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As first proposed by Gruzinov, a charged particle moving in strong electromagnetic fields can enter an
equilibrium state where the power input from the electric field is balanced by radiative losses. When this
occurs, the particle moves at nearly light speed along special directions called the principal null directions
(PNDs) of the electromagnetic field. This equilibrium is “Aristotelian” in that the particle velocity, rather
than acceleration, is determined by the local electromagnetic field. In Paper I of this series, we analytically
derived the complete formula for the particle velocity at leading order in its deviation from the PND,
starting from the fundamental Landau-Lifshitz (LL) equation governing charged particle motion, and
demonstrated agreement with numerical solutions of the LL equation. We also identified five necessary
conditions on the field configuration for the equilibrium to occur. In this paper we study the entry into
equilibrium using a similar combination of analytical and numerical techniques. We simplify the necessary
conditions and provide strong numerical evidence that they are also sufficient for equilibrium to occur.
Based on exact and approximate solutions to the LL equation, we identify key timescales and properties of
entry into equilibrium and show quantitative agreement with numerical simulations. Part of this analysis
shows analytically that the equilibrium is linearly stable and identifies the presence of oscillations during
entry, which may have distinctive radiative signatures. Our results provide a solid foundation for using the
Aristotelian approximation when modeling relativistic plasmas with strong electromagnetic fields.
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I. INTRODUCTION

Every electromagnetic field defines, algebraically at each
point, a pair of (possibly identical) light-speed velocities,
its principal null directions (PNDs) [1]. Recently, it has
become clear that this mathematical notion has an elegant
physical manifestation: ultrarelativistic charged particles
follow the PNDs. The phenomenon appears to be quite
universal in that it emerges in different regimes and with
different mechanisms regulating the ultimate particle speed,
such as classical radiation reaction in magnetically domi-
nated fields relevant to astrophysics [2–7] or quantum
radiation reaction in nearly null fields relevant to laser-
plasma physics [8–12]. This regime is Aristotelian in that
the particle velocity, rather than acceleration, is determined
by the local electromagnetic field.
In Paper I of this series [13] we initiated a detailed study

of Aristotelian motion for classical charged particles in
strong external fields. We considered the fundamental
Landau-Lifshitz (LL) equation [14], which includes both
Lorentz force and self-force. We adopted the approximation
that a particle is nearly, but not exactly, moving on a PND,
and derived equations for its velocity at leading order in the
deviation from the PND. We identified precise conditions
on the field configuration that are necessary for the

equilibrium to occur. Finally, we demonstrated numerical
agreement of this approximation with full solutions of
the LL equation in the appropriate regime, using a new
numerical code.
In this paper we will use similar analytical and numerical

techniques to study the entry into Aristotelian equilibrium.
Our main results are as follows: (1) the necessary con-
ditions identified in Paper I are in fact sufficient for
equilibrium to occur; (2) the equilibrium is linearly stable;
and (3) in some parameter ranges there are oscillations
during the approach to equilibrium, whose properties we
study analytically. Together with the findings of Paper I,
these results provide a definite prescription for using the
Aristotelian approximation in practice.
This paper is organized as follows. In Sec. II we review

the Aristotelian equilibrium and relate the assumptions
and results of Paper I [13] to the simple versions given
originally by Gruzinov [4,15]. In Sec. III we review the LL
equation and introduce notation. In Sec. IV we show an
example of Aristotelian equilibrium in a helical field
configuration. In Sec. V we analytically study the approach
to equilibrium and demonstrate agreement with numerical
simulations. In Sec. VI we perform a large numerical
parameter survey that validates our conditions for entry into
equilibrium. Finally, in Sec. VII we summarize our results,

PHYSICAL REVIEW D 108, 063019 (2023)

2470-0010=2023=108(6)=063019(14) 063019-1 © 2023 American Physical Society

https://orcid.org/0000-0002-9074-4657
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.063019&domain=pdf&date_stamp=2023-09-15
https://doi.org/10.1103/PhysRevD.108.063019
https://doi.org/10.1103/PhysRevD.108.063019
https://doi.org/10.1103/PhysRevD.108.063019
https://doi.org/10.1103/PhysRevD.108.063019


focusing on a simple prescription for using the Aristotelian
approximation in astronomical modeling. Appendix pro-
vides details of our numerical scheme. We use Gaussian
units with the speed of light set equal to one.

II. ARISTOTELIAN EQUILIBRIUM

In this section we review the properties of the PNDs and
the Aristotelian equilibrium. The PNDs [1] lμ

þ and lμ
− of an

electromagnetic field Fμν are the solutions to the pointwise
eigenvalue equation

Fμ
νlν

� ¼ �E0lν
�: ð1Þ

The explicit solution in terms of electric and magnetic
fields is

lμ
� ¼ ð1; v⃗�Þ; ð2Þ

v⃗� ¼ E⃗ × B⃗� ðB0B⃗þ E0E⃗Þ
B2 þ E2

0

; ð3Þ

where E0 and B0 are given in terms of the invariants
P ¼ B⃗2 − E⃗2 and Q ¼ E⃗ · B⃗ as

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2Þ2 þQ2

q
− P=2

r
; ð4Þ

B0 ¼ signðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2Þ2 þQ2

q
þ P=2

r
: ð5Þ

When the PNDs are degenerate (lμ
þ ¼ lμ

−), the eigenvalue
vanishes and the field is null (E0 ¼ B0 ¼ 0), in which
case the electric and magnetic fields are orthogonal and
equal in magnitude in any Lorentz frame. When the PNDs
are distinct, the eigenvalues are �E0, and E0 > 0 is the
magnitude of the electric field in any frame where the
electric and magnetic fields are parallel. Similarly, jB0j is
the magnitude of the magnetic field in such a frame,
with B0 positive/negative when the fields are aligned/
antialigned.
The PNDs define integral curves x⃗�ðtÞ by the equation

dx⃗�=dt ¼ v�. The parameter t is the arc length of the space
curve, since v2� ¼ 1. On each curve we may erect a Frenet-

Serret frame fl⃗; n⃗; k⃗g with l
!¼ v� [13]. Since these

curves fill space, for each choice of � we have a full
orthonormal basis for vector fields. In particular, we may
decompose the velocity vector of a charged particle as

v⃗ ¼ vl l
!þ vnn⃗þ vkk⃗; ð6Þ

where we choose l
!¼ v⃗þ for positively charged

particles and l
!¼ v⃗− for negatively charged particles.

