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I present a new class of nonrelativistic, modified-gravity Modified Newtonian Dynamics (MOND)
theories. The three gravitational degrees of freedom of these “TRIMOND” theories are the MOND
potential and two auxiliary potentials, one of which emerges as the Newtonian potential. Their Lagrangians
involve a function of three acceleration variables: the gradients of the potentials. So, the transition from the
Newtonian to the MOND regime is rather richer than in the aquadratic-Lagrangian theory (AQUAL) and
the quasilinear MOND theory (QUMOND), which are special cases of TRIMOND, each defined by a
Lagrangian function of a single variable. In particular, unlike AQUAL and QUMOND whose deep-MOND
limit (DML) is fully dictated by the required scale invariance, here, the scale-invariant DML still requires
specifying a function of two variables. For one-dimensional (e.g., spherical) mass distributions, in all
TRIMOND theories the MOND acceleration is a (theory specific, but system independent) function of the
Newtonian acceleration; their variety appears in nonsymmetric situations. Also, they all make the salient,
primary MOND predictions. For example, they predict the same DML virial relation as AQUAL and
QUMOND, and thus the same DMLM − σ relation, and the same DML two-body force. Yet they can differ
materially on secondary predictions. Such TRIMOND theories may be the nonrelativistic limits of scalar-
bimetric relativistic formulations of MOND, such as BIMOND with an added scalar.
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I. INTRODUCTION

The “aquadratic-Lagrangian” (AQUAL) theory [1]
was the first full-fledged, nonrelativistic theory that
embodies the basic tenets of Modified Newtonian
Dynamics (MOND) [2]. (For reviews of MOND see
Refs. [3–8].) AQUAL modifies the Poisson equation for
the gravitational potential of a given distribution of masses,
without modifying the equation of motion of the masses; it
is thus a “modified-gravity” (MG) theory. Some 25 years
later another full-fledged nonrelativistic, MG Lagrangian
theory for MOND has been proposed—the quasilinear
MOND theory (QUMOND) [9]. These two theories—
disparate in their amenability to solution, but yielding very
similar prediction—have become the workhorses for study-
ing various aspects of MOND, including many detailed
studies that involve numerical solutions of the field
equations of these theories (see reviews [3–8]).
AQUAL and QUMOND satisfy the basic tenets

of MOND—the involvement of one new, acceleration
constant, a0; a Newtonian limit at high accelerations
(a ≫ a0, or a0 → 0); and scale invariance in the low-
acceleration, deep-MOND limit (DML), a0 → ∞. They
thus share all the primary predictions of MOND—those
that follow fromonly the basic tenets [10]. Examples of such
predictions are, the asymptotic flatness of rotation curves
VðrÞ → V∞; the relation between the total mass,M, and the
asymptotic speed:MGa0 ¼ V4

∞, (underlying the “baryonic

Tully-Fisher relation”); a good approximation to the full
rotation curves from the mass distribution; enhanced sta-
bility of disc galaxies; a relation between the total mass of a
system in the DML and its mass-average, root-mean-
squared velocity dispersion, σ: MGa0 ¼ ξσ4, with ξ ∼ 1;
and the qualitative prediction of an “external-field effect.”
Perhaps as a result of these two theories remaining as the

main tools for deriving quantitative results in MOND, the
notion may have taken root that they represent MOND in its
entirety (in the nonrelativistic regime).
It has, however, been stressed repeatedly that there may

well be other theories that satisfy the basic MOND tenets,
and thus share its primary predictions, but that may differ
from AQUAL and QUMOND, and among themselves, in
making other, secondary predictions. Among such second-
tier predictions one may count some fine details of the
rotation curves (e.g., Refs. [11–15]); the exact value of ξ in
the M − σ relation, and its dependence on dimensionless
attributes of the system; the exact dependence of the
effective two-body force on the masses; the exact nature
and strength of the external-field effect—such as the exact
effects of the galactic field on the dynamics of the Solar
System or of wide binaries in the galaxy, etc.
One possible avenue for looking for such other MOND

