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Spinning black holes can transfer a significant fraction of their energy to ultralight bosonic fields via
superradiance, condensing them in a corotating structure or “cloud.” This mechanism turns black holes into
powerful particle detectors for bosons with extremely feeble interactions. To explore its full potential, the
couplings between such particles and the Maxwell field in the presence of plasma need to be understood.
In this work, we study these couplings using numerical relativity. We first focus on the coupled axion-
Maxwell system evolving on a black hole background. By taking into account the axionic coupling
concurrently with the growth of the cloud, we observe for the first time that a new stage emerges: that of a
stationary state where a constant flux of electromagnetic waves is fed by superradiance, for which we find
accurate analytical estimates. Moreover, we show that the existence of electromagnetic instabilities in the
presence of plasma is entirely controlled by the axionic coupling; even for dense plasmas, an instability is
triggered for high enough couplings.
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I. INTRODUCTION

Black holes (BHs) populate the cosmos with a wide
range of masses varying across eight or more orders of
magnitude. Accretion of baryonic matter or mergers with
other BHs and stars increase the BH mass and may provide
it with a considerable spin, turning BHs into engines that
may power other phenomena. One of such mechanisms
relies on superradiance (SR) [1–4] and makes BHs ideal
tools for particle physics. Indeed, in the presence of new
light, bosonic degrees of freedom, spinning BHs are
unstable, and spin down while depositing a substantial
fraction of their energy into a bosonic cloud [4–7]. This
mechanism does not require any significant initial abun-
dance of the bosonic field, as it relies on a linear instability:
any small initial field amplitude will lead to a sizeable and
potentially measurable effect. Therefore, the SR mecha-
nism is a compelling way to search for new degrees of
freedom that may or may not be a significant component of
dark matter [8–11].
The precise development of the instability is well under-

stood in vacuum and in the absence of couplings to the
StandardModel [4–7,12]. However, BHs are surrounded by
interstellar matter or accretion disks and couplings between
bosonic fields and the Standard Model may be nonvanish-
ing. It was argued analytically and with numerical simu-
lations that axionic couplings to the Maxwell sector might
trigger parametric instabilities, whereby the scalar cloud
transfers energy to electromagnetic (EM) radiation [13–16].

Additionally, the presence of a surrounding plasma may
quench the parametric instability due to the high energy
(large “effective mass”) of typical astrophysical environ-
ments [17–19]. The previous works left important gaps:
(i) the parametric instability was shown to give rise to
periodic bursts of light, but its period and amplitudewere not
studied. In fact, the effect of a SR growing cloud was also
not understood properly.1 (ii) The role of plasmas in the
development of EM instabilities is known poorly, but could
have a drastic effect (see, e.g., recent works on dark photon
SR [20,21]), since the plasma frequency is rather large in
most astrophysical circumstances.
The outline of this work is as follows. In Sec. II, we set

up the relevant equations of motion and we discuss the
modeling of the cloud as well as the plasmic environment.
In Sec. III, we study the evolution of the axion-Maxwell
system in the absence of SR. In Sec. IV, we do a similar
exercise yet now while including SR. In Sec. V, we describe
the influence of a plasma on the EM instability. In Sec. VI,
we discuss possible observational signatures. Finally, we
summarize and conclude in Sec. VII.
This work contains a number of appendices with addi-

tional details. In Appendix A, we study the time evolution
of massive scalar fields around BHs. In Appendix B,
we discuss the wave extraction from our simulations.

1As we show here, bursts will in general not occur, but give
way to a stationary emission of light.
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In Appendix C, we motivate the assumptions of our plasma
model. In Appendix D, we formulate our equations of
motion as an initial value problem. In Appendix E, we
show the convergence of our code. In Appendix F, we
report higher multipoles. In Appendices G and H, we study
the Mathieu equation in presence of SR and plasma,
respectively. Finally, in Appendix I, we discuss the spheri-
cal harmonics decomposition of the Maxwell equations.
We adopt the mostly positive metric signature and use

geometrized units in which G ¼ c ¼ 1 and rationalized
Heaviside-Lorentz units for the Maxwell equations, unless
otherwise stated.

II. SETUP

A. The theory

We consider a real, massive (pseudo)scalar field Ψ
with axionic couplings to the EM field. In addition, the
EM field is coupled to a cold, collisionless electron-ion
plasma. In this setup, the Lagrangian takes on the
following form:

L ¼ R
16π

−
1

4
FμνFμν −

1

2
∇μΨ∇μΨ −

μ2

2
Ψ2

−
ka
2
Ψ�FμνFμν þ Aμjμ þ Lm: ð1Þ

The mass of the scalar field Ψ is given by ma ¼ μℏ, Aμ is
the vector potential, Fμν ≡∇μAν −∇νAμ is the Maxwell
tensor and �Fμν ≡ 1

2
ϵμνρσFρσ is its dual. We use the

definition ϵμνρσ ≡ 1ffiffiffiffi−gp Eμνρσ, where Eμνρσ is the totally

antisymmetric Levi-Civita symbol with E0123 ¼ 1. We
define the Lagrangian for the plasma as Lm, while ka
quantifies the axionic coupling which we take to
be constant. There exists a wide variety of theories
predicting axions and axionlike particles, and generically
ka is independent of the boson mass. Therefore, we
take ka to be an additional free parameter of the theory.
Notice that we do not consider self-interactions, which
could appear as an expansion of the axion’s periodic
potential. This corresponds to a region kafa ≥ Oð1Þ
predicted in models such as clockwork axions [22,23]
and magnetic monopoles in the anomaly loop [24,25],
where fa is the decay constant of the axion.2 In principle,
a similar analysis could be performed for scalar couplings
(L ⊃ ksΨFμνFμν), at least when the coupling strength is
weak [15].
Finally, jμ is the plasma current, and captures both the

contributions of the electrons and the much heavier ions. In
this work, we adopt a two-fluid formalism model for the
plasma, where electrons and ions are treated as two different

fluids, coupled through the Maxwell equations.3 Hence, the
plasma current is given by jμ ¼ P

s qsnsu
μ
s, where the index

s represents the sum over the two different species, electrons
and ions, and qs; ns; u

μ
s are the charge, number density, and

four velocity of the fluids, respectively.
An axion cloud produced from SR can grow to

be ≲10% of the BH mass [7,31,32]. We will consider
the cloud’s backreaction on the geometry to be small and
thus evolve the system on a fixed background. The
gravitational coupling μM determines the strength of the
interaction between the BH and the axion and is a crucial
quantity. In order for SR to be efficient on astrophysical
timescales, the gravitational coupling must be Oð1Þ.
For μM ≪ 0.1, the exponential growth is too slow, while
the instability is exponentially suppressed for μM ≫ 1
[33,34]. Consequently, we will perform simulations in the
range μM ∼ 0.1–0.3.
From the Lagrangian of our theory (1), we obtain the

equations of motion for the scalar and EM field. In order to
close the system, we also need to consider the continuity
and momentum equation of the fluids, which come from
the conservation of the energy-momentum tensor for the
Maxwell-plasma sector. Ignoring the backreaction of the
fields in the spacetime, we obtain

ð∇μ∇μ − μ2ÞΨ ¼ ka
2

�FμνFμν;

∇νFμν ¼ jμ − 2ka�Fμν∇νΨ;

uνs∇νu
μ
s ¼ qs

ms
Fμ

νuνs;

∇μðnsuμsÞ ¼ 0; ð2Þ
where the index s denotes again the particular fluid species.
Finally, we impose the Lorenz condition on the vector field

∇μAμ ¼ 0; ð3Þ

thereby fixing our gauge freedom.

B. Modeling superradiance

Even though we are interested in an axion cloud that
grows through SR, and thus requires a spinning BH

2The strong self-interaction regime was discussed in, e.g.,
[26–29], where transitions to various cloud modes and distortion
of bound state wave functions are expected.

3Other plasma models such as kinetic theory or relativistic
magnetohydrodynamics are not suitable for our purposes. The
former is necessary for phenomena where the fluid’s velocity
distribution plays an important role. Even though this leads to a
correction in the dispersion relation of the photons [30], they are
not relevant for the problem at hand. Relativistic magnetohy-
drodynamics is appropriate for describing the behavior of plasma
on long timescales, yet fails to capture the high-frequency
oscillations at the plasma frequency scale that provide the photon
with an effective mass, i.e., it is valid only for t ≫ ω−1

p , where ωp
is the plasma frequency (5). The model we adopt instead does
correctly capture the photon’s effective mass, while being
computationally lighter.

THOMAS F. M. SPIEKSMA et al. PHYS. REV. D 108, 063013 (2023)

063013-2



described by the Kerr metric, we will instead mimic SR
growth without the need of a spinning BH. The reason is of
a practical nature: timescales to superradiantly grow an
axion cloud are larger than ∼106M [34–36], a prohibitively
large timescale for our purposes. Therefore, we mimic SR
growth following Zel’dovich [1,2,37], by adding a simple
Lorentz-invariance-violating term to the Klein-Gordon
equation,

ð∇μ∇μ − μ2ÞΨ ¼ C
∂Ψ
∂t

þ ka
2

�FμνFμν: ð4Þ

Here, C is a constant, which in the absence of the axionic
coupling gives rise to a linear instability on a timescale
of the order 1=C, where we can tune C to be within our
numerical limits. For further details, we refer to
Appendix A 2.

C. Modeling plasma

One of the most important characteristics of plasmas is
their peculiar response to external perturbations. When
plasma is perturbed by an EMwave, electrons are displaced
and start oscillating around their equilibrium position with
the so-called plasma frequency:

ωp ¼
ffiffiffiffiffiffiffiffiffi
neq2e
me

s
≈
10−12

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

10−3 cm−3

r
eV: ð5Þ

Remarkably, the dispersion relation of the transverse
modes of a photon propagating in a plasma are modified
by a gap which corresponds to the plasma frequency, i.e.,
ω2 ¼ k2 þ ω2

p. For this reason, the plasma frequency acts as
an effective mass for the transverse polarizations of the
photons. This effect is crucial to take into account when
studying parametric instabilities as the axion decay into
photons could be suppressed in a dense plasma, i.e., when
ωp ≫ μ. Throughout this work, we work under the follow-
ing assumptions regarding the plasma. Details and moti-
vations are provided in Appendix C.

(i) We drop nonlinear terms in the axion-photon-plasma
system.

(ii) We ignore the oscillations of the ions due to the
EM field.

(iii) We consider a locally quasineutral plasma as ini-
tial data.

(iv) We assume a cold and collisionless plasma.
(v) We neglect the gravitational influence on the evo-

lution of the fluid’s four velocity as measured by an
Eulerian observer.4

D. Numerical procedure

To evolve the system, we solve numerically the equa-
tions of motion (2) around a Schwarzschild BH with mass
M. We denote the spatial part of the Maxwell field Ai, the
electric field Ei, the magnetic field Bi, an auxiliary field Z,
and finally the conjugate momentum Π of the scalar field.
Using these variables and applying the 3þ 1 decomposi-
tion to the equations of motion, we obtain the evolution
equations for the scalar field, EM field, and the plasma. A
detailed account of the formulation of our system as a
Cauchy problem can be found in Appendix D.
Besides the evolution equations, the 3þ 1 decomposi-

tion also provides us with a set of constraint equations,
which are shown explicitly in (D10). The initial data we
construct should satisfy these equations. For the electric
field, we assume the following profile:

Er ¼ Eθ ¼ Ai ¼ 0;

Eφ ¼ E0e−ð
r−r0
σ Þ2M; ð6Þ

where Ei ¼ Fiμnμði ¼ r; θ;φÞ, with nμ defined as the
normal vector of the spacetime foliation. Here, Eφ can
be an arbitrary function of r and θ. We choose a Gaussian
profile with E0, r0, and σ the typical amplitude, radius,
and width of the Gaussian, respectively. The EM pulse is
initialized in all our simulations at r0 ¼ 40M with σ ¼ 5M.
Moreover, we have tested that our results do not depend
on these factors, thus confirming their generality. For
the initial data of the scalar field, we use a quasibound
state that is constructed through Leaver’s method (see
Appendix A 1). We consider the cloud to occupy the
dominant (dipolar) growing mode with an amplitude Ψ0,
whose normalization is defined in (A5). Finally, the
constraint equation for the plasma is trivially satisfied as
we explain in Appendix D 4, and for simplicity we take a
constant density plasma as initial data.
To keep track of the scalar and EM field during the

time evolution, we perform a multipolar decomposition.
In the scalar case, we directly project the field Ψ onto
spheres of constant coordinate radius using the spherical
harmonics with spin weight sw ¼ 0 to obtain Ψlm (B1). In
the EM case, we track the evolution of the field using the
Newman-Penrose scalar Φ2, which captures the outgoing
EM radiation at infinity (see Appendix B). Analogous to
the scalar case, we project these using spherical harmonics,
yet now using spin weight sw ¼ −1 to obtain ðΦ2Þlm (B5).
In our figures, we show jðΦ2Þlmj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΦ2Þ�lmðΦ2Þlm
p

.
Since this captures massless waves, jðΦ2Þlmj ∝ 1=r at
large spatial distances.
Throughout this work, we will discuss various simu-

lations. In Table I, the specific parameters of these
simulations are listed. Furthermore, a schematic illustration
of our setup can be seen in Fig. 1.

4An Eulerian observer is defined as the observer that has its
worldline orthogonal to the spacelike hypersurface.
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III. SUPERRADIANCE TURNED OFF

An axion cloud coupled to the Maxwell sector can give
rise to a burst of EM radiation. The initial explanation of
this phenomenon was outlined in [38], while the full
numerical exercise followed in [15,16]. In this section,
our goal is to carefully perform a further analysis and, as we
will see, find some new features of the system. Throughout
this section, we assume SR growth to be absent, as in
[15,16]. Even though this is clearly an artificial assumption,
as it means that the cloud was allowed to grow without
being coupled to the Maxwell sector, it allows us to isolate
and understand better some of the phenomena. The full
case will be dealt with afterwards.

As shown analytically on a flat spacetime, but also
numerically in a Kerr background [15,16], upon growing
the cloud to some predetermined value, an EM instability is
triggered depending on the quantity kaΨ0. In particular, there
exist two regimes, a subcritical regime and a supercritical
regime. In the former, no instability is triggered and some
initial EM fluctuation does not experience exponential
growth. Conversely, in the supercritical regime, an insta-
bility is triggered and the axion field “feeds” the EM field,
which grows exponentially, resulting in a burst of radiation.
The boundary between these regimes is set by two com-
peting effects; the parametric production rate of the photon,
∝ μkaΨ0, and their escape rate from the cloud, ∝ μ2M. The
latter is approximated by the inverse of the cloud size.
Similarly to previous works, we find the boundary to be on
the order kaΨ0 ∼ 0.1–0.4 for μM ∼ 0.2–0.3.