As this is an orthonormal frame, the Lorentz factor is
reconstructed by

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2l − v2n − v2k

q : ð7Þ

The Frenet-Serret vectors f l!; n⃗; k⃗g and their associated
curvature κ and torsion ι are local functions of the electric
and magnetic fields for each choice of �. This may be seen
from the defining equations,

l
!¼ v⃗�; ð8Þ

κn⃗ ¼ ð l! · ∇!Þ l! ðn⃗ · n⃗ ¼ 1Þ; ð9Þ

k⃗ ¼ l
!

× n⃗; ð10Þ

ιn⃗ ¼ −ð l! · ∇!Þk⃗: ð11Þ

The first vector l
!¼ v� is determined by the values of E⃗

and B⃗ via Eqs. (8) and (3). The second vector n̂ and the
curvature κ involve first derivatives as well [Eq. (9)]. The

third vector k⃗ ¼ l
!

× n⃗ also depends on first derivatives.
Finally, the torsion ι depends on first and second derivatives
[Eq. (10)]. We will also define the radius of curvature R,

R ¼ 1

κ
: ð12Þ

Note that while E0, B0, and lμ are invariant notions,
the projection of the null vector lμ to the spatial velocity

v� ¼ l
!

depends on the choice of Lorentz frame. The
corresponding Frenet-Serret basis, together with its asso-
ciated curvature and torsion, is similarly noninvariant. We
will be formulating assumptions and deriving results in
terms of these noninvariant quantities; the interpretation is
that our results hold in frames satisfying our assumptions.
Note that we will use the phrase “PND” for both the
invariant null direction in a spacetime sense and the
noninvariant spatial direction v⃗� in a given frame.
Context will make clear which notion is meant.
A particle of charge q and mass m defines a length scale

R and a field scale E by

R≡ q2

m
; E ≡ 3

2

m2

jqj3 ; ð13Þ

with a conventional factor of 3=2. The “classical electron
radius”R is the distance where the electrostatic self-energy
of a point charge equals its rest mass, and the “classical
critical field” E is (three-halves times) the strength of the
electric field at this location. These represent typical scales
at which the classical description of the particle will break
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down. These quantities also define time and magnetic field
scales after multiplying by suitable factors of the speed of
light (set here to unity). We therefore assume

E0; B0 ≪ E; L; T ≫ R; ð14Þ

where L and T are typical length and timescales for the
field configuration to change significantly.

A. Original derivation

We now summarize Gruzinov’s original arguments for
Aristotelian motion [4,15] using the notation of our paper.
Gruzinov considered the case where a particle moves
primarily along a PND, i.e.,

γ ≫ 1; ð15Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n þ v2k

q
≪ 1: ð16Þ

If we approximate the particle motion as a circle of radius
equal to the radius of curvature R ¼ 1=κ of the PND, the
power radiated is ð2=3Þq2R2γ4. Gruzinov assumed that this
“curvature radiation” power is balanced by the Lorentz
force power jqjE0,

2

3
q2R2γ4 ¼ jqjE0: ð17Þ

Solving for γ gives the Gruzinov formula for the Lorentz
factor,

γg ¼
�
3E0R2

2jqj
�

1=4

: ð18Þ

Gruzinov obtained an additional condition for this
equilibrium based on the idea that it can only occur when
the particle has enough space to be accelerated to this
terminal Lorentz factor before the PND curves signifi-
cantly. The curvature radius R sets the scale over which the
uniform field approximation breaks down, so the particle
must be able to gain mγg energy in a region much smaller
than R. The typical energy gain over a region of size D is
qE0D, so we obtain the condition

mγg ≪ qE0R; ð19Þ

which may equivalently be written

γg ≪
E0R
ER

ð20Þ

or

E3=2R ≪ E3=2
0 R: ð21Þ

B. LL derivation

In Paper I [13] we sought to better understand the
Aristotelian equilibrium by studying the fundamental LL
equation of charged particle dynamics. We again assumed
motion along a PND [Eqs. (15) and (16)]. However, the
energy balance condition (17) is inappropriate in this context
since (1) it requires the particle motion to be treated as
circular, an uncontrolled approximation whose compatibility
with the LL equation is not obvious; and (2) the local LL
dynamics contains more information than just energy con-
servation. Instead, to express the idea of energy balance, we
assumed that the local change in energy is small compared to
the typical value set by the Lorentz force,

m

���� dγdt
����≪ jqjE0: ð22Þ

We also assumed that the timescale T for changes in the field
is long compared to the length scale L for spatial changes in
the field,

T ≫ L: ð23Þ

We found that Gruzinov’s equilibrium emerged only after a
final additional assumption,

jιj ≪ jqj
mγ

MaxfE0; jB0jg; ð24Þ

where ι is the torsion of the PND. These three conditions
(22), (23), and (24) replace the assumption (17) of global
power balance in approximate circular motion. Equation (22)
guarantees an approximate power balance locally at the level
of the LL equation (as opposed to globally, at the level of
total radiated energy), while Eqs. (23) and (22) reflect the
approximate circular motion with radius R.
Under these five assumptions (15), (16), (22), (23), (24),

we found that the field determines the velocities
pointwise as

γ ¼
�
9

4

R2

R2

E0

E

�
1=4

¼ γg; ð25Þ

vn ¼ −
1þ δ

γ

ffiffiffiffiffiffi
E0

E

r
; ð26Þ

vk ¼
δ

γ

B0

E0

ffiffiffiffiffiffi
E0

E

r
; ð27Þ

where we used the definitions (13) and also introduced

δ ¼ E0E
E2
0 þ B2

0

: ð28Þ
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We thus reproduced Gruzinov’s Lorentz factor (18) and
derived new expressions (26) and (27) for the drift
velocities.

C. Conditions on the field configuration

The five assumptions (15), (16), and (22)–(24) can be
recast as conditions purely on the field configuration by
using the results (25)–(27). Presenting the results as five
conditions Ci ≪ 1, the conditions are

C1 ¼
R
R

ffiffiffiffiffiffi
E
E0

s
≪ 1; ð29Þ

C2 ¼ δ
R
R

ffiffiffiffiffiffi
E
E0

s
≪ 1; ð30Þ

C3 ¼ jιj
ffiffiffiffiffiffiffiffi
RR

p �
E0

E

�
1=4 E

MaxfE0; jB0jg
≪ 1; ð31Þ

C4 ¼ η

ffiffiffiffiffi
R
R

r �
E
E0

�
3=4

≪ 1; ð32Þ

C5 ¼
L
T
≪ 1; ð33Þ

with

η ¼
����v⃗ · ∇!Rþ R

2E0

v⃗ · ∇!E0

����: ð34Þ

In this last expression, it is understood that Eqs. (25)–(27)
[as well as (7)] are to be used to express v⃗ in terms of the
local field configuration. In obtaining (30) we have used the

fact that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n þ v2k

q
≈

ffiffiffi
δ

p
=γ under the assumptions (14).

