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We examine solar neutrinos in dark matter detectors including the effects of flavor-dependent radiative
corrections to the CEνNS cross section. Working within a full three-flavor framework, and including matter
effects within the Sun and Earth, detectors with thresholds ≲1 keV and exposures of ∼100 ton-year could
identify contributions to the cross section beyond tree level. The differences between the cross sections for
the flavors, combined with the difference in fluxes, would provide a new and unique method to study the
muon and tau components of the solar neutrino flux. Flavor-dependent corrections induce a small day-night
asymmetry of < j3 × 10−4j in the event rate, which if ultimately accessible would provide a novel probe of
flavor oscillations.
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I. INTRODUCTION

The cross section for coherent elastic neutrino-nucleus
scattering (CEνNS) in the Standard Model (SM) is theo-
retically well-understood at tree level [1]. Because this is a
neutral current process, at tree level the cross section is the
same for all neutrino flavors. Using a stopped-pion beam,
which produces electron, muon, and antimuon neutrinos
with energies Oð10Þ MeV, COHERENT has measured the
CEνNS cross section on Ar and CsI targets. Summed over
neutrino flavors produced by the source, this measurement
is consistent with the SM prediction [2].
Forthcoming COHERENT data is expected to improve

on this measurement for different nuclear targets [3]. In
addition, reactor experiments, which are sensitive to elec-
tron antineutrinos, will measure the CEνNS cross section at
lower neutrino energies, Oð1Þ MeV. Solar neutrinos,
which will be detected via CEνNS at future dark matter
experiments, will measure the cross section for neutrino
energies roughly between stopped pion and reactor experi-
ments. Interestingly, given the flavor composition of the
solar flux that arrives at Earth, dark matter experiments will
be sensitive to electron, muon, and tau neutrinos via the
CEνNS process.
Beyond tree level in the SM, it has long been known

that the CEνNS cross section is flavor dependent [4].

The simplest way to see this is through the neutrino-charge
radius diagram, which in the limit of small momentum
transfer amounts to a lepton-mass dependent shift in
the sin2 θw term in the cross section [5–7]. The flavor-
dependent corrections scale as the mass of the charged
lepton, implying that they are the most significant for tau
neutrinos. In addition to flavor-dependent corrections, there
are flavor-independent corrections that affect electron,
muon, and tau neutrinos in a similar manner. Radiative
corrections may be detectable in future stopped-pion
experiments with reduced systematic uncertainties [7].
In this paper, we study the impact of SM radiative

corrections on the detection of solar neutrinos via CEνNS at
future direct dark matter detection experiments. Solar
neutrinos are a unique source for CEνNS because all three
flavor components are present in the flux. In order to
determine the interaction rate of electron, muon, and tau
neutrinos, we account for matter effects in both the Earth
and the Sun within a full three-flavor neutrino oscillation
framework. The full three-flavor analysis is necessary,
since the cross section is different for each of the three
flavors when including radiative corrections.
We highlight two particular interesting phenomenologi-

cal implications of radiative corrections in solar neutrino
CEνNS measurements. The first is a possible separation of
the muon and tau neutrino flavor components of solar flux.
Previous solar neutrino experiments [8,9] with neutral
current sensitivity utilized cross sections that are the same
for muon and tau neutrino flavors. Therefore through
precise CEνNS measurements, dark matter experiments
could differentiate between muon and tau flavors by
exploiting both the differences in their fluxes and cross
sections. The second interesting phenomenological impli-
cation is matter-induced oscillation effects, which introduce
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a day-night asymmetry in the propagation of electron
neutrinos in the CEνNS channel. This effect has been
measured by Super-Kamoikande using electron-neutrino
scattering, but has yet to be studied using a different
neutrino detection channel. We provide the first estimate
of the day-night asymmetry for neutrinos via a channel
different from neutrino-electron elastic scattering.
This paper is organized as follows. In Sec. II we review

the CEνNS cross section with radiative corrections imple-
mented. In Sec. III we discuss how matter effects, both
those in the Sun and Earth, affect neutrino propagation
within a three-neutrino framework. In Sec. IV we present
the results of our analysis, and Sec. V contains our
discussion and conclusions.

II. CEνNS WITH RADIATIVE CORRECTIONS

The tree-level CEνNS differential cross section as a
function of neutrino energy Eν, recoil energy T, and nuclear
mass MA is [10]

dσν
dT

¼ G2
FMA

π
ðQV

WÞ2
�
1 −

T
Eν

−
MAT
2E2

ν

�
F2
WðQ2Þ

þ G2
FMA

π
ðQA

WÞ2
�
1 −

T
Eν

þMAT
2E2

ν

�
F2
WðQ2Þ; ð1Þ

where GF is the Fermi coupling constant and the nuclear
mass is MA ¼ A × 931 MeV where the mass number
A ¼ Z þ N with proton number Z and neutron number N.
The 4-momentum transfer Q2 is related to nuclear recoil as
T ¼ Q2=2MA, and takes values in the range [0, Tmax],
where