A. The process at large

In the following, we explore these two regimes by
evolving the coupled system describing a SR cloud of
axions coupled to the Maxwell sector, while we initialize it
with a small vector fluctuation E0.
Figure 2 summarizes well the possible outcomes, which

depend on the strength of the coupling kaΨ0. For small
enough couplings to the Maxwell sector, the axion field is
left unaffected, and remains in a bound state of (near)
constant amplitude around the BH. For large couplings
however, in what we term the supercritical regime, the
amplitude of the axion field decreases. This transition
signals a parametric instability whereby axions are quickly
converted into photons.
The bottom panel of Fig. 2 shows the behavior of the EM

radiation during this process (we show only the dipolar
component l ¼ m ¼ 1 of the Newman-Penrose scalar, but
we find that higher modes are also excited to important
amplitudes, see Appendix F). In the subcritical regime, any
initial EM fluctuation decays on short timescales. However,
in the supercritical regime a burst is initiated; these are
the photons that are created by the axion cloud. Furthermore,
we find the growth rate to follow estimates from earlier
work [15]. Specifically, it is approximated by taking the
production rate of the photons and subtracting the rate at
which photons leave the cloud: λ ∼ λ� − λesc, where λ� ∼
1
2
μkaΨ0 and λesc ∼ 1=d, where d is the size of the cloud. This

estimate is indicated by the blue dash-dotted line in Fig. 2.
At late times, the system settles to a final, stationary

state. In the subcritical regime, this final state is almost the
same as its initial state since the axion cloud is barely
affected by the EM perturbation. Conversely, in the
supercritical regime, the parametric instability has driven
the axion field to decrease to a subcritical value. Therefore,
in the absence of SR growth, no further instability can be
triggered and the axion cloud settles on a final state with a
lower amplitude than its initial value while the created
photons travel outwards.

TABLE I. Summary of the simulations discussed in the main
text. I i simulations do not include plasma nor SR growth. J i
simulations do include SR growth yet are still without plasma,
whileKi simulations do include the plasma.We denote the axionic
coupling kaΨ0, the mass coupling μM, the artificial SR parameter
C, and the ratio between the initial amplitude of the electric field
E0 (6) and the scalar fieldΨ0 (A5). In the simulations that include
the plasma (Ki), we report the plasma frequency ωp as well, while
the initial EMamplitude is 104E0M=Ψ0 ¼ 8.1, which is not shown
in the table due to space limitations. In all our simulations, we
initialize the EM pulse at r0 ¼ 40M with σ ¼ 5M.

Run kaΨ0 μM 103CM 104E0M=Ψ0

I1 0.0 0.3 0.0 8.1
I2 0.0295 0.3 0.0 8.1
I3 0.147 0.3 0.0 8.1

J 1 0.0737 0.2 4.0 100.0
J 2 0.0737 0.2 4.0 1.0
J 3 0.0737 0.2 4.0 0.01
J 4 0.0737 0.2 4.0 0.0001

J 5 0.0737 0.2 4.0 8.1
J 6 0.0563 0.2 4.0 8.1
J 7 0.0328 0.2 4.0 8.1
J 8 0.00737 0.2 4.0 8.1

J 9 0.0737 0.2 0.08 8.1
J 10 0.0737 0.2 0.2 8.1
J 11 0.0737 0.2 0.8 8.1
J 12 0.0737 0.2 1.0 8.1
J 13 0.0737 0.2 2.0 8.1
J 14 0.0737 0.2 8.0 8.1

ωpM
K1 0.147 0.3 0.0 0.01
K2 0.147 0.3 0.0 0.1
K3 0.147 0.3 0.0 0.15
K4 0.147 0.3 0.0 0.2
K5 0.147 0.3 0.0 0.3
K6 0.147 0.3 0.0 0.4
K7 0.295 0.3 0.0 0.2
K8 0.590 0.3 0.0 0.2
K9 0.0737 0.1 2.0 0.02
K10 0.0737 0.1 2.0 0.07
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B. Axion and photon emission

Although the axion is massive, EM waves are massless
and allowed to travel freely once outside the cloud. To
study EM wave propagation, we monitor the system at
large radii. The top panel of Fig. 3 summarizes our findings
for EM radiation, where we align waveforms in time. Some
features are worth noting: (i) we find thatΦ2 decays like the
inverse of the distance to the BH, as might be expected for
EM waves; (ii) the pattern of the waveform is not changing
as it propagates, typical of massless fields. The radiation
travels at the speed of light, as it should.
Additionally, we observe an interesting morphology in

the EM burst. It has a high-frequency component slowly
modulated by a beating pattern. While the high-frequency
component is set by the boson mass μ, with oscillation
period ∼2π=ðμ=2Þ, the beating frequency scales with 1=μ2

as its origin lies with the presence of the cloud. Specifically,
when the photons are produced inside the cloud, they travel
through it allowing for further interactions. These photon
“echoes” exhibit a symmetric frequency distribution with
respect to the primary photons, lying around μ=2. This can
be seen in the Fourier transform in the bottom panel of
Fig. 3. The frequency difference between these peaks, Δω,
corresponds to the observed beating timescale, ∼2π=Δω,
indicated by the dashed lines in the top panel of Fig. 3. In
addition to the bulk of photon frequencies near half the
axion mass, there are other peaks in the frequency domain,
namely two around Mω ∼ 0.45. We believe these higher
order peaks do not originate from a parametric resonance,
as one would expect peaks for each integer N at Nμ=2,
while we find the peaks at even N to be absent.
Furthermore, the bandwidth of higher order parametric
resonances is extremely small, making it hard to trigger
those. We rather believe these additional peaks to be a result
from photon “echoes” as well, generated at later times, i.e.,

FIG. 2. Top panel: the time evolution of the (real part of the)
dipolar, l ¼ m ¼ 1, bound state component of an axion cloud
around a Schwarzschild BH in two scenarios: coupling is
subcritical (dashed red, I2) or supercritical (green, I3). As a
consistency check, we also evolve with a vanishing coupling to
the Maxwell sector (I1), which we find to be almost indistin-
guishable from the subcritical case. Bottom panel: the time
evolution of the absolute value of the l ¼ m ¼ 1 component
of the Newman-Penrose scalar Φ2 for a subcritical and super-
critical coupling. The blue dash-dotted line shows the growth
rate, λ ¼ 0.0054, as estimated from Eq. (77) of [15]. In both
panels, the field is extracted at rex ¼ 20M and μM ¼ 0.3.

FIG. 1. Schematic illustration of our setup. Starting from a spinning BH of mass M (left), a SR cloud of mass Mc is formed in the
dominant (dipolar) growing mode (center). For sufficiently large couplings to the Maxwell sector, the configuration is unstable: any
small EM fluctuation will trigger emission of EM radiation (black lines, right panel). Some of these waves recombine to create axion
waves (green lines). The blue background indicates the presence of a plasma.
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photons produced by the parametric mechanism that are
up-scattered by the axion cloud. These results are different
from a homogeneous axion background, where only echoes
with the same frequency are produced. The discrepancy is
due to the large momentum tail of the axion cloud.
Besides the expected EM radiation, the reverse

process—two photons combining to create an axion—
may also provide a non-negligible contribution. In fact, this
process has been explored in the context of axion clusters
[39], where energetic axions are created that can not be
stimulated anymore, hence they escape the cluster (so-
called “sterile axions”). Projecting this scenario in the
context of SR instabilities translates into the creation of
unbound axion states, with frequencies ω > μ, that are thus
able to escape to infinity. Such axion waves are indeed
produced in our setup, as can be seen in Fig. 4. The large
scalar field contribution far away from the cloud is only
present in the supercritical regime. Since these are massive

waves, the dependence with time and distance from the
source is less simple due to dispersion. As components with
different frequencies travel with different velocities, the
wave changes morphology when traveling to infinity,
which is apparent in the top panel of Fig. 4.
The Fourier transform of the axion waves is shown in the

bottom panel of Fig. 4. It indeed contains components with
frequency ω > μ, showing that the field is energetic enough
to travel away from the source. The frequencies of the
peaks correspond to a group velocity v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2=ω2

p
¼

0.036 and v ¼ 0.18 for rex ¼ 400M and rex ¼ 1000M,
respectively. Note that this Fourier transform is taken over
the full time domain and thus dominated by the late signal
of the axion waves, consisting of larger amplitude, non-
relativistic waves. This also explains why the peak for the

FIG. 4. Top panel: the dipolar component of the axion field in
the supercritical regime (simulation I3). When extracted at large
radii, the nonzero value of Ψ11 is only present in the supercritical
regime and explained by the production of axion waves. Due to
dispersion, the morphology of the wave changes while traveling
outwards. Bottom panel: the Fourier transform of the dipolar
component, taken on the entire time domain shown in the top
panel. The gray dashed line shows the frequency of the
fundamental mode of the bound state, while the colored dashed
lines indicate the frequency of the peak of each curve situated at
ω > μ, confirming these are axion waves.

FIG. 3. Top panel: the dipolar component jðΦ2Þ11j of the EM
field in the supercritical regime with μM ¼ 0.3, for simulation
I3. The alignment of the waveforms shows that we are dealing
with EM radiation. High-frequency oscillations are set by the
mass scale μ, whereas “beatings” (circumscribed by vertical
dashed lines) are controlled by 1=μ2. Bottom panel: Fourier
transform of the signal, taken on the entire time domain, showing
the dominant frequencies in the problem. The gray and brown
dashed lines show Nðω0=2Þ for N ¼ 1, 3, respectively, where
ω0 ≈ μ is the frequency of the fundamental mode.
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rex ¼ 1000M curve is at higher frequency; the slower
waves did not have time to arrive yet at this larger radius.
If we instead calculate the Fourier transform on only the
first part of the signal, then we capture the (more)
relativistic components. These emitted axion waves can
in principle be detected by terrestrial axion detectors if the
BH is close enough to Earth.
Besides the dipole component, also higher order scalar

multipoles are created by the photons. In fact, from our
initial data, only scalar multipoles with odd l can be
produced. This selection rule is detailed in Appendix I. The
higher multipoles for both the axion and photon radiation
are shown in Appendix F, where it can also be seen that
excited photons can recombine to create axion waves with
twice the axion mass.

IV. SUPERRADIANCE TURNED ON

The formation of an EM burst is determined by whether
the photon production from the parametric instability is
dominant over the escape rate from the cloud or vice versa.
The initialization of the system in a supercritical state
however, is artificial. Instead, it starts in the subcritical
regime and potentially grows supercritical through SR.
Previous works claimed that this process developed
through a burst-quiet sequence: a burst of EM and axion
waves would deplete the cloud, which would then grow on
a SR timescale before another burst occurred [16]. We
argue that in fact bursts do not occur, and that the process is
smoother than thought. As we will show, the presence of
SR introduces two important differences: (i) the growth rate
of the EM field is modified and (ii) the system is forced into
a stationary phase.

A. Numerical results

We numerically evolve the coupled axion-photon system
under the influence of a SR growing cloud. In these
simulations, we start the system in the subcritical regime,
and let it evolve to supercriticality via (artificial) SR, since
now C ≠ 0.
Figure 5 illustrates the behavior of the system. We

evolve different initial conditions, corresponding to differ-
ent seed EM fields E0=Ψ0 and different couplings kaΨ0,
and we see a saturation of the EM field, to a value which is
independent on the initial conditions.5 This stability is
simply achieved by turning on SR growth like in Eq. (4).
In contrast to the previous section where the bound state
solely loses energy, the supplement to the axion cloud is
dominant at first, resulting in exponential growth. As the
cloud approaches the critical value, parametric decay to
the EM field begins to compensate for the energy gain

from the BH, ultimately reaching a phase where energy
gain and loss are balanced. As a result, the entire system
consisting of the axion cloud and the EM field is
constantly pumped by SR growth, with a steady emission
of EM waves traveling outwards.
The saturation value of the EM field does depend on the

SR parameter C. This is simply due to the fact that the more
axions that are created by SR, the more photons that can be
produced through the parametric mechanism. We find the
saturation value to be proportional to

ffiffiffiffi
C

p
, shown in the top

panel of Fig. 6. This result is also supported by analytical
estimates in Sec. IV C, in particular Eq. (16). Additionally,
our results demonstrate that the timescale required to reach
saturation (at fixed initial field values), scales with

ffiffiffiffi
C

p
as

well. This behavior is explained in the following section.
These simulations provide us with robust evidence that

the saturation phase is (i) independent of the initial data,
and (ii) occurring for all tested values of C that span two
orders of magnitude, allowing for universal predictions. In

FIG. 5. Top panel: the time evolution of the dipolar component
of the EM field including SR growth for different strengths of the
initial EM pulse (see Table I). The field is extracted at rex ¼ 20M
and μM ¼ 0.2. Bottom panel: same as above, but while varying
the initial coupling strength kaΨ0. Notice how a stationary state is
reached instead of a burst of EM waves. Moreover, the final EM
value is independent of initial conditions, even though the
timescale required to reach saturation does depend on how the
fields were initialized.

5As could be anticipated, the timescale to reach saturation does
depend on initial conditions: lower field values or lower cou-
plings require larger timescales.
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the following, we discuss various features related to the
saturation phase.

1. Evolution of the cloud’s morphology

When the system has just reached the critical boundary,
the EM field starts growing (super)exponentially until it
reaches the saturation value. When this happens, the
nonlinear backreaction in the Klein-Gordon equation
becomes important. In absence of SR, the EM field quickly
decays in time after reaching its maximum and with that its
backreaction onto the axion field, allowing the cloud to
settle back to a stable configuration at late times (see
Fig. 2). Conversely, in presence of SR, the EM field settles
to a large and constant value that continuously backreacts
onto the axion field. Consequently, it starts to exhibit strong
deviations from the initial pure bound state configuration
as overtones are triggered, i.e., it acquires a beatinglike

pattern. This can be seen in Fig. 6, where around t ∼
700

ffiffiffiffi
C

p
M3=2 the saturation phase ensues and there is no

relaxation to the pure quasibound state. We show a series of
snapshots from the cloud’s evolution in the two distinct
scenarios in Fig. 7.

2. Angular structure of outgoing EM waves

During the saturation phase, there is a nearly constant
emission of EM waves. For observational purposes, we
probe the angular structure of the outgoing radiation. We do
this through the multipole components of Φ2, while up to
now only the dipole was considered. A subset of these
multipoles is shown Fig. 8. From the differences in
amplitude between different modes, we conclude that the
radiation is not isotropic. In fact, we find that the dominant
radiation is on the equatorial plane (see inset of Fig. 8),
where the density of the axion cloud is highest. To
strengthen this result, we also compute analytically the
excitation coefficients of these multipoles given our initial
data. We report them in Appendix I.

B. Growth rate

In previous work [15], it was shown that in absence of
SR, the growth rate of the EM field can be approximated by
a simple, analytical expression. This is a consequence of
the fact that when the background spacetime is Minkowski
and the background axion field is a coherently oscillating,
homogeneous condensate, the Maxwell equations can be
rearranged in the form of a Mathieu equation [15,40]. The
growth rate is then found by taking the production rate of
the photons (∼ the Floquet exponent of the dominant,
unstable mode of the Mathieu equation) and subtracting the
escape rate of the photons from the cloud (∼ inverse of the
cloud size). However, while this approach yields accurate
predictions in absence of SR (see Fig. 2), it does not in
presence of SR (blue dashed line in Fig. 6). Remarkably, as
we will show, a simple adjustment to the Minkowski toy
model restores its validity. Additional details are provided
in Appendix G.
Let us consider the Maxwell equations in flat spacetime.