The names Ci are derived from Paper I. In this paper,
C1–C5 correspond (respectively) to Eqs. (15), (16), (24),
(22), and (23). In particular, C1 ≪ 1 and C2 ≪ 1 express
the approximate PND motion (15) and (16), while C4 ≪ 1
expresses the approximate local equilibrium (22).
Our expression for C4 differs from that presented in

Paper I, where we assumed that η ∼ R=L. Generically we
will have η ∼ 1. In this paper we also include cases where η
is very small, since they arise quite naturally in our
numerical studies, and help to illustrate the differences
between our approach and that originally given by
Gruzinov (Sec. II A).
Notice that C1 and C2 are related to C4 by the equations

ηC3=2
1 ¼ R

R
C4 ≪ C4; ð35Þ

ηC2 ≤
ffiffiffiffiffi
R
R

r
C4 ≪ C4: ð36Þ

In the second line we used the bound δ ≤ E=E0, which
follows from the definition (28) of δ. In the generic case
that η ∼ 1, we see that both C1 and C2 are small
compared with C4. This means that C4 ≪ 1 in fact
implies that C1 ≪ 1 and C2 ≪ 1, and generically one
can ignore the C1 and C2 conditions. While η can be a
small number in special cases (such as the circular fields
studied in Sec. VI A below), it would have to be less
than ∼

ffiffiffiffiffiffiffiffiffiffi
R=R

p
for the C1 and C2 conditions to become

relevant. For macroscopic fields this factor is very small;
for example,

ffiffiffiffiffiffiffiffiffiffi
R=R

p
≈ 5 × 10−8 if R is one meter. A field

configuration with η this small would be extraordinarily
fine-tuned. We therefore conclude that for the macro-
scopic fields of relevance in astrophysics, we may
always ignore the C1 and C2 conditions, since they
are implied by the C4 condition.
Let us therefore focus on the C4 condition (32). This

condition can be rewritten as

η2RE3=2 ≪ RE3=2
0 ; ð37Þ

showing that it is in fact equivalent to Gruzinov’s condition
(21) in the generic case η ∼ 1. This agreement is interesting
since Gruzinov’s condition (21) arose from reasoning about
when a particle can enter equilibrium, whereas our con-
dition (37) arose from the assumption (22) that equilibrium
had been achieved. We will see numerically in Sec. VI
that Eq. (37) is necessary and sufficient for equilibrium,
provided the other conditions are satisfied.
Finally, we discuss C3, which satisfies

C3 ¼
jιj
κ
η−1C4

E0

MaxfE0; jB0jg
: ð38Þ

The last factor E0=MaxfE0; jB0jg is always ≲1 and will be
small for pulsars, where E0 ≪ jB0j. Again assuming the
generic case η ∼ 1, Eq. (38) shows that large values of
the torsion-to-curvature ratio jιj=κ are required for the
condition C3 ≪ 1 to be violated in a regime where the
condition C4 ≪ 1 is satisfied. For fields with jιj=κ ≲ 1,
the C3 condition can be ignored, since it is implied by the
C4 condition. We discuss cases with large jιj=κ in
Sec. IV below.
The conditions Ci ≪ 1 arose in Paper I as a minimal set

of assumptions under which the LL equation reduced to the
simple results (25)–(27). Although we do not attempt any
rigorous mathematical proof, it seems clear from the steps
of the derivation there that these assumptions were all
necessary for the simple results to emerge. We therefore
regard the conditions (29)–(33) as necessary conditions for
the equilibrium described by (25)–(27). One of the main
goals of this paper is to argue that they are also sufficient for
equilibrium to occur.
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III. LANDAU-LIFSHITZ EQUATION

The LL equation is reviewed in Paper I [13]; here we
briefly recap the physics and introduce our notation for
numerical simulations. In terms of E⃗ and B⃗ fields, the LL
equation is1

dðγv⃗Þ
dτ

¼ γq
m

�
E⃗þ v⃗ × B⃗

� 1

E

h
ðE⃗ · v⃗ÞE⃗þ ðE⃗þ v⃗ × B⃗Þ × B⃗

i

∓ γ2

E

h
ðE⃗þ v⃗ × B⃗Þ2 − ðE⃗ · v⃗Þ2

i�
; ð39Þ

where� is the sign of q, v⃗ is the velocity, γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is

the Lorentz factor, and τ is the proper time. As discussed
originally by LL [14], this equation is valid provided that
the corrections to Lorentz force motion (the final two
terms) are small compared to the Lorentz force in the rest
frame of the particle. However, in the lab frame they may
be of comparable or greater magnitude, and this is the
regime of interest to us.
For numerical purposes, we normalize the equation

using the natural scales of the equation, together with a
dimensionless number χ that can be chosen for conven-
ience. Defining

τ̃ ¼ 3

2
χ2

τ

R
; ð40Þ

˜E⃗ ¼ E⃗
χE

; ð41Þ

˜B⃗ ¼ B⃗
χE

; ð42Þ

˜p⃗ ¼ p⃗
m

¼ γv⃗; ð43Þ

Eq. (39) becomes

d ˜p⃗
dτ̃

¼ 1

χ
f⃗L �

h
ð ˜E⃗ · ˜p⃗Þ ˜E⃗þ f⃗L × ˜B⃗

i
∓
h
f2L − ð ˜E⃗ · ˜p⃗Þ2

i
˜p⃗;

ð44Þ

where f⃗L ¼ γ ˜E⃗þ ˜p⃗ × ˜B⃗ is the Lorentz force term. The
Lorentz factor is related to the rescaled momentum by

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̃2

q
: ð45Þ

Once the equation is solved for ˜p⃗ðτ̃Þ, the position can be
recovered by a subsequent integration. For convenience we
define a normalized position vector ˜x⃗,

˜x⃗ ¼ 3

2
χ2

x⃗
R

¼ 3

2
χ2

1

R

Z
v⃗dt ¼

Z
˜p⃗dτ̃: ð46Þ

If necessary, one can also determine the lab-frame time t
from dt ¼ γdτ.
We will choose the value of χ so that lengths are

measured in meters when the electron is considered,

χ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

3

R
1 m

r
≈ 4.33 × 10−8: ð47Þ

In particular for electrons we have

˜x⃗ ¼ ðposition in metersÞ; ð48Þ

τ̃ ¼ ðproper time in metersÞ; ð49Þ

˜E⃗ ¼ ðelectric field in units of 1013 V=mÞ; ð50Þ

˜B⃗ ¼ ðmagnetic field in units of 108 GÞ: ð51Þ

These are somewhat convenient for pulsars, which have
radii of ∼10 km and magnetic fields of 108–1015 G.
Our numerical method is described in Appendix.

