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Convolutional neural networks (CNNs) have seen extensive applications in scientific data analysis,
including in neutrino telescopes. However, the data from these experiments present numerous challenges to
CNNs, such as nonregular geometry, sparsity, and high dimensionality. Consequently, CNNs are highly
inefficient on neutrino telescope data, and require significant preprocessing that results in information loss.
We propose sparse submanifold convolutions (SSCNNs) as a solution to these issues and show that the
SSCNN event reconstruction performance is comparable to or better than traditional and machine learning
algorithms. Additionally, our SSCNN runs approximately 16 times faster than a traditional CNN on a GPU.
As a result of this speedup, it is expected to be capable of handling the trigger-level event rate of IceCube-
scale neutrino telescopes. These networks could be used to improve the first estimation of the neutrino
energy and direction to seed more advanced reconstructions, or to provide this information to an alert-
sending system to quickly follow-up interesting events.
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I. INTRODUCTION

Gigaton-scale neutrino telescopes have opened a new
window to the Universe, allowing us to study the highest-
energy neutrinos. While there are a variety of proposed
designs, many follow the detection principle outlined by
the DUMAND project [1] and consist of an array of optical
modules (OMs) deployed in liquid or solid water. This
detector paradigm shows great promise, and analyses by
these experiments have already provided the first evidence
of astrophysical neutrino sources [2,3]. Before they can be
analyzed, however, high-energy neutrinos must be isolated
from the immense cosmic-ray-muon-induced background.
While a high-energy neutrino may trigger a detector once
every few minutes, cosmic-ray muons typically induce a
trigger rate on the order of kHz.
Since they are unable to traverse a substantial portion of

the Earth without coming to rest, cosmic-ray muons have a
distinct zenith dependence. This allows them to be removed

by cutting on the reconstructed direction of an event. Thus,
a reliable reconstruction that is capable of keeping up with
the ∼kHz background rate is the first step in isolating
neutrinos. Moreover, a rapid reconstruction method could
serve as part of an alert system that notifies researchers of
events that are highly likely to be astrophysical neutrinos.
For example, the real-time follow-up of such an IceCube
event led to the observation of the first astrophysical
neutrino source candidate, TXS 0506þ 056, by detecting
a neutrino in coincidence with a gamma-ray flare [2].
Along this line, similar efforts are underway in water-based
detectors such as ANTARES, see Ref. [4] for a recent
review.
At the trigger level, a simple but fast reconstruction is

typically done by solving a least squares problem via
matrix inversion, as is the case for LineFit [5] in IceCube
or QFit in ANTARES [6]. Machine learning has shown
promise by delivering a comparable quality reconstruction
with less run-time requirements [7,8]; however, the fastest
convolutional neural network (CNN) developed for
high-energy neutrinos is not able to keep pace with a
kHz scale trigger-level rate. In this article, we introduce a
reconstruction method using a sparse submanifold CNN
(SSCNN), which overcomes this run-time issue. Our
SSCNN achieves better angular resolutions than methods
such as LineFit while requiring a comparable run-time,
enabling improved trigger-level cuts and serving as a better
seed for the likelihood-based reconstruction. Figure 1
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summarizes typical event rates found in neutrino telescopes
and compares these to the execution rate of various
reconstructions. SSCNN is also capable of reconstructing
the neutrino energy, a task which has not been done at
trigger level.
While the rest of this article will concentrate on the

implementation of SSCNN in an ice-embedded IceCube-
like detector, it should be noted that our method is also
applicable to water-based neutrino telescopes, where we
expect similar performance gains. The rest of this article is
organized as follows: In Sec. II we motivate and introduce
sparse submanifold convolutions; in Sec. III we describe
the data sets used for training and testing; in Sec. IV we
evaluate the performance of the network. Finally, in Sec. V
we conclude with some parting words. The code detailing
our implementation of SSCNN has been made available
at Ref. [12].

II. METHODS

A. Sparse submanifold convolutions

Convolutional neural networks (CNNs) have become the
staple architecture for image-like data, and have achieved
great success in a wide range of applications, including
neutrino physics [13–16]. However, data from neutrino
telescopes presents inherent challenges to CNNs. In
particular:

(i) Nonregular geometry: CNNs are designed to oper-
ate on images, which are arranged on Cartesian
grids. Neutrino telescope sensors are typically
spaced irregularly [10,17–19], with varying distan-
ces and arrangements in between each sensor.