We adopt Cartesian coordinates and assume the following
ansatz for the EM field:

Aμðt; xÞ ¼ αμðt; pÞeiðp·x−ωtÞ; ð7Þ

where p is the wave vector which we assume to be aligned
in the ẑ direction without loss of generality, i.e.,
p ¼ ð0; 0; pzÞ. To mimic the amplification of the axion
field via SR, we consider a homogeneous condensate that
exponentially grows in time as6

FIG. 6. Top panel: the dipolar component of EM radiation with
SR turned on. The field is extracted at rex ¼ 400M and
μM ¼ 0.2. The blue, black, and brown dashed lines show the
growth rate predicted by the standard Mathieu equation, the SR
Mathieu equation (10) and its first order expansion (11),
respectively. The value of C is varied for simulations J i, see
Table I. Note the rescaling on both the horizontal and vertical axis
with

ffiffiffiffi
C

p
, where we scale all simulations onto J 14. Thus, our

results indicate a clear, simple dependence on the SR rate, which
we investigate analytically below in Secs. IV B and IV C. Bottom
panel: same as above, but for the scalar dipolar component
extracted at rex ¼ 20M.

6We adopt a different notation to distinguish the amplitude of
the homogeneous axion field in this toy model, ψ0, with the one
of the axion cloud around the BH, Ψ0.
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Ψ ¼ 1

2
ðψ0e−iμt þ ψ�

0e
iμtÞeCt: ð8Þ

Adopting the field redefinition yk ¼ eiωtαk, rescaling the
time as T ¼ μt and projecting along a circular polarization
basis e� such that y ¼ yωe�, we obtain a “superradiant”
Mathieu-like (SM) equation:

∂
2
Tyωþ

1

μ2

�
p2
z þ2pze

CT
μ ψ0kaðCcosT−μsinTÞ

�
yω¼ 0:

ð9Þ

Unsurprisingly, for C ¼ 0, this equation reduces to the
original Mathieu equation.7 From (9), we find two new
features; an extra oscillating term ∼C cosT, and, most

importantly, an exponentially growing factor ∼e
CT
μ . By

solving (9) numerically, we find that, similar to the standard
Mathieu equation, this equation admits instability bands,
albeit with a larger growth rate. Fitting the exponent of the
numerical solution, we conclude that the solution to the
superradiant Mathieu equation is well described by a
superexponential expression yω ∼ eλSMt, with

λSM ¼ μ

2
kaψ0eCt=2: ð10Þ

In Appendix G, we show the comparison between this
expression and the numerical solutions as well as an
analytic derivation of (10) using a multiple-scale method.
We confront the growth rate of the EM field

when considering the full axion-photon system in a
Schwarzschild background with the growth rate from our
toy model (10) in Fig. 6. Here, the standard Mathieu growth

FIG. 7. Snapshots of the axion profile during the evolution of the axion-photon system. Upper row shows the system in the
supercritical regime (simulation I3), but without SR growth. The cloud starts in its initial dipole state, and gets disrupted by the
parametric instability. Afterwards the configuration settles down while axion waves propagate to infinity. On the bottom row, we show
an initially subcritical cloud, yet with SR growth turned on, C ¼ 10−3M−1 (simulation J 12). Again, the cloud starts in its dipole mode,
yet now it grows in amplitude due to SR. Afterwards, the cloud is disrupted due to the EM instability, eventually settling down to a
saturation phase wherein axion waves are continuously produced.

FIG. 8. A subset of the multipoles of the EM field for
simulation J 12, extracted at rex ¼ 400M. Every multipole up
to l ≤ 6 has approximately a similar contribution. The inset
shows the angular structure of the outgoing EM waves in the
saturation phase (where all multipoles up to l ≤ 8 are taken into
account). The y axis is reported in arbitrary units. The dominant
production of the photons is on the equatorial plane where the
cloud’s density is highest.

7Our result includes a sine instead of the cosine found in [15],
which originates from a small sign mistake in their derivation, see
Eq. (19). This has no consequences for the physics, as it only
induces a π=2 phase shift.
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rate (blue dashed line), the full solution and first order
expansion in C (black and brown dashed lines, respec-
tively) can be seen, where the latter is defined by

λSMt ≈
μ

2
kaψ0

�
tþ Ct2

2

�
: ð11Þ

In all of the curves, the time it takes for photons to leave
the cloud has been taken into account. Furthermore, we
use the critical value for the coupling kaΨ0. Remarkably,
the SM growth rate matches the numerical results closely.
Moreover, the Ct2 term from (11) that appears at first order
naturally explains why the timescale to reach saturation
scales as

ffiffiffiffi
C

p
.

Hence, when considering the axion-photon system under
the influence of SR, a simple extension to Mathieu equation
allows for elegant, analytic predictions of our numerical
results. Note that the true value for SR is many orders of
magnitude lower than the one considered in this work and
thus we expect the correction to be subdominant (unlike
here). Finally, this prediction neglected the backreaction
onto the axion cloud. Hence, it naturally breaks down
when the rate of energy loss due to conversion to photons
becomes comparable the SR growth, i.e., when the satu-
ration phase ensues.

C. Saturation phase

As can be seen in Figs. 5 and 6, turning on SR growth
forces the system into a stationary configuration. Here, the
energy loss of the cloud due to the parametric instability
balances the SR pump sourced by the rotational energy of
the BH. A description of this phase is remarkably simple as
wewill show below. A similar conclusionwas found in [38].
For the photons to reach an equilibrium phase, it is

required that the parametric decay rate, λpd, equals the
escape rate of the photon, λesc. Assuming that the former
can be approximated by the decay rate in the homogeneous
condensate case [15,40], we have

λpd ≈
kaΨsatμ

2
≈
1

d
≈ λesc; ð12Þ

where Ψsat is the average amplitude of the scalar field
within the cloud at saturation. In the nonrelativistic regime,
we can approximate the size of the cloud by the standard
deviation of the radius d ¼ hri ≈ 2

ffiffiffi
3

p
rc ¼ 4

ffiffiffi
3

p
=ðμ2MÞ.

This yields a relation for which the cloud reaches satu-
ration, namely

kaΨsat ≈
μM

2
ffiffiffi
3

p : ð13Þ

This is indeed what we find in the bottom panel of Fig. 6,
since kaΨsat ≈ 0.2=ð2 ffiffiffi

3
p Þ ≈ 0.06.

Additionally, we consider the equilibrium condition of
the axion cloud. It is sourced by the SR rate ΓSR, yet loses
energy due to the parametric instability, ΓPI. In our setup,
these two rates are

ΓSR ¼ C
2

and ΓPI ≈ 2ΓΨ→γγfγ; ð14Þ

where ΓΨ→γγ ¼ ℏk2aμ3=ð16πÞ is the perturbative decay
width of the axion-to-photon conversion and fγ is the
photon occupation number. When the dominant production
is in a narrow band around pγ ¼ μ=2, we have [41]

fγðpγ ¼ μ=2Þ ¼ 8π3nγ
4πp2

γΔpγ
≈

2π2A2
γ

ℏkaΨsatμ
2
; ð15Þ

where Δpγ ≈ 2kaΨsatμ is the photon dispersion bandwidth,
approximated to be the resonant bandwidth at pγ ¼ μ=2.
Moreover, Aγ is the photon amplitude, which relates to our
measure of the EM fieldΦ2 as Aγ ∼ 2Φ2=ω, where ω ∼ μ is
the frequency of the axion field. Finally, nγ ¼ 2ρ=ðℏωÞ is
the photon number density, with ρ ¼ A2

γω
2=2 the energy

density. Substituting these relations into (14), we find that
inside the cloud

A2
γ

Ψ2
sat

≈
2C

πμkaΨsat
≈

C
πλesc

; ð16Þ

where we used again (12). Hence, this simple analytical
estimate shows that the EM field stabilizes to a value
proportional to

ffiffiffiffi
C

p
. This result is in excellent agreement

with our simulations (see Fig. 6) and it allows us to consider
a case in which C coincides with the SR growth timescale.
The total energy flux of the photons with frequency μ=2

is defined as [38]

dE
dt

¼ ℏμ
2
nγλescχr3c ; ð17Þ

where χr3c is the volume of the cloud. Here, χ is a numerical
factor where in the nonrelativistic regime, χ ≈Oð102Þ.8
Assuming the SR rate ΓSR to be equal to the decay rate
ΓPI in the saturation phase (14), we get that

8To obtain χ, we introduce a threshold value ϵ for the absolute
value of the scalar field, and define

χ ¼
Z

∞

0

drr2
Z

dΩΘðjΨj − ϵÞ;

where Θ is the Heaviside step function and ϵ ∼ 0.5maxðΨÞ. We
checked that the order of χ does not strongly depend on ϵ.
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dE
dt

≈ 7.6 × 1045
�

χ

100

��
2.5 × 102M

τs

�

×

�
0.2
μM

�
2
�
10−13 GeV−1

ka

�
2

erg=s; ð18Þ

where τs ¼ C−1. To probe the SR regime, we tune C to
match the well-known SR growth rate in the dominant
growing mode [42]

ΓSR ≈
aJðμMÞ9
24M

when μM ≪ 1; ð19Þ

where aJ is the spin of the BH. Using this in (18), we obtain

dE
dt

≈ 8.1 × 1040
�

χ

100

�
aJ
M

×

�
μM
0.2

�
7
�
10−13 GeV−1

ka

�
2

erg=s: ð20Þ

Note how lower couplings lead to higher fluxes. Although
this may sound counterintuitive, it is explained by the
fact that, for lower couplings, the axion field saturates at
higher values. As the EM flux is proportional to the axion
field value, this leads to a higher flux.9 As a consequence,
the saturation phase opens a channel to constrain axionic
couplings “from below.” Finally, the divergence of (18)
and (20) at small couplings indicates when our model
breaks down. In particular, the equilibrium condition (13)
suggests a minimum value for the coupling for which
the cloud’s mass becomes larger than its maximum of
Mc ¼ 0.1M. For example, for μM ¼ 0.2, the minimum
coupling for which our description holds is ka > 3.8×
10−18 GeV−1. Lower couplings then this yield an unphys-
ical situation and thus a breakdown of our description.

D. Implications for superradiance

Using the scaling relation (16), we can probe the system
in the regime of SR and thereby test the validity of (20) with
our numerical simulations. Before doing so, however, we
must argue why we are able to extend our results beyond
the probed regime for C.
Either end of the tested parameter space for C is

accompanied by numerically challenges. For high C, there
is an extreme growth on short timescales which makes the
code diverge. For low C, the evolution timescale of the
system becomes prohibitively large. Besides the simula-
tions shown in Fig. 6, we did two additional simulations,
J 9 (low C) and J 14 (high C), on each end of the spectrum.
Regarding the latter, we find indications that the saturation
phase is ruined as the EM field starts to grow from its
saturation value after spending some time in the saturation
phase. Physically, this is to be expected. In the case of

extreme SR growth, the balance between the production and
escape rate of the photons is distorted; the photons simply do
not have time to escape the cloud while plenty of axions are
produced. In this scenario, a more burstlike radiation pattern
could be possible.10 Since we are interested in SR in this
work, we do not probe this regime further.
The regime of low C is of interest as the SR rate is at

significantly lower values than what we can probe numeri-
cally (19). From the lowest C we probe, J 9, we find that
even though there is an apparent decrease after the super-
exponential growth, the

ffiffiffiffi
C

p
scaling is respected at late

times. Physically, the perseverance of the saturation phase
makes sense. When the growth rate is small, the system
becomes adiabatic; as the axions are slowly produced, the
system steadily approaches the critical value at which the
system is in equilibrium and a saturation phase ensues.
To extract the energy flux from our simulations, we

exploit the properties of the Newman-Penrose scalar. In
particular, we can define

d2E
dtdΩ

¼ lim
r→∞

r2

2π
jΦ2j2; ð21Þ

where dΩ≡ sin θdθdφ. Decomposing (21) in terms of
spin-weighted spherical harmonics, we obtain

dE
dt

¼
X
lm

Z
dΩ

1

2π
jðΦ°

2Þlm−1Ylmj2; ð22Þ

where Φ2 ¼ Φ°
2=r. From our simulations, we extract

ðΦ2Þlm;sim for a certain Csim at large radii (r ¼ rex) by
averaging over a sufficient period in the saturation phase.
Then, we scale these multipoles to match their saturation
value in the case of SR according to

ðΦ2Þlm;SR ≈
ðΦ2Þlm;simffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Csim=ð2ΓSRÞ

p ; ð23Þ

where ΓSR is defined in (19). We do this for each multipole
and sum them according to (22) to obtain the total flux. As
the contribution to the energy flux becomes smaller for
higher multipoles, we sum each multipole until the incre-
ment is less than 5%. In practice, this means summing the
first ∼8 values of l. Following this procedure, we find the
following estimate from our simulations for the total, nearly
constant, energy flux in the saturation phase:

dE
dt

¼ 9.10 × 1040
�
10−13 GeV−1

ka

�
2

erg=s; ð24Þ

where we assumed μM ¼ 0.2 and the BH to be maximally
spinning. This matches closely the theoretical prediction
from (20).

9A similar behavior was found in the context of dark photons
with kinetic mixings to the Standard Model photon [20].

10Such a scenario could be realized in the case of a Bosenova
[26], where the axion density sharply rises on short timescales.
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Besides the photon production, the parametric instability
also affects the axion cloud. As we showed in Eq. (13), the
axion amplitude at saturation is independent of C. By
translating the amplitude of the axion field to the mass of
the cloud, the impact of coupling axions to photons
becomes much more apparent [7]. It is well-established
that, in the purely gravitational case, the cloud is able to
obtain a maximum mass of Mc ≲ 0.1M. As can be seen in
Fig. 9, through the coupling to the Maxwell sector, the
cloud’s mass can saturate significantly below this maxi-
mum. Note that in this estimate, we assume the profile of
the cloud to be hydrogenlike, which is only strictly true in
the no-coupling case. Consequently, when the cloud is
disrupted due to the strong backreaction onto the axion
field in the saturation phase, this approximation is not
expected to hold. Nevertheless, for the (much) lower SR
growth rate, the EM flux is less strong and thus the cloud
less disrupted.
Figure 9 has severe implications for current constraints

on the mass of ultralight bosons that are set through either
GW searches [43–47] or spin measurements of BHs
[6,7,48–56]. Due to the reduced cloud mass, the back-
reaction to the spin down of the BH could be negligible,
which means current constraints no longer apply, as they
assume no interactions for the axion. Furthermore, the
environmental effect of the SR cloud on the gravitational
waveform in BH binaries becomes less relevant [57–65].

V. SURROUNDING PLASMA

The presence of plasma affects the axion-to-photon
conversion in the parametric instability mechanism, as
the transverse polarizations of the photon are dressed with
an effective mass, i.e., the plasma frequency ωp. Therefore,

when ωp > μ=2, the process Ψ → γ þ γ becomes kine-
matically forbidden. Even though it is common lore to
approximate the photon-plasma system with a Proca toy
model, the full physics is more involved: already in the
simplest case of a cold, collisionless plasma, the longi-
tudinal degrees of freedom are electrostatic, unlike the
Proca case (for details see [18,66]). In curved space, these
transverse and longitudinal modes are coupled and thus
the Proca model cannot assumed to be correct a priori.
Moreover, non-linearities provide additional couplings
between the modes, and also the inclusion of collisions
or thermal corrections create strong deviations from a
Proca theory. Hence, a consistent approach from first
principles is imperative. In this section, we take a first
step in that direction by studying a linearized axion-
photon-plasma system. The underlying physical assump-
tions of our plasma model can be found in Appendix C,
while the numerical implementation is detailed in
Appendices D 4–D 6.