IV. AN EXAMPLE WITH TORSION

In Paper I we presented a numerical example of
Aristotelian equilibrium in which the torsion was precisely
zero. Here we complement that case with an example
where the torsion is significant. We consider a simple field
configuration consisting of parallel electric and magnetic
fields tangent to helical curves that fill space. In terms of
some constant h > 0, the field configuration is

E⃗ ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ x2 þ y2

p f−y; x; hg; ð52Þ

B⃗ ¼ B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ x2 þ y2

p f−y; x; hg: ð53Þ

The PNDs are also helical, and their curvature and
torsion are

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x2 þ y2 þ h2

; ð54Þ

ι ¼ h
x2 þ y2 þ h2

; ð55Þ
1We have dropped terms involving the derivative of the field

strength, which are always negligible in the regime of validity
discussed below (39).
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with ratio

ι

κ
¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p : ð56Þ

We choose field strengths Ẽ0 ¼ B̃0 ¼ 1 and height h̃ ¼ 10.
For electrons, the physical units of Ẽ0 and B̃0 are given in
Eqs. (50) and (51), while the value of h̃ represents meters.
We start the particle at (1, 0, 0), and it reaches equilibrium
within several timescalesm=ðqEÞ. Figure 1 shows a portion
of the ensuing trajectory, which closely hugs a PND while
slowly drifting outwards. Although the torsion of this PND
is times larger than the curvature, we still have C3 ≈
0.02 ≪ 1 and the formulas for the Aristotelian equilibrium
should still be valid. Figure 2 shows indeed that the
numerical results match the predicted analytical formulas.
By suitable choice of the parameters E0, B0, and h, one

can arrange for C3 to be arbitrarily large over an arbitrarily
large region of space. However, since κ (54) falls off more
slowly than ι (55), the value of C3 always becomes small at
large distances from the z axis [see Eq. (38)]. In numerical
experiments we find that equilibrium does not occur in the
region of large C3.

2 However, the particle still moves

primarily along the principal null direction, now with the
Lorentz factor growing in time, indicating yet another
regime of PND motion worthy of future exploration. In this
particular numerical experiment, the motion also has a
slower outward drift that eventually takes the particle to a
region of small C3 and C4, where its Lorentz factor finally
settles down to the Gruzinov value (18). These properties
are illustrated in Fig. 3.
These simple examples demonstrate that the equilibrium

works as expected when torsion is nonzero, as long as
C3 ≪ 1. In the remainder of the paper we will set the
torsion precisely to zero in order to simplify the discussion.

V. APPROACH TO EQUILIBRIUM

We now study the process by which a particle enters
equilibrium, using a combination of analytical and numeri-
cal approaches.

A. Uniform field solution

At least for a short time, the motion of a particle can be
determined in the approximation that the field is uniform.

FIG. 1. Trajectory of a particle under the helical field configu-
ration (52) and (53) with equal electric and magnetic field
strengths. The particle’s trajectory is almost tangent to the
PND shown in the plot while drifting outwards slowly. Notice
that the z̃ axis has a compressed scale; the torsion-to-curvature
ratio is ι=κ ≈ 10.

FIG. 2. Agreement of the analytical predictions (25)–(27) with
numerical simulation in a case with significant torsion. The
trajectory is shown in Fig. 1. The fractional differences ϵi are
defined as the difference between the numerical and analytical
value, divided by the analytical value, for i ¼ fγ; vn; vkg. The
bottom two plots show the torsion and curvature of the PND at
the particle position, normalized as κ̃ ¼ ð2=3Þχ−2Rκ and ι̃ ¼
ð2=3Þχ−2Rκ according to the conventions of Sec. III. The x axis
uses a timescale τE ¼ m=ðqE0Þ.

2Although C3 ≪ 1 is required for the formulas (25)–(27) to
apply, in principle the particle could reach an equilibrium
described by different formulas. In Paper I we in fact derived
a more general formula for the Lorentz factor as a quartic
equation for γ [see Eq. (61) of Paper I] that does not rely on
C3 ≪ 1. However, this formula does require the equilibrium
assumption (22), and we found in this case that the particle does
not enter equilibrium in this sense while C3 is still large. We have
not identified a field configuration where the alternative Lorentz
factor formula both applies and is significantly different from the
Gruzinov value.
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In this approximation, we can always work in a frame
where E⃗ and B⃗ are parallel. The full analytic solution to the
LL equation was found in this case by [16]. We denote the
initial velocity by ðv1; v2; v3Þ with initial Lorentz factor γ0,
such that the initial four-velocity is given by

uαð0Þ ¼ γ0ð1; v1; v2; v3Þ: ð57Þ

Taking the field to be in the z direction, the analytic solution
to the LL equation is

γðτÞ ¼ 1

2

ð1þ v3Þ þ ð1 − v3Þe−2τ=τEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v23 − ðv21 þ v22Þe−2τ=ðδτEÞ

q eτ=τE ; ð58Þ

vxðτÞ ¼ AðτÞe−τ=τ⊥ sinðτ=τB þ ϕÞ; ð59Þ

vyðτÞ ¼ −signðqB0ÞAðτÞe−τ=τ⊥ cosðτ=τB þ ϕÞ; ð60Þ

vzðτÞ ¼ signðqÞ ð1þ v3Þ − ð1 − v3Þe−2τ=τE
ð1þ v3Þ þ ð1 − v3Þe−2τ=τE

: ð61Þ

We are using Cartesian coordinates with vxðτ ¼ 0Þ ¼ v1,
vyðτ ¼ 0Þ ¼ v2, and vzðτ ¼ 0Þ ¼ v3, and ϕ is the initial
direction of motion in the xy plane (tanϕ ¼ v2=v1). Here
AðτÞ is defined by

AðτÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
ð1þ v3Þ þ ð1 − v3Þe−2τ=τE

; ð62Þ

and we introduced three timescales

τB ¼ m
jqB0j

; ð63Þ

τE ¼ m
jqjE0

; ð64Þ

τ⊥ ¼ m
jqjE0

δ

δþ 1
: ð65Þ

The definition of δ was given above in Eq. (28).
We see that the particle asymptotically approaches light

speed in the z direction; i.e., it eventually moves along the
PND. We interpret this to mean that radiation damps only
the perpendicular momentum. The particle executes a
damped circular motion in the xy plane (around the field
direction), in accordance with the low-E0 intuition of
synchrotron motion and associated radiation damping.
The period of oscillation is just the classical synchrotron
period τB (expressed here in proper time), while the decay
time τ⊥ generalizes the classical synchrotron damping
result. In particular, we have

τ⊥ ≈

(
τB

E
jB0j jB0j ≫ E0

τE E0 ≫ jB0j
; ð66Þ

taking into account E0 ≪ E. The former case agrees in
order of magnitude with Eq. (A2) of Ref. [17].