Tmax ¼
2E2

ν

MA þ 2Eν
: ð2Þ

The factors QV
W and QA

W refer to vector and axial vector
weak charges, respectively. The vector charge is

QV
W ¼ gVpZ þ gVnN; ð3Þ

where gVp ¼ 1=2 − 2 sin2 θw and gVn ¼ −1=2 are the proton
and neutron vector coupling to Z0. The axial charge is

QA
W ¼ gApðZþ − Z−Þ þ gAnðNþ − N−Þ; ð4Þ

where Z�ðN�Þ refer to the spin up (+) and spin down (−)
protons (neutrons), and gAp ¼ 0.63 and gAn ¼ −0.59 are the
axial vector couplings with the Z0. For spin-zero nuclei,

QA
W ¼ 0, and for nuclei with spin, QA

W
QV

W
∼ 1

A. As a result the

axial-contribution term in the cross section is strongly
suppressed relative to the vector contribution.

Thus, for the tree-level differential cross-section we can
write

dσν
dT

¼ G2
FMA

4π

�
1 −

T
Eν

−
MAT
2E2

ν

�
Q2

WF
2
WðQ2Þ; ð5Þ

where the weak charge at tree-level is given by QW ¼
N − ð1 − 4 sin θw2ÞZ with sin2 θw as the weak mixing
angle. Note that QV

W differs from QW by a factor of two.
The FW term in Eq. (1) represents the weak form factor,
which encodes the information on the distribution of the
nucleons in the nucleus. This can be approximated as

FW ¼ 1

QW
½NFnðQ2Þ − ð1 − 4 sin2 θwÞZFpðQ2Þ�;

where we take the Helm form factor prescription [11] for
Fn and Fp representing neutron and proton form factors,
respectively (see also Ref. [12] for analysis of COHERENT
data and implications for form factor models).
Including next-to-leading order effects change Eq. (5).

In the effective field theory (EFT) formalism, the next-to-
leading-order term in the cross section is [7]

dσνl
dT

¼ G2
FMA

4π

�
1 −

T
Eν

−
MAT
2E2

ν

�
F 2

νlðQ2Þ; ð6Þ

where

F νlðQ2Þ ¼ FWðQ2Þ þ α

π
½δνl þ δQCD�F chðQ2Þ; ð7Þ

with FWðQ2Þ and F chðQ2Þ defined as the renormalization
scale-dependent weak and charge form factors. The factors
δνl represent flavor-dependent corrections that arise from
charged current loop corrections while δQCD represents the
corrections due to quark and hadronic loops [7].
It is important to note here that FWðQ2Þ is different

from FWðQ2Þ. This can be understood by “turning off” the
radiative corrections associated with α, i.e., α → 0. In this
case, Eq. (6) still differs from the tree-level result in Eq. (5).
In other words, there are radiative corrections to the weak
form factor (FW) and the weak charge (QW) that are
embedded in the term F νl.
In Fig. 1, we show the cross section as a function of

nuclear recoil energy for neutrinos with energy 10 MeV, for
xenon and argon targets. Here, we see that the cross
sections, which are different for electron, muon, and tau
flavors, start to diverge particularly at the lowest recoil
energies. For comparison, we show the range of tree-level
predictions for different assumed values of sin2 θw, with a
value of sin2 θw ¼ 0.23858 motivated from Table 10.2 of
Ref. [13], and sin2 θw ¼ 0.23112 as motivated from pre-
vious CEνNS analyses [7]. Even accounting for this range
of sin2 θw, the flavor corrections are shown to separate from
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the range of tree-level predictions. For example, at T ¼
1 keV and Eν ¼ 10 MeV, and for sin2 θw ¼ 0.23858 the
percent difference between the tree-level model and the
radiative correction is 0.95% (1.8%) for νe, 2.77% (3%) for
νμ, and 4.32% (4.4%) for ντ for argon (xenon). Therefore,
an experiment with sufficient sensitivity to low-energy
recoils should be able to distinguish the tree-level from
radiative correction models.

III. SOLAR NEUTRINOS AND
EARTH-MATTER EFFECTS

In this section we briefly review matter effects in the
propagation of solar neutrinos, highlighting how they are
relevant for our calculations. We separately account for
both matter effects in the Sun and in the Earth within a
full three-flavor framework.