A. Without superradiance

We start by studying the axion-photon-plasma system in
absence of SR, and initialize the axion cloud in a super-
critical state with kaΨ0 ≪ 1. We evolve the system on a BH
background for different values of the plasma frequency
(see Table I). Note that there is no backreaction onto the
axion field in our linearized setup.
Figure 10 summarizes the main results. When ωp < μ=2,

the plasma has little impact on the system and the para-
metric instability ensues. When ωp ≥ μ=2 instead, a sup-
pression of the photon production is seen. We find the
growth rate estimated in Eq. (19) of [14] to fit our
simulations well, when taking into account the finite-size
effect of the cloud as λesc ∼ 1=d, i.e.,

λ ≈
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4ω2

p

q
2μ2 − 4ω2

p
kaΨ0 − λesc: ð25Þ

Finally, the beating pattern in the EM radiation at larger
radii (see bottom panel of Fig. 10) is explained by the
photons having to travel through the cloud, thereby
scattering of the axions.
Additionally, we show the Fourier decomposition of the

signal in Fig. 11. As we concluded from Fig. 10, for low ωp,
the parametric instability is barely hindered and a clear
peak arises at half the boson mass. However, when
ωp > μ=2, we observe the presence of modes with a
frequency very close to ωp. We find good agreement
between these peaks and the plasma-driven quasibound
states computed in a similar setup [66]. Note however, that
these bound states are extremely fragile and geometry
dependent, and may disappear if more realistic plasma
models are considered [67]. We conjecture the origin of the
two additional peaks at ωp � μ to be up and down

FIG. 9. Contour plot of the mass of the cloud (Mc) at saturation
depending on the axionic and mass coupling, kaΨsat and μM,
respectively. The dark blue area at the bottom denotes the
maximum mass of 10% that the cloud can achieve in the purely
gravitational case.
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scattering from the quasibound state photons with the axion
cloud. Due to the fact that modes with frequency ωp − μ are
decaying, their amplitude is highly suppressed compared to
the up-converted ones.
We now focus on the high axionic coupling regime. In

the toy model considered in [14], it was shown that even
when ωp ≥ μ=2, an EM instability could be triggered for
high enough kaΨ0. In Fig. 12, we confirm this prediction
numerically and show, for the first time, the presence of an
instability in dense plasmas. This might seem in tension
with the kinematic argument that for ωp > μ=2 the axion
decay into two photons is forbidden. However, as we show
in the inset of Fig. 12, the frequency centers at ω ¼ μ
instead of the usual ω ¼ μ=2. This suggests the photon
production to be dominated by a different process,
namely ΨþΨ → γ þ γ.
To support this hypothesis, we study again the con-

nection with the Mathieu equation (see, e.g., [68]). As we
detail in Appendix G, in flat spacetime, the Maxwell
equations in presence of a plasma can indeed be recasted
into a Mathieu equation which admits instability bands
whenever ω2 ¼ p2

z þ ω2
p ¼ n2μ2=4, with n∈N. Therefore,

when ωp > μ=2, the first instability band (n ¼ 1) at ω ¼
μ=2 can indeed not be triggered, yet it is still possible to
trigger the second band at n ¼ 2, where ω ¼ μ. This
matches exactly the phenomenology observed in Fig. 12
and thus we conclude the EM instability to correspond to
the second instability band of the Mathieu equation, which
indeed is triggered by the process ΨþΨ → γ þ γ (and
kinematically viable even for ωp > μ=2) [40]. This analysis
can be continued for even higher branches. However, since
these get progressively narrower, (extremely) high values of

FIG. 10. Top panel: time evolution of the dipolar component
jðΦ2Þ11j of the EM field, extracted at rex ¼ 20M for μM ¼ 0.3, in
the presence of plasma. The plasma frequency ωp is progressively
larger for simulations K1 −K6, see Table I. The exponential
growth rate (dashed lines) is determined from (25). Bottom panel:
same as above but now the field is extracted at rex ¼ 400M. The
modulations arise from scattering of photons with the axion
cloud, similar to Fig. 3.

FIG. 11. Fourier transform of ðΦ2Þ11 extracted at rex ¼ 20M
for simulations K2 (ωp < μ=2) and K6 (ωp > μ=2) with
μM ¼ 0.3. The y axis is shown in arbitrary units such that both
are visible on the same figure. The gray dashed line denotes half
the boson mass, while the other dashed line shows the plasma-
driven quasibound state frequency for ωp ¼ 0.4, located
at Mω ¼ 0.3887 − 0.0016i.

FIG. 12. Time evolution of jðΦ2Þ11j extracted at rex ¼ 20M for
simulations K7 and K8 with μM ¼ 0.3. Even though in both
simulations ωp ¼ 0.2 > 0.15 ¼ μ=2, the instability can be re-
stored when kaΨ0 is high enough. The inset shows the Fourier
transform of both curves, with the gray line indicating the plasma
frequency. The red dashed line shows the frequency of the peak
for K8, which is at Mω ¼ 0.3, indicating that the second
instability band of the Mathieu solution is triggered.
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the axionic coupling could be necessary to trigger insta-
bilities in higher bands.

B. With superradiance

We now probe the axion-photon-plasma system starting
from a subcritical regime, yet letting it evolve to super-
critical values via SR. Based on the previous section, we
expect the system to turn unstable at some point, as the
axionic coupling kaΨ0 grows indefinitely. Due the longer
timescales associated with this process, we anticipate
assumption (v), regarding the neglecting of the gravita-
tional term, to be violated for the same parameter choices as
before. Therefore, we evolve the system with μM ¼ 0.1,
such that all the assumptions are still justified.
In Fig. 13, we show two simulations, K9 (ωp < μ=2)

and K10 (ωp > μ=2), which capture well the two distinct
outcomes. In the former, the usual instability with ω ¼ μ=2
ensues when the system has reached the supercritical
threshold, yet in the latter, the time to reach this threshold
is longer as the axionic coupling must grow sufficiently to
trigger the second instability band. Note that, similar to the
previous section, there is no backreaction onto the axion
field, which therefore merely acts as a big reservoir for the
EM field. This naturally explains the absence of a satu-
ration phase. Should the backreaction be included however,
there is no physical reason to expect that the saturation
phase is ruined by the presence of plasma as it does not
interfere with the balance between the energy inflow from
the BH and energy outflow from the emitted photons. We
therefore expect that the general outcome from the analysis
in Sec. IV C still holds, aside from minor modifications.11

By allowing the axionic coupling to take on arbitrarily
high values, an instability is thus always triggered, regard-
less of the plasma frequency. In practice however, it is
bounded by constraints on the coupling constant ka and
the mass of the cloud (which relates toΨ0) when SR growth
is saturated. We can estimate this maximum axionic
coupling, and therefore the maximum plasma frequency
(¼ electron density) for which an instability occurs. We do
this using the flat space toy model detailed in Appendix H.
From (H3), it is immediate to see that the critical value to
trigger an instability in the presence of an overdense plasma
(when ωp ≳ pz) is given by

kaψ0 ≳ ω2
p þ p2

z

2μpz
≈
ω2
p

μ2
: ð26Þ

This condition corresponds to the requirement that the
harmonic term in the Mathieu-like equation dominates over
the nonoscillatory one [cf. (H3)]. We have confirmed that
this flat spacetime model closely matches the simulations
in curved spacetime. Therefore, we can safely use the (flat
spacetime) relation between the axion amplitude and the
mass of the cloud [4] to obtain

ka ≳ 8 × 102
�
ω2
p

μ2

��
0.1

Mc=M

�
1=2

�
0.2
μM

�
2

: ð27Þ

Note that when ωp ≈ μ, this condition reduces to the one
derived in [16], while in the caseωp ≫ μ, stronger constrains
on the coupling are imposed. We can translate this into the
following condition for when an instability is triggered

10−13 GeV−1

ka
≲ 8 × 105

�
10−3 cm−3

ne

��
Mc=M
0.1

�
1=2

×

�
1M⊙

M

�
2
�
μM
0.2

�
4

: ð28Þ

Since current constraints on the coupling constant are around
10−13 GeV−1 [69], this means a plasmic environment can at
least be a few orders of magnitude higher than the interstellar
medium (ne ∈ ð10−3; 1Þ cm−3) and still an EM instability
would be triggered.

VI. OBSERVATIONAL PROSPECTS

Based on the previous section, there are two distinct
outcomes for parametric photon production in presence of
plasma; (i) the dominant instability for ωp < μ=2, and
(ii) higher band instabilities in the regime of large axionic
couplings, for ωp > μ=2. In situation (i), the plasma
frequency establishes a threshold for the frequency of
the emitted photons. In the case of the interstellar medium,
characterized by an electron density of approximately
1 cm−3 [70], the value of ωp is estimated to be around

FIG. 13. The dipolar component of EM radiation extracted at
rex ¼ 20M for simulations K9 (ωp ¼ 0.02) and K10 (ωp ¼ 0.07)
with μM ¼ 0.1. Although initially subcritical, SR drives the
axionic coupling high enough such that an instability can occur,
even when ωp ¼ 0.07 > 0.05 ¼ μ=2.

11For example, the presence of a plasma affects the escape rate,
as photons will travel more slowly through it, i.e., vγ < c.
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10−11 eV=ℏ (5), corresponding to a frequency of 7.6 kHz.
This should be compared to, e.g., a BH with mass 5M⊙,
which can effectively (μM ¼ 0.4) accumulate an axion
cloud with the same frequency, i.e., μ ≈ 10−11 eV. In this
case, the axion cloud would decay into pairs of photons
with a frequency of approximately 3.8 kHz, which is close
to the threshold value required for observation. For higher
μ, the mass of the plasma can be considered negligible, and
we anticipate that the primary photon flux will exhibit a
nearly monochromatic energy of μ=2 within the radio-
frequency band. Note however, that for higher μ, we need to
invoke subsolar-mass BHs to grow the cloud on astrophysi-
cally relevant timescales. Besides the total photon flux
derived analytically (20) and extracted from our simula-
tions (24), we also demonstrate, for the first time, the
anisotropic emission morphology in the frame of the BH,
see Fig. 8. Consequently, one expects varying observer
inclination angles to result in quantitatively distinct signals.
Situation (ii) presents an opportunity to observe photons

produced by axion clouds beyond stellar-mass BHs. Still,
the typical frequency of these photons fall below the MHz
band, and thus poses a challenge for current Earth-based
radio observations. However, the forthcoming moon-based
radio observatories can potentially detect these signals [71].
Moreover, in the case of a rapidly spinning BHs resulting
frombinarymergers, one can anticipate that the radio signals
will follow strong gravitational wave emissions with a
delay determined by the SR timescale. Consequently, by

employing multimessenger observations between gravita-
tional wave detectors and lunar radio telescopes, constraints
can be imposed on the axion-photon coupling.
Finally, the projected saturated value of kaΨsat can

induce a rotation in the linear polarization emitted in the
vicinity of BHs [72,73]. This phenomenon has been
investigated in the context of supermassive BHs [74–76].
It should be noted however that due to the significant
hierarchy between the ultralow SR mass window and the
plasma mass generated by a dense environment, higher-
order instabilities are not expected to occur in supermassive
BHs. Consequently, the axion cloud outside an super-
massive BH remains robust against axion-photon cou-
plings. A summary of our findings in the presence of
plasma can be found in Fig. 14.

VII. SUMMARY AND CONCLUSIONS

The presence of ultralight bosons is ubiquitous in beyond
the Standard Model theories. Proposed as a solution to the
dark matter or strong CP problem, they are of interest
across various areas of physics. Detecting them however, is
notoriously hard especially when their coupling to the
Standard Model is weak. Through SR, a new channel for
detection opens up, turning BHs into powerful “particle
detectors” in the cosmos.
In this work, we performed a detailed numerical study of

the dynamics of boson clouds around BHs with axionic
couplings to the Maxwell sector. We demonstrate the
existence of an EM instability, thereby confirming previous
studies. However, while those works assumed that the
cloud is allowed to grow before turning on the coupling,
we relax this assumption and study the axionic coupling
simultaneously with the growth of the cloud, conform to
the SR mechanism. We find that, in this setup, a stationary
state emerges, wherein every produced axion by SR is
converted into photons that escape the cloud at a steady
rate. This leads to strong observational signatures, as the
nearly monochromatic and constant EM signal could have
a luminosity comparable with some of the brightest sources
in our universe. Moreover, the depletion of the axion cloud
impacts current constraints on the boson mass.
Additionally, we study the influence of a surrounding

plasma on the EM instability. In the regime of small axionic
couplings, we find the expected suppression of the insta-
bility when the plasma frequency exceeds half the boson
mass. Surprisingly however, the instability can be restored
for high enough couplings. We show how the Maxwell
equations in presence of plasma reduce to a Mathieu
equation, which naturally explains how the restoring of
the instability is associated with higher-order instability
bands. With this interpretation in mind, we conclude that
(very) dense plasmas do not necessarily quench the para-
metric instability; it solely depends on the value of the
axionic coupling. As higher instability bands correspond
to higher frequencies of the emitted photons, it might be

FIG. 14. Possible outcomes of the axion-photon-plasma system
depending on the boson’s mass and the axion-photon coupling.
From (28), we find that above the threshold, EM emission is
triggered (green area), while below it, the system never turns
supercritical. When the boson frequency is low, i.e., μ ≲ 2ωp, the
EM instability can still be triggered in the presence of plasma,
given a high enough axionic coupling. This happens when the
system enters the second instability band, indicated by the red
dashed line. In the future, Lunar-based radio observatories could
probe a part of this parameter space, denoted by the blue arrow.
Finally, we show two of the most robust constraints on the axion-
photon coupling, namely from the solar axion experiment CAST
[77] (darker region) and from measurements on supernova 1987A
(lighter region) [78]. This data was collected from [69].
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possible to detect the parametric mechanism beyond the
stellar-mass BH regime.
In order to make clear observational predictions, at least

two issues need to be resolved: (i) the geometry of realistic
plasmic environments and (ii) the nonlinear dynamics of
the axion-photon-plasma system. While in this work, we
assumed a constant plasma density throughout space,
astrophysical environments can be nearly planar, for
example in the case of thin disks (see, e.g., [79]), which
will impact the strength of the resulting EM flux.
Additionally, even though our linearized model captures
well the impact of the plasma on the EM instability, the
backreaction onto the axion field is essential for the late-
time behavior. Moreover, as we showed, high axionic
couplings could be necessary to trigger the EM instability
in dense plasmas. Therefore, a natural extension of this
work would be to study nonlinear dynamics of the coupled
axion-photon-plasma system. Indeed, the propagation of
large amplitude EM waves in dense plasmas in the non-
linear regime can carry a plethora of interesting features
(see, e.g., [17,80–82]). We intend to treat these points in a
future work and with that fully understand EM instabilities
of axion clouds in realistic astrophysical environments.
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APPENDIX A: BENCHMARKS FOR EVOLUTION
OF SCALAR FIELDS

The purpose of this appendix is to study in some detail
the time evolution of free massive scalar fields in the
vicinity of a Schwarzschild BH. Even though SR requires a
spinning BH and thus the use of the Kerr metric, timescales
are prohibitively large. Nevertheless, the main focus of our

work is on physics related to the existence of scalar clouds,
more than to what caused them in the first place.
As such, we mimic SR growth without the need of a

spinning BH (see Sec. A 2 below) and therefore we
consider a Schwarzschild spacetime for simplicity. We
still need to guarantee that, on the required timescales, a
bound state exists, so that it can mimic well the true SR
clouds. Fortunately, massive scalars around nonspinning
BHs do settle on quasibound states which, while not
unstable, have extremely large lifetimes. Thus, we want
to show first of all that our numerical framework repro-
duces well such states.

