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Previous studies from the astrophysics and laser physics communities have identified an interesting
phenomenon wherein ultrarelativistic charged particles experiencing strong radiation reaction tend to move
along special directions fixed by the local electromagnetic field. In the relativity literature these are known
as the “principal null directions” (PNDs) of the Maxwell field. A particle in this regime has “Aristotelian”
dynamics in the sense that its velocity (rather than acceleration) is determined by the local field. We study
this Aristotelian equilibrium in detail, starting from the Landau-Lifshitz equation describing charged
particle motion including radiation reaction. Using a Frenet-Serret frame adapted to the PNDs, we derive
the Lorentz factor describing motion along the local PND, together with drift velocities reflecting slower
passage from one PND to another. We derive conditions on the field configuration that are necessary for
such an equilibrium to occur. We demonstrate agreement of our analytic formulas with full numerical
solutions of the Landau-Lifshitz equation in the appropriate regime.
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I. INTRODUCTION

The motion of a charged particle in an external electro-
magnetic field is a fundamental problem in electrodynam-
ics. Organized as a formal expansion in the particle charge
q, the leading OðqÞ force is the Lorentz force, and the
subleadingOðq2Þ force is the Abraham-Lorentz-Dirac self-
force that describes radiation reaction [1]. The approxima-
tion is valid as long as the self-force is small compared with
the Lorentz force in the particle rest frame, and the self-
consistent motion is described by the Landau-Lifshitz (LL)
equation [1–4].1 However, as pointed out by LL in the
original derivation, for ultrarelativistic particles, the lab-
frame self-force can be comparable to, or even much
greater than, the lab-frame Lorentz force, while still
respecting the basic validity of the equation. We will call
this the regime of strong radiation reaction.2

Interest in strong radiation reaction has grown in recent
years in response to exciting experimental developments in
two separate fields. In laser-plasma physics, laser inten-
sities are reaching the point where driven particles will
experience strong radiation reaction [4]; and in astrophys-
ics, unexpectedly bright gamma-rays from pulsars [5,6]

suggest that some pulsar magnetospheres may operate in
this regime [7–12]. Both communities have independently
identified a rather interesting phenomenon wherein ultra-
relativistic particles follow particular spatial directions
determined entirely by the local electromagnetic field.3

Since the electromagnetic field thus determines the velocity
of a particle, rather than its acceleration, we will follow
[7,14] in calling this regime “Aristotelian.”
The Aristotelian velocities are most compactly charac-

terized in an eigenvalue problem involving the field
strength tensor Fμν [16],

Fμ
νlν ¼ λlμ; ð1Þ

where Greek letters denote spacetime indices, which are
raised and lowered with the spacetime metric. We may
write the (real) solutions as

λ� ¼ �E0; lμ ¼ ð1; v⃗�Þ; ð2Þ

v⃗� ¼ E⃗ × B⃗� ðB0B⃗þ E0E⃗Þ
B2 þ E2

0

; ð3Þ

where E0 and B0 are given in terms of the invariants
P ¼ B⃗2 − E⃗2 and Q ¼ E⃗ · B⃗ as

1Since quantum effects become important before this condition
is violated [2,4], the LL equation appears to be a complete
description of the motion of classical point particles endowed
with mass and charge, but no higher moments such as spin
and dipole.

2We avoid the term “radiation dominated” since typically the
lab-frame Lorentz force is comparable to the radiation force.

3To our knowledge, this claim first appeared independently in
[13,14], before being rediscovered by [7] and again by [15].
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E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2Þ2 þQ2

q
− P=2

r
; ð4Þ

B0 ¼ signðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2Þ2 þQ2

q
þ P=2

r
. ð5Þ

The eigenvectors lμ
� are called the principal null directions

(PNDs) of the Maxwell field [17].
When E⃗ · B⃗ ≠ 0, we may always boost into a local frame

where E⃗ and B⃗ are parallel, and this property is preserved
under boosts in the field direction. E0 and B0 are the electric
and magnetic field strengths in this family of frames, with
E0 ≥ 0 by convention and the sign ofB0 reflectingwhether B⃗
is aligned or antialignedwith E⃗. Thevelocities v⃗� are aligned
with the fields in these special frames. In the Aristotelian
limit, particles move approximately along these directions;
i.e., they have nearly light speed velocities given by

v⃗ ≈ v⃗�; ð6Þ
with the plus/minus sign corresponding to positively/
negatively charged particles.
Equation (6) is the leading order description of the

Aristotelian particle velocity. However, the subleading
velocity terms are important since they determine the
leading Lorentz factor, which in turn determines the
radiation emitted. Gruzinov [7] estimated the Lorentz factor
γ by reasoning that the power delivered by Lorentz force,
jqjE0, should be equal to the energy lost to curvature
radiation, ð2=3Þq2γ4=R2, where R is the radius of curvature
of the trajectory.4 One therefore concludes that γ is
determined as

