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Methods for parameter estimation of gravitational-wave data assume that detector noise is stationary and
Gaussian. Real data deviate from these assumptions, which causes bias in the inferred parameters and
incorrect estimates of the errors. We develop a sensitive test of non-Gaussianity for real gravitational-wave
data that measures meaningful parameters that can be used to characterize these effects. As a test case, we
investigate the quality of data cleaning performed by the LIGO-Virgo-KAGRA Collaboration around
GW200129, a binary black hole signal that overlapped with the noise produced by the radio frequency
modulation. We demonstrate that a significant portion of the non-Gaussian noise is removed below 50 Hz,
yet some of the noise still remains after the cleaning; at frequencies above ∼85 Hz, there is no excess noise
removed. We also show that this method can quantify the amount of non-Gaussian noise in continuous data,
which is useful for general detector noise investigations. To do that, we estimate the difference in non-
Gaussian noise in the presence and absence of light scattering noise.
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I. INTRODUCTION

Gravitational-wave (GW) data are often non-Gaussian,
meaning it contains outliers. This excess noise is broadly
divided into two categories: short and well-defined noise
(also called “glitches”) and longer-duration broadband
excess noise. Both types of excess noise can overlap with
real GW signals in time and frequency, therefore affecting
GW searches, and source parameter estimation, including
the sky localization which is used for electromagnetic
follow-up efforts [1–5].
In some cases, the excess noise is recorded by the

detector’s witness channels. For example, throughout the
second LIGO-Virgo observing run, multiple noise cou-
plings were recorded: main power lines and detector
calibration lines, as well as the laser beam jitter noise
present in LIGO Hanford [6,7].
In principle, recording the noise with witness channels

allows us to estimate the noise coupling to the gravitational-
wave strain channel and thus remove the noise [8].
With this in mind, the linear noise subtraction method
GWSUBTRACTwas developed [9]. The method assumes that
noise is Gaussian and stationary and that the noise couples
linearly. About 30% increase in LIGO Hanford sensitivity

was achieved during the second LIGO-Virgo observing run
with GWSUBTRACT [9]. There was no noticeable improve-
ment for LIGO Livingston because the “jitter” noise was
not present at the detector.
During the third LIGO-Virgo-KAGRA observing run,

binary black hole signal GW200129 coincided with the
noise caused by the 45 MHz electro-optic modulator
driver system at LIGO Livingston [10]. This noise was
recorded by multiple radio frequency (rf) channels, one of
which was used to clean the data around GW200129 using
the previously mentioned linear subtraction method [11].
After the reanalysis of LIGO-Virgo-KAGRA results,
Hannam et al. found GW200129 to be a highly precessing
event; in fact, the measured orbital precession is 10 orders
of magnitude higher than any previous weak-field
observation [12].
Payne et al. questioned whether this event is indeed

highly precessing or whether the observed precession is just
an artifact of the leftover noise after the data cleaning [13].
While there were various checks performed by the LIGO-
Virgo-KAGRA Collaboration to make sure that the linear
noise subtraction mitigated the noise [10], there was no
statistical estimate of how much rf noise was removed.
In this paper, we present a sensitive statistical test for

measuring non-Gaussian noise in GW data. In Sec. II, we
derive the normalized Q transform, which allows us to
make assumptions about Gaussian data. We also describe
how Bayesian statistical modeling can be used to estimate
the amount of non-Gaussian noise in GW data. In Sec. III,
we apply our method to the data around GW200129 and
evaluate the effectiveness of the linear noise subtraction.
In addition, we also show that our method can be used as
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an informative real-time noise measurement. Finally, the
discussion and conclusions are given in Secs. IV and V,
respectively.

II. METHODS

A. Normalized Q transform

GW data containing outliers can be represented by the
sum of Gaussian and non-Gaussian time series. In our
model, we assume that the Gaussian data follow a Gaussian
distribution with a standard deviation of 1, while the non-
Gaussian noise is made out of short bursts of transient noise
whose amplitudes are drawn from a distribution.
To identify Gaussian and non-Gaussian parts of the time

series data, we start with the Q transform defined as

Xðτ; f;QÞ ¼
Z þ∞

−∞
xðtÞwðt − τ; f;QÞe−i2πftdt; ð1Þ

where wðt − τ; f;QÞ is a window centered on time τ
with the width of the window proportional to the quality
factor Q,

Q ¼ f0
Δf

; ð2Þ

where f0 is central frequency and Δf is the frequency
bandwidth [14].
Using Eq. (1), we transform the time series data into

time-frequency tiles for certain Q and f0 values. Contrary
to Ref. [15], which uses a variable Q, we chose to use a
specific window width for two reasons.
First, we focus only on frequencies where there is non-