1. Bound states

The initial data whose time evolution we will study, are
the quasibound states of a massive scalar field, which are
solutions localized in the vicinity of the BH and prone to
become unstable in the SR regime (if the BH is allowed
to spin). There exist various methods to find such quasi-
bound solutions, either by direct numerical integration or
using continued fractions [34–36,83]. In this work, we use
Leaver’s continued fraction approach [83]. It is crucial to
have accurate solutions describing pure quasibound states,
as deviations from such a pure state may trigger excitations
of overtones, resulting in a beating pattern [84].
In Boyer-Lindquist (BL) coordinates (tBL, rBL, θBL,

φBL), the scalar field bound state is given by12

Ψlm ¼ e−iωtBLe−imφBLSlmðθBLÞRlmðrBLÞ; ðA1Þ

where SlmðθBLÞ are the spheroidal harmonics. In a
Schwarzschild geometry, the angular dependence is
fully captured by the familiar spherical harmonics
SlmðθBLÞeimφBL ¼ YlmðθBL;φBLÞ. The radial dependence
is given by

RlmðrBLÞ ¼ ðrBL − rBL;þÞ−iσðrBL − rBL;−Þiσþχ−1

× erBLq
X∞
n¼0

an

�
rBL − rBL;þ
rBL − rBL;−

�
n
; ðA2Þ

where

σ ¼ 2MrBL;þðω − ωcÞ
rBL;þ − rBL;−

; q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
;

χ ¼ M
μ2 − 2ω2

q
: ðA3Þ

Here, rBL;� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2J

p
are the inner ð−Þ and outer

ðþÞ horizon, ωc ¼ mΩH ¼ maJ=ð2MrBL;þÞ is the critical
SR frequency, aJ is the spin of the BH and to obtain

12We include spin here for generality, although we evolve the
scalar field in a Schwarzschild background.
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quasibound states, one should consider the minus sign in
the expression for q. Since all the terms in these expressions
are known in closed form, we only need to solve for the
frequency of the mode of interest, ω. This is found by
solving the following condition for ω:

β0 −
α0γ1
β1−

α1γ2
β2−

� � � ¼ 0; ðA4Þ

where all the coefficients can be found in, e.g., [36].
In (A2), the amplitude of the scalar field is defined
arbitrarily (as long as one neglects the backreaction
of the field on the background geometry). Hence, we
must choose a suitable normalization. We will normalize
the field by assigning a predetermined value to the
maximum of the radial wave function. In previous
works [15,16], the hydrogenic approximation was used
instead, where the wave function is defined as Ψ ¼
Ψ0rBLMμ2e−rBLMμ2=2 cos ðφBL − ωRtÞ sin θBL, where ωR
is the real part of the eigenfrequency. In order to allow
for a direct comparison with those works, we relate our
normalization, the maximum value of the real part of the
field, ðRlmÞmax, to this parameter Ψ0. They are related by

ðRlmÞmax ¼
4Ψ0

ffiffiffiffiffiffiffiffiffiffi
2π=3

p
e

; ðA5Þ

where the factor
ffiffiffiffiffiffiffiffiffiffi
2π=3

p
comes from the normalization of

the spherical harmonics l ¼ 1 modes, and should be
adapted accordingly for higher multipoles. We will intro-
duce relevant quantities in terms of Ψ0.
For numerical purposes, BL coordinates are not ideal due

to the coordinate singularity at the horizon. Therefore, we
employ Kerr-Schild coordinates, which are horizon pen-
etrating coordinates [84]. The coordinate transformation
from BL to Kerr-Schild (KS) coordinates is given by

dtKS ¼ dtBL þ
2MrBL

Δ
drBL; drKS ¼ drBL;

dθKS ¼ dθBL; dφKS ¼ dφBL þ
aJ
Δ
drBL; ðA6Þ

where Δ≡ r2 − 2Mrþ a2J . Using this coordinate trans-
formation in (A1), we can construct the bound state scalar
field as

Ψlm ¼ e−iωtKSðrKS − rKS;þÞPðrKS − rKS;−ÞQ

×

�
rKS − rKS;þ
rKS − rKS;−

�
R
YlmðθKS;φKSÞRlmðrKSÞ; ðA7Þ

where P ¼ 2iωMrKS;þ
rKS;þ−rKS;−, Q ¼ − 2iωMrKS;−

rKS;þ−rKS;−, R ¼ imaJ
rKS;−−rKS;þ.

Unless otherwise stated, we use KS coordinates without
the subscript. In our nonspinning BH case, Q ¼ R ¼ 0.
The remaining extra term instead exactly cancels the
divergence of the field at the BH horizon. We test our

numerical setup by constructing the bound state initial
configurations for scalar fields with mass couplings μM ¼
0.1 and μM ¼ 0.3 and evolving them in a Schwarzschild
background.
In Fig. 15, we show the nonvanishing multipolar

component of the field for μM ¼ 0.1 and μM ¼ 0.3, where
we only display a fraction of the time evolution such that
individual oscillations are visible. For μM ¼ 0.1, the scalar
field is exceptionally stable on timescales longer than
5000M. For μM ¼ 0.3, there is a decrease in the amplitude
of a few percent on those timescales, which does not have
severe consequences. In fact, this problem can be resolved
by increasing the spatial resolution.
As a last check, we show in Fig. 16 the Fourier transform

for both μM ¼ 0.1 and μM ¼ 0.3 and compare it with the

FIG. 15. Top panel: the l ¼ m ¼ 1 component of a scalar field
around a Schwarzschild BH. Figure shows fraction of the time
evolution of the initial conditions from (A7). The field is
extracted at rex ¼ 100M and μM ¼ 0.1. Inset shows δΨ11, which
is the difference between the numerical output and the theoreti-
cally predicted fundamental mode ΨFund

11 ∼ cos ðωRtÞe−ωIt, where
ωR;ωI are the real and imaginary part of the eigenfrequency,
respectively. These were independently computed using Leaver’s
method. Bottom panel: same for μM ¼ 0.3 and extraction radius
rex ¼ 40M. There is an apparent decay of the field on timescales
shorter than those implied by the quasibound state decay. This
effect is due to finite resolution, and its magnitude is small
enough such that we can ignore it in our study.

SUPERRADIANCE: AXIONIC COUPLINGS AND PLASMA … PHYS. REV. D 108, 063013 (2023)

063013-17



real part of the eigenfrequency of the fundamental mode.
We find an excellent comparison, showing that we are not
triggering any overtones.

2. Artificial superradiance

Studying SR for scalars is numerically challenging, since
timescales for SR growth are very large. Fortunately, an
effective SR-like instability can be introduced by adding a
simple C∂Ψ=∂t term to the KG equation as shown in (4).
This “trick” was first used by Zel’dovich [1,2,37] and it can
mimic the correct description of many SR systems. The
addition of this Lorentz-invariance-violating term causes an
instability on a timescale of the order 1=C, where we can
tune C to be within our numerical limits. For reference, let
us report the timescales in our problem:
“Normal SR”:

tSR ∼ 48

�
aJ
M

ðμMÞ−9
�
M when μM ≪ 1; ðA8Þ

“Artificial SR”:

tASR ∼
1

C
M; ðA9Þ

“EM instability”:

tEM ∼ 10k−1a

�
M
Mc

�
1=2

ðμMÞ−3 ¼ 5ðμMÞ−1M; ðA10Þ

which is the EM instability timescale that was found in [16]
and where we used ka ≥ 2ðMMc

Þ1=2ðμMÞ−2M−1.
Accordingly, for a reasonable mass coupling of

μM ¼ 0.1, and while optimizing SR growth with a max-
imally spinning BH, normal SR timescales are on the order

of tSR ∼ 1010M. This should be compared to the EM
instability, which is on tEM ∼ 50M.
To test whether we implemented the artificial SR growth

in the correct way, we set C ¼ 5 × 10−4M−1 and evolve the
scalar field. From Fig. 17, we can see that the artificial SR is
correctly implemented in the code, as it leads to the desired
exponential evolution of the field.

APPENDIX B: WAVE EXTRACTION

From the simulations, we extract the radiated scalar and
vector waves at some radius r ¼ rex. For the scalar waves,
we project the fieldΨ and its conjugated momentumΠ onto
spheres of constant coordinate radius using the spherical
harmonics with spin weight sw ¼ 0:

ΨlmðtÞ ¼
Z

dΩΨðt; θ;φÞ0Y�
lmðθ;φÞ;

ΠlmðtÞ ¼
Z

dΩΠðt; θ;φÞ0Y�
lmðθ;φÞ: ðB1Þ

To monitor the emitted EM (vector) waves, we use the
Newman-Penrose formalism [85]. In this formalism, the
radiative degrees of freedom are given by complex scalars.
For EM, these are defined as contractions between the
Maxwell tensor and vectors of a null tetrad (kμ;lμ; mμ; m̄μ),
where kμlμ ¼ −mμm̄μ ¼ −1. The null tetrad itself is
constructed from the orthonormal timelike vector nμ and
a Cartesian orthonormal basis fui; vi; wig on the spatial
hypersurface. Asymptotically, the basis vectors fui; vi; wig
behave as the unit radial, polar, and azimuthal vectors,
respectively. For our purposes, the quantity of interest is the
gauge-invariant Newman-Penrose scalar Φ2, which cap-
tures the outgoing EM radiation at infinity and is defined as

Φ2 ¼ Fμνlμm̄ν; ðB2Þ

FIG. 16. Fourier transform of the dipole component of the
scalar field for μM ¼ 0.1 and μM ¼ 0.3 when the field is
extracted at rex ¼ 100M and rex ¼ 40M, respectively. Fourier
transform is taken on the entire time evolution of Fig. 15. Dashed
lines indicate the (real part of the) frequency of the fundamental
mode for μM ¼ 0.1 and μM ¼ 0.3. Clearly, we are not triggering
any overtones.

FIG. 17. The time evolution of Ψ11 extracted at rex ¼ 100M
with C ¼ 5 × 10−4M−1 and μM ¼ 0.1. We show the growth of
the scalar field from the initial conditions (A7), using Zel’Dovich
trick described in the main text.
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where lμ¼ 1ffiffi
2

p ðnμ−uμÞ and m̄μ¼ 1ffiffi
2

p ðvμ−iwμÞ. Decompos-

ing the Maxwell tensor gives

Fμν ¼ nμEν − nνEμ þDμAν −DνAμ; ðB3Þ

where Eμ ¼ Fμνnν and Aμ is the spatial part of the vector
field Aμ. The real and imaginary components ofΦ2 are then
given by

ΦR
2 ¼ −

1

2
½ER

i v
i þ uivjðDiAR

j −DjAR
i Þ

þ EI
iw

i þ uiwjðDiAI
j −DjAI

iÞ�;

ΦI
2 ¼

1

2
½ER

i w
i þ uiwjðDiAR

j −DjAR
i Þ

− EI
iv

i − uivjðDiAI
j −DjAI

iÞ�: ðB4Þ

Similar to the scalar case, we obtain the multipoles of Φ2 at
a certain extraction radius rex, by projecting Φ2 onto the
sw ¼ −1 spin-weighted spherical harmonics.

ðΦR
2 ÞlmðtÞ ¼

Z
dΩ½ΦR

2 ðt; θ;φÞ−1YR
lmðθ;φÞ

þΦI
2ðt; θ;φÞ−1YI

lmðθ;φÞ�;

ðΦI
2ÞlmðtÞ ¼

Z
dΩ½ΦI

2ðt; θ;φÞ−1YR
lmðθ;φÞ

−ΦR
2 ðt; θ;φÞ−1YI

lmðθ;φÞ�: ðB5Þ

Throughout this work, we will often show jðΦ2Þlmj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΦ2Þ�lmðΦ2Þlm
p

.

APPENDIX C: PLASMA FRAMEWORK

In this appendix, we elaborate on the assumptions
regarding our plasma model listed in Sec. II C:

(i) We drop nonlinear terms in the axion-photon-plasma
system. That is to say, as long as the EM field is
small, it is sufficient to consider only the linear
response of the medium. Consequently, the back-
reaction of the EM field onto the axion field is not
included.

(ii) We ignore the oscillations of the ions due to the EM
field. Whenever the plasma is nonrelativistic, this
assumption is justified due to the larger inertia of the
ions compared to the electrons and we can treat them
as a neutralizing background. In the relativistic
regime however, there is a critical threshold for
which this approximation is no longer valid, defined
as Γe ≫ mion=me [30], where Γe is the Lorentz factor
of the electrons.

(iii) For simplicity, we consider as initial data a locally
quasineutral plasma, i.e., Znion ≈ ne, where Z is the
atomic number, such that we have a vanishing
charge density. As plasma is globally neutral, this

approximation is valid at large enough length scales
for our setup. In particular, it holds in systems where
typical length scales are much larger than the Debye
length, which is the length at which free charges are
efficiently screened in the plasma.

(iv) We assume a cold and collisionless plasma. In
principle, our formalism can be extended straight-
forwardly to include both thermal and collisional
effects by adding a few terms in the momentum
equation [18]. In particular, thermal effects can be
included by considering a non-negligible pressure
for the fluid and an equation of state, while electron-
ion collisions can be modeled using a term propor-
tional to the relative velocity of the two fluid species.

(v) We neglect the evolution of the fluid’s four velocity
with respect to an Eulerian observer due to gravity.
The 3þ 1 decomposition of the momentum equa-
tion (D36), shows how after linearization the evo-
lution is dictated both by a gravitational term ai and
an EM term Ei. In a Schwarzschild BH background,
the only nonvanishing component of the gravita-
tional term is ar ¼ M=r2, which assumes the well
known form of gravitational acceleration by a
spherical object.13 Since we are interested in the
effect of plasma in a localized region of spacetime,
i.e., the axion cloud, which is situated around the
Bohr radius, an easy estimate shows that the effect of
gravity is sufficiently small in the timescales of
interest. For example, let us consider a cloud with
μM ¼ 0.1, located around r ¼ 200M. In this case,
we have that ar ¼ 2.5 × 10−5M−1. Thus for an
initially zero velocity fluid, this term only gives
significant modifications on a timescale t ∼ 105M,
which is much longer than the growth timescales of
the EM field. Furthermore, note that the gravitational
term is suppressed with respect to the EM term by a
factor ofme=qe ∼ 10−22. Neglecting the evolution of
the velocity due to gravity has two consequences for
our system of evolution equations.

First of all, while the momentum equation for the
electrons still has the EM term, we neglect this term
for the ions according to assumption (ii). Therefore,
the ionic momentum equation becomes trivial. In
fact, it means that ions with initially zero velocity do
not evolve. Consequently, we can consider them as a
stationary, neutralizing background without evolv-
ing the fluid.

Second, by neglecting the gravitational term, the
constraint of the electron momentum equation (D40)
reduces at the linear level to uν∂νΓ ¼ 0. Since Γ ¼ 1
linearly due to its quadratic dependence on the
velocity, the constraint equation is trivially satisfied.

13In fact, this term corresponds to the surface gravity when
evaluated at the horizon.
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Hence, dropping the gravitational term allows for a
great simplification of our evolution scheme.

APPENDIX D: FORMULATION
AS A CAUCHY PROBLEM

In this appendix, we formalize our equations of motion
(2) as an (initial value) Cauchy problem and we discuss the
initial data.

