and
muons. Present observational constraints on NS properties
cannot rule out the possibility of exotic degrees of freedom
or deconfined quark phases inside the NS core.
In future work, a detailed and systematic analysis with

an ANN trained on a set of equations of state with
different compositions of particles is required to inves-
tigate the uncertainties on higher-order NMPs with avail-
able observational constraints. The exploration of more
advanced AI methods, such as normalizing flows and
CVAEs, not only holds the promise for enhancing com-
putational efficiency, but also raises the possibility of
becoming the de facto method for certain types of nuclear
and astrophysical analyses.

The trained network and corresponding datasets are made
publicly available through the GitHub repository [97].

ACKNOWLEDGMENTS

T. M. would like to thank national funds from FCT
(Fundação para a Ciência e a Tecnologia, I.P, Portugal)
under Projects No. UID-FIS-04564-2019, No. UIDP-
04564-2020, No. UIDB-04564-2020, and No. POCI-01-
0145-FEDER-029912 with financial support from
Science, Technology, and Innovation, in its FEDER
component, and by the FCT/MCTES budget through
national funds (OE). The authors acknowledge the
Laboratory for Advanced Computing at the University
of Coimbra for providing high-performance computer
resources that have contributed to the research results
reported within this paper [98].

[1] N. K. Glendenning, Compact Stars: Nuclear Physics,
Particle Physics and General Relativity (Springer Science
& Business Media, New York, 2012).

[2] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron
Stars 1: Equation of State and Structure (Springer, NewYork,
2007), Vol. 326.

[3] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-
Bielich, Phys. Rev. Lett. 120, 261103 (2018).

[4] S. B. Ruester, M. Hempel, and J. Schaffner-Bielich, Phys.
Rev. C 73, 035804 (2006).

[5] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[6] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[7] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314 (2010).

[8] I. Tews, T. Krüger, K. Hebeler, and A. Schwenk, Phys. Rev.
Lett. 110, 032504 (2013).

[9] G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt,
G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, and C. J.
Horowitz, Phys. Rev. C 89, 014319 (2014).

[10] A. Roggero, A. Mukherjee, and F. Pederiva, Phys. Rev. Lett.
112, 221103 (2014).

[11] P. G. Krastev, Galaxies 10, 16 (2022).
[12] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1130

(1977).
[13] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D

81, 105021 (2010).
[14] T. Gorda, A. Kurkela, P. Romatschke, M. Säppi, and A.

Vuorinen, Phys. Rev. Lett. 121, 202701 (2018).

REALIZING THE POTENTIAL OF DEEP NEURAL NETWORK … PHYS. REV. D 108, 063028 (2023)

063028-13

https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1103/PhysRevC.73.035804
https://doi.org/10.1103/PhysRevC.73.035804
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRevC.82.014314
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevLett.110.032504
https://doi.org/10.1103/PhysRevC.89.014319
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.1103/PhysRevLett.112.221103
https://doi.org/10.3390/galaxies10010016
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.16.1130
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevLett.121.202701


[15] Y. Fujimoto, K. Fukushima, and K. Murase, J. High Energy
Phys. 03 (2021) 273.

[16] G. Aarts, J. Phys. Conf. Ser. 706, 022004 (2016).
[17] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C 55, 540

(1997).
[18] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95,

122501 (2005).
[19] P. Klupfel, P. G. Reinhard, T. J. Burvenich, and J. A.

Maruhn, Phys. Rev. C 79, 034310 (2009).
[20] A. Sulaksono, T. J. Buervenich, P. G. Reinhard, and J. A.

Maruhn, Phys. Rev. C 79, 044306 (2009).
[21] N.-B. Zhang, B.-A. Li, and J. Xu, Astrophys. J. 859, 90

(2018).
[22] B.-J. Cai and B.-A. Li, Phys. Rev. C 103, 034607 (2021).
[23] H. Gil, Y.-M. Kim, P. Papakonstantinou, and C. H. Hyun,

Phys. Rev. C 103, 034330 (2021).
[24] E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. Nättilä,

V. Paschalidis, and A. Vuorinen, Phys. Rev. X 12, 011058
(2022).

[25] S. Altiparmak, C. Ecker, and L. Rezzolla, Astrophys. J. Lett.
939, L34 (2022).