(ii) Sparsity: Traditional CNNs use convolutions which
operate on all points in the given input data. This

leads to computational inefficiencies when the data
is sparse.

(iii) High dimensionality: Events occur in large spatial
and temporal scales. This makes using traditional
CNNs computationally unfeasible on raw 4D data
(three spatial and one time) without information loss
or significant preprocessing.

In this article, we propose a solution to these challenges
using sparse submanifold convolutions [20]. This strategy
has already shown success in liquid argon time-projection
chamber neutrino experiments [21,22]. The usage of sparse
submanifold convolutions in our network naturally solves
the challenges laid out above. Sparsity and high dimen-
sionality are no longer a concern, as the number of
computations performed will depend only on the number
of OM hits. With this improved computational efficiency,
we can also handle nonregular geometries more smoothly
by using the spatial coordinates of each OM hit (in meters
from the center of the detector). This allows us to consider
data of any shape or arrangement, without restricting
ourselves to a Cartesian grid; thus our algorithm can be
easily adapted from our IceCube-like test case to, e.g.,
IceCube, KM3NeT, P-ONE, etc.
Our SSCNN replaces traditional convolutions with sparse

submanifold convolutions. While a traditional convolution
extracts features by mapping a learned kernel over all input
data, a sparse submanifold convolution operates only on the
nonzero elements. This circumvents the inefficiency of using
CNNs on sparse data, wherein the vast majority of oper-
ations are wasted multiplying zeros together. Furthermore,
to preserve the sparsity of the data after applying multiple
layers in succession, sparse submanifold convolutions enfor-
ces that the coordinates and number of output activations
matches those of the input. In other words, the features do
not spread layer after layer, as shown in Fig. 2. This is crucial
for the efficiency of SSCNNs that are very deep, as the data
would otherwise become progressively less sparse through-
out the network. The lack of feature spreading will have a
minimal impact on performance as long as the network can
rely on local information. It should be noted that SSCNNs
still compute over a grid-like structure, but this structure can
be arbitrarily large because the network only operates on a
submanifold of it.

B. Input format

As input, the SSCNN takes in two tensors: a coordinate
tensor C, and a feature tensor F. In symbols,

C ¼

2
64
x1 y1 z1 t1

..

. ..
. ..

. ..
.

xn yn zn tn

3
75; F ¼

2
64
h1

..

.

hn

3
75; ð1Þ

where the coordinate tensor is a n × 4 tensor representing
the space-time coordinates of the OMs in which there were

FIG. 1. Event rates of triggers in different neutrino tele-
scopes [9–11] compared to the run times of various reconstruction
methods. Sparse submanifold CNNs and their performance are
detailed in this article (the rate shown comes from the angular
reconstruction model). The CNN and maximum likelihood method
run times are taken from [7]. Notably, sparse submanifold CNNs
can process events well above standard trigger rates in both ice-
and water-based experiments.
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a nonzero number of photon hits. The symbol n represents
the total number of photon hits in the event, which is
variable and can typically range from one to hundreds of
thousands. The feature tensor contains the number of
photon hits which occurred within a 1 ns time window
on that OM, starting from the time indicated in the
coordinate tensor. Nanosecond units were chosen for very
fine timing resolution, as we aim to deploy the network on
both low- and high-energy events. However, depending on
the application, the 1 ns time window can be expanded to
trade-off timing resolution for even better run-time and
memory efficiency.
It is worth noting that each coordinate can be associated

with any feature vector, offering flexibility for various
configurations to encode neutrino telescope data. For
instance, we can approach this as a 3-dimensional problem,
where we only consider the spatial positions as coordinates
and use the timing information as features. However, we
decided to treat the timing as coordinates to take advantage
of the time structure inherent in neutrino telescope data.