FIG. 3. An example of evolution through a region where the torsion condition C3 ≪ 1 is violated. Since C3 ∝ ι=
ffiffiffi
κ

p
diverges on the

symmetry axis for the nested helical configuration we consider, the torsion condition is violated near the axis. Here we show an
evolution beginning in this region; the particle starts at ˜x⃗ ¼ f0.01; 0; 0g, where C3 ≈ 5.6. The initial velocity is along the PND with the
initial Lorentz factor equal to half the Gruzinov value. The particle still approximately follows the PND, but with a time-variable Lorentz
factor, such that it does not reach equilibrium where C3 is large. However, it eventually drifts to a region of small C3 and settles down to
the Aristotelian equilibrium.

DYNAMICS OF …. II. ENTRY INTO … PHYS. REV. D 108, 063019 (2023)

063019-7



To understand the dynamics it is convenient to expand
the Lorentz factor at early and late times,

γðτÞ ≈

8>><
>>:

γ0
�
1 − τ=τdrop −

v3
γ2
0

τ=τE
	
; τ → 0;

1
2

ffiffiffiffiffiffiffiffi
1þv3

1−v2
3

q
eτ=τE ; τ → ∞:

ð67Þ

where we introduce yet another timescale

τdrop ≡ δ

γ20ðv21 þ v22Þ
τE: ð68Þ

For a sufficiently large initial velocity perpendicular to
the field, γ0ðv21 þ v22Þ ≫ δ, we have τdrop ≪ τE. In this case
there is a sudden drop in the Lorentz factor on timescale
τdrop as the particle loses its perpendicular momentum,
followed by a subsequent rise on timescale τE as the
particle gains parallel momentum. The minimal Lorentz
factor is determined by the details of (58); in the special
case δ ≫ 1, the minimum occurs at approximately

ffiffiffi
δ

p
.

In a realistic field configuration, the exponential rise
in the Lorentz factor is ultimately cut off by the effects
of nonuniform fields. If the conditions are right for
Aristotelian equilibrium, there will be a transition around
the equilibrium Lorentz factor. In order to understand
this transition, we now study the LL equation near the
Aristotelian equilibrium solution.

B. Near equilibrium solution

To study the dynamics near equilibrium, we adopt the
same assumptions as of Paper I, assuming time derivatives
are perturbatively small (instead of dropping them entirely).
Following the steps of Sec. IVB of that reference, except
retaining time derivatives,3 we arrive at three coupled
equations for γ, vn, and vk

dγ
dτ

¼ jqjγE0

m
−
jqjγ3
mE

ðE2
0 þ B2

0Þðv2n þ v2kÞ; ð69Þ

dvn
dτ

¼ jqjB0

m
vk −

jqjE0

m
1þ δ

δ
vn − γκ; ð70Þ

dvk
dτ

¼ −
jqjB0

m
vn −

jqjE0

m
1þ δ

δ
vk: ð71Þ

We now express these quantities as small perturbations of
their equilibrium values,

γ ¼ Γþ γ; ð72Þ

vn ¼ Vn þ v̄n; ð73Þ

vk ¼ Vk þ v̄k; ð74Þ

where Γ; Vn; Vk are taken to be Eqs. (25)–(27), respec-
tively. Regarding E0; B0; κ as constants and linearizing in
the barred quantities, we find

τEκ
dγ̄
dτ

¼ −2κγ̄ þ 2v̄n=τ⊥ − ϵ2v̄k=τB; ð75Þ

dv̄n
dτ

¼ −v̄n=τ⊥ þ ϵv̄k=τB − γ̄κ; ð76Þ

dv̄k
dτ

¼ −ϵv̄n=τB − v̄k=τ⊥; ð77Þ

where the timescales τi were introduced in Eqs. (63)–(65)
and we have also written ϵ ¼ signðB0Þ. Defining

T ¼ τ

τE
; ð78Þ

b ¼ ϵ
τE
τB

¼ B0

E0

; ð79Þ

c ¼ τE
τ⊥

¼ 1þ δ

δ
> 1; ð80Þ

this set of equations may also be written as

dX̄
dT

¼ MX̄; ð81Þ

with

X̄ ¼

0
B@

γ̄κτE

v̄n
v̄k

1
CA; M ¼

0
B@

−2 2c −2b
−1 −c b

0 −b −c

1
CA: ð82Þ

Making the ansatz

X̄ ¼ X̄0eλT ð83Þ

presents the eigenvalue problem MX̄0 ¼ λX̄0 (here X̄0 is a
constant independent of T). If λðiÞ are the eigenvalues and

X̄ðiÞ
0 the associated eigenvectors (for i ¼ 1, 2, 3), then the

general solution is

X̄ðTÞ ¼
X
i

CiRe½X̄ðiÞ
0 eλ

ðiÞT �; ð84Þ

for three real constants Ci. The eigenvalues and eigenvec-
tors depend only on E0 and B0 and can be found numeri-
cally for any given values of E0 and B0.

3We also drop all terms involving ι, a step that was justified in a
later section of Paper I. When time derivatives are dropped,
Eqs. (69), (70), and (71) reduce, respectively, to Eqs. (43), (54),
and (55) of Paper I with ι ¼ 0.
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We now show that the equilibrium is linearly stable,
i.e., Re½λðiÞ� < 0. The eigenvalues λðiÞ are the roots of the
characteristic polynomial (defined with a minus sign
for convenience)

fðλÞ ¼ − detðM − λIÞ
¼ λ3 þ 2ðcþ 1Þλ2 þ ðb2 þ 6cþ c2Þλþ 4ðb2 þ c2Þ:

ð85Þ
Notice that all the coefficients are real and positive. Thus f
is strictly positive for λ ≥ 0, implying that any real root is
strictly negative. We have therefore proven stability in the
case of real roots only. For complex roots, note that such
roots must appear in a complex conjugate pair, since we
consider a real polynomial. We may therefore write

fðλÞ ¼ ðλ − λrÞðλ − α − iβÞðλ − αþ iβÞ; ð86Þ

with λr; α; β all real. Comparing the coefficient of λ2 with
the polynomial (85), we find that

2α ¼ −λr − 2ðcþ 1Þ: ð87Þ
However, we find that f is negative at λ ¼ −2ðcþ 1Þ:
fð−2ðcþ 1ÞÞ ¼ −2½ðcþ 3Þðcþ 2Þcþ b2ðc − 1Þ� < 0;

ð88Þ
noting from Eq. (80) that c > 1. Since f is positive for
λ ≥ 0, there must be a real root between λ ¼ −2ðcþ 1Þ and
λ ¼ 0. In the case (86) we consider, λr is the single real root,
so we have