formulations is that of so-called modified-inertia theories,
which as described, e.g., in the recent Ref. [16], can make
very different secondary predictions than AQUAL and
QUMOND.
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But secondary predictions can differ also among MG
theories, as was demonstrated recently in Ref. [17].
AQUAL and QUMOND are quite restricted in their

scope in the following sense: They each involves one
“interpolating function” of a single acceleration variable
that is introduced, by hand, in their Lagrangian. As a result,
all the (secondary) predictions of these theories involve,
and are dictated, by this one function. For example, this
function dictates the prediction of the “mass-discrepancy-
acceleration relation” (MDAR also known as the RAR)
and can be extracted from the observed relation. It then
largely determines all the other predictions of these
theories. This is much too restrictive and is not a situation
that characterizes other, well-known modifications of
Newtonian dynamics.
For example, in quantum theory we do not introduce an

interpolation function at the basic level. We do encounter
different “interpolating functions” between the classical
and the quantum regimes for different phenomena: The
black-body function, the expression for the specific heat of
solids, and the barrier penetration probability are only a
few examples. The same is true in relativity vs Newtonian
dynamics.
Likewise, one expects that in a more fundamental

MOND theory, interpolating functions will not be put in
by hand in the fundamental equations. They will be
derivable from the theory, and will also differ among the
different applications of the theory.
In distancing ourselves at least one step from the

restricted AQUAL/QUMOND, we should realize that there
are MOND theories whose Newtonian-DML interpolation
scheme is richer, even if it is still implanted at the basic
level of the theory.
Here I present a new class of nonrelativistic, MG

formulations of MOND that involve three gravitational
potentials, one that dictates the acceleration of masses—
and is thus the “observed” MOND potential—with two
auxiliary ones. The interpolating function depends on the
gradients of the last two and is a function of three scalar,
acceleration variables, offering a rather richer scope than
AQUAL/QUMOND, which are special cases in this new
class.
In Sec. II, I describe the TRIMOND Lagrangian and the

resulting field equations for the three potentials, and con-
sider their high- and low-acceleration limits. In Sec. III,
I describe some of the properties of the solutions and various
predictions of the TRIMOND theories. Section IV is a brief
discussion of potential relativistic extensions.

II. TRIPOTENTIAL FORMULATIONS

The tripotential theories involve three potentials as the
gravitational degrees of freedom, with one of them, the
MOND potential ϕ coupling to matter directly. The other
two are called φ and ψ . The Lagrangian density of these
theories is of the form

L ¼ LG þ ρ

�
1

2
v2 − ϕ

�
; ð1Þ

where its gravitational part is

LG ¼ −
1

8πG
½2∇!ϕ · ∇!ψ − a20F ðx; y; zÞ�; ð2Þ

with the scalar, acceleration variables

x≡ð∇!ψÞ2=a20; y≡ð∇!φÞ2=a20; z¼2∇!ψ ·∇!φ=a20; ð3Þ

and F is a dimensionless function satisfying the basic
tenets of MOND (see Secs. II B and II C).
The density ρ can be viewed as made up of constituent

point masses, mi, moving on trajectories riðtÞ, and treat-
able, each, as a test mass in the mean field of the rest.
Namely, ρðr; tÞ ¼ P

i miδ
3½r − riðtÞ�. The Lagrangian

itself is then

L ¼
Z

Ld3r; ð4Þ

and the contribution of the second term in Eq. (1) to it is

X
i

mi

�
v2i
2
− ϕðriÞ

�
: ð5Þ

Variation over the particle degrees of freedom [which
appear only in expression (5)] gives

̈ri ¼ −∇!ϕðriÞ; ð6Þ

so ϕ is the (MOND) gravitational potential, which dictates
particle accelerations.
Variation over ϕ gives

Δψ ¼ 4πGρ; ð7Þ

so ψ equals the Newtonian potential sourced by ρ. (As
usual, we seek solutions for which the three gradients
vanish at infinity for isolated systems.)
Varying over φ gives