[26] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Phys.
Rev. C 97, 025805 (2018).

[27] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Phys.
Rev. C 97, 025806 (2018).

[28] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.
Hessels, Nature (London) 467, 1081 (2010).

[29] E. Fonseca et al., Astrophys. J. 832, 167 (2016).
[30] Z. Arzoumanian et al. (NANOGrav Collaboration), As-

trophys. J. Suppl. Ser. 235, 37 (2018).
[31] J. Antoniadis et al., Science 340, 6131 (2013).
[32] E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021).
[33] R. W. Romani, D. Kandel, A. V. Filippenko, T. G. Brink,

and W. Zheng, Astrophys. J. Lett. 908, L46 (2021).
[34] J. Faber, Classical Quantum Gravity 26, 114004 (2009).
[35] M. D. Duez, Classical Quantum Gravity 27, 114002

(2010).
[36] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019).
[37] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).
[38] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021).
[39] T. Malik, M. Ferreira, B. K. Agrawal, and C. Providência,

Astrophys. J. 930, 17 (2022).
[40] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev.

Lett. 120, 172702 (2018).
[41] Z. Carson, A. W. Steiner, and K. Yagi, Phys. Rev. D 99,

043010 (2019).
[42] S. Ghosh, B. K. Pradhan, D. Chatterjee, and J. Schaffner-

Bielich, Front. Astron. Space Sci. 9, 864294 (2022).
[43] T. Malik, B. K. Agrawal, C. Providência, and J. N. De,

Phys. Rev. C 102, 052801 (2020).
[44] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen,

Nat. Phys. 16, 907 (2020).
[45] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[46] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93,

054314 (2016).
[47] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,

Phys. Rev. D 79, 124032 (2009).
[48] F. Ozel, D. Psaltis, T. Guver, G. Baym, C. Heinke, and

S. Guillot, Astrophys. J. 820, 28 (2016).

[49] C. A. Raithel, F. Özel, and D. Psaltis, Astrophys. J. 844, 156
(2017).

[50] L. Lindblom, Phys. Rev. D 82, 103011 (2010).
[51] L. Lindblom and N. M. Indik, Phys. Rev. D 86, 084003

(2012).
[52] R. Essick, P. Landry, and D. E. Holz, Phys. Rev. D 101,

063007 (2020).
[53] P. Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D

101, 123007 (2020).
[54] M.-Z. Han, J.-L. Jiang, S.-P. Tang, and Y.-Z. Fan, As-

trophys. J. 919, 11 (2021).
[55] K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE, Las Vegas, USA, 2016),
pp. 770–778, 10.1109/CVPR.2016.90.

[56] T. Young, D. Hazarika, S. Poria, and E. Cambria, IEEE
Comput. Intell. Mag. 13, 55 (2018).

[57] D. George and E. A. Huerta, Phys. Rev. D 97, 044039
(2018).

[58] D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018).
[59] M. Carrillo, M. Gracia-Linares, J. A. González, and F. S.

Guzmán, Gen. Relativ. Gravit. 48, 141 (2016).
[60] A. J. Larkoski, I. Moult, and B. Nachman, Phys. Rep. 841, 1

(2020).
[61] D. Guest, K. Cranmer, and D. Whiteson, Annu. Rev. Nucl.

Part. Sci. 68, 161 (2018).
[62] D. Bourilkov, Int. J. Mod. Phys. A 34, 1930019 (2020).
[63] P. Bedaque, A. Boehnlein, M. Cromaz, M. Diefenthaler,

L. Elouadrhiri, T. Horn, M. Kuchera, D. Lawrence, D. Lee,
S. Lidia et al., arXiv:2006.05422.

[64] Y. Fujimoto, K. Fukushima, and K. Murase, Phys. Rev. D
101, 054016 (2020).

[65] F. Morawski and M. Bejger, Astron. Astrophys. 642, A78
(2020).

[66] M. U. Anil, K. Banerjee, T. Malik, and C. Providência,
J. Cosmol. Astropart. Phys. 01 (2022) 045.