γ4 ≈
3

2

E0R2

jqj : ð7Þ

The evidence for this Aristotelian behavior consists of a
mixof numerical and analytical arguments given by a number
of different authors over the years [7,13,15,16,18–22],
which we review in Appendix A. These arguments are
strongly suggestive, but not definitive or complete, and
each presentation of the subject is wedded to the parti-
cular physical setting (pulsars or laser plasmas) under
discussion. In particular, general conditions for the validity
of Aristotelian dynamics have not been established.
In this paper we will study the Aristotelian equilibrium in

detail and derive its complete description at subleading order
in the velocity (which is leading order in the Lorentz factor).
We solve the LL equation using a Frenet-Serret frame
attached to the principal null directions (integral curves of
v�), which automatically includes subleading velocity cor-
rections in a general and consistent manner. We derive a

general equation for the Lorentz factor γ, involving the
torsionof the curve in addition to its curvature,which reduces
to the formula (7) when the torsion can be neglected. In
performing the derivation, we identify general conditions on
the local electromagnetic field that are necessary for the
equilibrium to occur. We demonstrate agreement of our
analytic results with numerical solutions of the full LL
equation in the appropriate regime. A second paper will
presentmore details of the numerical code, alongwith amore
extensive exploration of the parameter space [23].
Our work establishes conditions for the consistency of

the Aristotelian regime and provides full details of the
dynamics. An important limitation is that we do not discuss
the conditions under which entry into the regime will
actually occur. In fact, the most basic feature of the
dynamics—particles following the principal null directions
—is an assumption of our derivation, not a result. We are
unable to prove that particles will enter the equilibrium under
any given set of conditions, and we are unable to rule out the
existence of other Aristotelian equilibria where the motion is
not along the principal null directions. We hope to address
these issues in the future.
We work in Gaussian units with the speed of light

set to unity. Our spacetime metric is flat, with signa-
ture ð−þþþÞ, and our field strength tensor satisfies
F0i ¼ −Ei, where Ei is the electric field.

II. STRONG RADIATION REACTION

A classical particle of charge q and mass m defines a
length scale R and an electric field scale E,

R≡ q2

m
; E ≡ 3

2

m2

jqj3 : ð8Þ

The length scale R is the particle size at which the
electrostatic self-energy is of order the rest mass; for
electrons, it is called the “classical electron radius.” The
field scale E is the strength of the self-field at distance R,
with a factor of 3=2 that we insert for later convenience.
Since we use units with the speed of light set equal to unity,
R also defines a timescale, and E also defines a magnetic
field scale. We may anticipate that these are typical scales at
which the classical point particle description will break
down. That is, one suspects that a necessary condition for
the use of the classical approximation is that

ðrest frame typical field variationÞ ≫ R ð9Þ
ðrest frame typical field strengthÞ ≪ E: ð10Þ

In fact, quantum effects become important before these
scales are reached (e.g., [4]).5

4A particle moving on a circular trajectory of radius R emits
power given by ð−2=3Þq2γ4=R2.

5The Compton wavelength is a factor of α larger than R, and
the Schwinger field strength is a factor of α smaller than E, where
α is the fine structure constant.
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The motion of the particle through an external field Fμν

obeys the LL equation [1,2,4],

duα

dτ
¼ q

m
Fα

βuβ þ
2

3

q3

m2
uβ

d
dτ

Fα
β þ

2

3

q4

m3
Fα

σFσ
δuδ

−
2

3

q4

m3
ðFβ

γuγÞðFβδuδÞuα; ð11Þ

where uα is the four-velocity and τ is the proper time. This
first term on the right-hand side is the Lorentz force, and the
remaining three comprise the self-force. This equation is
derived under the assumption that the self-force is small
compared to theLorentz force in the particle rest frame [2–4].
To understand the meaning of this condition, let us first write
the equation in terms of the fundamental scales (8),

R
duα

dτ
¼ � 1

E
Fα

βuβ �
R
E
uβ

d
dτ

Fα
σ þ

1

E2
Fα

σFσ
δuδ

−
1

E2
ðFβ

γuγÞðFβδuδÞuα; ð12Þ

where � is the sign of q. Viewing this equation in a frame
where the particle is instantaneously at rest, the four-velocity
components are order unity. It is then evident that the
conditions for the validity of the LL equation (the last three
terms on the right-hand side are small compared to the first
term) are equivalent to the general conditions (9) and (10).
Now suppose that we work in a global “lab frame,” and

let F denote a typical field strength in this frame. The rest
frame field strength can be up to a factor of γ times larger, in
which case the condition (10) becomes

γF
E

≪ 1; ð13Þ

which in particular implies F=E ≪ 1. In the lab frame, each
occurrence of uα introduces a factor of γ, which can be
large. The last term in (13) involves three factors of γ, and
hence can be as large as γ3F2=E2. Comparing to the first
term, the naive ratio of self-force to Lorentz force is

ðlab-frame self-forceÞ
ðlab-frame Lorentz forceÞ ≲ γ2

F
E
: ð14Þ

This ratio can be arbitrarily large while still respecting the
basic condition (13). It is order unity for the Aristotelian
equilibrium, due to special cancellations from combina-
tions of tensor components.
The covariant formulation (11) is elegant, but inconven-

ient for studying the Aristotelian limit. For example, since
the motion is nearly along the PND lμ, it seems natural to
write uμ ≈ γlμ with γ ≫ 1. However, this expression leads
to contradictions, since it implies uμuμ ¼ 0 instead of
uμuμ ¼ −1. Instead, the Aristotelian limit is more easily
studied as an expansion in the three-velocity, v⃗ ≈ v⃗� þ δv⃗,

where the small subleading corrections δv⃗ will encode the
large Lorentz factor. To perform this expansion we will
introduce a Frenet-Serret frame adapted to the PND, as
follows.