∇! · ðF y∇!φÞ þ ∇! · ðF z∇!ψÞ ¼ 0: ð8Þ

Varying over ψ gives

Δϕ ¼ ∇! · ðF x∇!ψÞ þ ∇! · ðF z∇!φÞ≡ 4πGρ̂: ð9Þ

After ψ is solved for from Eq. (7), it is substituted in
Eq. (8), which becomes a nonlinear, second order equation
in φ, with coefficients that depend on position through

∇!ψðrÞ. The choice of F should be such that Eq. (8) is
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elliptic, and then it has a unique solution for φ with our
boundary conditions. Then, φ and ψ are substituted in the
right-hand side of Eq. (9)—a Poisson equation for ϕ—to
get the effective density, ρ̂, that sources it. The reason that
this successive solution scheme is possible—i.e., that we do
not have to solve coupled equations—is that ϕ and φ are
not coupled directly.
As in AQUAL, the nonlinearity of Eq. (8) involves

functions of only up to the first derivatives, the second
derivatives appearing in a linear fashion with coefficients
that are functions of position and the first derivatives.1

Thus, after the substitution of ∇!ψ , Eq. (8) is of the form

aijðr; ∇!φÞφ;i;j þ bðr; ∇!φÞ ¼ 0: ð10Þ

Then, the ellipticity condition is that the matrix aij has a
definite sign [18].
The solution scheme is rather simple in the case where

F z ¼ ϵ is a constant. Equations (8) and (9) can then be
written as

∇! · ðF y∇!φÞ ¼ −4πGϵρ: ð11Þ

Δϕ ¼ ∇! · ðF x∇!ψÞ þ ϵΔφ: ð12Þ

Equation (7) is solved for ψ, which is then substituted in

Eq. (11), to get an AQUAL-type equation of the form ∇! ·

½μ̃ðj∇!φj; rÞ∇!φ� ¼ −4πGϵρ (with the added dependence of
μ̃ on position, which does not complicate the solution).
Substituting the solutions for ψ and φ in the right-hand side
of Eq. (12) gives the Poisson equation for the MOND
potential.
In this case, the ellipticity condition for Eq. (11) can be

shown to be that yF y is a monotonic function of y.

A. AQUAL and QUMOND as special cases

AQUAL is a special case of the tripotential class, gotten
by putting F x ¼ 0, F z ¼ ϵ a constant, so F ¼ ϵzþ F̃ ðyÞ,
with F̃ ðyÞ having the appropriate limits. With these choices
we have ϕ ¼ ϵφ, while φ satisfies an AQUAL equation

∇! · ðF̃ 0∇!φÞ ¼ −4πGϵρ: ð13Þ

In the high-acceleration limit F̃ 0 → −ϵ2, and for small
values of the argument F̃ → −ð2=3Þϵ3y3=2.
QUMOND is a special case gotten for the choice

F y ¼ F z ¼ 0, and F ðxÞ having the appropriate low-
and high-acceleration limits. For these, Eq. (8) is satisfied
trivially, and Eq. (9) becomes

Δϕ ¼ ∇! · ðF x∇!ψÞ≡ 4πGρ̂; ð14Þ

which is the QUMOND field equation.2

B. Newtonian limit

To recover the Newtonian limit when a0 → 0—one of
the basic MOND axioms—we require that in this limit
F z → ϵ, F y → η, and F x → β, all constants, with
β − ϵ2=η ¼ 1. This can be seen from the field equations,
or by noting that with these choices the Lagrangian can be
written as

L¼−
1

8πG
½ð∇!ϕÞ2−ð∇!θÞ2−ð∇!ζÞ2�þρ

�
1

2
v2−ϕ

�
; ð15Þ

where θ ¼ ϕ − ψ and ζ ¼ ϵη−1=2ψ þ η1=2φ, which is the
Poisson Lagrangian for ϕ (and implying the irrelevant
ψ ¼ ϕ, and ζ ¼ 0).