III. EVENT SIMULATION

Our benchmark case follows an ice-embedded IceCube-
like geometry, where the OMs are spaced our approx-
imately 125 meters horizontally and 17 meters vertically.
The events used in this work are μ− from νμ charged-
current interactions. The initial neutrino sampling, charged
lepton propagation, and photon propagation were simulated
using the PROMETHEUS package [23]. The incident neu-
trinos have energies between 102 GeV and 106 GeV
sampled from a power-law with a spectral index of −1.
Since most of the events that trigger neutrino telescopes are
downward-going cosmic-ray muons, we generated a down-
going dataset. Specifically, the initial momenta have zenith

angles between 80° and 180°. It is worth noting that this
definition of zenith angle is different from the convention
which is typically used by neutrino telescopes, which take
0° to be downgoing. Internally, LeptonInjector [24] samples
the energy, direction, and interaction vertex. PROPOSAL [25]
then propagates the outgoing muon, recording all energy
losses that happen within 1 km of the instrumented volume.
PPC [26] then generates the photon yield from the hadronic
shower and each muon energy loss, and propagates these
photons until they either reach an OM or are absorbed. If a
photon reaches an OM, the module ID, module position
and time of arrival are recorded.
We then add noise in the style of [27] to the resulting

photon distributions. This model accounts for nuclear
decays in the OMs’ glass pressure housings and thermal
emission of an electron from a PMT’s photocathode. The
latter process strongly depends on the ambient temperature
near the OM and varies between PMTs. Since this
information is not publically available, we simplify the
model and vary the thermal noise rate linearly from 40 Hz
at the top of the detector to 20 Hz near the bottom, which
approximately agrees with the findings from [27]. We then
take the nuclear decay rate to be 250 Hz and generate a
number of photons drawn from a Poisson distribution with
a mean of 8 for each decay.
Before moving on, it is important to note that the photons

generated in the previous steps are only tracked to the
surface of the OM. In a full simulation of the detection
process, one would need to simulate the electronics inside
the OM, which could introduce timing uncertainties.
Furthermore, the digitized signal reported by the e.g.,
the IceCube OMs must be unfolded to get the number
of photons per unit time. These steps require access to
proprietary information that is not available externally.
Thus, we cannot include the effects from these detail
detector performance in our simulation.
For example, the process by which IceCube unfolds the

photon arrival times is described in [28]. They find that this
process introduces a timing uncertainty typically on the
order of 1 ns but that may grow up 10 ns under certain
conditions. While this may affect our results, we expect the
impact to be small since by group the photon arrival times
into nanosecond-wide bins, we are introducing a timing
uncertainty with a similar scale.
Once all photons have been added, we then implement a

trigger criteria similar to the one described in [29]. This
requires that a pair of neighboring or next-to-neighboring
OMs see light in a 1 μs time window. If 8 such pairs are
achieved in a 5 μs time window, we consider the trigger to
be satisfied. As before, the exact details of the triggering
process require access to proprietary information; however,
the events which pass our trigger should be qualitatively
similar to those which would trigger IceCube. After this
cut, we are left with 462,892 events from 3 million
simulated events, which we split between the training

FIG. 2. Comparison of conventional and submanifold convo-
lution with a Gaussian kernel. The submanifold convolution
maintains the sparsity of the input, while the traditional con-
volution blurs the input, making it less sparse. In this example, a
traditional convolution would require 18 or 25 matrix multi-
plications for sparse and nonsparse convolution, respectively,
whereas the bottom image only requires three matrix multi-
plications.
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and test data sets of 412,892 and 50,000 sizes respectively.
One can see distributions of the events which pass this
trigger as a function of true energy, zenith, and azimuth
in Fig. 3.
In addition to the trigger-level dataset, we also evaluate

the network performance on a dataset with further quality
cuts, so that we can understand performance on events
which are more likely to make it into a final analysis. In
order to do this, we consider three quantities: NOM, rCOG,
and Rell. The first two quantities—the number of distinct
OMs that saw the light and the distance between the charge-
weighted center of gravity and the center of the detector—
are fairly straightforward, but the last requires more
explanation. To compute Rell, we fit a two-parameter
ellipsoid to all OMs which saw light, and then take the
ratio of the long axis to the short axis. A ratio close to one
indicates a spherical events, whereas larger ratios indicate
longer, tracklike events.
We perform straight cuts on these variables, requiring

events have NOM > 11, rCOG < 400 m, and 2 < Rell < 8.
The first cut removes low-charge events which are difficult
to reconstruct, while the second removes “corner clipper”
events caused by μ− passing near the edge of the detector.
The final cut on Rell helps ensure that the events have a long
lever arm for angular reconstruction.
These cuts reduce the split training and testing dataset

sizes to 108585 and 13183 events, respectively. The spatial
sparsity of these improved quality events is about ∼3%, as
there are 154 OMs that were hit on average, out of the 5,160
total OMs in our example detector. For the trigger-level
events, the spatial sparsity is about ∼2%. The time
dimension adds another level of sparsity, as typical events

can last tens of thousands of nanoseconds compared to the
microsecond time window.