[67] Y. Fujimoto, K. Fukushima, and K. Murase, Phys. Rev. D
98, 023019 (2018).

[68] I. Vidana, C. Providencia, A. Polls, and A. Rios, Phys. Rev.
C 80, 045806 (2009).

[69] M. a. Ferreira and C. Providência, J. Cosmol. Astropart.
Phys. 07 (2021) 011.

[70] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[71] K. Hornik, M. Stinchcombe, and H. White, Neural Netw. 2,

359 (1989).
[72] G. Cybenko, Math. Control. Signals, Syst. 2, 303 (1989).
[73] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun,

in Proceedings of the 2009 IEEE 12th International
Conference on Computer Vision (IEEE, Kyoto, Japan,
2009), pp. 2146–2153, 10.1109/ICCV.2009.5459469.

[74] V. Nair and G. E. Hinton, in Proceedings of the 27th
International Conference on International Conference on
Machine Learning, ICML’10 (Omnipress, Madison, WI,
2010), pp. 807–814, ISBN: 9781605589077.

[75] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016), http://www
.deeplearningbook.org.

[76] W. Wei, E. A. Huerta, M. Yun, N. Loutrel, M. A. Shaikh,
P. Kumar, R. Haas, and V. Kindratenko, Astrophys. J. 919,
82 (2021).

THETE, BANERJEE, and MALIK PHYS. REV. D 108, 063028 (2023)

063028-14

https://doi.org/10.1007/JHEP03(2021)273
https://doi.org/10.1007/JHEP03(2021)273
https://doi.org/10.1088/1742-6596/706/2/022004
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.79.044306
https://doi.org/10.3847/1538-4357/aac027
https://doi.org/10.3847/1538-4357/aac027
https://doi.org/10.1103/PhysRevC.103.034607
https://doi.org/10.1103/PhysRevC.103.034330
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.1103/PhysRevX.12.011058
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.3847/2041-8213/ac9b2a
https://doi.org/10.1103/PhysRevC.97.025805
https://doi.org/10.1103/PhysRevC.97.025805
https://doi.org/10.1103/PhysRevC.97.025806
https://doi.org/10.1103/PhysRevC.97.025806
https://doi.org/10.1038/nature09466
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.3847/2041-8213/abe2b4
https://doi.org/10.1088/0264-9381/26/11/114004
https://doi.org/10.1088/0264-9381/27/11/114002
https://doi.org/10.1088/0264-9381/27/11/114002
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/1538-4357/ac5d3c
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevD.99.043010
https://doi.org/10.1103/PhysRevD.99.043010
https://doi.org/10.3389/fspas.2022.864294
https://doi.org/10.1103/PhysRevC.102.052801
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.3847/0004-637X/820/1/28
https://doi.org/10.3847/1538-4357/aa7a5a
https://doi.org/10.3847/1538-4357/aa7a5a
https://doi.org/10.1103/PhysRevD.82.103011
https://doi.org/10.1103/PhysRevD.86.084003
https://doi.org/10.1103/PhysRevD.86.084003
https://doi.org/10.1103/PhysRevD.101.063007
https://doi.org/10.1103/PhysRevD.101.063007
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.3847/1538-4357/ac11f8
https://doi.org/10.3847/1538-4357/ac11f8
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1007/s10714-016-2136-0
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1142/S0217751X19300199
https://arXiv.org/abs/2006.05422
https://doi.org/10.1103/PhysRevD.101.054016
https://doi.org/10.1103/PhysRevD.101.054016
https://doi.org/10.1051/0004-6361/202038130
https://doi.org/10.1051/0004-6361/202038130
https://doi.org/10.1088/1475-7516/2022/01/045
https://doi.org/10.1103/PhysRevD.98.023019
https://doi.org/10.1103/PhysRevD.98.023019
https://doi.org/10.1103/PhysRevC.80.045806
https://doi.org/10.1103/PhysRevC.80.045806
https://doi.org/10.1088/1475-7516/2021/07/011
https://doi.org/10.1088/1475-7516/2021/07/011
https://doi.org/10.1086/533487
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/ICCV.2009.5459469
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.3847/1538-4357/ac1121
https://doi.org/10.3847/1538-4357/ac1121


[77] A. J. K. Chua and M. Vallisneri, Phys. Rev. Lett. 124,
041102 (2020).