A. Propagation of solar neutrinos in the Sun

At the core of the Sun, electron neutrinos (νe) are
produced primarily via the proton-proton (pp) chain, with
a small component produced from the carbon-nitrogen-
oxygen (CNO) cycle [14]. To determine the effect of
flavor transformations on neutrinos as the propagate
through the Sun, we consider a standard three-flavor
model, in which the neutrino propagation is adiabatic,
so that the density variation is imperceptible or “slow”
along an oscillation length.
As the neutrinos travel through the Sun, the electron

number density Ne changes. This induces a corresponding
variation in the matter potential, which is given by

Vcc ¼
ffiffiffi
2

p
GFNe: ð8Þ

The electron density profile of the Sun at a given time of
propagation (t) can be modeled as [15]

NeðtÞ ¼ Neðt0Þ exp
�
−
10x
R⊙

�
; ð9Þ

where x ∼ t − t0 is the distance traveled by the neutrino in
the Sun since production time t0, and R⊙ ≃ 7 × 108 m
represents the solar radius. The electron number density
decreases almost monotonically from 100NA cm−3 at the
center to zero at the surface of the Sun. As a result, the
adiabatic parameter for a neutrino of energy Eν, given by
γ ¼ j −V̇V cos 2θEν

Δm2 sin2 2θ j, is small leading to an incoherent neu-
trino flux of the mass-eigenstates jνii ¼ ðν1; ν2; ν3ÞT as
neutrinos exit the Sun. Here θ represents the mixing angle
whereasΔm is the mass splitting, as for the case of standard
neutrino oscillation.
The probability of an electron neutrino transitioning to a

flavor α at the surface of the Sun is given by

PS
eα ¼ PS

e1P1α þ PS
e2P2α þ PS

e3P3α: ð10Þ
Here PS

ei refers to the adiabatic transition probability of a νe
to a νi as the neutrino travels through the Sun, and Piα
provides information on the fraction of να present in νi,
i.e., Piα ¼ jhναjνiij2, where jναi ¼ ðνe; νμ; ντÞT are the
flavor states. The relation between the mass eigenstates
and the flavor eigenstates is

jνii ¼
X
α

Uαijναi. ð11Þ

We use the standard parametrization of the unitary matrix
given by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix

FIG. 1. Cross section for a 10 MeV neutrino for an argon (left) and xenon (right) target. The upper curves are the radiative correction
models for each of the different flavors (l), as indicated in the legend, while the lower band shows the tree-level calculation for the range
of allowed sin2 θw. The insets zoom in on the regions at low recoil energies where the deviations between the cross sections become most
apparent.
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U ¼

2
64
1 0 0

0 c23 s23
0 −s23 c23

3
75
2
64

c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c23

3
75
2
64

c12 s12 0

−s12 c12 0

0 0 1

3
75

¼

2
64

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

3
75;

where cij ¼ cos θij and sij ¼ sin θij with θij refers to the mixing angles and δCP is the CP-violating phase. For the
parameters describing the PMNS matrix, we use the best fit values for these parameters [16],

mixing angles∶ θ12 ¼ 33.45° θ23 ¼ 49.2° θ13 ¼ 8.57°

mass-splittings∶ Δm2
21 ¼ 7.5 × 10−5 eV2 Δm2

3l ¼ 2.5 × 10−3 eV2

and take δCP ¼ 135° which is the maximal CP-violating value and is consistent with the allowed 3σ range.

The Hamiltonian describing propagation in the Sun is
made up of the local eigenvalues and can be written as

HfljνiðtÞi ¼ ÛðtÞEMðtÞÛ†ðtÞjναðtÞi; ð12Þ

where the unitary mixing matrix Û is written in terms of the
local-matter mixing angles θm, the local flavor eigenstates,
ναðtÞ, and mass eigenstates, νiðtÞ, that depend on the
position and/or the time along the path of neutrino transit.
The energy eigenvalue matrix in the mass basis is
EM ¼ 1

2Eν
diagðm2

1; m
2
2; m

2
3Þ. Consequently the PS

ei can be
written as [17]

PS
ei ¼

Z
R⊙

0

jhνijνeðtÞij2fðrÞdr

¼
Z

R⊙

0

X3
j¼1

jÛejðθmðNeðrÞÞj2Pjump
ji fðrÞdr;

where Pjump
ji refers to the probability of jumping from

one energy eigenvector to the other. For adiabatic propa-
gation, Pjump

ji ¼ δji.
Neutrinos from the different nuclear reactions are pro-

duced within different regions of the Sun. To account for
this, we average (represented by hf̄i for average of any
function f) over the different production zones within the
Sun, weighted by the fraction of neutrinos produced in each
zone fðrÞ. The information on zonal neutrino production
fraction and flux information is taken from Ref. [18].
For mixing between three flavors of neutrinos, there

are two possible resonances, one for each mass splitting
given by Vres

cc ≃ Δm2

2Eν
cos θ. The Vsun

cc , which is a function
of the electron number density in the Sun as in Eq. (8),
is much smaller than the Vres

cc for Δm2
3l i.e.

Vsun
cc ¼ ffiffiffi

2
p

GFNsun
e ≪ Vres

ccmax
¼ Δm2

3l
2Eν

. See Ref. [17] for a

thorough discussion. As a result one can thus consider that
ν3 “decouples” from the other two states giving an effective
three-flavor probability

PS
e1 ¼

c213
2

�
1þ hcos 2θ12mi

�
;

PS
e2 ¼

c213
2

�
1 − hcos 2θ12mi

�
;

PS
e3 ≃ sin2θ13; ð13Þ

where cos 2θ12m ¼ ðk cos 2θ12 − Veff
CCÞ=km and km ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk cos 2θ12 − Veff
CCÞ2 þ ðk sin 2θ12Þ

p
. The term k ¼ Δm2

2Eν
.