IV. PERFORMANCE

A. Training and architecture details

We utilize a ResNet-based architecture, taking advantage
of residual connections between layers to promote robust
learning for deeper networks. More details on the network
architecture can be found in Fig. 4. A typical block of the
network consists of a sparse submanifold convolution,
followed by batch normalization and the parametric rec-
tified linear unit (PReLU) activation function. The selection
of the activation function was determined after examining
prevalent alternatives, such as the conventional ReLU or a
smooth approximation, like the SELU. Downsampling is
performed using a stride 2 sparse submanifold convolution.
We use the PyTorch deep learning framework and the
MinkowskiEngine [30] library to implement the
network.
This article focuses on the training of three distinct

models. The objective of two of these models is the
prediction of the three components of the neutrino direc-
tional pointing vector (Xν, Yν, Zν), with one model trained
on the trigger-level dataset and the other trained on the
quality dataset. The directional vector is learned rather than
the zenith and azimuth angles because of complications
with azimuthal periodicity and undesirable boundary con-
dition behavior at large or small angles. Another model
was trained to infer the primary neutrino energy Eν. The
network is trained to predict the logarithmic energy,
log10ðEνÞ, as they vary over a wide range of magnitudes.

FIG. 3. Distributions of events in true energy and zenith. Left: The distribution of events used as a function of true neutrino energy.
As expected, the generated distribution is flat when binned logarithmically since the generation was sampled according to a E−1

ν

distribution. Furthermore, the fraction of generated events which produce light, and the fraction of light-producing events which pass the
trigger threshold increase with energy. Right: The same distribution as a function of true neutrino zenith angle. Once again the generated
distribution is flat in the cosine of this angle, which is proportional to the differential solid angle. nearly flat, with slightly lower
efficiency near the horizon.
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Each model was trained for 25 epochs using a batch size
of 128 and the Adam optimizer. The initial learning rate
was set at 0.001 and was reduced periodically during
training. Dropout and weight decay are employed to
prevent overfitting.
To train the energy reconstruction task, the LogCosh

loss function is used, since it is more robust to outliers than
the standard MSE loss. The loss function is defined as
follows:

LE ¼ 1

N

XN
i

log ðcosh ðxi − yiÞÞ; ð2Þ

where N is the number of events in the batch, xi are the
predictions, and yi are the labels. For the angular
reconstruction, an angular-distance loss function is used,
namely,

LA ¼ 1

N

XN
i

arccos

�
X⃗i · Y⃗i

kXikkYik
�
; ð3Þ

where X⃗i and Y⃗i are the predicted and true directional
vectors, respectively.

B. Run-time performance

We evaluate the run-time performance of SSCNN in
terms of the forward pass duration on both CPU and GPU
hardware. The CPU benchmark is performed on a single
core of an Intel Xeon Platinum 8358 CPU, while the GPU
benchmark uses a 40 GB NVIDIA A100. As is generally
the case for neural networks, running on GPU is preferred
due to its superior parallel computation capabilities.
Additionally, the use of sparse submanifold convolutions
has greatly enhanced the GPU memory efficiency, enabling
us to run larger batch sizes during inference. SSCNN can
reconstruct direction at a rate of 9901 Hz on a 40 GB
NVIDIA A100 GPU, while handling a batch size of 12,288
events simultaneously. This is fast enough to handle

the expected ∼kHz current and planned large neutrino
telescopes.
The run-time on a single-core CPU is slower and largely

dependent on the number of photons hits in the event due
to the limited parallel computation capabilities. However,
SSCNN run-time on a CPU core is comparable to that of
the likelihood-based angular method and is more consis-
tent, as indicated by the lower standard deviation on the
run-time distribution. The run-time results on both GPU
and CPU are summarized in Table I.