III. FRENET-SERRET FRAME

The principal null directions lμ
� ¼ ð1; v⃗�Þ [see Eqs. (2)

and (3)] are defined at every point in space by the local
electromagnetic field. The spacetime curves that are tan-
gent to the principal null directions define two sets of
lightlike trajectories filling all of space—the principal null
congruences, in relativity terminology. In a given global
inertial frame (the lab frame), each such trajectory may be
described as x⃗�ðtÞ, where

dx⃗�
dt

¼ v⃗�ðx⃗; tÞ: ð15Þ

Since v2� ¼ 1, this is actually an arclength parametrization
of the space curve x⃗�ðtÞ, which is naturally suited to the
Frenet-Serret formalism. we will denote the frame as
(⃗l, n⃗, k⃗) with

⃗l ¼ v⃗�; ð16Þ

n⃗ ¼ 1

κ

d⃗l
dt

; ð17Þ

k⃗ ¼ ⃗l × n⃗: ð18Þ

The frame vectors (⃗l, n⃗, k⃗) are unit vectors, and κ is the
curvature of the curve. We also have the Frenet-Serret
relations

dn⃗
dt

¼ −κ⃗lþ ιk⃗; ð19Þ

dk⃗
dt

¼ −ιn⃗; ð20Þ

where ι is called the torsion of the curve.
We denote the frame components of the electric and

magnetic fields as follows:

E⃗ ¼ el ⃗lþ enn⃗þ ekk⃗; ð21Þ

B⃗ ¼ bl ⃗lþ bnn⃗þ bkk⃗: ð22Þ

The eigenvalue equation (1) becomes

E⃗þ ⃗l × B⃗ ¼ �E0
⃗l; ð23Þ

E⃗ · ⃗l ¼ �E0; ð24Þ
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which implies

el ¼ �E0; ð25Þ

bl ¼ �B0; ð26Þ

en ¼ bk; ð27Þ

ek ¼ −bn: ð28Þ

We may also decompose the velocity of any particle in this
frame,

v⃗ ¼ vl ⃗lþ v⃗⊥ ¼ vl ⃗lþ vnn⃗þ vkk⃗: ð29Þ

We will denote the magnitude of v⃗⊥ as

v⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n þ v2k

q
: ð30Þ

IV. ARISTOTELIAN EQUILIBRIUM

In 3þ 1 form, the LL equation (12) becomes

dγ
dt

¼ q
m

�
E⃗ · v⃗þ 2

3
γR

dE⃗
dt

· v⃗� 1

E
ðE⃗þ v⃗ × B⃗Þ · E⃗ ∓ γ2

E
½ðE⃗þ v⃗ × B⃗Þ2 − ðE⃗ · v⃗Þ2�

�
; ð31Þ

dv⃗
dt

¼ q
mγ

�
F⃗ þ 2

3
γRF⃗0 � 1

E
½ðv⃗ × E⃗Þ × E⃗þ ðv⃗ × B⃗Þ × B⃗þ E⃗ × B⃗þ v⃗ · ðE⃗ × B⃗Þv⃗�

�
; ð32Þ

where we define

F⃗ ¼ E⃗þ v⃗ × B⃗ − ðE⃗ · v⃗Þv⃗ ð33Þ

as well as

F⃗0 ¼ dE⃗
dt

þ v⃗ ×
dB⃗
dt

−
�
dE⃗
dt

· v⃗
�
v⃗: ð34Þ

In these expressions, d=dt indicates a total derivative,

resolvable as d=dt ¼ ∂=∂tþ v⃗ · ∇⃗ when acting on fields.
In Eqs. (31) and (32), the � is the sign of q and also labels
the PND v� on which charges of that sign will move.
Our strategy will be to identify conditions under which

the Aristotelian equilibrium occurs and use those condi-
tions to derive its detailed properties. Our assumptions will
refer to a given “lab frame”—see Sec. IV D for further
discussion. We seek a situation where the self-force is
comparable to the Lorentz force, and will drop all self-force
terms that are much smaller than the Lorentz force.

A. Assumptions

We begin with the scale of variation of the field. If L and
T are typical length and time scales, then the basic
condition (9) requires L=γ ≫ R and T=γ ≫ R. We will
also need to assume that the configuration is quasista-
tionary in the sense that T ≫ L. Our assumptions on the
scale of variation are thus

T ≫ L ≫ Rγ; ð35Þ

Next consider the magnitude of the field. The general
condition (10) requires that the rest frame field strength be
small compared to the critical field strength. However, for
Aristotelian equilibrium the lab and rest frame field
strengths agree: the particle moves along a PND, so the
relevant boost is along the field direction, which leaves the
fields invariant. Thus we assume

fE;Bg ≪ E; ð36Þ

where E and B are the lab-frame field strengths. [The
stronger condition γfE;Bg ≪ E would guarantee (10) in all
circumstances, but we will only need (36) for the validity of
Aristotelian equilibrium.] Note that (36) also implies that
the invariants E0 and B0 are small compared with E.
Next we assume explicitly that the motion is primarily

along a PND. In the notation of Sec. III, we have

γ ≫ 1; v⊥ ≪ 1: ð37Þ

The first condition guarantees ultrarelativistic motion,
while the second ensures that the spatial direction coincides
with the PND.
Finally we assume that the particle is locally in equi-

librium, with the leading-order power delivered by the
Lorentz force balancing the leading-order power lost to the
self-force. This means that the energy of the particle
changes slowly compared to the timescale set by either
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force. Since the Lorentz force power is qE⃗ · v⃗� ¼ �qE0 at
leading order, our assumption is

m

���� dγdt
���� ≪ jqjE0: ð38Þ

Equations (35)–(38) are the key physical assumptions
underlying our derivation. However, as we proceed through
the calculations, we will see that these are not quite
sufficient to derive local equilibrium conditions, since time
derivatives of Frenet-Serret frame components would
remain in the equations. In order to be able to drop all
time derivatives, we will be forced to assume the following
four additional conditions:���� dvldt

���� ≪ vnκ: ð39Þ
���� dvndt

���� ≪ vlκ: ð40Þ
���� dvkdt

���� ≪ jqjE0

γm
1þ ðγv⊥Þ2
ðγv⊥Þ2

jvkj; ð41Þ

���� dvkdt

���� ≪ E0���B0 þ γm
jqj ι

���
1þ ðγv⊥Þ2
ðγv⊥Þ2

κ. ð42Þ

However, once the equilibrium formulas for the velocity
components are derived, it can be seen (Appendix B) that
these conditions are strictly weaker than those already
imposed. We discuss this issue further in Sec. IV D.