1. 3 + 1 decomposition

The equations of motion of our axion-photon-plasma
system are given by (2). In this work, we will ignore the
dynamics of gravity and solve the Klein-Gordon, Maxwell,
and plasma equations on a fixed spacetime background. In
order to evolve the system in time, we use the standard
3þ 1 decomposition of the spacetime (see, e.g., [86]). The
metric then takes the following generic form:

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ðD1Þ

where α is the lapse function, βi is the shift vector, and γij is
the three metric on the spatial hypersurface. Furthermore,
we introduce the scalar momentum as

Π ¼ −nμ∇μΨ; ðD2Þ

where nμ is the unit normal vector to the spatial hyper-
surface, which takes on the form nμ ¼ ð1=α;−βi=αÞ. The
vector field Aμ can be decomposed as

Aμ ¼ Aμ þ nμAφ; ðD3Þ

where

Ai ¼ γjiAj and Aφ ¼ −nμAμ: ðD4Þ

We also introduce the EM fields

Ei ¼ γijFjνnν and Bi ¼ γij
�Fjνnν; ðD5Þ

which are defined with respect to an Eulerian observer.4 As
for the plasma quantities, we decompose the fluids’ four
velocities as [87]

uμe ¼ Γeðnμ þ UμÞ; uμion ¼ Γionðnμ þ VμÞ: ðD6Þ

where Uμ, Vμ are again defined with respect to an Eulerian
observer. From the normalization of the four velocities, the
Lorentz factor is then

Γe ¼ −nμuμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − UμUμ
p ; Γion ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VμVμ

p :

ðD7Þ

Note that even though we include the ion quantities in (D6)
and (D7) for generality, we do not actually use them in this
work as we ignore the oscillations of the ions [assumption
(ii)]. Finally, we introduce the charge density as seen by an
Eulerian observer as

ρ ¼ −nμjμ: ðD8Þ
Since jμ is the sum of the currents of the two fluids, we can
express (D8) also as ρ ¼ ρe þ ρion.
Using the above definitions, we obtain the following

evolution equations for the full axion-photon-plasma sys-
tem (for the decomposition of the momentum equation, we
refer to Appendix D 6; for the EM part, see, e.g., [88]):

∂tΨ¼−αΠþLβΨ;

∂tΠ¼ αð−D2Ψþμ2ΨþKΠ−2kaEiBiÞ
−DiαDiΨþLβΠ;

∂tAi¼−αðEiþDiAφÞ−AφDiαþLβAi;

∂tEi¼ αKEi−αDjðDjAi−DiAjÞ
− ðDiAj−DjAiÞDjαþαðDiZ− jiÞ
þ2kaαðBiΠþ ϵijkEkDjΨÞþLβEi;

∂tAφ ¼−AiDiαþαðKAφ−DiAi−ZÞþLβAφ;

∂tðΓeU iÞ¼ α

�
qe
me

Eiþ ϵijkUjBk−Γeai−UjDjðΓeU iÞ
�

þLβΓeU i;

∂tρe¼−DiðαjiÞþαρeKþLβρe;

∂tZ¼ αðDiEiþ2kaBiDiΨ−ρÞ− καZþLβZ; ðD9Þ
where we have introduced a constraint damping variable Z
to stabilize the numerical time evolution. Furthermore, we
define Di as the covariant derivative with respect to γij, the
extrinsic curvature as Kij ¼ 1

2α ½−∂tγij þDiβj þDjβi� and
K as its trace. Note that the absence of the evolution
equations for the ions due to assumption (ii).
Finally, we get the following constraints:

DiBi¼ 0;

DiEi¼ ρ−2kaBiDiΨ;

ðnμþUμÞ∇μΓe¼ΓeU iUjKij−ΓeU iai−
qe
me

EiU i: ðD10Þ

Upon ignoring the gravitational term in the momentum
evolution equation [assumption (v)], this last constraint is
trivially satisfied on the linear level.

2. Background metric

As discussed in Appendix A 1, we employ Kerr-Schild
coordinates in our numerical setup to avoid the coordinate
singularity at the horizon. These are related to Cartesian
coordinates by
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x ¼ r cosφ sin θ − aJ sinφ sin θ;

y ¼ r sinφ sin θ þ aJ cosφ sin θ;

z ¼ r cos θ: ðD11Þ
In these coordinates, the metric takes on the following form:

ds2 ¼ ðημν þ 2HlμlνÞdxμdxν; ðD12Þ
where

H¼ r3M
r4þa2Jz

2
;

lμ ¼
�
1;
rxþaJy
r2þa2J

;
−aJxþ ry
r2þa2J

;
z
r

�
;

r¼
�
1

2
ðx2þy2þ z2−a2J þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2þy2þ z2Þ2þ4a2Jz

2

q
Þ
�
1=2

;

ðD13Þ

wherewe consider Schwarzschild, i.e., aJ ¼ 0. Furthermore,
we define

α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ;

βi ¼ 2Hli;

γij ¼ δij þ 2Hlilj;

Kij ¼
∂iðHljÞ þ ∂jðHliÞ þ 2Hðl�Þk∂kðHliljÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2H
p ; ðD14Þ

which are the lapse function, shift vector, spatial metric, and
the extrinsic curvature, respectively.

3. Evolution without plasma

Since the simulations with and without plasma have a
slightly different structure, we separate these clearly in the
following sections. First, we consider the full set of
equations in the absence of plasma. These belong to the
simulations I i and J i from Secs. III and IV. They are

∂tΨ ¼ −αΠþ LβΨ;

∂tΠ ¼ αð−D2Ψþ μ2Ψþ KΠ − 2kaEiBiÞ
−DiαDiΨþ LβΠ;

∂tAi ¼ −αðEi þDiAφÞ − AφDiαþ LβAi;

∂tEi ¼ αKEi − αDjðDjAi −DiAjÞ
− ðDiAj −DjAiÞDjαþ αDiZ

þ 2kaαðBiΠþ ϵijkEkDjΨÞ þ LβEi;

∂tAφ ¼ −AiDiαþ αðKAφ −DiAi − ZÞ þ LβAφ;

∂tZ ¼ αðDiEi þ 2kaBiDiΨÞ − καZ þ LβZ: ðD15Þ
Note that these are the same as considered in [15,16].

a. Initial data

To construct the initial data for our simulations, we must
solve the constraint equations (D10). By doing so on the
initial time slice, the Bianchi identity will ensure they are
satisfied throughout the evolution. As explained in
Appendix A 1, we use Leaver’s method to construct the
scalar field bound state. For the electric field, we use initial
data analogous to [15,16]. In particular, we choose a
Gaussian profile defined in (6).

4. Evolution with plasma

In the simulations with plasma, we linearize the axion-
photon-plasma system due to the complexity of the
problem, and we neglect ion perturbations. We express
the perturbed quantities with a tilde, such that

Ai¼Ai
bþεÃi; Ei¼Ei

bþεẼi; Aφ¼Ab;φþεÃφ;

U i¼Ui
bþεŨ i; Γe¼ 1; ρ¼ρb;eþρb;ionþερ̃e; ðD16Þ

where we denote background quantities with a subscript b
and where ε is the arbitrarily small parameter in the
perturbation scheme. For simplicity, we consider a quasi-
neutral, field-free background plasma, i.e., Ei

b ¼ Ai
b ¼

Ab;φ ¼ 0, and ρb;e ¼ −ρb;ion. The problem at hand naturally
introduces two distinct reference frames: the Eulerian
observer rest frame and the plasma rest frame. The relative
velocity between the two is the background quantity U i. We
consider a plasma comoving with the Eulerian observer,
such that the plasma is static in the spacetime foliation. Since
the background field of the electron charge density does not
vanish, according to (D9) it should evolve as

∂tρb ¼ αρb;eK þ Lβρb;e: ðD17Þ

We aremainly interested in the evolution of this variable in a
localized region of spacetime far away from the BH, i.e., the
axion cloud, and thus the evolution of (D17) due to strong
gravity terms is extremely slow compared to the linear
system. Therefore, we neglect its evolution similarly to the
gravitational influence on the evolution of the background
velocity [assumption (v)].
Before proceeding, there is one other subtlety. The

plasma response to the perturbing EM field is proportional
to the electron charge-to-mass ratio, which is extremely
large qe=me ≈ 1022. Nevertheless, as we are linearizing the
system, and therefore neglecting the backreaction of the
EM field onto the axion field, the amplitude of the former
is arbitrary in our scheme. If we were to consider the full
problem including backreaction instead, the amplitude of
the axion field would clearly introduce a scale. Due to this
freedom, we rescale the EM variables as
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Ēi ¼ qe
me

Ẽi;

Āi ¼
qe
me

Ãi;

Z̄ ¼ qe
me

Z: ðD18Þ

Then, we can write down the full set of equations including
the plasma as

∂tΨ¼−αΠþLβΨ;

∂tΠ¼ αð−D2Ψþμ2ΨþKΠÞ−DiαDiΨþLβΠ;

∂tĀi ¼−αðĒiþDiĀφÞ− ĀφDiαþLβĀi;

∂tĒi ¼ αKĒi−αDjðDjĀi−DiĀjÞ
− ðDiĀj−DjĀiÞDjαþαðDiZ̄−ω2

pŨ
iÞ

þ2kaαðB̄iΠþ ϵijkĒkDjΨÞþLβĒi;

∂tĀφ ¼−ĀiDiαþαðKĀφ−DiĀ
i− Z̄ÞþLβĀφ;

∂tŨi ¼ αĒiþLβŨi;

∂tω̃
2
p ¼−Diðαω2

pŨiÞþαω̃2
pKþLβω̃

2
p;

∂tZ̄¼ αðDiĒiþ2kaB̄iDiΨ− ω̃2
pÞ− καZ̄þLβZ̄; ðD19Þ

where ω2
p is the plasma frequency, and ω̃2

p its perturbation:

ω2
p ¼

qe
me

ρb;e;

ω̃2
p ¼

qe
me

ρ̃e: ðD20Þ

Note that due to the rescaling, there is no charge-to-mass
ratio of the electrons and the field equations are written only
in terms of the plasma frequency, which is Oð1=MÞ.
As we detail in the following subsection, including a

linearized fluid model in the equations of motion, causes
the system (D19) to become ill-posed upon using a
damping variable.14 However, this damping variable is
essential in constraining Gauss’ law and without it, the
simulations diverge for large EM values. As a resolution,
we slightly adjust our equations by not including the
perturbed plasma frequency, ω̃p, in the evolution equation
of the damping variable Z, i.e.,

∂tZ̄ ¼ αðDiĒi þ 2kaB̄iDiΨÞ − καZ̄ þ LβZ̄: ðD21Þ

This is a minimal change as the perturbed plasma frequency
does not enter any other evolution equation of the system in
the linearized regime, yet it does restore the well-posedness
of our setup. We justify this approach in two ways: (i) we
evolve the system with and without the damping variable

for large plasma frequencies (where the EM values remain
small) and we find excellent agreement between the two,
and (ii) for small plasma frequencies, where the EM field is
allowed to grow, the effects of the plasma are negligible,
and therefore ignoring ω̃p leads to a subleading error
compared to the EM values.

a. Initial data

For the plasma part, we assume quasineutrality
[cf. assumption (iii)], i.e., ρ ¼ −nμðeneuμe − Zenionu

μ
ionÞ ¼

ene − Zenion ¼ 0. As shown in (D10), the constraint equa-
tion for the plasma is trivially satisfied on the linear level,
and thus the initial data listed in the previous section solves
all of our constraints. As for the electronic density, in
principle, depending on the specific environment we are
interested in, we can assume different spatial profiles
[67,79,91], which correspond to a space-dependent effective
mass for the photon. However, the length scale of interest to
us, i.e., the size of the axion cloud, is typically much shorter
than length scale on which the effective mass varies. Hence,
for simplicity, we assume a constant density plasma.

5. Hyperbolicity of fluid model

The evolution equations (D19) are not strongly
hyperbolic and therefore do not form a well-posed system.
Consequently, the existenceof a unique solution that depends
continuously on the initial data is not guaranteed and any
numerical approach is bound to fail. In this appendix, we
proof that our system is not strongly hyperbolic.
Based on [92], we introduce an arbitrary unit vector si

and consider the principal part of the system, i.e., we
consider only the highest derivative terms from (D19):

∂t½∂2sψ � ∼ −α∂sð∂sĀφÞ þ βs∂s½∂2tψ �;
∂tð∂sĀAÞ ∼ −α∂sĒA þ βs∂sð∂sĀAÞ;
∂tð∂sĀφÞ ∼ βsð∂sĀφÞ − α∂s½∂2sψ �;

∂tĒA ∼ −α∂sð∂sĀAÞ þ βs∂sĒA;

∂tĒs ∼ α∂sZ̄ þ βs∂sĒs;

∂tZ̄ ∼ α∂sĒs þ βs∂sZ̄;

∂tŨs ∼ βs∂sŨs;

∂tŨA ∼ βs∂sŨA;

∂tω̃
2
p ∼ −αω2

p∂sŨs þ βs∂sω̃
2
p; ðD22Þ

where the index A denotes the component projected into the
surface orthogonal to si, and ½∂2sψ � can be written as

½∂2sψ � ¼ ∂sĀs þ Z̄: ðD23Þ
Defining the principal symbol of ð½∂2sψ �; ĀφÞ ðZ̄; EsÞ,
ð∂sĀA; ĒAÞ, and ðŨs; ω̃2

pÞ as PG, PC, PP , and PF , respec-
tively, we get

14The ill posedness originates from the linearization of the
fluid equation, whereas the full nonlinear system of equations is
strongly hyperbolic and thus well posed [89,90].
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PG ¼
�

βs −α
−α βs

�
; PC ¼

�
βs α

α βs

�
;

PP ¼
�

βs −α
−α βs

�
; PF ¼

�
βs 0

−αω2
p βs

�
: ðD24Þ

We see that the eigenvalue for PF is degenerate with βs and
the eigenvector is ð0; bÞT , where b is an arbitrary value.
Therefore, the principal symbol does not have a complete
set of eigenvectors, and the system is not strongly hyper-
bolic. If we ignore ω̃2

p in Z, it becomes decoupled from
Maxwell’s equations, and the only relevant variable for the
fluid part that remains, is the linearized four velocity Ũi. As
is shown in (D22), the principal part for Ũi is just canonical
the advection term.