C. The deep-MOND limit

Another basic MOND tenet is that MOND gravity
becomes space-time scale invariant in the limit a0 → ∞
(while G → 0, with A0 ¼ Ga0 fixed) [19].
In general, scale invariance of a theory means that we can

assign to each degree of freedom, and each independent
variable—such as time and positions—U i, a scaling
dimension αi, such that the theory is invariant under
U i → λαiU i. (The scaling dimension in not necessarily
related to the ½l�½t�½m� dimensions.)
For MOND, we specifically dictate that the DML is

space-time scale invariant, namely, that the scaling dimen-
sions of length and time are the same (and can be taken
as 1). It is also dictated that masses do not scale (i.e., have
scaling dimension zero).3 So, in our context, a scaling
transformation is ðt; r; mÞ → ðλt; λr; mÞ, and to ensure
scale invariance, all terms in the DML of the Lagrangian
have to transform in the same way under such scaling.
The last term of Eq. (1) then dictates that the scaling

dimension of ϕ is zero, since velocities do not scale. Since
masses do not scale, the scaling dimension of the baryon
density, ρ, has to be −3. This then dictates that the scaling
dimensions of all the terms in the DML of L have to be −3.
The first term in LG cannot be canceled by terms in F ; so,
its having scaling dimensions −3 dictates that ψ has scaling
dimensions −1 (which should, of course, agree with ψ
being the Newtonian potential, and scaling as m=r).

1Such equations are called “quasilinear” in the mathematical
literature, to be distinguished from what we call “quasilinear” in
describing QUMOND.

2Remember that the ellipticity condition for AQUAL is
that XμðXÞ be monotonic, and the QUMOND equations,
which require solving only the Poisson equation, are elliptic.

3When one speaks of scale invariance in the context of
quantum theories, one requires, in contradistinction to MOND,
that masses have scaling dimension −1. This has to do with
dimensions of the Planck constant, which appears in quantum
theories.
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Now, φ is the only remaining degree of freedom, whose
scaling dimension is not dictated by the MOND axioms and
the explicit terms in the TRIMOND Lagrangian. To ensure
MOND scale invariance of TRIMOND, the DML ofF , call
it FD, must also have scaling dimension −3 for some
assignment of scaling dimension, α, to φ. This α depends
on the theory; examples of how it is determined are given in
Sec. III A 1.
Given this α and with the above scaling dimensions, the

arguments of F scale as x; y; z → λ−4x; λ2ðα−1Þy; λα−3z.
Thus, to ensure MOND scale invariance, FD should be
such that there is a choice of α for which

FDðλ−4x; λ2α−2y; λα−3zÞ ¼ λ−3FDðx; y; zÞ: ð16Þ

By taking λ ¼ x1=4, we see that FD can then be written as

FDðx; y; zÞ ¼ x3=4FD½1; yxðα−1Þ=2; zxðα−3Þ=4�
≡ x3=4F̄D½yxðα−1Þ=2; zxðα−3Þ=4�: ð17Þ

Such functions are the most general that ensure scale
invariance.4

So, unlike AQUAL or QUMOND where there is no
freedom do dictate an interpolating function in the deep-
MOND limit, here the DML is described, generally, by a
function of two variables. These variables, and hence F̄D,
are scale invariant, and the x3=4 prefactor givesFD a scaling
dimension −3, as required.