−2ðcþ 1Þ < λr < 0: ð89Þ
It then follows from (87) that α is strictly negative,
completing the proof that Re½λðiÞ� < 0.
Perturbations away from equilibrium are thus exponen-

tially damped. The qualitative behavior of the approach to
equilibrium is determined by the mode (or pair of complex
conjugate modes) with the smallest jRe½λðiÞ�j, which decays
the slowest. If this mode has a nonzero imaginary part (i.e.,
it is part of a complex-conjugate pair), then oscillations will
accompany the decay, with the frequency equal to jIm½λðiÞ�j.
Note also that the properties of the decay are insensitive to
the sign of b, since the characteristic polynomial (85)
depends only on b2.
It is interesting to ask for what parameter ranges

such oscillations will be important. The discriminant of
the cubic (85) is equal to

Δ ¼ −
4

27
½ð3b2 − c2 þ 10c − 4Þ3 ð90Þ

þ ðc3 − 15c2 þ 30cþ 9b2c − 45b2 − 8Þ2�: ð91Þ

When Δ < 0, there are complex-conjugate roots; otherwise
all roots are real. Both signs occur over the parameter
ranges b ∈ R; c > 1, so both behaviors are possible. If
Δ ≥ 0, there will be no oscillations. If Δ < 0, there will
be oscillations, and these will be the dominant behavior if
α < λr in the notation of (86).
One tractable case is when δ ≫ 1 so that c ≈ 1. It is easy

to see that the discriminant is negative for c ¼ 1, so that
there will be complex-conjugate roots. One can then check
that these oscillatory modes decay more slowly than the
pure exponential mode provided jbj ≥ 2=

ffiffiffi
3

p
, and that

they decay with a similar order of magnitude even for
jbj ≤ 2=

ffiffiffi
3

p
. The oscillations will thus always be important

in the case δ ≫ 1.
Some further details are helpful for interpreting this case.

As a function of b, the dominant decay time (real part of the
eigenvalue whose real part is closest to zero) ranges
between −1 at b ¼ 0 and −4 at jbj → ∞, and the frequency
of oscillations (imaginary part of the complex eigenvalue)
ranges between (approximately) 1.32 at b ¼ 0 and infinity
at large jbj, approaching linearly like jbj as b → �∞. Back
in the physical time coordinate τ ¼ τET, we see that decay
will typically take several to tens of τE, and the oscillation
angular frequency will be at least 1.32τ−1E , and will be
approximately jbjτ−1E ¼ τ−1B at large jbj. It is notable that
these oscillations exist even in the pure-E case (δ ≫ 1,
b ¼ 0) and are thus physically distinct from synchrotron
motion in that limit.

C. Numerical examples

We now show two numerical examples illustrating the
features explored in the previous subsections. We consider
the case of parallel circular electric and magnetic fields,
i.e., Eqs. (52) and (53) with h ¼ 0. Since the electric and
magnetic fields are parallel in the lab frame, no boost is
required to relate the parallel-frame uniform field solution
(Sec. VA) to the lab-frame near-equilibrium solution
(Sec. V B). We always place the particle in a region of
the circular field configuration where C4 ≪ 1, and hence
equilibrium is expected to occur.
First, we consider the case where the particle begins

with a large momentum perpendicular to the PND. Based
on the analysis of the previous subsections, we expect
the particle to sharply lose its perpendicular momentum
on a timescale τdrop (68), then gain parallel momentum
exponentially on a timescale τE (64) until it nears the
equilibrium Lorentz factor, and finally approach equilib-
rium exponentially, with timescale and possible oscilla-
tions determined from τE; τB; τ⊥ via the eigenvalue
problem discussed in Sec. V B. These expectations are
confirmed by our numerical experiments; an example is
shown in Fig. 4.
We next consider the case where the particle begins with

a large momentum γ ≫ γg parallel to the PND. Here the
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uniform field approximation is not useful since the particle
quickly reaches the region where the field line bends away
from its motion. However, at this stage we can regard the
particle as traveling through a new uniform field configu-
ration with some perpendicular momentum, which will be
removed by radiation reaction according to the intuition
discussed in the first new paragraph below Eq. (65). In this
way the particle will lose energy until it either enters
equilibrium directly (“from above”) or finds itself in a
uniform field configuration that will accelerate it back up to
near-equilibrium conditions, after which it enters equilib-
rium “from below.” An example somewhat intermediate
between these two cases is shown in Fig. 5.

VI. NUMERICAL SURVEY

Up until now, we have explored the properties of the
Aristotelian equilibrium and the manner in which particles
enter the equilibrium. We now turn to the general question
of when particles will indeed enter the equilibrium. As
reviewed in Sec. II C, Paper I identified five necessary
conditions Ci ≪ 1 for equilibrium to occur. We now
provide numerical evidence that these conditions are indeed
sufficient for it to occur, and we use the results to gain a
more quantitative understanding of how well they must be
satisfied.

Exploring all five conditions would be computationally
intractable. However, given that C4 ≪ 1 implies C1 ≪ 1
and C2 ≪ 1 outside of extremely finely tuned field con-
figurations [Eqs. (35) and (36)], we can safely ignore C1

FIG. 4. An example of entry into equilibrium. The field configuration is circular with Ẽ0 ¼ 1 and B̃0 ¼ 10. The particle begins at
x̃ ¼ ð1; 0; 0Þ with initial momenta p̃ ¼ ð−2.32; 8.28; 3.97Þ × 104. The particle quickly loses its perpendicular momentum on timescale
τdrop ≈ 10−4τE (68) before accelerating along the PND to near the equilibrium Lorentz factor over several τE and finally approaching the
equilibrium in a weakly damped exponential fashion. Along with the numerical trajectory, we show the corresponding analytical
solutions in the uniform-field and near-equilibrium approximations. The uniform field solution (58)–(61) has five parameters E0; B0; vi,
all of which are fixed by the initial data. The near-equilibrium solution (84) has six parameters E0; B0; κ; CðiÞ. The first three are chosen
according to the local field at the initial position, and the last three are chosen by fitting with data from τ ¼ 15τE to the end of the
evolution at τ ¼ 30τE. The oscillation period is approximately .61τE, and the damping timescale is approximately 10τE (the exponential
envelope is e−0.1τ=τE ). Only the Lorentz factor was used for these fits; however, using the fit parameters, the perpendicular velocities vn
and vk display a similar level of agreement.