The effective potential is given by Veff
cc ¼ cos2 θ13Vcc [17].

B. Propagation through Earth

We now move on to propagation in the Earth. Similar
to Eq. (10), the probability after transitioning the Earth
matter, PE, is given by

PE
eα ¼ PS

e1P
E
1α þ PS

e2P
E
2α þ PS

e3P
E
3α; ð14Þ

where PE
iα represents the probability of transition frommass

state νi to να along the neutrino path through the Earth.
In order to calculate PE

iα we consider the Hamiltonian
describing the evolution of mass-eigenstates jνii

HMjνii ¼ ðEM þ U†VUÞjνii; ð15Þ

where V ¼ diagðVccðtÞ; 0; 0Þ is the matter potential.
The nonzero element in the matrix V for the electron
neutrino arises because the charged-current interaction is
only viable for νe from the presence of electrons in matter.
While neutral-current interactions do occur, they can be
subtracted from the matter potential as they do not affect
the oscillations.
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The amplitude of transition is Aiα ¼ hναjνiðtÞi with
hναj ¼

P
ihνijUαi. The transition probabilities are then

PE
iα ¼ jhναjνiðtÞij2

¼
				
X
j;k

hνjjUαjSikjνkð0Þi
				
2

¼
				
X
j

UαjSij

				
2

¼ j½SUT �iαj2 ð16Þ

where S is the transition matrix in mass-basis, given by
exp ð−iHMLÞ, with L being the distance traveled by the
neutrino. Combining Eqs. (13) and (16) with Eq. (14), we
obtain the probability of detecting neutrinos of a particular
flavor in the night after traveling through Earth [for
comparison, the probability of detecting electron neutrinos
in the day is given by PS

eα in Eq. (10), which is the
probability of detecting να as it exits the surface of the Sun].
The resulting probabilities PE

iα are shown in Fig. 2, for the
example case of a 10 MeV neutrino. Here we model the
Earth density profile using the five-layer model [19] of
constant matter density solutions for the matter effect. The

change in amplitude of the probabilities that are evident
result from transitions through different layers in the Earth.

C. Averaging of survival probability

Since the detectors that we consider do not have sensi-
tivity to the direction of the incoming neutrino, we must
average over the incoming neutrino direction as well as time.
We then average the probabilities in Eq. (16) as [20]

hPEi ¼
R τd2
τd1

dτd
R τh2 ðτdÞ
τh1 ðτdÞ

dτhPEðηðτh; τhÞÞR τd2
τd1

dτd
R τh2 ðτdÞ
τh1 ðτdÞ

dτh
; ð17Þ

where η is the nadir angle (180°-zenith angle) of the Sun at
the detector site. Since the nadir angle will change based on
the Sun position in the sky during the day (and also the
night), the nadir angle is a function of daily time τd and
hourly time τh. The above equation can then be written as a
single integral of the form

hPEi ¼
Z

η2

η1

dηWðηÞPEðηÞ; ð18Þ
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FIG. 2. Probabilities for neutrinos propagating through the Earth as a function of zenith angle, in degrees, for a neutrino of energy
10 MeV. The different rows represent probabilities for transitions to the three flavors, while the different columns represent transitions
from different mass eigenstates.
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where WðηÞ can be thought of as a weight function that
gives information of “solar exposure” of the trajectory.
For more details on the weight function see Ref. [20]. For
our analysis we use a detector latitude of λ ¼ 42.421°
corresponding to the latitude for Gran Sasso National
Laboratory. However, on repeating the calculation for
other latitudes, we found that the results do not change
appreciably for this analysis.
For the case of a 10 MeV neutrino, Fig. 2 shows the

average values of the probabilities using Eq. (18). Using
these results, Fig. 3 shows the survival and appearance
probabilities specifically for the 8B component of the flux,
as a function of neutrino energy. This component is
highlighted because it will be the most readily detectable
through CEνNS at dark matter detectors, given the nuclear
recoil thresholds of these detectors. This is shown explicilty
in Table I, which shows the threshold energy required for
detection of each of the solar flux components. Figure 3
shows that the appearance probability for ντ is largest,
∼40%, as compared to the νμ and νe components, which are
∼30%. Matter effects are largest for the highest-energy
neutrinos; matter effects slightly reduce the probability for
ντ and νe at high energy, and decrease the probability for νμ
at high energy. Below we exploit this difference between
the day and night probabilities to determine the day-night
asymmetry in the event rate.

IV. RESULTS

In this section we present our results, starting with the
predicted event rates in argon and xenon detectors, and

we then examine the prospects for detecting radiative
corrections to the cross section. We then present the
calculation of the day-night asymmetry, and estimate the
possibilities for detection.