III. SOME CONSEQUENCES AND PREDICTIONS

A. One-dimensional configurations

As in AQUAL and QUMOND, for systems of one-
dimensional symmetry (planar, cylindrical, or spherical)
the MOND acceleration g is a system-independent (but
theory specific) function of the Newtonian acceleration, gN :

g ¼ νðgN=a0ÞgN: ð18Þ

To see this, note that in this one-dimensional case we can
strip the divergences in the field Eqs. (8) and (9) (e.g., by
applying Gauss’s theorem) and we can replace the vectorial
relations by scalar ones with the absolute values of the
respective accelerations replacing the potential gradient:

∇!ψ ¼ gNe, ∇!φ ¼ gφe, ∇!ϕ ¼ ge (where e is the radial
unit vector). Equation (8) than reads (putting a0 ¼ 1 for the
nonce)

F yðg2N; g2φ; 2gNgφÞgφ þ F zðg2N; g2φ; 2gNgφÞgN ¼ 0; ð19Þ

from which gφ can be solved for as a function of gN . F has
to be such that the solution for gφ exists and is unique [the
ellipticity of Eq. (8) should ensure this]. Equation (9) gives,
in the same vein,

g ¼ F xðg2N; g2φ; 2gNgφÞgN þ F zðg2N; g2φ; 2gNgφÞgφ: ð20Þ

Substituting the gφ values gotten from Eq. (19), we then get
an equation of the form (18).
The function ν is an example of an emerging inter-

polating function. For the general TRIMOND theories it is
relevant only for one-dimensional configurations. It can be
used as some tool for comparison with AQUAL and
QUMOND, where it is the only such function that appears
and that is relevant to all phenomena and configurations.
In terms of

F �ðgN; gφÞ≡ F ðg2N; g2φ; 2gNgφÞ; ð21Þ

Eqs. (19) and (20) can be written as

∂F �

∂gφ
¼ 0; ð22Þ

g ¼ 1

2

∂F �

∂gN
: ð23Þ

For nonsymmetric systems—e.g., in predicting the
rotation curves of disc galaxies—TRIMOND theories do
differ from each other. In fact, AQUAL and QUMOND
themselves differ in such predictions (e.g., Ref. [15]). But
the fact that general TRIMOND theories revolve on
Lagrangian functions of three variables can increase the
variety in predictions. To bring out better the possible
variety in behaviors for nonsymmetric systems we can
work with the acceleration variable w≡ ðxyÞ − z2=4
instead of with z itself. Since w ¼ 0 for one-dimensional
configurations, the one-dimensional “interpolating func-
tion,” ν, is oblivious to the dependence ofF on w. See more
on this in Sec. III A 1.

4When we consider the scaling transformation U i → λαiU i, λ
must be taken as a constant. Otherwise, with λ being, for example,

position dependent, ∇!U i would not transform simply by scaling,
and, in particular, would not simply have a scaling dimension
αi − 1, as we take when deducing the scaling dimensions of
x, y, z. This, however, does not prevent us from taking λ ¼ x1=4,
which does not mean that we are employing some scaling
transformation with space-dependent scale factor. Once the
scaling dimensions of the variables x, y, z themselves have been
established (under transformations with constant scaling factors),
Eq. (16) becomes an algebraic (i.e., not involving derivatives of
the variables), necessary and sufficient condition for scale
invariance. It should hold for any choice of the four numbers
λ, x, y, z; in particular for the choice λ ¼ x1=4. Equation (17) can
also be deduced as follows: Since FD has to scale as λ−3, and
since x3=4 scales like λ−3, FD=x3=4 must be scale invariant, and
must thus be a function of only scale-invariant quantities
constructed from x, y, z. The only independent such quantities
are yxðα−1Þ=2 and zxðα−3Þ=4.
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1. The DML of one-dimensional configurations

For DML, one-dimensional configurations, we can
further write, using the DML form, Eq. (17),

F �ðgN; gφÞ ¼ g3=2N F̄D½gα−1N g2φ; 2g
ðα−1Þ=2
N gφ� ≡ g3=2N fðqÞ;