FIG. 5. Entry into equilibrium after starting with large mo-
mentum parallel to the PND. The field setup is the same as Fig. 4,
except that the particle starts with momentum entirely in the y
direction with Lorentz factor equal to 100 times the equilibrium
value, γ0 ¼ 100γg. The particle quickly loses energy until near
the equilibrium value and then approaches equilibrium with a
sinusoidally modulated exponential.
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and C2. The case where C3 ≪ 1 is violated is potentially
interesting for helical fields (as occur, e.g., in relativistic
jets), and we found that equilibrium does not occur in this
case (Sec. IV). Violations of the quasistatic assumption
C5 ≪ 1 are certainly interesting (e.g., for laser fields), but
outside the scope of this paper. Instead, we will pick field
configurations where C3 ¼ 0 and C5 ¼ 0 (exactly torsion-
free and static, respectively) and explore the role of C4 in
determining whether equilibrium occurs.

A. Circular fields and the role of η

Equation (34) defined a quantity η that appears in the
conditions for equilibrium. For generic fields, η ≈ 1
and factors of η can be dropped. To illustrate a situation
where η cannot be dropped, consider a purely azimuthal
field configuration with constant parallel electric and
magnetic fields. The field lines and PNDs are just circles

of radius ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Since ∇!ρ ¼ n⃗, where n⃗ is the

Frenet-Serret normal direction to the curve, η can be
calculated as

η ¼ jv⃗ ·∇ρj ¼ jvnj: ð92Þ

This quantity is small in equilibrium since jvnj ≪ 1 by the
assumption of motion along a PND. The small size of η
arises because the field strength and the radius of curvature

are both constant along the PND direction l
!
, a finely tuned

arrangement. From Eqs. (26) and (25), we have

jvnj2 ¼
2

3

R
R

ffiffiffiffiffiffi
E0

E

r
ð1þ δÞ2: ð93Þ

The condition (37) then becomes

R2E0 ≫ ð1þ δÞ2R2E; ð94Þ

where we drop a factor of 2=3.
Equation (94) is a necessary condition for equilibrium

to occur. To check whether it is also sufficient, we
simulated a large number of trajectories with different
field configuration parameters and particle initial con-
ditions. Specifically, we fixed B̃0 ¼ 0.1 and chose the
particle to begin on the x axis, choosing the other
parameters randomly from uniform distributions in the
ranges log10 Ẽ0 ∈ ð−4; 0Þ for the log of the field strength,
γ ∈ ð1; γgÞ for the initial Lorentz factor, θ ∈ ð0; πÞ and
ϕ ∈ ð0; 2πÞ for the initial direction of motion (where θ;ϕ
are spherical coordinates on the space of velocities), and
log10 x ∈ ð−3; 0Þ for the log of the initial position. The
initial radius of curvature R̃ is just x, so we sample an
initial range log10 R̃ ∈ ð−3; 0Þ.
For each run of the code we evolve for a maximum time

of τmax ¼ ð6 log γgÞτE, which is sufficient for the particle to

enter equilibrium if it is destined to do so.4 At any given
time in the trajectory, the particle is considered to have
entered equilibrium if hjðγ − γgÞj=γgi < 3%, where the
average h� � �i is calculated over the last 20% of the
computed trajectory, using the local value of γg. Once a
particle enters equilibrium, we record the local electric field
E0 and curvature radius R and terminate the run. (If the
particle never enters equilibrium, we make no correspond-
ing record.) Figure 6 shows the values of E and R at which
equilibrium occurred in our random sample, showing
clearly that the condition (94) indeed controls whether
equilibrium is obtained. We find that the left-hand side
must be approximately 15 times larger than the right-hand
side (red line in the figure) for equilibrium to occur.
When E0 ≫ B0, we have δ ≈ E=E0 ≫ 1, and this con-

dition reduces to the original Gruzinov condition (21).
(This agreement is accidental, due to the specific form of η
for this field configuration.) By contrast, when E0 ≲ B0,
the condition (94) remains distinct from the Gruzinov
condition (21). This behavior is seen clearly in Fig. 6.
The Gruzinov condition is necessary, but not sufficient,
in this special case. The correct condition for entry into
equilibrium is the modified condition (37).

B. More general field configurations

The circular field is a special case that cleanly illustrates
the role of η in the condition C4 ≪ 1 (32) for entry into
equilibrium. In order to test the condition more generally,
we consider two more kinds of field configuration.

FIG. 6. Values of the local electric field and PND curvature
radius at entry into equilibrium in a large parameter survey. In this
circular field configuration, equilibrium is expected to occur
when N ¼ R2E0=½ð1þ δÞ2R2E� ≫ 1 [Eq. (94)]. The numerics
validate this condition: the red line is the curve N ¼ 15.

4According to Eq. (67), the time for a particle to be accelerated
to γg is of order τE log γg. For the circular field E0 and hence τE is
constant; however, for other field configurations we update the
maximum allowed run time after each time step to use the local
value of E0. We also examined a selection of the trajectories that
did not enter equilibrium in this time and evolved them for longer,
finding that indeed they never enter equilibrium.
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The “ellipse” field configuration simply changes the shape
of the field lines to ellipses instead of circles, while keeping
everything else the same. The “separate center” field
configuration consists of circular electric and magnetic
field lines with equal field strengths E0 ¼ B0 but with the
center of the circles shifted by a distance d. We randomly
varied the field strength and center distance while also
randomly choosing initial conditions as before.
The results of these surveys are shown along with the

circular case in Fig. 7, demonstrating clearly that the
condition C4 ≪ 1 is necessary and sufficient for equilib-
rium to occur. The precise value of C4 required depends on
the field configuration, ranging from ∼0.1 to ∼0.01 for the
cases considered here.

VII. SUMMARY OF RESULTS

We have provided a detailed understanding of the entry
into Aristotelian equilibrium, identifying the relevant
timescales, giving analytical descriptions where possible,
and showing that numerical simulations match the pre-
dicted behavior. We showed analytically that the equi-
librium is linearly stable and identified the presence of
oscillations at entry for a large region of parameter space.
We performed numerical parameter surveys exploring the
conditions for equilibrium to occur. Combined with the
results of Paper I, this study provides strong evidence that
the conditions (29)–(33) are necessary and sufficient
for Eqs. (25)–(27) to describe the motion of a charged
particle. This provides a solid foundation for using the
Aristotelian approximation in astrophysical modeling.
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APPENDIX: NUMERICAL METHOD

Our numerical scheme is based on the implicit fourth-
order Runge-Kutta-Nyström method. We first review this
method before presenting an improved iteration method
and an adaptive time step version that we also used in
some cases.
For a second-order ordinary differential equation