[78] T. Chen and C. Guestrin, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16 (ACM, New York, NY,
2016), pp. 785–794, ISBN 978-1-4503-4232-2, 10.1145/
2939672.2939785.

[79] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg et al., J. Mach. Learn. Res. 12, 2825 (2011).

[80] Y. Lecun, Y. Bengio, and G. Hinton, Nat. Cell Biol. 521,
436 (2015).

[81] F. Chollet et al., Keras, https://keras.io (2015).
[82] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard et al., in
Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16 (USENIX
Association, Berkeley, CA, USA, 2016), p. 265–283,
ISBN: 9781931971331.

[83] X. Glorot and Y. Bengio, in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics, Vol. 9 of Proceedings of Machine Learning
Research (PMLR, 2010), pp. 249–256, https://proceedings
.mlr.press/v9/glorot10a.html.

[84] D. P. Kingma and J. Ba, in Proceedings of the 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, 2015, Conference Track
Proceedings, edited by Y. Bengio and Y. LeCun (ICLR, CA,
USA, 2015), arXiv:1412.6980.

[85] S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and
A. Thapaliya, J. Phys. G 43, 074001 (2016).

[86] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015).

[87] G. Ashton et al., Astrophys. J. Suppl. Ser. 241, 27 (2019).
[88] J. Skilling, in Bayesian Inference and Maximum Entropy

Methods in Science and Engineering: 24th International
Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering, edited by R. Fischer,
R. Preuss, and U. V. Toussaint, Vol. 735 of American
Institute of Physics Conference Series (American Institute
of Physics, Washington, DC, USA, 2004), pp. 395–405,
10.1063/1.1835238.

[89] E. Higson, W. Handley, M. Hobson, and A. Lasenby, Stat.
Comput. 29, 891 (2019).

[90] J. S. Speagle, Mon. Not. R. Astron. Soc. 493, 3132 (2020).
[91] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021).
[92] M. Ferreira, M. Fortin, T. Malik, B. K. Agrawal, and C.

Providência, Phys. Rev. D 101, 043021 (2020).
[93] B. K. Pradhan, D. Chatterjee, R. Gandhi, and J. Schaffner-

Bielich, Nucl. Phys. A1030, 122578 (2023).
[94] T. Malik, M. Ferreira, M. B. Albino, and C. Providência,

Phys. Rev. D 107, 103018 (2023).
[95] J. Zhou, J. Xu, and P. Papakonstantinou, Phys. Rev. C 107,

055803 (2023).
[96] R. Morrow and W. Chiu, https://arxiv.org/abs/2004.05617.
[97] A. Thete, GitHub (2022), https://github.com/ameya1101/

NS-ANN.
[98] https://www.uc.pt/lca.

REALIZING THE POTENTIAL OF DEEP NEURAL NETWORK … PHYS. REV. D 108, 063028 (2023)

063028-15

https://doi.org/10.1103/PhysRevLett.124.041102
https://doi.org/10.1103/PhysRevLett.124.041102
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://keras.io
https://keras.io
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arXiv.org/abs/1412.6980
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.1063/1.1835238
https://doi.org/10.1007/s11222-018-9844-0
https://doi.org/10.1007/s11222-018-9844-0
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1103/PhysRevD.101.043021
https://doi.org/10.1016/j.nuclphysa.2022.122578
https://doi.org/10.1103/PhysRevD.107.103018
https://doi.org/10.1103/PhysRevC.107.055803
https://doi.org/10.1103/PhysRevC.107.055803
https://arxiv.org/abs/2004.05617
https://arxiv.org/abs/2004.05617
https://arxiv.org/abs/2004.05617
https://github.com/ameya1101/NS-ANN
https://github.com/ameya1101/NS-ANN
https://github.com/ameya1101/NS-ANN
https://www.uc.pt/lca
https://www.uc.pt/lca
https://www.uc.pt/lca