B. Derivation

We now use the assumptions of Sec. IVA to derive the
Aristotelian equilibrium from the LL equations (31) and
(32). First note that Eq. (38) implies that the right-hand side
(RHS) of Eq. (31) vanishes at leading order in our ultra-
relativistic expansion, which by Eqs. (35)–(37) becomes

E0 ¼
γ2

E
ðE2

0 þ B2
0Þv2⊥: ð43Þ

This equation comes entirely from the first and last terms of
the RHS of (31). [The second term is negligible compared
to the first term by Eq. (35), and the third term is negligible
compared to the first term by Eq. (36).] Notice the
importance of keeping v⊥ ≪ 1, since it appears multiplied
by γ ≫ 1.
We may now solve for v⊥ as

v⊥ ¼
ffiffiffi
δ

p

γ
; ð44Þ

where we define

δ ¼ E0E
E2
0 þ B2

0

: ð45Þ

Notice that δ satisfies δ ≪ γ2 on account of v⊥ ≪ 1
[Eq. (37)]. Although we assume that both E0 ≪ E and
B0 ≪ E, we cannot conclude that δ is large.
We now turn to the spatial portion of the LL equa-

tion (32). Our goal is to express this equation in the Frenet-
Serret frame of Sec. III. Note, however, that the frame was
defined relative to the PND v� ¼ lðtÞ, whereas the LL
equation involves the full trajectory v⃗ðtÞ. In other words,
the total derivatives d=dt in Sec. III refer to a different curve
from the total derivatives d=dt in the present section.
However, by assumption these curves agree closely, and
hence we may blur the distinction. To see this explicitly,
consider resolving a Frenet-Serret frame vector e⃗ using the
total derivative of this section,

de⃗
dt

¼ v⃗ · ∇⃗ e⃗þ ∂e⃗
∂t

; ð46Þ

≈ ⃗l · ∇⃗ e⃗þ ∂e⃗
∂t

; ð47Þ

≈ ⃗l · ∇⃗ e⃗ : ð48Þ

The first equation is true by definition, and the second
follows from the assumption (37) of near-PNDmotion. The
third then follows from the assumption (35) of a slowly
varying field configuration, recalling that the frame vectors

are determined by the field configuration. However, ⃗l · ∇⃗ e⃗
is simply the total derivative d=dt of Sec. III, showing that
the two are equivalent under our approximations.
We may therefore use the Frenet-Serret formulas (16)–

(20) of Sec. III for the particle velocity at leading order.
Resolving the three-velocity into frame components yields

dv⃗
dt

¼
�
dvl
dt

− vnκ

�⃗
lþ

�
dvn
dt

þ vlκ − ιvk

�
n⃗

þ
�
dvk
dt

þ ιvn

�
k⃗: ð49Þ

Using Eqs. (37), (39), and (40) (note that the first implies
v⊥ ≪ 1), we have

dv⃗
dt

¼ −vnκ⃗lþ ðκ − ιvkÞn⃗þ
�
dvk
dt

þ ιvn

�
k⃗: ð50Þ

It is necessary to retain the dvk=dt term at this stage
because it will be the dominant term of the k⃗ component in
cases where the torsion vanishes.
Equation (50) provides an approximation for the left-

hand side (LHS) of Eq. (32). For the first term of the RHS,
we may similarly write F⃗ [Eq. (33)] as
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F⃗ ¼ �E0

γ2
ð1þ δÞ⃗l� ðB0vk − E0vnÞn⃗ ∓ ðB0vn þ E0vkÞk⃗;

ð51Þ

using the approximations (37). Finally, the remaining terms
on the RHS of (32) contribute

1

E
½ðv⃗× E⃗Þ× E⃗þ���� ¼∓E0

δ
ðvnn⃗þvkk⃗Þ¼∓E0

δ
v⃗⊥: ð52Þ

The leading ⃗l component is E2
0v

2⊥ðγ−2 þ v2⊥Þ=E, which is
higher order and not written here.
Using Eqs. (50)–(52), the resolution of Eq. (32) into the

Frenet-Serret frame at leading order is

−vnκ ¼
jqjE0

γ3m
ð1þ δÞ; ð53Þ

κ − ιvk ¼
jqj
γm

�
B0vk − E0vn

1þ δ

δ

�
; ð54Þ

dvk
dt

þ ιvn ¼ −
jqj
γm

�
B0vn þ E0vk

1þ δ

δ

�
: ð55Þ

Equation (53) determines vn as

vn ¼ −
jqjE0

γ3mκ
ð1þ δÞ; ð56Þ

while Eq. (55) tells us that

vk ¼ −
δ

1þ δ

�
B0

E0

vn þ
�
ιvn þ

dvk
dt

�
γm
jqjE0

�
: ð57Þ

Equation (54) then implies

vn ¼ −
γm
jqj

E0
1þδ
δ κ þ

�
B0 þ γm

jqj ι
	

dvk
dt�

B0 þ γm
jqj ι

	
2 þ E2

0

�
1þδ
δ

	
2
: ð58Þ

Using Eqs. (41) and (42), Eqs. (57) and (58) become

vk ¼ −
δ

1þ δ

�
B0

E0

þ ι
γm
jqjE0

�
vn; ð59Þ

vn ¼ −
γmE0

jqj
1þ δ

δ

κ�
B0 þ γm

jqj ι
	
2 þ E2

0
ð1þδÞ2

δ2

: ð60Þ

Setting Eq. (60) equal to our previous expression (56) for
vn, we derive

γ4 ¼ 3

2

E0

jqjκ2

�
B0 þ γm

jqj ι
	
2 þ E2

0
ð1þδÞ2

δ2

E2
0 þ B2

0

: ð61Þ

This is a quartic equation for the Lorentz factor γ.
Expanding out the terms, we find that the equation is
equivalent to fðγÞ ¼ 0 with