ẍα ¼ fαðt; xα; ẋαÞ; ðA1Þ
the implicit fourth-order Runge-Kutta-Nyström method can
be expressed as follows. First fix a time step h. If xαn and ẋαn
represent the value and derivative at time tn, then the values
at the next step tnþ1 ¼ tn þ h are obtained by

xαnþ1 ¼ xαn þ hẋαn þ h2bikαi ; ðA2Þ
ẋαnþ1 ¼ ẋαn þ haikαi ; ðA3Þ

where ai and bi are

ai ¼
�
1

2
;
1

2

�
; ðA4Þ

bi ¼
�
1

4
þ

ffiffiffi
3

p

12
;
1

4
−

ffiffiffi
3

p

12

�
; ðA5Þ

and kαi must satisfy

kαi ¼ fαðtn þ cih; xαn þ cihẋαn þ h2Bijkαj ; ẋ
α
n þ hAijkαj Þ:

ðA6Þ

In these expressions, repeated indices are summed. Here ci
is the vector

ci ¼
 

1
2
−
ffiffi
3

p
6

1
2
þ

ffiffi
3

p
6

!
; ðA7Þ

and Aij and Bij are the matrices

Aij ¼
 

1
4

1
4
−
ffiffi
3

p
6

1
4
þ

ffiffi
3

p
6

1
4

!
; ðA8Þ

Bij ¼
 

1
36

5
36
−
ffiffi
3

p
12

5
36
þ

ffiffi
3

p
12

1
36

!
: ðA9Þ

FIG. 7. Validity of the main condition for entry into equilibrium
[C4 ≪ 1, (32) or (37)] in three numerical parameter surveys. The
colored dots correspond to the local field properties where a
particle in the corresponding survey entered equilibrium. Lines of
constant C4 have slope −1 on this plot, and the y-intercept is the
log of 1=C2

4. For each field configuration, the edge of the region
of equilibria clearly has the predicted slope of −1. We have drawn
approximate reference lines for this edge to guide help guide the
eye. Entry to equilibrium occurs when C4 ≲ 5%.
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1. Iteration method

Equation (A6) can be solved by a fixed point
iteration method as follows. The initial values of kαi are
taken to be

ðkαi Þ0 ¼ fαðtn; xαn; ẋαnÞ ði ¼ 1; 2Þ: ðA10Þ

We then iteratively improve the guess by calculating

ðkαi ÞNþ1 ¼ fα
�
tn þ cih;

xαn þ cihẋαn þ h2Bijðkαj ÞN

ẋαn þ Aijðkαj ÞN
	
: ðA11Þ

However, for large Lorentz factors we found that this
iteration method sometimes converged very slowly or got
stuck in a limit cycle. In these cases we instead used
overrelaxation with the secant method,

yn ¼ w



yn−1 − Fðyn−1Þ

yn−1 − yn−2
Fðyn−1Þ − Fðyn−2Þ

�
ðA12Þ

þ ð1 − wÞyn−1; ðA13Þ

where yN ¼ ðkαi ÞN , Fα
i ðkαi Þ ¼ fαðkαi Þ − kαi , andw ∈ ½0; 1� is

the weight. We chose w ¼ 0.05. At each time step we try
the simple iteration method first, jumping to the Secant
method only if the simple iteration fails to reach a given
tolerance (we chose a fractional error of 10−10) within a
fixed number of iterations (we chose 103).

2. Adaptive time step

For most portions of a given evolution the main time-
scales are τE and τB, defined in Eqs. (64) and (63).
However, for some initial conditions (e.g., Fig. 4) there
can be abrupt changes in the Lorentz factor on the much
smaller timescale τdrop defined in Eq. (68). In most cases
we use an adaptive time step scheme, beginning with
h ¼ minðτB; τEÞ × 1% and updating as follows.
We focus on the Lorentz factor as a simple scalar

representative of the solution. Suppose we are at time t
in the evolution and consider the value at time tþ 2h,
where h is the current step size. We can compute this
either by taking a single step of size 2h or by taking
two steps of size h. We will denote the resulting values

for γ by γð2hÞnum and γðhÞnum, respectively. Since our method
has fourth-order accuracy, these are related to the true
value γtrue by

γðhÞnum ≈ γtrueðtþ 2hÞ þ ϕh4; ðA14Þ

γð2hÞnum ≈ γtrueðtþ 2hÞ þ 16ϕh4; ðA15Þ

where ϕ is some unknown constant. We can estimate ϕ
by solving

ϕ ≈
γð2hÞnum − γðhÞnum

15h4
: ðA16Þ

Suppose we instead consider a new time step h0 and

evolve forward one step to γðh0Þnum. Now we have

γðh0Þnum ≈ γtrueðtþ 2hÞ þ ϕh40: ðA17Þ

If we want to achieve an accuracy of ϵ ¼ jðγðh0Þnum − γtrueÞ=
γtruej, the time step we should use satisfies

h40 ¼
ϵγðhÞnum

jϕj : ðA18Þ

Using the formula (A16) for ϕ, we conclude that an
appropriate time step is

h0 ¼ ζh

 
15ϵγðhÞnum

jγð2hÞnum − γðhÞnumj

!
1=4

: ðA19Þ

The factor of ζ < 1 is to guarantee that h0 is smaller
than that which is expected to exactly achieve the desired
error tolerance ϵ, which corresponds to ζ ¼ 1. We choose
ζ ¼ ð14=15Þ1=4 in our code, and ϵ ¼ 10−6.
At each step in the evolution we calculate the candidate

new time step h0 according to (A19). Before adopting this
as the new time step we consider two potential adjustments.
First, we ensure that h does not change by more than a
factor of 2. That is, if h0 is larger than 2h, then we use 2h
instead; similarly, if h0 is smaller than h=2, we use h=2
instead. Finally, we ensure that the candidate new time
step satisfies the condition for the convergence of fixed
point iteration, namely that the spectral radius of the

FIG. 8. Test demonstrating our code’s error convergence at
fourth order. The black line represents the linear function with a
slope of 4; the equation given in the plot.
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(six-dimensional) Jacobian matrix of fαi ðkβj Þ is strictly less
than 1, i.e., the maximum of the absolute values of the
eigenvalues of this matrix is less than 1. [Here fαi denotes
the right-hand side of (A6).] If this test fails, then we divide
the step size in half and try again, iterating until a step size
satisfying the condition has been found.

3. Convergence test

We performed a convergence test for the code using the
uniform field setup, because it has exact analytical sol-
utions. We choose the field strengths as Ẽ0 ¼ 0.1; B̃0 ¼ 1.

The initial value we used is ˜p⃗0 ¼ f100; 400;−300g. The
Lorentz factor Eq. (58) at τ ¼ 2τE was used as the reference
value. The code was executed at different time steps h.
The fractional difference

ϵ ¼
���� γnumeric − γanalytic

γanalytic

���� ðA20Þ

was then calculated. The result of the convergence test is
shown in Fig. 8. It is clear that our code exhibits fourth-
order convergence.
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