ð24Þ

where q≡ gφg
ðα−1Þ=2
N . Equations (22) and (23) then

become, respectively,

f0ðqÞ ¼ 0; g ¼ 3

4
g1=2N fðqÞ: ð25Þ

The first of Eq. (25) tells us that its solution q ¼ q0 is a
universal constant of the theory. The ellipticity condition of
the theory should imply, in particular, that this equation has
a unique solution. Then,

gφ ¼ q0a0ðgN=a0Þð1−αÞ=2; g ¼ 3

4
fðq0Þ

ffiffiffiffiffiffiffiffiffiffi
gNa0

p
; ð26Þ

for all one-dimensional, DML configurations (where I
reinstated a0).
We see that the DML (and, in fact, the general) depend-

ence of gφ on gN in the one-dimensional case, is theory
dependent, but scale invariance dictates that g ∝ ffiffiffiffiffiffiffiffiffiffi

gNa0
p

in any MOND theory.
It is customary to take the normalization of a0 so that in

the DML of one-dimensional systems we have g ¼ ffiffiffiffiffiffiffiffiffiffi
gNa0

p
;

so, for example, the predicted mass-asymptotic-speed
relation (which underlies the baryonic Tully-Fisher rela-
tion) takes the exact form MGa0 ¼ V4

∞.
Given the interaction Lagrangian function F , satisfying

the requirements of the Newtonian and the deep-MOND
limits, this requirement determines the normalization of the
DML behavior, by adjusting the normalization of fðqÞ so
that fðq0Þ ¼ 4=3.
For the sake of demonstration, consider a TRIMOND

theory whose F has the DML form

F ðx; y; zÞ !a0→∞
FD ¼ ϵxβzv þ F̃ ðyÞ þ ξð4xy − z2Þγ=2

×Q½yxðα−1Þ=2; zxðα−3Þ=4�; ð27Þ

where α is the scaling dimension of φ. The scaling
dimension of the first term having to be −3, implies that
we have to take α ¼ −3ð1 − v − 4β=3Þ=v. The scaling
dimension of y is −2ð1 − αÞ; so we have to have
F̃ ðyÞ ¼ −sy3=2ð1−αÞ.
Also, we need to take γ ¼ 3=ð3 − αÞ, so the last term has

a scaling dimension −3, and can be written in the standard
DML form, Eq. (17): ξx3=4f4yxðα−1Þ=2 − ½zxðα−3Þ=4�2gγ=2
Q½yxðα−1Þ=2; zxðα−3Þ=4�, making FD scale invariant.
For one-dimensional configurations, this last term van-

ishes. Proceeding then as discussed above, one finds that

fðqÞ ¼ 2vϵqv − squ; ð28Þ

where u ¼ 3=ð1 − αÞ ¼ 3v=ð3 − 2v − 4βÞ. Take v and β
such that α < 1 (u > 0); thus u > v. For v ≤ 1, the first of
Eq. (25) has a unique solution5

q0 ¼
�
ϵv2v

su

�
1=ðu−vÞ

: ð29Þ

The condition fðq0Þ ¼ 4=3 then fixes s in terms of ϵ.
For the special case of AQUAL, F itself has the

form (27), with v ¼ 1, ξ ¼ 0, and β ¼ 0. Thus,
fðqÞ ¼ 2ϵ=q − sq3, q0 ¼ ð2ϵ=3sÞ1=2, and s ¼ 2ϵ3=3.
For any isolated system of bounded mass distribution,

the asymptotic region, far outside the mass, is described by
a spherical, DML solution; so the above applies to it. In
particulary, we have asymptotically g → ðMGa0Þ1=2=r.
We see that we can have different theories, with different

interpolating functions, all being scale invariant in the
DML, all having the same DML MOND accelerations
(though not the same φ) in the one-dimensional case, but
not for other configurations. For example, the predicted
phenomenology of one-dimensional configurations, or of
the asymptotic dynamics, does not inform us on the last
term in Eq. (27). And, we know from our experience with
numerical solutions of AQUAL, that, in general, asym-

metric cases, ∇!φ and ∇!ψ are not aligned. So, contribu-
tions to the Lagrangian, in which the last term in Eq. (27)
appears, do not vanish and can be important in determining
the MOND accelerations. It is difficult to make more
concrete, quantitative statements without numerically solv-
ing various TRIMOND theories for various configurations.