6. Momentum equation

In order to include a plasma in our numerical setup, we
need to apply the 3þ 1 decomposition to the momentum
equation (2). Even though this has been done before, e.g.,
in [93], it is not part of standard literature. Therefore, we do
the decomposition explicitly here. Our starting point is the
momentum equation for the electrons, given by (we drop
the subscript “e” here, since we only consider the momen-
tum equation for the electrons)

uν∇νuμ ¼
q
m
Fμνuν: ðD25Þ

The four-velocity can bewritten as uμ ¼ Γðnμ þ UμÞ, where
U i is tangent to Σt, the spatial hypersurface, such that
nμUμ ¼ 0 and uμuμ ¼ −1. Although we are interested in
linear effects and therefore Γ ¼ 1, we will derive the 3þ 1
equations in full generality and thus including this factor.
If we project (D25) using the projector operator hab ¼

δab þ nanb we obtain the evolution equation, if we project it
onto na we get the constraint equation. Let us start with the
former.

a. Evolution equation

We start with the left-hand side (lhs) of (D25)15:

hρμðnν þ UνÞ∇ν½Γðnμ þ UμÞ�
¼ Γaρ þ nν∇νðΓUρÞ − ΓUμaμnρ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ ΓUν∇νnρ|fflfflfflfflffl{zfflfflfflfflffl}
II

þ hρμUν∇νðΓUμÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
III

; ðD26Þ

where aμ ¼ nν∇νnμ is the acceleration of the Eulerian
observer. Since this a projection onto the hypersurface and

thus orthogonal to nμ, we focus on ρ ¼ i, i.e., the spatial
part. To write (D26) in a more convenient form, we work
out parts I, II, and III separately in (D28), (D29), (D30).
First, we define the useful relations [93]:

DτU i ¼ nμ∇μU i − niaμUμ;

LtU i ¼ αðDτU i þ Ki
jU

jÞ þ LβUi; ðD27Þ

where Lt ¼ Lαnþβ. For part I, we then have

nμ∇μðΓU iÞ−ΓniaμUμ ¼ 1

α
½LtðΓU iÞ−LβðΓU iÞ�−ΓKi

jU
j;

ðD28Þ

for term II, we find

ΓUν∇νni ¼ ΓUνð−ainν − Ki
νÞ ¼ −ΓKi

jU
j; ðD29Þ

and finally, for term III, we have

hiμUν∇νðΓUμÞ ¼ hiμhναUα∇νðΓUμÞ ¼ UαDαðΓU iÞ: ðD30Þ

Combining these, we can write the lhs as

Γai þ 1

α
½LtðΓU iÞ − LβðΓU iÞ�

− ΓKi
jU

j − ΓKi
jU

j þ UαDαðΓU iÞ: ðD31Þ

For the right-hand side (rhs) of the momentum
equation (D25), we first write out the standard form of
the decomposition of the Maxwell tensor (see, e.g., [88])
and then project it onto the spatial hypersurface using the
projector operator:

hρμ
q
m
Fμνðnν þ UνÞ

¼ hρμ
q
m
ðϵαμνσnαBσUν þ nμEνUν þ EμÞ;

¼ q
m
ðð3ÞϵρνσUνBσ þ EρÞ; ðD32Þ

where we used Eνnν ¼ 0, ϵαμνσnαnν ¼ 0, and ϵαμνσnα¼
ð3Þϵμνσ .
We can then piece together (D31) and (D32) to obtain

LtðΓU iÞ − LβðΓU iÞ þ αUjDjðΓU iÞ

¼ α

�
q
m
ðEi þ ϵijkUjBkÞ − Γai þ 2ΓKijUj

�
: ðD33Þ

Finally, we apply the three metric tensor γij to the above
equation to lower the index. To do so, we use the following
identities [93]:

15We avoid writing the overall Γ coming from uμ on both sides
of (D25).
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γijLtðΓUjÞ ¼ LtðΓU iÞ − ΓUjLtγij;

ΓUjLtγij ¼ −2αΓUjKij þ ΓUjLβγij; ðD34Þ

from which we obtain:

∂tðΓU iÞ − LβðΓU iÞ þ αUjDjðΓU iÞ

¼ α

�
q
m
ðEi þ ϵijkUjBkÞ − Γai

�
: ðD35Þ

As explained in Appendix C, we simplify the plasma to
make it more suitable to our numerical setup. By linearizing
this equation, which also implies Γ ∼ 1, we are left with

∂tU i ¼ α

�
q
m
Ei − ai

�
þ LβU i: ðD36Þ

Finally, we also neglect gravity, which brings us to our final
equation:

∂tU i ¼ α
q
m
Ei þ LβU i: ðD37Þ

b. Constraint equation

By projecting the momentum equation (D25) onto the
timelike unit vector, nμ, we obtain the constraint equation.
Again, we first show the lhs:

nμðnν þ UνÞ∇ν½Γðnμ þ UμÞ�
¼ −ΓaμUμ − ΓUνUμ∇νnμ − nν∂νΓ − Uν

∂νΓ; ðD38Þ

where we used that nμ∇νnμ ¼ 0. For the rhs, we have

q
m
nμðϵαμνσnαBσUν þ nμEνUν þ EμÞ ¼ −

q
m
EνUν: ðD39Þ

Thus we end up with the following constraint
equation:

nν∂νΓþUν
∂νΓþΓaμUμþΓUνUμKμν ¼

q
m
EνUν: ðD40Þ

The fourth and fifth term are second order and thus drop out
in our linearized setup [assumption (i)]. Furthermore, we
can neglect the third term since we ignore the gravity term
[assumption (v)]. As Γ depends quadratically on the four
velocity, it must be 1 in the linear theory, and therefore the
constraint is trivially satisfied.

APPENDIX E: NUMERICAL CONVERGENCE

In our numerical framework, we employ the method
of lines, where spatial derivatives are approximated
by a fourth-order accurate finite-difference scheme and
we integrate using a fourth-order Runge-Kutta method.

Furthermore, Kreiss-Oliger dissipation is applied to evolved
quantities in order to suppress high-frequency modes that
come from the boundaries between adjacent refinement
regions. The numerical simulations are performed using
the open source EINSTEIN TOOLKIT [94,95]. For the
evolution of the scalar and vector field, we extent the
SCALAREVOLVE [96–98] and PROCAEVOLVE thorns
[99,100], respectively. We use MULTIPATCH to interpolate
between different grids in our numerical domain
[101,102]. In particular, to connect the central Cartesian
grid with the spherical wave zone. Additionally, CARPET

communicates between refinement levels with second-order
and fifth-order accuracy in time and space, respectively. The
Courant number in all our simulations is 0.2, such that the
Courant-Friedrichs-Lewy condition is satisfied. To check
whether our numerical results respect the required conver-
gence, we evolve the same configuration with a coarse (hc),
medium (hm), and fine (hf ) resolution. The convergence
factor can then be calculated according to

Qn ¼
fhc − fhm
fhm − fhf

¼ hnc − hnm
hnm − hnf

; ðE1Þ

where n is the expected convergence order. In our case,
we take as the coarsest level hc ¼ 1.8M, then hm ¼ 1.2M
and hf ¼ 1.0M. As can be seen in Fig. 18, we obtain a
convergence order between 3 and 4. We have performed
similar tests for the other simulations in this work (with or
without C and with or without the plasma) and we find
similar conclusions.

APPENDIX F: HIGHER MULTIPOLES

In the main text, we have shown the dominant contri-
bution coming from the dipole l ¼ m ¼ 1 mode

FIG. 18. Convergence analysis of the l ¼ m ¼ 1 multipole of
Ψ, extracted at rex ¼ 20M for μM ¼ 0.2 and C ¼ 10−3. The
green line shows the expected result for third-order convergence
(Q3 ¼ 5.64), while the purple line is the expected result for
fourth-order convergence (Q4 ¼ 7.85).
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(cf. Figs. 2–4). In general however, higher order multipoles
are also produced. In Figs. 19 and 20, we show a subset of
those from the scalar and vector field, respectively. In both
figures, we consider simulation I3, where SR is turned off
and we start in the supercritical regime. Three features are
worth noting: (i) only axion modes with odd l can be
produced from our initial data. An explanation for this
selection rule is provided in Appendix I; (ii) the Fourier
transform of the vector field shows additional peaks with a
frequency slightly lower than μ=2 and two near 3μ=2. As
discussed in the main text, these should be interpreted as
“photon echoes” created by outwards traveling photons that
interact with the axion cloud; (iii) in Fig. 19, we observe
that some of these up-scattered photons can recombine with
“normal” photons (ω ∼ μ=2) to form axion waves with a
frequency of twice the boson mass.

APPENDIX G: SUPERRADIANT MATHIEU
EQUATION

By solving the superradiant Mathieu equation (9)
numerically for different values of C, we are able to find
a growth rate (10) for the EM field in flat spacetime, while
assuming a homogeneous axion condensate. Remarkably,
this estimate is even accurate in describing the super-
exponential growth of the EM field in presence of SR,
when considering the full setup on a Schwarzschild back-
ground (including the finite-size effects of the cloud with
λesc). In this appendix, we show a few examples of the
numerical solutions to (9) and we use a multiple-scale
method to derive the growth rate analytically.
Figure 21 shows various numerical solutions to the

superradiant Mathieu equation (9). For C ¼ 0, the solution
is well described by the standard Mathieu growth rate (red
dashed line). For nonzero values of C instead, the standard
Mathieu prediction becomes inaccurate and the numerical
solutions are well fitted by the superexponential growth rate
(10) (black dashed lines).

FIG. 19. Top panel: time evolution of various multipole modes
of the scalar field in the supercritical case (simulation I3). The
field is extracted at rex ¼ 400M and μM ¼ 0.3. Interestingly,
even l modes are not excited, while odd l modes are, which we
explain in Appendix I. Bottom panel: the Fourier transform of the
multipole modes shown in the top panel, where the gray dashed
line denotes the frequency of the fundamental mode (ω0). The
peaks around ω ¼ 2ω0 (brown dashed line) seen in the inset
originate from interactions between “up-scattered” photons
(ω ¼ 3ω0=2) with “normal” photons (ω ¼ ω0=2).

FIG. 20. Top panel: time evolution of various multipole modes
of the Newman-Penrose scalar jðΦ2Þlmj in the supercritical
regime. Considered simulation is I3. Field is extracted at rex ¼
400M and μM ¼ 0.3. Bottom panel: Fourier transform of the
multipole modes shown in the top panel. The gray and brown
dashed lines indicate the frequencies at ω0=2 and 3ω0=2,
respectively.
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1. Multiple-scale analysis

Regular perturbation theory fails to describe some types
of problems at late times. This is due to the presence of
secular terms, causing nonuniformities to appear between
consecutive orders in the perturbation series. An example
of this happening is when solving the Mathieu equation,
where a multiple-scale analysis is more suitable (see, e.g.,
[103]). In the following, we will show its effectiveness for
solving the superradiant Mathieu equation and with that,
provide an analytical explanation of the numerically fitted
growth rate (10).
Let us consider the superradiant Mathieu equation (9),

where we expand the exponential as

d2y
dT2

þ ðbþ 2δð1þ CTÞ cosTÞy ¼ 0; ðG1Þ

and we assume δ to be small. We can introduce two
timescales, a fast timescale T, and a slow one, T ¼ δT,
which we treat as independent variables. By assuming a
dependence on both variables, i.e., yðTÞ → yðT;T Þ and
expanding all the parameters, i.e., y ¼ y0ðT; T Þ þ
δy1ðT; T Þ and b ¼ b0 þ δb1, we can use the additional
freedom from treating T as a new variable to eliminate
secular terms. This causes the solution to hold for longer
times compared to a “normal” perturbative approach.
Assuming the SR term also to be small, i.e., C ¼ δC,
we can introduce yet another timescale, the very slow
one,T ¼ δ2T. Upon expanding again b¼ b0þδb1þδ2b2,
we obtain

d2y
dT2

þðbþδðb1þ2cosTÞþδ2ðb2þ2CT cosTÞÞy¼ 0:

ðG2Þ

In the spirit of the multiple-scale method, we “promote”
y to depend on all the timescales as independent
variables and then expand, i.e., yðT;T ;TÞ¼ y0ðT;T ;TÞþ
δy1ðT;T ;TÞþδ2y2ðT;T ;TÞ.
We can now consider (G2) order by order. At zeroth

order, we have

∂
2
Ty0 þ b0y0 ¼ 0; ðG3Þ

where b0 ¼ 1=4 at the inset of the first unstable Mathieu
band. Consequently, at this order, we obtain the solution:
y0 ¼ AðT ;TÞeiT=2 þ c:c. Hence, the solution at the fast
timescale T just describes the harmonic behavior. At first-
order, we have

∂
2
Ty1 þ

1

4
y1 ¼ −2∂T∂T y0 − ðb1 þ 2 cosTÞy0: ðG4Þ

The right-hand side of this equation contains secular
terms. However, we can use the extra dependence of y0
on the slow timescale to remove it, namely by requiring
i∂T AðT ;TÞ ¼ −b1AðT ;TÞ þ A�ðT ;TÞ. Solving this
leads to the dependence of the zeroth-order solution on

the slow timescale, i.e., y0 ¼ AðTÞe
ffiffiffiffiffiffiffiffi
1−b2

1

p
T eiT=2 þ c:c.

Similarly, the dependence on the very slow timescale
can be used to eliminate secular terms in the second-order
equation.16 Following this procedure, we obtain for the
zeroth-order solution:

y0 ≈ e
ffiffiffiffiffiffiffiffi
1−b2

1

p
T eiT=2eCTT þ c:c: ðG5Þ

At sufficiently large times (T ≫ 1=C), the growth rate is
thus dominated by eCTT ¼ eδCT

2

.
Finally, by comparing (G1) with (9), we identify δ ¼

pzψ0ka=μ2 and pz ¼ μ=2, such that, after rescaling the
physical time t ¼ T=μ, the growth rate is eλt with

λt ¼ μ

2
kaψ0Ct2; ðG6Þ

which is the dominant growth rate at late times we found in
(11) (up to a factor of 2).
The multiple-scale method thus produces a solution with

three timescales: (i) the “fast” timescale that corresponds to
the harmonic oscillations with a frequency at half the boson
mass, (ii) the “slow” timescale belonging to the standard
Mathieu growth rate, and (iii) the “very slow” timescale
which originates from the superexponential growth induced
by SR and becomes dominant at late times. In conclusion,
the Mathieu equation provides us, once again, with a simple
analytical explanation to the behavior of the full system.

FIG. 21. Numerical solutions to the superradiant Mathieu
equation (9) for different values of C. Horizontal axis shows
the rescaled time T ¼ μt. Red dashed line shows the “standard”
Mathieu growth rate, while black dashed lines are obtained from
the analytic growth rate (10) and describe the numerical solutions
well. Chosen parameters are μ ¼ 0.2; pz ¼ 0.1; kaψ0 ¼ 0.1.

16As these computations become quite cumbersome, we do not
report them here.
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APPENDIX H: PLASMA MATHIEU EQUATION

In this appendix, we study the axion-photon-plasma
system in flat spacetime. This analysis closely follows
[14], yet now in the context of a Mathieu-like equation.
Furthermore, we generalize their work by including a
momentum equation rather than assuming Ohm’s law.
The starting point is the equations of motion (2) in

Minkowski. Similar to Sec. IV B, we assume the wave
vector to be along the ẑ direction, i.e., p ¼ ð0; 0; pzÞ, the
EM ansatz (7), and a homogeneous axion condensate
defined as

Ψ ¼ 1

2
ðψ0e−iμt þ ψ�

0e
iμtÞ: ðH1Þ

By linearizing (2), one can straightforwardly solve the
momentum equation and find the velocity of the electrons
with respect to the EM field. Once again, due to their large
inertia, we neglect the perturbations of the ions and treat
them as a neutralizing background. Since the longitudinal
and transverse modes in linear photon-plasma theory in flat
spacetime are decoupled, we focus on the latter, obtaining

uk ¼ −
qe
me

αkeiðp·x−ωtÞ; ðH2Þ

where k ¼ x̂; ŷ are the transverse directions. We can now
insert this expression in the current that appears on the
right-hand side of Maxwell’s equations, i.e., jk ¼ qeneuke,
to obtain two decoupled equations for the transverse
polarizations, αk. Finally, by adopting the field redefinition
yk ¼ eiωtαk, rescaling the time as T ¼ μt and projecting
along a circular polarization basis e� such that y ¼ yωe�,
we find the Mathieu equation in the presence of plasma
to be [40]

∂
2
Tyω þ 1

μ2
ðp2

z þ ω2
p − 2μpzψ0ka sinTÞyω ¼ 0: ðH3Þ

One can readily see that in the absence of a plasma, i.e.,
ωp ¼ 0, the vacuum Mathieu equation is recovered [15].
The top panel of Fig. 22 shows numerical solutions to the

plasma Mathieu equation (H3) for different values of the
plasma frequency. For ωp ¼ 0, the solution develops an
instability that is well described by the analytic solution of
the vacuum Mathieu equation (red dashed line). By
increasing ωp, the growth rate of the instability becomes
smaller as the interval of the momentum corresponding to
the instability shrinks until the solution becomes stable
when ωp ≥ μ=2. We find good agreement with the insta-
bility interval predicted in Eq. (19) from [14], by exploring
a wide region of the parameter space. Interestingly, even
when ωp ≥ μ=2, the instability band can be widened by
increasing the value of kaψ0, making it possible to restore
the instability even for dense plasmas. This effect can be

seen in the bottom panel of Fig. 22. By fixing ωp ¼ 0.15
(with μ ¼ 0.2), the instability is restored for large enough
values of kaψ0.