A. Event rates for argon and xenon detectors

The event rate for a να is

dNα

dT
¼

Z
Eν;min

dϕðEνÞ
dEν

dσαðEν; TÞ
dT

Pðνe → ναÞdEν; ð19Þ
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FIG. 3. Survival and appearance probabilities (top) and fluxes (bottom) as a function of neutrino energy for the different components
of the solar neutrino flux. The top panel shows the day and night probabilities for the 8B flux. Labels for the flux components show the
energy range over which each component is prominent.

TABLE I. Solar neutrino sources and their energy ranges, along
with the maximum recoil energy the source component can
impart. If the maximum recoil energy is below the threshold of
the detector, the associated component will not contribute to the
event rate.

Maximum recoil energy (keV)

Reaction Eν (MeV) Argon target Xenon target

pp < 0.42 9.47 × 10−3 2.96 × 10−3

7Be 0.38 7.92 × 10−3 2.48 × 10−3

0.86 3.99 × 10−2 1.24 × 10−2

CNO-N < 1.20 7.72 × 10−2 2.41 × 10−2

pep 1.44 0.112 3.49 × 10−2

CNO-O < 1.73 0.161 5.02 × 10−2

CNO-F < 1.74 0.163 5.08 × 10−2

8B < 16.35 14.34 4.49
hep < 18.77 18.90 5.91
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where dϕ=dEν is the neutrino spectrum produced in the
Sun. The integral bounds starts from Eν;min, which corre-
sponds to the minimum energy of the neutrino to produce
nuclear recoils of energy T, and is given by Eν;min ¼
1
2
ðT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2TMA

p
Þ. Equation (19) differs from the

typical formula for CEνNS event rates through the inclu-
sion of the survival and appearance probability terms
Pðνe → ναÞ.
Defining a minimum detector threshold energy for

nuclear recoils as Tth, the number of events for a given
neutrino flavor is

Nα ¼
Z
T th

dNα

dT
dT: ð20Þ

The total event rate and number of events as seen by the
detector is then

dN
dT

¼
X
α

dNα

dT
¼ dNe

dT
þ dNμ

dT
þ dNτ

dT
;

Ntotal ¼
X
α

Nα ¼ Ne þ Nμ þ Nτ:

Figure 4 shows the event rate for the tree-level calcu-
lation, as compared to the rates for the radiative correction
model discussed in Sec. II. We show the rates for argon and
xenon detectors, which are representative targets for next
generation detectors [21]. Figure 5 shows the correspond-
ing total number of events above a threshold as a function
of threshold energy.
These figures also show the impact of assuming different

values of sin2 θw discussed in Sec. II in the tree-level
calculation. For both targets, we see that the corrections
are largest for the τ component, and the smallest for the
electron-neutrino component. For both of these figures,

FIG. 4. Event rates for argon (left) and xenon (right) as a function of nuclear recoil energy. Shown are the tree-level calculations as
compared to the model including radiative corrections. The band for the tree-level calculations show the effect of changing the value
of sin2 θw.

FIG. 5. Total event rate above a recoil threshold energy for argon (left) and xenon (right) as a function of threshold nuclear recoil
energy. Shown are the tree-level calculations as compared to the model including radiative corrections. The band for the tree level
calculations show the effect of changing the value of sin2 θw. Refer to Fig. 4 for the legend.
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we assume an ideal-detector configuration with perfect
efficiency and energy resolution. More realistically, these
curves would need to be modified by the appropriate
efficiency and resolution. For argon, nearly the entire rate
is due to 8B, with the increase at low-recoil energy in Fig. 4
from the CNO flux. On the other hand, for xenon the rate is
entirely due to 8B.

B. Detection prospects

We consider detectors that are only able to measure
energy deposition from the scattered nucleus, and therefore
will not be able to identify scattering due to the different
flavors on an event-by-event basis. Therefore, extracting
out the flavor composition of the event rate must be done
statistically, since we are trying to extract the fraction of
the νe, νμ, and ντ events from a single observation, which is
the number of events as a function of energy.
We consider a simple model in which there are no

experimental backgrounds, and assume that the detectors
have perfect efficiency and energy resolution. For our mock
experiment, we bin the data into a total of nbin recoil energy
bins. Assuming a poisson distribution for the energy bins,
the binned log likelihood is given by

lnL ¼
Xnbin
i¼1

ni ln μi − μi − ln ðni!Þ;

where ni refers to the number of events observed in the
ith bin and μi is the central value of the expectation in the
ith bin. With this model, we consider two directions for
the analysis. First, differentiating the tree level from the
radiative corrections model, and second, specifically iso-
lating the ντ flux component.