fðγÞ ¼ κ2γ4 − δι2γ2 − 2ιδ
jqjB0

m
γ −

3

2

E0

jqj ; ð62Þ

where we have used E0 ≪ E and B0 ≪ E [Eq. (36)].
The possible equilibrium Lorentz factors are the positive,

real roots of fðγÞ. Since fð0Þ < 0 and fð∞Þ ¼ ∞, there
must be at least one positive, real root. If ι > 0, then there is
a single such root, since the last three terms in (36)
comprise a monotonically decreasing function on γ > 0.
However, if ι < 0, there can be up to three positive, real
roots, indicating up to three separate equilibria. It is not
clear at this stage whether some selection rule distinguishes
a single, physical equilibrium, or whether all three are
allowed.6 We hope to address this issue in a future paper in
this series.
Once γ is determined, the other subleading velocity

components vn and vk are given directly by Eqs. (56) and
(59). This completes the equilibrium description.

C. Negligible torsion case

The equilibrium description simplifies significantly if the
torsion can be neglected. This occurs if either E0 or B0

is sufficiently large,7

jιj ≪ jqj
mγ

MaxfE0; B0g. ð63Þ

Then the condition fðγÞ ¼ 0 (62) has the unique solution

γ4 ¼ 3

2

E0

jqjκ2 : ð64Þ

This is Gruzinov’s result (7). Plugging into Eqs. (56) and
(57) gives the perpendicular velocity as

vn ¼ −
1þ δ

γ

ffiffiffiffiffiffi
E0

E

r
; ð65Þ

vk ¼
δ

γ

�
B0

E0

þ γm
jqjE0

ι

� ffiffiffiffiffiffi
E0

E

r
: ð66Þ

6An example of a three-root case that respects the assumptions
of the derivation is E0 ¼ 10−8E, B0 ¼ 10−6E, κ ¼ 7 × 10−14R−1,
and ι ¼ −103κ. Notice in particular that jιj ≫ κ; all examples we
have found share this feature.

7If ι ≪ jqjB0=ðmγÞ, we see from Eq. (61) that ι disappears
from the description. If this condition is not satisfied, but
instead ι ≪ jqjE0=ðmγÞ, then we must have B0 ≪ E0, meaning
δ ≈ E=E0, and it can be seen from (62) that the second and third
terms are negligible compared to the last term.
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We have retained the torsion in Eq. (66) because we only
assume that mγι=q is small compared to E0 or B0

[Eq. (63)]. However, consider each case separately. If it
is small compared to B0, then the torsion term is negligible
in (66). If it is small compared to E0 but not B0, then we
have E0 ≫ B0 and δ ≫ 1, which makes both terms
negligible in (66); i.e., we have vk ≪ vn. In both cases
the torsion is negligible, so we may in fact drop it from our
final answer. Introducing the radius of curvature R ¼ 1=κ,
we present the final results as

γ4 ¼ 9

4

�
R
R

�
2 E0

E
; ð67Þ

vn ¼ −
1þ δ

γ

ffiffiffiffiffiffi
E0

E

r
; ð68Þ

vk ¼
δ

γ

B0

E0

ffiffiffiffiffiffi
E0

E

r
; ð69Þ

where δ was given in Eq. (45).

D. Consistency conditions for equilibrium

We have now obtained explicit expressions (67)–(69) for
the equilibrium velocity using the nine assumptions in
Sec. IVA together with the additional assumption (63). The
velocity expressions may now be plugged into the assump-
tions to determine consistency conditions on the field
configuration. The resulting conditions are not all inde-
pendent, and we will choose the following five:

γ ≫ 1; ð70Þ

v⊥ ≪ 1; ð71Þ

jιj ≪ jqj
mγ

MaxfE0; B0g; ð72Þ

m

���� dγdt
���� ≪ jqjE0; ð73Þ

T ≫ L; ð74Þ

which in fact imply the remaining conditions
(Appendix B). Using Eqs. (67)–(69), together with (8),
these conditions, respectively, become

C1 ¼
R
R

ffiffiffiffiffiffi
E
E0

s
≪ 1; ð75Þ

C2 ¼
R
R

ffiffiffiffiffiffi
E
E0

s
E0E

E2
0 þ B2

0

≪ 1; ð76Þ

C3 ¼ jιj
ffiffiffiffiffiffiffiffi
RR

p �
E0

E

�1
4 E
MaxfE0; B0g

≪ 1; ð77Þ

C4 ¼
ffiffiffiffiffiffiffiffi
RR

p

L

�
E
E0

�
3=4

≪ 1; ð78Þ

C5 ¼
L
T
≪ 1; ð79Þ

whereR and E are the length and field scales defined by the
charge and mass [Eq. (8)], while L and T are the typical
length and time scales in the lab frame. Herewe have defined
five dimensionless quantities Ci, which all must be small for
the equilibrium to be possible. Note that only the length scale
appears in (78) on account of the assumption (79).
Notice that the conditions (75) and (78) are always