B. Deep-MOND virial relation and consequences

The tripotential theories, with the MOND limit defined
by Eq. (16), fall under the general class of MG, MOND
theories dealt with in Ref. [20]. It was shown there that such
theories generally satisfy a very useful virial relation: For a
deep-MOND, self-gravitating, isolated system of pointlike
masses,mp, at positions rp, subject to (gravitational) forces
Fp, the following holds:

X
p

rp · Fp ¼ −ð2=3ÞðGa0Þ1=2
��X

p

mp

�
3=2

−
X
p

m3=2
p

�
:

ð30Þ

This then leads to the deep-MOND two-body force for
arbitrary masses,

5Note that for v > 1, we also have the unwanted solution
q ¼ 0, which gives the solution g ¼ gφ ¼ 0; so such a theory
does not make sense. We thus have to take v ≤ 1.
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Fðm1; m2;lÞ ¼
2

3

ða0GÞ1=2
l

½ðm1 þm2Þ3=2 −m3=2
1 −m3=2

2 �
ð31Þ

(l is the distance between the masses), and to a general
mass-velocity-dispersion relation

σ2 ¼ 2

3
ðMGa0Þ1=2

�
1 −

X
p

ðmp=MÞ3=2
�
; ð32Þ

where σ2 ¼ M−1 P
p mpv2p is the mass-weighted,

three-dimensional, mean-squared velocity dispersion, and
M ¼ P

p mp is the total mass.
This also implies that all these theories predict the same

value of the Q parameter, defined in Ref. [12], which was
proposed as a possible discriminator between MOND
theories. This parameter thus cannot discriminate between
the different TRIMOND theories.
The reason that the full detail of the DML of the

tripotential theories does not enter the virial relation and
its corollaries is that what effectively enters the derivation
of this relation is only the asymptotic behavior of the
MOND field from a single mass. And this is oblivious to
the details of the theory.

IV. DISCUSSION

The large variety afforded by the freedom to choose the
three-variable F can potentially lead to a considerable
variety in secondary predictions of TRIMOND theories.
However, to demonstrate this in some quantitative detail
would require numerical solutions, which I cannot pro-
vide here.

There are several relativistic formulations of MOND that
give AQUAL and/or QUMOND as their nonrelativistic
limits [21–29]. Some of these might be generalized, so as to
result in a version of TRIMOND as their nonrelativistic
limit. Note, however, that the general TRIMOND theory
revolves around a function of three variables, while all the
above theories employ functions of at most two variables.
Such generalizations would thus have to go beyond just
adding scalar degrees of freedom, or by employing scalars
that already emerge in their nonrelativistic limit.
I exemplify this with the bimetric, relativistic formu-

lation of MOND (BIMOND) [23,29], which can give either
AQUAL or QUMOND as nonrelativistic limits, depending
on the choice of the theory’s parameters.
It seems that generalizations of BIMOND with an

additional, scalar degree of freedom could give TRIMOND
theories as their Newtonian limits. BIMOND theories use
in their Lagrangians scalars that are quadratic in the tensors

Cλ
μν ¼ Γλ

μν − Γ̂λ
μν; ð33Þ

where Γλ
μν and Γ̂λ

μν are the connections of the two metrics
that are the gravitational degrees of freedom in BIMOND.
Such quadratic scalars reduce in the nonrelativistic limit to

ð∇!χÞ2, for some potential χ.
With an additional, scalar degree of freedom, φ, we can

construct additional scalar variables such as φ;μφ
μ
; and the

mixed φ;μC̄μ, φ;μCμ, where Cλ ¼ gμνCλ
μν, C̄λ ¼ gλνCμ

μν are
the two traces of Cλ

μν. Such variables are expected to reduce

in the nonrelativistic limit to some ð∇!φÞ2 and ∇!φ · ∇!χ. So
it might be possible to construct such scalar-bimetric
theories that reduce to some TRIMOND theories.
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