Gaussianity, which means that our statistical measurement
of noise is more precise. Furthermore, by specifying Q and
f0 we normalize the Q tiles in such a way that the average
power for Gaussian data in each tile k is 1, i.e.,

1

N

Xk¼N

k¼1

h
ℜ2ðAkðtÞÞ þ ℑ2ðAkðtÞÞ

i
¼ 1; ð3Þ

where AðtÞ is the amplitude of time series data.
Normalizing the Q transform enables us to make an

assumption about the distribution of Q-tile powers for
Gaussian data. As shown in Eq. (3), our Q tiles have
2 degrees of freedom: real and imaginary parts of the
time-frequency data. As a consequence, we expect that
Gaussian data should follow a χ2ð2Þ distribution [16],
which is simply an exponential distribution with a rate
λ ¼ 1=2 (Fig. 1).
This lets us define a simple statistical test to estimate the

Gaussianity of the data: for the number of tiles N, the total
Q-tile power for Gaussian data is N and the standard
deviation is

ffiffiffiffiffiffi
4N

p
(assuming N ≫ 1).

B. Distribution fitting with Bayesian statistical
modeling

For a more informative test of non-Gaussianity, we
model the non-Gaussian part of the data. GW data with
excess power have two contributions: Gaussian data
modeled by χ2ð2Þ and a non-Gaussian part represented
by an unknown distribution. Data with excess power have
much higher energies and a longer tail in contrast with the
Gaussian-only data (Fig. 1).
To estimate the amount of non-Gaussianity, we need to

fit a mixture of two distributions. We achieve this by using a
marginalized mixture model likelihood [17].
The likelihood of a data point zk belonging to either

Gaussian data or non-Gaussian data distribution can be
written as

pðzkjqk;αÞ ¼ΠK
k¼1½qkp1ðzkjα1Þþ ð1−qkÞp2ðzkjα2Þ�; ð4Þ

where k is the tile number, qk is a binary flag, and
p1ðzkjα1Þ, p2ðzkjα2Þ represents the probability that a point
corresponds to the Gaussian noise distribution or a non-
Gaussian distribution, respectively.
Prior on qk is defined as

pðqkÞ ¼
�
F if qk ¼ 0;

1 − F if qk ¼ 1;
ð5Þ

where fraction F ∈ ½0; 1�.
Equation (5) allows us to marginalize the likelihood from

Eq. (4) giving

FIG. 1. Q-tile power for Q ¼ 8 and f0 ¼ 40 Hz for 366 s
simulated Gaussian data (blue) and 366 s data with excess noise
(orange). The distribution of powers for Gaussian data closely
follows the expected exponential distribution with a rate
λ ¼ 1=2. Noisy data, however, contain excess noise and therefore
do not follow the exponential distribution associated with the
Gaussian data.
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pðzk; αÞ ¼ ΠK
k¼1½ð1 − FÞp1ðzkjα1; qk ¼ 1Þ

þ Fp2ðzkjα2; qk ¼ 0Þ�: ð6Þ

To estimate the marginalized likelihood, we use a Bayesian
statistical modeling package PyMC with Hamiltonian
Monte Carlo “No-U-Turn” sampler (NUTS) [18,19].
Rather than relying on a classical Markov chain Monte
Carlo method that does not consider the geometry of
parameter space, PyMC with NUTS allows us to recover
distribution parameters faster and with fewer samples. It
achieves this by specifying a probabilistic model in PyMC,
compiling it into a computational graph, providing initial
values for parameters, configuring the NUTS sampler, and
then running the sampling process. NUTS explores the
posterior distribution by proposing and accepting/rejecting
parameter values, allowing for efficient and scalable
Bayesian inference.
After recovering parameters for each distribution, we

estimate the total power in each distribution, i.e., the area
under the curve. The ratio of non-Gaussian power to
the total power (which we refer to as “fractional power”)
lets us statistically measure non-Gaussianity in GW detec-
tor data.

III. DEMONSTRATION ON REAL DATA

A. Radio frequency noise around GW200129

GW200129 coincided with the 45 MHz radio frequency
noise caused by the electro-optic modulator driver system
at LIGO Livingston. Luckily, this noise was also recorded
by multiple witness channels, thus enabling us to clean the
data around GW200129 using the linear subtraction tool
GWSUBTRACT [10,20,21].
To estimate the effectiveness of linear subtraction, we

compared the data from the original (i.e., not cleaned)
LIGO Livingston data frame and the frame that has the
excess noise removed using GWSUBTRACT.
First, we identified when rf noise was present in the

data around GW200129 using Z score. Out of 4096 s, we
selected in total 366 s considered to contain radio frequency
noise. After that, the data subset was Q tiled for various Q
and f0 values.
For the first test of non-Gaussianity, we simply estimate