1. Differentiating radiative corrections
from tree-level corrections

In the full three-flavor model, we define the expected
number of events in the ith bin as

μi ¼
X
α

fαμiα ¼ feμie þ fμμiμ þ fτμiτ

¼ feNie þ fμNiμ þ fτNiτ

¼ TexpðfeN̄ie þ fμN̄iμ þ fτN̄iτÞ; ð21Þ

where μiα represents the expectation of να events in the
ith bin, which can be taken as the number of events Niα in
that bin. In Eq. (21) Texp is the experimental exposure,
which is the size of the detector times the runtime of
the experiment and N̄iα represents the number of events for
unit ton-year.
The terms fα are equal to unity for the fiducial model,

and can be interpreted as normalizations of the product of
the flux and the survival probabilities for the different

flavors. In other words, take ϕα ∼ ðϕPeαÞ to be calculated
using a fiducial set of fixed parameters, which we refer to as
standard solar model (SSM) parameters. For the SSM, we
use the GS98-SFII model, as shown in Table 2 of Ref. [14].
Then fα budgets for the uncertainty in this calculation, and
we have

fα ¼
ðϕαÞ

ðϕαÞSSM
:

We then differentiate lnL with respect to the model
parameters fα, and average over the likelihood function.
The results are the elements of the inverse covariance
matrix, or the Fisher matrix [22] F, which are given by

Fαβ ¼
Xnbin
i¼0

Texp
N̄iαN̄iβ

N̄itot
: ð22Þ

From the inverse of the Fisher matrix, we can generate the
variance on the fα’s, i.e., hfαi, as well as the correlation
and containment regions on these parameters. Priors on
the fα’s can be included via the methods discussed in
the Ref. [22].
Even though we have summed over all components of

the solar flux (Fig. 3), for the thresholds under consid-
eration for the CEνNS process in the detectors, the event
rates are dominated by the 8B component of solar flux, as
can be explicitly seen in Table I. An updated global analysis
finds that the 8B flux uncertainty is ∼2.5% [23]; motivated
by these results we take a prior of 2.5% on the fα’s.
To additionally account for theoretical uncertainties on the
components of the oscillation parameters, we add 10%
systematic uncertainties on the observable N̄itot. This is
intended to conservatively encapsulate the uncertainty on
the parameters of the neutrino mixing matrix. Note that we
do not account for theoretical uncertainties on the para-
meters that describe the cross section, and assume that these
are fixed by the model.
From the flux normalizations described above, we can

define the flux-averaged cross section for a given flavor as

hσαi ¼
R R dϕα

dEν

dσα
dT dEνdTR dϕα

dEν
dEν

; ð23Þ

where the integral is above the threshold recoil energy and
over the kinematically accessible range of neutrino ener-
gies. Since our base parameters, the fα’s, above are
proportional to the total number of events for each flavor
component, we must transform to obtain projected errors
on the flux-averaged cross section. This transformation is
done by calculating the covariance matrix, C, as

C ¼ JF−1J⊤; ð24Þ
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where J is the Jacobian matrix given by Jαβ ¼ ∂hσβi
∂fα

and F−1

is the inverse of the Fisher matrix given in Eq. (22). We then
determine the pairwise confidence regions by calculating a
χ2 surface,

χ2 ¼ ðhσαi − hσαimodelÞðCÞ−1ðhσαi − hσαimodelÞT; ð25Þ

where Δχ2 ¼ 2.3, 6.17 correspond to 1σ and 2σ respec-
tively. To determine the fiducial values of hσαimodel, we use
Nα=ðTexphϕαiÞ for a given lower-recoil energy threshold,
where hϕαi is the average flux, also in the denominator
in Eq. (23).
The projected uncertainties on hσαi for different

threshold recoil energies and for different combinations
of neutrino flavor for Texp ¼ 100 ton-yr are shown in
Figs. 6 and 7 for xenon and argon, respectively. For 2.5%
prior, in the hσμi-hστi parameter space the tree-level and the
radiative correction models are distinguishable for an
optimistic threshold of 0.1 keV at the 1σ level, while the
models are less distinguishable for the 1 keV threshold.
The shift in the flux-averaged cross sections from the

tree-level to the radiative correction are evident in all cases.
Note that even though the flux-averaged cross section shifts
from the radiative to the tree-level calculations, this shift is
similar in all flavor directions, and is primarily due to the

flavor-independent contributions. The negative slope of the
semimajor axis implies the hσαi’s are anticorrelated.
In the future, the precision of solar neutrino flux

measurements may be improved. To show how our results
improve with more precise flux measurements, Figs. 8
and 9 exhibit the chance of distinguishing the tree-level and
radiative-corrections flux average cross sections for a 1%
flux prior. In this case, especially in the νμ and ντ space, we
see that the radiative cross section is distinguishable from
the corresponding tree-level cross sections. We see that
it is possible to separate the νμ and ντ components for both
xenon and argon targets. This would be the first such
separation of νμ and ντ components of the Solar neutrino
flux. In the Appendix, we examine the effect of changing
the value of sin2 θw on the discrimination between the tree-
level and radiative models.