violated in the limit E0 → 0. In particular, our results do not
apply to purely magnetic fields (E0 ¼ 0) or to null
electromagnetic fields (jE⃗j ¼ jB⃗j and E⃗ · B⃗ ¼ 0, implying
E0 ¼ B0 ¼ 0) such as plane waves. [Plane waves also
violate the condition (79).] However, Refs. [15,19–22]
demonstrate circumstances in which particles still follow
the principal null directions in electromagnetic fields of
relevance to laser-plasma interaction. Further work is nece-
ssary to connect this phenomenon to the one studied here.
The conditions (75)–(78) involve the local electromag-

netic field strength only through the invariants E0 and B0,
which are independent of the choice of frame. However,
they involve its scale of variation through a number of
noninvariant quantities: the curvature radius R and torsion ι
(which are defined relative to spatial projections of the
principal null directions in a particular frame), as well as the
more basic field variation parameters L and T. Thus
our conditions (75)–(78) are not Lorentz invariant, but
rather are tied to a specific frame where the motion is
ultrarelativistic.
In other words, our assumption on the field configuration

is that there exists a frame where the Ci are small. In the
typical applications of pulsars and lasers, there is always a
natural frame to consider (in which the star or apparatus is
at rest), but as a theoretical issue this outcome is somewhat
unsatisfying. It may be that restoring consideration of
whether the particle actually enters the regime restores
Lorentz invariance (as explored, for example, in Ref. [16]),
or it may be that this ultrarelativistic approximation is
necessarily noninvariant, since it requires a preferred frame
in which the motion is ultrarelativistic.
To summarize, we have shown that Aristotelian equi-

librium can occur when the parameters Ci are small, and
that the velocity in this case is given by Eqs. (67)–(69).
If the torsion condition C3 ≪ 1 is not satisfied, the
Aristotelian equilibrium can still occur, but the velocity
must be determined by solving a quartic equation (61).
However, in this case we do not obtain simple conditions
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(analogous to C1, C2, and C4) for the consistency of the
equilibrium.

V. NUMERICAL COMPARISON

We have performed numerical simulations of the full LL
equation (11) using the implicit Runge-Kutta-Nyström
method described in Ref. [24], augmented with an
improved iteration method to handle the large Lorentz
factors present for Aristotelian motion. In this section we
report results showing the accuracy of the analytic approxi-
mation in one example where the assumptions (75)–(78)
are satisfied. In a follow-up paper [23] we will present
details of this code and use it to more fully explore the
parameter space of Aristotelian motion, together with the
important question of the approach to equilibrium.
Our example is artificial and chosen for simplicity: we

consider electric and magnetic fields that are circular, with
constant field strength, but with offset centers. That is, we
let B⃗ ¼ Bϕ̂, where B is constant and ϕ̂ is the unit vector
circulating around some choice of z axis. We similarly let
E⃗ ¼ Eϕ̂0, where E is constant and ϕ̂0 is the unit vector
circulating around some different axis z0. The z and z0 axes
are parallel, separated by a distanceD. The spatial principal
null directions (integral curves of v⃗�) are closed ovals tilted
ovals, as shown in Fig. 1.
We choose E ¼ 3.13 × 10−7E, B ¼ 2E, and D ¼

2.13 × 1011R, making the dimensionless parameters
(75)–(78) of magnitude C1 ≈ 10−9, C2≈10−3, C3 ≈ 10−5,
and C4 ≈ 10−2. We find that the particle enters the
Aristotelian equilibrium within a timescale of order
∼10m=ðqEÞ, irrespective of initial conditions, after which
the numerical trajectories agree closely with the analytic
predictions.
We present one example in detail (Figs. 1 and 2). The

particle starts at position ð0; 1.5D; 0Þ with initial velocity
pointing in the −x direction and a γ factor of 500. The plots
begin at proper time 15 m

qE when the Lorentz force power

and self-force power agree to within 5%, signaling entry
into the Aristotelian equilibrium. The particle remains
nearly tangent to the PNDs, while drifting slowly from
one to the other (Fig. 1). The analytic predictions (67)–(69)

FIG. 1. A simple example of Aristotelian equilibrium. The field configuration consists of offset circular magnetic and electric fields,
with the magnetic field twice as strong as the electric field (see Sec. V for details). The spatial projections of the PNDs are closed tilted
ovals, shown in black. The right panel shows the trajectory of a charged particle determined by numerically solving the LL
equation (11). The trajectory remains locally tangent to a PND as the particle slowly drifts from one to another.

FIG. 2. Agreement of the analytic predictions (67)–(69) with
numerical simulation of the LL equation (11), for the example of
Fig. 1. The maximum difference in γ is 0.5%, in vn is 3%, and in
vk is 1.5%. This level of agreement is commensurate with the
sizes of the dimensionless parameters Ci controlling the validity
of the approximation (see the third paragraph of Sec. V).
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for the Lorentz factor and drift velocities agree with the full
numerical solution (Fig. 2).

VI. OUTLOOK

In this paper we have studied the Aristotelian equilib-
rium of ultrarelativistic charged particles, deriving the
detailed description (67)–(69) of the particle velocity as
well as the associated conditions (75)–(78) on the field
configuration for this equilibrium to be possible. We have
also demonstrated numerically that the equilibrium occurs
in a simple example, and quantitatively checked the
analytic predictions in this case.
A number of important questions remain to be addressed.