1. Band analysis

In [14], the maximum growth rate in the low axionic
coupling regime is found where the condition p2

z þ ω2
p ¼

μ2=4 holds. While in [14], this result does not have an
immediate interpretation, our redefinition of the system in
terms of the Mathieu equation provides a simple explan-
ation to this condition; from (H3), it follows immediately
that the instability bands are located where

p2
z þ ω2

p ¼ n2
μ2

4
with n∈N: ðH4Þ

Therefore, the maximum growth rate of [14] can be
interpreted as the first, dominant instability band, i.e.,
where n ¼ 1. Note that, as long as the axionic coupling
is sufficiently low, the dispersion relation of the photon is
not modified by the condensate, and thus ω2 ≈ p2

z þ ω2
p,

with ω the frequency of the photon. Therefore, similar to

FIG. 22. Top panel: solutions of the plasma Mathieu equa-
tion (H3) for different values of the plasma frequency. Here, we
choose μ ¼ 0.2; pz ¼ 0.1, and kaψ0 ¼ 0.2. Bottom panel: a
similar setup as above, yet now the axionic coupling is varied
and ωp ¼ 0.15 > μ=2. The other parameters are the same as
above. As can be seen, for large values of kaψ0 the instability is
restored.
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the vacuum case, the instability bands correspond to
frequencies which are multiples of μ=2.
For large enough ωp, i.e., when ωp ≥ μ=2, the condition

(H4) can never be satisfied for n ¼ 1. However, crucially,
it can still be satisfied for n > 1, which corresponds to
exciting higher bands and thus restoring the instability.17

In Fig. 23, we show that this is indeed the case by
numerically solving (H3) and taking the Fourier trans-
form. The dark-blue line that peaks at μ=2, has ωp ¼ 0 and
a moderate value of kaψ0 ¼ 0.02, and thus behaves
according to the parametric mechanism by triggering
the first band. When we consider a higher plasma
frequency, ωp ¼ 0.2 > μ=2, it is not possible to excite
the first instability band anymore. However, as we
increase the axionic coupling to kaψ0 ¼ 2, the instability
is restored in the second band with a frequency μ (blue
line). We can continue for even higher plasma frequencies,
e.g., ωp ¼ 0.43, which for an axionic coupling of
kaψ0 ¼ 2.8, triggers the third instability band at ω ¼
3=2μ (turquoise line). Note that the chosen values of
ωp in the three solutions approximately satisfy (H4) for
n ¼ 1, 2 and 3.

APPENDIX I: SELECTION RULES

Using spherical harmonics, the equations of motion can
be decomposed, and, as we will show, allow us to predict

which modes are excited from the axionic coupling. This
approach yields a consistency check of our simulations in
the case where SR growth is absent. Using the electric field
Ei and the magnetic field Bi, the Maxwell equations can be
written as

∂tEi ¼ αKEi þ βj∂jEi − Ej
∂jβ

i − ϵijkDjðαBkÞ
þ 2kaαðϵijkEkDjΨþ Binα∂αΨÞ;

∂tBi ¼ βj∂jBi − Bj
∂jβ

i þ αKBi þ ϵijkDjðαEkÞ; ðI1Þ

where ϵijk ¼ − 1ffiffi
γ

p Eijk and Eijk is the totally antisymmetric

tensor with E123 ¼ 1. We focus on a Schwarzschild BH
which has the following metric:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ ðrÞdr
2 þ r2γ̂ABdxAdxB; ðI2Þ

where fðrÞ ¼ 1 − 2M
r , and γ̂ABdxAdxB ¼ dθ2 þ sin2 θdφ2.

From the spacetime symmetry, the electric and magnetic
field can be decomposed using the scalar spherical har-
monics Ylmðθ;φÞ and the vector spherical harmonics
∇̂AYlm and Vlm;A ¼ ϵ̂BA∇̂BYlm. Here, ϵ̂AB is the antisym-
metric tensor with ϵ̂θφ ¼ sin θ. Using these harmonics
functions, we expand the electric, magnetic, and scalar
field as follows:

Er ¼
X
lm

Elm;rYlm þ c:c:;

EA ¼
X
lm

�
Elm;S

∇̂AYlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp þ Elm;VVlm;A þ c:c:

	
;

Br ¼
X
lm

Blm;rYlm þ c:c:;

BA ¼
X
lm

�
Blm;S

∇̂AYlmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp þ Blm;VVlm;A þ c:c:

	
;

Ψ ¼
X
lm

ΨlmYlm þ c:c:; ðI3Þ

where A ¼ fθ;φg and Elm;r, Elm;S, Elm;V , Blm;r, Blm;S,
Blm;V , and Ψlm are all coefficients that depend on t
and r only. Time or space derivatives are denoted with a
dot or prime, respectively. Since both the scalar and
vector spherical harmonics are orthogonal functions,
the Maxwell equations with axionic coupling can be
decomposed. We find the coefficients for the electric
field to be

FIG. 23. The Fourier transforms of three numerical solutions to
the plasma Mathieu equation (H3) with μ ¼ 0.3 and pz ¼ 0.15.
The peaks have been arbitrarily normalized and we revert t ¼
μ−1T for the Fourier transform. The considered parameters for
the plasma frequency and the axionic coupling for n ¼ 1; 2; 3
are ωp ¼ 0; 0.2; 0.43 and kaψ0 ¼ 0.02; 2; 2.8, respectively. The
dashed lines indicate nμ=2 and show that each of the solutions
lies in a different instability band.

17Higher bands of the Mathieu equation are narrower than the
first one, making the available parameter space for an instability
smaller. However, since these bands widen for large values of the
axionic coupling kaψ0, even for n > 1 an efficient instability can
be triggered.
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Ėlm;r ¼ −
lðlþ 1Þ

r2
Blm;V −

2kaffiffiffi
f

p
r2

×
X
l0m0
l00m00

X4
I¼1

Cðr;IÞ
lml0m0l00m00XðIÞ;lml0m0l00m00 ;

Ėlm;S ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

2
ðf0Blm;V þ 2fB0

lm;VÞ
− 2ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
×
X
l0m0
l00m00

X4
I¼1

CðS;IÞ
lml0m0l00m00XðIÞ;lml0m0l00m00 ;

Ėlm;V ¼ −fBlm;r þ
f0Blm;S þ 2fB0

lm;S

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp − 2ka

×
X
l0m0
l00m00

X4
I¼1

CðV;IÞ
lml0m0l00m00XðIÞ;lml0m0l00m00 : ðI4Þ

Then, we proceed with the coefficients for the magnetic
field:

Ḃlm;r ¼
lðlþ 1Þ

r2
Elm;V;

Ḃlm;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

2
ðf0Elm;V þ 2fE0

lm;VÞ;

Ḃlm;V ¼ fElm;r −
f0Elm;S þ 2fE0

lm;S

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ; ðI5Þ

and finally the coefficients for the scalar field:

Ψ̈lm ¼ −f
�
2

r
þ f0

�
Ψ0

lm

− f2Ψ00
lm þ f

�
lðlþ 1Þ

r2
þ μ2

�
Ψlm − 2kaf

×
X
l0m0
l00m00

X4
I¼1

CðΨ;IÞ
lml0m0l00m00XðIÞ;lml0m0l00m00 ; ðI6Þ

where XðIÞ;lml0m0l00m00 is found by

Xð1Þ;lml0m0l00m00 ¼
Z

d2ΩY�
lmYl00m00Yl0m0 ;

Xð2Þ;lml0m0l00m00 ¼
Z

d2ΩY�
lmY

�
l00m00Yl0m0 ;

Xð3Þ;lml0m0l00m00 ¼
Z

d2ΩY�
lm∇̂AYl00m00Vl0m0;A;

Xð4Þ;lml0m0l00m00 ¼
Z

d2ΩY�
lm∇̂AY�

l00m00Vl0m0;A: ðI7Þ

Upon defining the prefactor

Qll0l00 ¼
lðlþ 1Þ þ l0ðl0 þ 1Þ − l00ðl00 þ 1Þ

2
; ðI8Þ

we find for Cðr;IÞ:

Cðr;1Þ
lml0m0l00m00 ¼ Ql00l0lEl00m00;VΨl0m0 − r2Bl00m00;rΨ̇l0m0 ;

Cðr;2Þ
lml0m0l00m00 ¼ Ql00l0lE�

l00m00;VΨl0m0 − r2B�
l00m00;rΨ̇l0m0 ;

Cðr;3Þ
lml0m0l00m00 ¼ El00m00;SΨl0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l00ðl00 þ 1Þp ;

Cðr;4Þ
lml0m0l00m00 ¼

E�
l00m00;SΨl0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp ; ðI9Þ

for CðS;IÞ:

CðS;1Þ
lml0m0l00m00 ¼ −Ql00ll0

�
fEl00m00;VΨ0

l0m0 þ Bl00m00;SΨ̇l0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp �

;

CðS;2Þ
lml0m0l00m00 ¼ −Ql00ll0

�
fE�

l00m00;VΨ
0
l0m0 þ

B�
l00m00;SΨ̇l0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp �

;

CðS;3Þ
lml0m0l00m00 ¼ fEl00m00;rΨl0m0 −

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp

× El00m00;SΨ0
l0m0 þ Bl00m00;VΨ̇l0m0 ;

CðS;4Þ
lml0m0l00m00 ¼ fE�

l00m00m;rΨl0m0 −
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l00ðl00 þ 1Þp
× E�

l00m00;SΨ
0
l0m0 þ B�

l00m00;VΨ̇l0m0 ; ðI10Þ

for CðV;IÞ:

CðV;1Þ
lml0m0l00m00 ¼ −Ql0ll00fEl00m00;rΨl0m0

þQl00ll0

�
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l00ðl00 þ 1Þp El00m00;SΨ0
l0m0

− Bl00m00;VΨ̇l0m0

�
;

CðV;2Þ
lml0m0l00m00 ¼ −Ql0ll00fE�

l00m00;rΨl0m0

þQl00ll0

�
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l00ðl00 þ 1Þp El00m00;SΨ0
l0m0

− Bl00m00Ψ̇l0m0

�
;

CðV;3Þ
lml0m0l00m00 ¼ −

�
fEl00m00;VΨ0

l0m0 þ Bl00m00;SΨ̇l0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp �

;

CðV;4Þ
lml0m0l00m00 ¼ −

�
fE�

l00m00;VΨ
0
l0m0 þ

B�
l00m00;SΨ̇l0m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þp �

; ðI11Þ

and finally for CðΨ;IÞ:
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CðΨ;1Þ
lml0m0l00m00 ¼fEl0m0;rBl00m00;rþ

Ql00l0l

r2

×
�

El0m0;SBl00m00S;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0l00ðl0 þ1Þðl00 þ1Þp þEl0m0;VBl00m00;V

�
;

CðΨ;2Þ
lml0m0l00m00 ¼fEl0m0;rB�

l00m00;r
Ql00l0l

r2

×

�
El0m0SB�

l00m00;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0l00ðl0 þ1Þðl00 þ1Þp þEl0m0;VB�

l00m00;V

�
;

CðΨ;3Þ
lml0m0l00m00 ¼ 1

r2

�
El0m0;V

Bl00m00;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ1Þp

þ El0m0Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0ðl0 þ1Þp Bl00m00V

�
;

CðΨ;4Þ
lml0m0l00m00 ¼ 1

r2

�
El0m0;V

B�
l00m00;S

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ1Þp

þ El0m0Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0ðl0 þ1Þp B�

l0m0V

�
: ðI12Þ

In our simulations, we monitor the Newman-Penrose
variable Φ2, and the coefficient for spin-weighted spheri-
cal harmonics is

ðΦ2Þlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
2r

�
−
�
Blm;V þ Elm;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �

þ i

�
−Elm;V þ Blm;Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �	
: ðI13Þ

The nonvanishing components of our initial data (see
Appendix D 3) are

Ψ1;�1 ∼ Ψ0;

E10;Vðt ¼ 0; rÞ ¼ 1

2

ffiffiffi
π

3

r
EφðrÞ; ðI14Þ

where EφðrÞ is defined in (6). Since this is a perturbative
approach, we focus on the subcritical regime and assume
EφðrÞ is order OðϵÞ. Using the above equations, we can
obtain the order of each mode of ðΦ2Þlm as

ðΦ2Þ1;0 ∼OðϵÞ;
ðΦ2Þ1;�1 ∼OðkaΨ0ϵÞ;
ðΦ2Þ2;�1 ∼OðkaΨ0ϵÞ;
ðΦ2Þ2;�2 ∼OððkaΨ0Þ2ϵÞ;
ðΦ2Þ3;�3 ∼OððkaΨ0Þ3ϵÞ: ðI15Þ

In Fig. 24, we show jðΦ2Þlmj in the subcritical regime
ðI2Þ, and rescale all multipoles according to (I15). As can
be seen, using the rescaling, all curves are on the same
order, demonstrating that our simulations show consistent
behavior.
As alluded to in Sec. III, from our initial data only

odd l scalar multipoles can be produced. We can now proof
this. From Ylmðπ − θ;φþ πÞ ¼ ð−1ÞlYlmðθ;φÞ, we find
that Xð1Þ;lml0m0l00m00 and Xð2Þ;lml0m0l00m00 are nonzero when
lþ l0 þ l00 is an even number, and Xð3Þ;lml0m0l00m00 and
Xð4Þ;lml0m0l00m00 are nonzero when lþ l0 þ l00 is an odd
number.
Then, Eqs. (I9)–(I11) show that the nonvanishing modes

of our initial data,Ψlm and Elm;V [see (I14)] with odd l can
only excite Elm;r and Elm;S with even l, while it excites
Elm;V with odd l.
Next, (I5) implies that the nonvanishing component of

Elm;r and Elm;S with even l excites Blm;V with even l,
while the nonvanishing component of Elm;V with odd l
excites Blm;r and Blm;S with odd l.
Finally, (I12) shows that the nonvanishing component

of Elm;r, Elm;S, and Blm;V with even l, and Elm;V , Blm;r,
and Blm;S with odd l only excites Ψlm with odd l.
Therefore, the nonvanishing components of the simulation
starting from initial data (I14), only excite Ψlm with
odd l. These results are consistent with our simulations,
see Fig. 19.

FIG. 24. The time evolution of various multipole modes of the
Newman-Penrose scalar Φ2 in the subcritical regime. The
considered simulation is I2, where the field is extracted at rex ¼
20M and μM ¼ 0.3. Each of the curves has been rescaled
according to the order found in (I15).
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