what is the average tile power for both the original and
the GWSUBTRACT data. To do that, we Q tile the data for
various Q and f0 values, which gives us the total number of
tiles and the power in each tile. Since we use the normalized
Q tiles, the average tile power for Gaussian data is 1.
Figure 2(a) shows the corresponding average tile power for
quality factor Q ¼ 8. We chose the Q value of 8 in this and
the following figures because low Q-value tiles fit the short-
duration glitches such as rf noise better.
As a more advanced test, we want to measure the amount

of non-Gaussianity. In order to do that, we model the data
with an exponential distribution with a rate λ ¼ 1=2 and a

half Student T distribution [22] with probability density
function given by

fðxjσ; νÞ ¼ 2Γðνþ1
2
Þ

Γðν
2
Þ

ffiffiffiffiffiffiffiffiffiffi
νπσ2

p
�
1þ 1

ν

x2

σ2

�
−νþ1

2

; ð7Þ

where ν is degrees of freedom, σ is the normality parameter,
and Γ is the gamma function. We chose half Student T
distribution because it has a long tail that closely matches
the non-Gaussian data (see, for example, Fig. 1).

FIG. 2. Average tile power (a) and fractional power (b) for data
around GW200129 with quality factor Q ¼ 8. Linear subtraction
GWSUBTRACT removes a significant portion of the non-Gaussian
noise below 50 Hz, yet some of the noise still remains after the
cleaning. At frequencies above ∼85 Hz, there is no excess noise
removed.
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After recovering distribution parameters, we estimate the
fractional power, which is the ratio of non-Gaussian power
to the total power. Figure 2(b) shows the fractional power
for GW200129.

B. Light scattering noise

We also apply both tests to measure the excess noise in
the time series data that is continuous. For this example,
we selected 10 min of data with a relatively low amount of
light scattering noise and 10 min of scattering-heavy data

recorded by LIGO Livingston on January 6, 2020. Light
scattering glitches are caused by stray light reflection
in the beam tube, which can happen due to excessive
ground motion [23–25]. As a result, such noise transients
can last up to minutes with a typical frequency range of
20–50 Hz.
We use the same procedure as in the previous example of

GW200129. First, we calculate the Q-tile power for specific
Q and f0 values giving us the average tile power, which is
equal to 1 for Gaussian data. Then, we fit the Q-tile power
with χ2ð2Þ and half Student T distributions to estimate the
fractional power, which is the ratio of non-Gaussian power
to the total power. Figure 3 shows the average tile power
and the fractional power for both low noise and scattering-
heavy time series using quality factor Q ¼ 8.

IV. DISCUSSION

In this paper, we present a method to estimate the amount
of non-Gaussian noise in the data based on the normalized
Q transform. This method has multiple advantages over
other statistical tests. While comparing power spectral
density (PSD) between the cleaned and original data
provides a quantitative measurement of the removed power,
it does not discriminate whether the removed power is non-
Gaussian, i.e., the excess noise, or Gaussian [7]. Further-
more, the PSD estimation is usually performed over a long
duration, e.g., 512 s, meaning that such a test becomes less
sensitive to removing short-duration noise bursts like in the
data around GW200129.
Contrary to the PSD comparison, our test discriminates

between the Gaussian and non-Gaussian noise; we also
analyze only the times when the rf noise is present, which
makes our test much more sensitive than the PSD
comparison.
Another commonly used method to estimate how well

the data are cleaned relies on the visual inspection of
spectrograms [7]. However, this becomes problematic
when the excess noise is weak and is comparable to
Gaussian noise. This issue becomes even more precarious
when the excess noise overlaps a GW signal, as in the case
of GW200129. Conversely, our method provides a quanti-
tative measurement of the excess noise.
By using normalized Q tiles, we put a constraint that

Gaussian data have an average tile power of 1, whereas the
data with excess noise are expected to have more power on
average. Furthermore, we found that the Gaussian data
must follow a χ2ð2Þ distribution after we normalize the Q
tiles. As a result, the data containing Gaussian and non-
Gaussian noise can be decomposed into two distributions,
one of which is χ2ð2Þ.
To estimate the amount of non-Gaussian noise in GW

data, we fit the normalized Q-transform power using
Bayesian statistical modeling with the Hamiltonian Monte
Carlo algorithm. By doing this, we reconstruct the param-
eters of both Gaussian and non-Gaussian distributions.