2. Effective two-flavor model for detection of ντ
In the analysis above we have presented a methodology

for isolating the τ-neutrino flux within the context of a full
three-flavor analysis. Even though the cross section is
different when including radiative corrections, the measure-
ment is still challenging, in large part because of the
degeneracy between the three flavors. Since the τ-neutrino
flux from the Sun has never been specifically isolated, it is
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FIG. 6. One and two sigma containment regions for the flux-averaged cross section, in units cm2, in the full three-flavor model
assuming a xenon target, for an exposure of 100 ton-yr. Containment regions are shown for the tree-level cross section model, as well as
the radiative correction model. The top row assumes a nuclear recoil threshold of 1 keV, and the bottom shows a threshold of 0.1 keV. All
panels assume a flux prior on solar neutrinos of 2.5% and sin2 θw ¼ 0.23857.
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interesting to approach the analysis in a simpler manner.
With this motivation, we consider an effective two-flavor
model, in which the muon and electron neutrino flux
components are combined, so that the two model parameters
are given by the tau flux-averaged cross section, and the
weighted muon and electron flux-averaged cross section.
In this effective two-flavor case, we replace Eq. (21) with

μi ¼ fτNiτ þ fxðNiμ þ fτNieÞ
¼ TexpðfτN̄iτ þ fxðN̄iμ þ N̄ieÞÞ: ð26Þ

In this model we define the effective flux-averaged cross
section for muon and electron components as

hσxi ¼
Ne þ Nμ

Texphϕxi
; ð27Þ

and the average flux as

hϕxi ¼ hϕei þ hϕμi: ð28Þ

On repeating the algorithm outlined in the Sec. IV B but in
the two-parameter space comprising of hστi and hσxi, we
obtain the projected uncertainties as shown in Figs. 10
and 11 for sin2 θw ¼ 0.23857 (The effect of varying sin2 θw
is shown in the Appendix). For an optimistic 0.1 keV
threshold, we see clear separation between the radiative and
tree-level models, even at the 2σ level for xenon and nearly
two-sigma level discrimination for argon. Discriminiation

between the radiative and tree-level models is possible at
the 1σ level for a 1 keV threshold.
We note that even though in our effective two-flavor

model, we have isolated the ντ component, this choice is
not unique; a similar analysis could have been performed
isolating the other two flavors. Further, though the results
presented in the effective two-flavor analysis are more
aggressive than the three-flavor model, information is lost
when combining the fluxes. Nonetheless, the effective two-
flavor formalism does provide an important check on the
full three-flavor model, and an approximate method to
isolate each of the flux components.

C. Including detector efficiency and energy resolution

In the analysis to this point, we have assumed an ideal
detector. To estimate how the detection prospects change
when assuming a more realistic detector configuration,
including such effects as modeling the detector energy
resolution and efficiency as a function of energy, we use
results from the NEST simulation [24]. For details on the
parameters we use for the NEST simulation, we refer to
previous related analyses [25,26].
Figure 12 shows the event rate spectrum obtained from

NEST, compared to the ideal case for a xenon detector.
Shown are the spectra for each flavor, as well as for the
sum of all flavors. This analysis shows that the efficiency
drops to zero at approximately 0.5 keV. In addition, energy
resolution smears the rate so that events appear beyond the
nominal endpoint of the spectrum.
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Using the results from Fig. 12, the lower panel in Fig. 13
shows the error ellipses based on the simulated data for a
xenon target. Comparing it with the ideal case shown in top
panel of the same Fig. 6 we see that the containment
regions have slightly larger overlaps. However, one can
distinguish between the two models if one has a better
prior, from better flux measurements and/or longer expo-
sure. Additionally, if the true value of sin2 θw < 0.23857,
the difference between the tree level and radiative correc-
tion will become more evident. A more rigorous likelihood

analysis with real detector-based simulation, like above,
and with other targets is left for future work.

D. Day-night effect

Though as discussed the flavor-dependent radiative
corrections are small, since it is very interesting to search
for flavor dependencies in the CEνNS cross section, we
now discuss the possibilities for extracting the flavor
dependencies. We will specifically consider the differences
in the event rates for neutrinos that pass through the Earth
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assuming an argon target. Containment regions are shown for the tree level cross section model, as well as the radiative correction
model. The left panel assumes a nuclear-recoil threshold of 1 keV, and the right shows a threshold of 0.1 keV. All panels assume a flux
prior on solar neutrinos of 2.5% and sin2 θw ¼ 0.23857.
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as opposed to those that reach the detector without going
through the Earth. This day-night effect has been detected
at a level ∼3% for 8B neutrinos using the charged-current
channel at Super-Kamiokande [9]. Here, we provide the
first estimate of this effect using CEνNS with flavor-
dependent corrections.
If the number of events in the night and day are,

respectively, NN and ND, the asymmetry between the
day night events is

A ¼ 2
NN − ND

NN þ ND
: ð29Þ

For the cross sections above, we find that the day-night
asymmetry is

A ≃ −2.5 ∼ 10−4 ð30Þ

at the thresholds under consideration. The asymmetry is the
strongest at the highest recoil energies as can be seen in
the top panel of Fig. 3, though at these energies the event
rates are the lowest 5. The above asymmetry is nearly two
orders of magnitude less than the asymmetry at Super-
Kamiokande, and about an order of magnitude less than the
estimation of the asymmetry that may be detectable by
Borexino [27,28].
We now examine the prospects for detection of the