First, are the conditions (75)–(78) sufficient to enter
equilibrium, or are additional conditions required? And
how quickly does this happen? Second, can a simple
description be given when the torsion is not negligible
[Sec. IV C]? Third, does the curvature of spacetime modify
the dynamics in an important way when the spacetime
curvature radius is comparable to that of the electromag-
netic field (as occurs, for example, in pulsars)? And
finally—and perhaps most importantly—does the
Aristotelian equilibrium actually occur near pulsars, near
black holes, or in man-made laser plasmas, and can we
understand the resulting phenomenology? We plan to
address these issues in future papers in the series.
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APPENDIX A: ARGUMENTS FOR
ARISTOTELIAN MOTION

In our treatment of Aristotelian motion, the leading-order
motion along a PND is an assumption, rather than a result.
While it would be desirable to instead derive the PND
motion from some more fundamental assumption, we have
thus far been unsuccessful. In this section we review
previous arguments for PND motion, found in four sepa-
rate, independently conceived papers. While strongly
suggestive, and extremely useful for building intuition
for the phenomenon, none of these arguments rises to
the standard of rigor we would prefer to adopt.

1. Herold et al., 1985 [13]

Herold et al. [13] (see also [18]) presented some basic
arguments for Aristotelian motion in the context of pulsar
magnetospheres. In the language of this paper, their
approach is as follows.
First recall that the middle two terms of the energy

equation (31) are negligible compared to the first term and
can be dropped in a study of Aristotelian motion [see

discussion below (31)]. Using the assumption γ ≫ 1, the
last term is proportional to F⃗2 [see Eq. (33)], and Eq. (31)
becomes

dγ
dt

¼ q
m

�
E⃗ · v⃗ ∓ γ2

E
F⃗2

�
; ðA1Þ

where � is the sign of q. For the two terms to be the same
order of magnitude (reflecting Aristotelian equilibrium),
we must have

F⃗2

jE⃗ · v⃗j2 ≈
E

γ2jE⃗ · v⃗j : ðA2Þ

Reference [13] then argues that the right-hand side will be
small for typical pulsar parameters (their dimensionless
damping constantD0 is large). They thus conclude that F⃗ is
much smaller than the typical field scale (here represented
by E⃗ · v⃗), and hence can be approximated as zero. Solving
the condition F⃗ ¼ 0 gives rise to motion along a PND [see
Eqs. (23) and (24)].
The main drawback of this approach is that it makes an

assumption on the specific size of γ relative to other
parameters in the problem—namely that the RHS of
(A2) is small. We find it more natural to derive the size
of γ [and, in fact, the full formula (67)] from the assumption
of motion along a PND. We emphasize, however, that both
approaches require an assumption about the particle’s state
of motion. It would be preferable to find conditions purely
on the electromagnetic field and intrinsic particle properties
(mass and charge), such that Aristotelian motion will
inevitably occur.
References [13,18] also presented numerical simulations

of a truncated LL equation,

dγ
dt

¼ q
m

�
E⃗ · v⃗ ∓ γ2

E
½ðE⃗þ v⃗ × B⃗Þ2 − ðE⃗ · v⃗Þ2�

�
; ðA3Þ

dv⃗
dt

¼ q
mγ

F⃗: ðA4Þ

These equations arise after dropping the second and third
terms in each of Eqs. (31) and (32). While this approxi-
mation is valid for (31) (as already discussed), it is not valid
for (32). The last term in (32) would be small compared to
the first if F⃗ were of its naive size ∼E⃗, but the Aristotelian
regime is precisely where jF⃗j ≪ jE⃗j [see discussion below
Eq. (A2)]. In fact, the third term in (32) is comparable to
the first and cannot be dropped; its contribution to the
equilibrium appears in Eq. (52) and propagates through the
remainder of the derivation. If this contribution were left
out, incorrect formulas for the subleading velocity compo-
nents (67)–(69) would be obtained, which do not match
numerical simulations of the full LL equation.
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2. Mestel et al., 1985 [14]

Mestel et al. [14] argued for Aristotelian motion in the
context of pulsar magnetospheres. They suggest that at
large γ two properties should emerge: (1) the self-force is
just −Pv⃗, where P is the instantaneous power radiated
(relativistic Larmour formula), and (2) inertial terms are
negligible. This results in the equation8

qðE⃗þ v⃗ × B⃗Þ − Pv⃗ ¼ 0; ðA5Þ

which is precisely the eigenvalue equation for the PNDs
[see Eq. (23)]. The authors of [14] thus conclude that the
motion is along the PND.
The main drawback of this approach is that the assump-

tions (1) and (2) leading to (A5) are heuristic, and not
derived from the fundamental LL description of the
problem. However, we find this approach to be quite
valuable for intuition. At high Lorentz factor, it is rather
natural to expect the mass to be negligible and for the self-
force to be pure radiation damping, even if it is not clear
precisely how (or whether) these features emerge from the
LL equation (32). There is also a nice connection with the
guiding center theory that governs motion in strong
magnetic fields. If one “turns off” radiation reaction by
letting P ¼ 0, then Eq. (A5) becomes the guiding center
condition E⃗þ v⃗ × B⃗ ¼ 0. We can regard the guiding center
and Aristotelian regimes as distinct zero-inertia limits of
charged particle motion, depending on the importance of
radiation reaction.

3. Gruzinov, 2013 [7,8]

Gruzinov discussed the Aristotelian regime in [7] as part
of a model for pulsar magnetospheres and gave further
details and derivations in [8]. He simply assumed that
particles follow the PNDs, reasoning that they ought to
move along the field direction in the special family of
frames where E⃗ and B⃗ are parallel. He then argued that the
terminal Lorentz factor should be determined by setting the
power delivered by Lorentz force equal to the energy lost
due to curvature radiation. As described in the text above
Eq. (7), this leads directly to the formula (67) [or (7)] for the
Lorentz factor.
Our work provides a derivation of Gruzinov’s result from

the fundamental dynamical equation (the LL equation),
which reveals four specific conditions (75)–(78) that are
required for the result to hold. We also obtain the full
subleading description, finding the drift velocities (68) and
(69) in addition to the Lorentz factor (67).