C. Reconstruction performance

We first test SSCNN on reconstructing the direction of
the primary neutrino. We measure performance using the
angular resolution metric, which is calculated by taking
the angular difference between the predicted and true
directional vectors. Figure 5 shows the angular resolutions
as a function of the true neutrino energy. Lower-energy
events generally produce less photon hits, leading to a
shorter lever-arm and, consequently, worse resolution. As
expected, the trigger-level events are harder to reconstruct
due to the lower light yield and the presence of corner-
clipper events. On this event selection, SSCNN is able to
reach under 4° median angular resolution on the highest-
energy events. Enforcing the previously described quality
cuts improves the results of the SSCNN by roughly 2°

FIG. 4. Network architecture overview. The network accepts as input a 4D point cloud of photon OM hits, as shown by the colored
points in the figure. The color indicates the timing (red is earlier, blue is later). Residual connections, denoted with ⊕, are used in
between convolutions. Downsampling (dashed-red lines) is performed after a series of convolutions. The final layer of the network is a
fully connected layer, which outputs the predicted quantity. In this work, we train the network to predict the logarithmic νμ energy, and
the three components of the normalized νμ direction vector.

TABLE I. Per event average run-time performance. The for-
ward pass run times (mean � STD) for SSCNN was evaluated on
trigger-level events. A likelihood-based method for energy and
angular reconstruction was included for reference [7]. It should
be noted that likelihood-based methods usually require seeding or
initial estimates, meaning the actual run-time is longer.

SSCNN angular (GPU) 0.101� 0.003 ms
SSCNN energy (GPU) 0.103� 0.008 ms
SSCNN angular (CPU) 37.7� 53.4 ms
SSCNN energy (CPU) 30.6� 48.9 ms
Likelihood angular (CPU) 36� 152 ms
Likelihood energy (CPU) 6.58� 23 ms
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across the entire energy range. This performance is com-
parable to or better than current trigger-level reconstruction
methods used in neutrino telescopes. For example, the
current trigger-level direction reconstruction at IceCube
is done using the traditional LineFit algorithm [5], which
has a median angular resolution of approximately 10° on
raw data.
We also test SSCNN on reconstructing the energy

of the primary neutrino. Figure 6 summarizes the energy
reconstruction results. Events where the interaction point
of the neutrino occurs outside the detector, known as

through-going events, make up the majority of our
dataset. As a result, predicting the neutrino energy has an
inherent, irreducible uncertainty produced by the unknown
interaction vertex and the muon losses outside of the
detector. This missing-information problem leads to an
intrinsic uncertainty in the logarithmic neutrino energy of
approximately 0.4 for a through-going event. The behavior
observed between 100 GeV and 1 TeV is due to the muon
being in the minimally ionizing regime, up to around
700 GeV. Additionally, the network has a tendency to
overpredict at the lowest energies, and underpredict at
highest energies. This can be attributed to the artificial
energy bounds on the simulated training dataset.

V. CONCLUSIONS

In this article, we have demonstrated the application of
an SSCNN for event reconstruction on neutrino telescopes.
We have shown that these networks are capable of main-
taining competitive performance on the tasks of energy and
angular reconstruction while running on the μs time scale.
The speedup enables the SSCNN to process events at a
rate well above that of the current neutrino telescopes
trigger rate, which is expected to be representative of other
neutrino telescopes currently operating or under construc-
tion, such as IceCube, KM3NeT, P-ONE, and Baikal-GVD.
Reaching this threshold makes the SSCNN a feasible
option for online reconstruction at the detector site where
resources are limited and where first guesses of the energy
and direction of the neutrino are made. As discussed in the
introduction, this can have a substantial impact on current
real-time analyses, where our first estimations can also
be utilized in an alert-sending system, which will notify
collaborators if the detector sees an interesting event.
Additionally, these reconstructions can serve as seeds for
more time-consuming reconstructions, and thus improving
these first estimations will be beneficial to all subsequent
analyses.
As a promising future direction, the exploration of

training SSCNN for other event reconstruction challenges,
such as morphology and particle classification, holds great
potential. Such tasks could significantly benefit from the
accelerated run-time provided by SSCNN.
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FIG. 5. Angular reconstruction performance as a function of the
true neutrino energy. The angular resolution results are binned by
the true neutrino energy, with the median taken from each bin to
form the lines shown.

FIG. 6. Energy reconstruction performance at the trigger-level.
The solid lines show the median of the predicted log10ðEνÞ, while
the shaded regions are the 5% to 95% confidence level bands. The
events in the test dataset are separated into starting and through-
going events. The solid-black line serves as a reference for a
perfect reconstruction.
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