FIG. 3. Average tile power (a) and fractional power (b) for data
with quality factor Q ¼ 8. Time series data in blue have excess
power at the 15–50 Hz range caused by the light scattering
artifacts, whereas the time series data in orange with no light
scattering artifacts have a relatively small amount of non-
Gaussian noise across all frequencies.
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As the first application of this method, we investigate if
(and how much) GWSUBTRACT cleaned the data around
GW200129. As shown in Fig. 2, rf noise is mostly affecting
the data in the 30–50 Hz range, where the non-Gaussian
power is at least 55% of the total data power, i.e., the
frequencies where precession effects are especially impor-
tant for GW200129 [13]. Linear subtraction GWSUBTRACT

removes up to 30% of the fractional power in this frequency
range, indicating that it does remove the rf noise, albeit not
entirely.
At higher frequencies, there is less rf noise in the data,

which could explain why GWSUBTRACT is less efficient at
these frequencies compared to the 30–50 Hz range. Above
∼85 Hz, GWSUBTRACT does not remove any noise, which is
reasonable given that the witness channel used to clean the
data does not have any information above this frequency.
Our simpler test showing the average tile power agrees

well with the fractional power results (Fig. 2). Both frames,
original and GWSUBTRACT, have more power per tile
than the Gaussian data. However, the original data have
considerably more power in the 30–50 Hz range (up to
70% more).
We also tested if our method can be applied as a live

monitoring tool of excess noise in GW detector data. For
that, we compared 10 min of relatively quiet data with
10 min of data containing many scattering glitches at LIGO
Livingston on January 6, 2020.
We found that the fractional power is much higher

for data with many scattering glitches than for the quiet
data [Fig. 3(b)]. The excess noise is concentrated within
10–50 Hz and peaks at 20 Hz, where the non-Gaussian
noise power is 0.96 of the total power. The frequency of
light scattering noise (20–50 Hz) is similar to the excess
noise at 15–50 Hz, indicating that our test correctly
identified the presence of excess noise. For 10 min of
relatively low noise, the fractional power is much lower and
stays relatively constant across all frequencies.
Similarly, our average tile power test indicates that the

data with scattering glitches contain up to ∼7 times more
power than the Gaussian data [Fig. 3(a), blue]. Data with no
scattering glitches [Fig. 3(a), orange] stay relatively con-
stant across all frequencies and have an average tile power
close to Gaussian data, i.e., 1.

V. CONCLUSIONS

Gravitational-wave data contain many noise transients
that can affect GW searches and estimation of source
parameters such as the precession of a binary black hole. It
is possible to mitigate excess noise from GW data in some
cases, for example, by correlating information from noise
witness channels. However, the lack of meaningful and
sensitive statistical tests prevents estimating the effective-
ness of such noise mitigation tools.
In this paper, we propose a novel method to statistically

measure the non-Gaussian noise in GW detector data. By

using normalized Q transform, we constrain how Gaussian
data should be distributed, which allows us to determine the
amount of non-Gaussian noise in the data.
Our method provides two statistical tests to measure

the non-Gaussianity. The first one measures the average tile
power which, for Gaussian data, must be equal to 1. The
second test estimates the relative power of non-Gaussian
data compared to the total power, which we define as
fractional power. Both our tests are sensitive to excess noise
changes in frequency, which allows for a more precise
noise measurement than averaging across all frequencies.
In order to show the effectiveness of our statistical tests,

we explore two scenarios. First, we investigate how well
GWSUBTRACT, a linear subtraction tool, removes the noise
around the binary black hole event GW200129. We find
that GWSUBTRACT removes a significant portion of the non-
Gaussian noise at lower frequencies (30–70 Hz), yet it fails
to remove the non-Gaussian noise completely. There is also
no noise removed above ∼85 Hz.
In the second scenario, we test if our method can be

applied as a live monitoring tool of excess noise in GW
detector data. We show that for data that have many light
scattering noise artifacts, our method correctly identifies
the excess noise within the light scattering noise frequency
range (20–50 Hz).
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Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout,
S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C. Willing,
Jupyter notebooks—a publishing format for reproducible
computational workflows, in Positioning and Power in
Academic Publishing: Players, Agents and Agendas,
edited by F. Loizides and B. Schmidt (IOS Press,
Amsterdam, 2016), pp. 87–90.

[34] W. McKinney et al., Data structures for statistical comput-
ing in PYTHON, in Proceedings of the 9th PYTHON in Science
Conference (Austin, TX, 2010), Vol. 445, pp. 51–56.

[35] J. D. Hunter, MATPLOTLIB: A 2d graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

[36] R. Kumar, C. Carroll, A. Hartikainen, and O. Martin, Arviz
a unified library for exploratory analysis of Bayesian models
in PYTHON, J. Open Source Software 4, 1143 (2019).

[37] D. Foreman-Mackey, CORNER.PY: Scatterplot matrices in
PYTHON, J. Open Source Software 1, 24 (2016).

SENSITIVE TEST OF NON-GAUSSIANITY IN … PHYS. REV. D 108, 063016 (2023)

063016-7

https://doi.org/10.1103/PhysRevD.102.022004
https://doi.org/10.3847/1538-4357/ac2f9a
https://doi.org/10.3847/1538-4357/ac2f9a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.01143
https://doi.org/10.21105/joss.00024