4. Laser-plasma community, 2018 [15,19]

Gonoskov and Marklund [15] (see also [21]) and
Samsonov et al. [19] (see also [22]) analyzed Aristotelian
motion in the context of laser-plasma physics, using the
name “radiation free directions” for the PNDs. While the
basic phenomenon of motion along PNDs also occurs in this
context, the details are quite different since these authors
focus on plane wave configurations (excluded in our
approach) and allow more general forms of the radiation
reaction force, including quantum radiation. It would be
interesting to explore the connections further.
In Ref. [15], the analytical arguments for motion along a

PND involve a uniform field configuration. If we restrict to
the LL equation, the uniform field case can be understood
completely using the general analytic solution [25]. This
solution demonstrates that, irrespective of initial condi-
tions, the Lorentz factor of the particle approaches∞ at late
times, with the velocity approaching the field direction
(PND). This is crucially different from the Aristotelian
equilibrium we study, where the field radius of curvature R
limits the ultimate Lorentz factor. The uniform field case
represents the limit R → ∞, where there is no radiation
reaction force and the equilibrium we study cannot occur.

APPENDIX B: ANALYSIS
OF WEAKER CONDITIONS

In Sec. IV D it was claimed that, once the equilibrium
formulas for velocity are used, the conditions C1–C5

[Eqs. (75)–(79)] are sufficient to guarantee that all other
assumptions of the derivation are satisfied. To justify this
claim, we must check that Eqs. (75)–(79) imply L ≫ γR
(35) as well Eqs. (39)–(42). We will consider each equation
in turn.
First consider L ≫ γR. Using Eq. (67), this becomes

ffiffiffiffiffiffiffiffi
RR

p

L

�
E0

E

�1
4

≪ 1; ðB1Þ

which is implied by C4 ≪ 1 (78) since E0 ≪ E (36).
Next consider Eq. (39). First note that vl is related to the

Lorentz factor γ by

vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2
−

δ

γ2

s
; ðB2Þ

where Eq. (44) was used. The time derivative is thus

dvl
dt

¼ 1

vl

�
1

γ3
dγ
dt

þ δ

γ3
dγ
dt

−
1

2

1

γ2
dδ
dt

�
: ðB3Þ

Since γ and δ are completely determined by the field
configuration in equilibrium, they inherit its scale of
variation as

8Equations (6.20) and (6.21) of Ref. [14] appear to have
typographical errors; the Lorentz force term should not have a
minus sign.
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dγ
dt

≲ γ

L
;

dδ
dt

≲ δ

L
: ðB4Þ

[We need not consider the timescale T on account of
the assumption T ≫ L; cf. Eq. (79) above.] Using vl ≈ 1,
we thus have

dvl
dt

≲ 1þ δ
2

γ2
1

L
: ðB5Þ

Using this expression together with (67) and (68) as well as
κ ¼ 1=R and vl ≈ 1, Eq. (39) becomes

ffiffiffiffiffiffiffiffi
RR

p

L

�
E
E0

�3
4 1þ δ=2
1þ δ

≪ 1; ðB6Þ

which is implied by C4 ≪ 1 (78).
Next consider Eq. (40). Using dvn=dt≲ vn=L [similar to

Eq. (B4)] with Eq. (68) as well as κ ¼ 1=R and vl ≈ 1, we
find that (40) becomes

ffiffiffiffiffiffiffiffi
RR

p

L

�
E0

E

�1
4ð1þ δÞ ≪ 1: ðB7Þ

If δ≲ 1, then this condition is equivalent to (B1), which we
have already seen is implied by C4 ≪ 1. If instead δ ≫ 1,
then using the definition (45) of δ, Eq. (B7) becomes

ffiffiffiffiffiffiffiffi
RR

p

L

�
E
E0

�3
4 E2

0

E2
0 þ B2

0

≪ 1; ðB8Þ

which is also implied by C4 ≪ 1 (78). Thus Eq. (40) is
indeed satisfied.
Next consider Eq. (41). Using dvk=dt≲ vk=L [similar to

(B4)], this condition becomes

γm
jqjE0L

δ

1þ δ
≪ 1; ðB9Þ

which is the same as Eq. (38) [equivalently C4 ≪ 1 (78)],
using Eq. (B4).
Finally consider Eq. (42). Using Eq. (44), this condition

becomes

���� dvkdt

���� ≪ E0

jB0 þ γm
jqj ιj

1þ δ

δ
κ: ðB10Þ

From Eqs. (56) and (59), we know that

vk ¼
jqj

γ3mκ

�
B0 þ

γm
jqj ι

�
δ; ðB11Þ

meaning that Eq. (B10) becomes

���� dvkdt

���� ≪ 1þ δ

jvkjγ3
jqjE0

m
; ðB12Þ

or again using dvk=dt≲ vk=L,

γm
jqjE0L

γ2v2k
1þ δ

≪ 1: ðB13Þ

This equation is equivalent to (42) under our assumptions.
To prove that it is satisfied, note that the first factor is small
by (B9), while the second satisfies

γ2v2k
1þ δ

<
γ2v2⊥
1þ δ

¼ δ

1þ δ
< 1; ðB14Þ

noting that v2⊥ ¼ v2n þ v2k and using Eq. (44).
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