small asymmetry in Eq. (30). Making the approximation
NN ≃ ND, we have

ANN ≃ NN − ND: ð31Þ

The uncertainty on the event rate is

σ ¼
ffiffiffiffiffiffiffiffiffi
2NN

p
; ð32Þ

so to get an x-sigma detection, we have

x ¼ NN − NDffiffiffiffiffiffiffiffiffi
2NN

p ≃
ANNffiffiffiffiffiffiffiffiffi
2NN

p ¼ Affiffiffi
2

p ffiffiffiffiffiffiffi
NN

p
: ð33Þ

From this estimate, we see that accumulating the largest
number of events is ideal, which means reducing the
threshold to the lowest values possible. However, the
matter effects are most significant at the highest recoil
energies, so in order to most easily detect the effect, it is
prudent to focus on the highest recoil energies, where the
flux is the smallest. Integrating down to 0.1 keV in xenon,
the rough estimate above implies that exposures of Oð105Þ
ton-yr are required to detect the asymmetry at 1σ, which are
larger than currently planned detectors.

V. DISCUSSION AND CONCLUSION

We have discussed the prospects for identifying radiative
corrections to the CEνNS cross section using the solar

neutrino flux at next-generation dark matter detectors.
Solar neutrinos are an interesting source because at
neutrino energies ∼1–10 MeV, the nuclear form factor
effects are small, so the coherence condition is well-
preserved. Further, the fluxes are measured to high pre-
cision by combining results from previous experiments.
Within the context of a full three-flavor analysis that
includes the effects of matter oscillations in the Sun and
the Earth, we find that detectors with exposure ∼100 ton-
year would be able to measure a cross section value that
deviates from the tree-level prediction.
Because the CEνNS cross section including radiative

corrections is different for each of the three flavors, our
analysis provides a novel means to study the transitions to
mu and tau neutrino flavors. This would provide a means to
measure the tau and muon neutrino fluxes by exploiting
both their differences in fluxes and cross sections. More
generally, it would provide a novel method to study tau
neutrino interactions at low energy, and to study tau
neutrinos using CEνNS.
Furthermore, it is interesting to consider if the separation

of muon and tau neutrino fluxes may be possible with
existing neutral current solar neutrino data from, for
example, SNO or Super-Kamiokande. However, this would
only rely on the differences between the muon and tau
fluxes. This would represent a complementary extension to
our analysis.
For the first time, we have provided an estimate of the

day-night asymmetry in the 8B scattering rate with flavor-
dependent radiative corrections included. We find that
flavor-dependent corrections induce a small day-night
asymmetry of ∼ −3 × 10−4 in the event rate. Though it
would provide a novel probe of flavor oscillations, this
appears to be challenging to detect even with next gen-
eration dark matter detectors.
While in our analysis we have focused on the detection

of radiative corrections using 8B neutrinos through the
CEνNS channel, our results can be extended in the future to
other channels, such as the neutrino-electron scattering
channel. In this case, the pp component of the solar flux
induces the largest number of events, which is expected
to be measured to high precision in future experiments.
Similar to CEνNS, radiative corrections induce a few
percent shift in the cross section from the tree-level
value [29], to which future experiments should be sensitive.
We leave this topic for future study.
For our primary analysis, we have assumed idealized

configurations for the detectors. In particular, our results
have assumed energy thresholds that are at this time lower
than the scale at which current detectors are operating.
However, with possible improvements in detector technol-
ogy and analysis, measurements such as those we consider
may be achievable. We have provided an estimate for the
corrections that arise due to finite-detector energy reso-
lution and efficiency, and find that the constraints in this
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case are slightly weakened. Though even in this case of
finite resolution and efficiency, radiative corrections would
be detectable with several hundreds of ton-years of expo-
sure. Our simulation results may be improved upon by
running more realistic simulations of the neutrino inter-
actions in argon or xenon [30].
Additional interesting phenomenology in the neutrino

sector may also be considered using the results of our
analysis. For example, we may consider how changes in the
CP-violating phase change the three-flavor transition
probabilities in the mu-tau sector. We leave these and
related interesting questions to future work.
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APPENDIX: EFFECT OF CHANGE IN sin2 θw

In this appendix, we examine the effect of changing
sin2 θw in our analysis. For an optimistic projection of
sin2 θw ¼ 0.23112, the percentage difference between the
radiative corrections and tree level value of the cross
section is ∼8%. This leads to a better chance of distinguish-
ing the tree-level error models from the ones with radiative
correction in both xenon and argon targets, as shown in
Figs. 14–17. The strong sensitivity to sin2 θw highlights the
importance of even more precise measurements of this
parameters in the future [31].
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FIG. 14. Same as Fig. 6, except assuming sin2 θw ¼ 0.23112.
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