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We consider the emission of a photon by a scalar charged particle in a constant and uniform magnetic
field. In contrast to the conventional approach with both photon and outgoing charge being assumed to be
detected, we study the case where only the charge is detected and investigate the properties of the emitted
photon. The background magnetic field is taken into account exactly in the calculations and the charge is
described by relativistic Landau states. It is shown that the emitted photon state represents a twisted Bessel
beam with a total angular momentum given by l − l0, where l and l0 are angular momentum quantum
numbers of the initial and final charged particle, respectively. The majority of photons emitted
by unpolarized charges, especially in the hard x-ray and γ-ray range and in critical and subcritical
magnetic fields, as compared to the Schwinger value of Hc ¼ 4.4 × 109 T, turn out to be twisted with
l − l0 ≳ 1.
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I. INTRODUCTION

Classical electrodynamics predicts that an electron mov-
ing along a helical path in a magnetic field, in a helical
undulator, or in a circularly polarized laser wave emits
radiation in the form of cylindrical waves [1–4]. Such an
electromagnetic field consists of the so-called twisted
photons with orbital angular momentum (OAM) [5–8].
The quantum picture of this process is much more complex
due to entanglement between the photon and the electron,
and—depending on a postselection protocol—twisted pho-
tons may not be emitted even if the classical electron path is
helical [9,10].
The Landau levels of electrons and other charged

particles in the magnetic field represent a cornerstone for
quantum theory of synchrotron radiation [11], which plays
a key role in describing such astrophysical objects as the
neutron stars [12], in operation of modern storage rings,
and in producing spin-polarized electron beams. Moreover,
the properties of radiation generated by ultrarelativistic
charged particles in more complex constant electro-
magnetic fields can be very similar to those of synchrotron
radiation in the magnetic field [11,12]. The Landau states
[11–13] are also crucially important for many phenomena
in solids [14–16] and, in particular, in graphene [17–19],
in plasma [20], including quantum Hall effect [21],

diamagnetism of metals, etc. In addition, these states are
used for describing the quantum dynamics of such charged
particles as electrons, protons, ions, etc. inside Penning
traps and their modifications [22–24]. See Ref. [25] for a
recent derivation of the Landau levels by means of an
algebraic approach.
Here, we study single photon emission by a spin-zero

charge moving along the field lines of a constant and
homogeneous magnetic field H ¼ f0; 0; Hg of an arbitrary
strengthH > 0 [11,12]. Since we will assign to the charged
particle the numerical values of the charge and of the mass
of the electron, for simplicity, we will denote the particle as
“electron.” For an electron with initial four-momentum pμ,
the process is controlled by the two Lorentz- and gauge-
invariant parameters b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνÞ2

p
=Hc ¼

ffiffiffi
2

p
H=Hc and

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

p
=Hc, where Fμν is the electromagnetic

field tensor and Hc ¼ 4.4 × 109 T is the Schwinger’s
(critical) magnetic field strength [the metric tensor is
ημν ¼ diagðþ1 − 1 − 1 − 1Þ]. In our case the magnetic
field is taken into account exactly in the calculations and
the electron will be described by relativistic Landau levels
with different quantum numbers.
One of our aims is to ascertain whether the emitted

photon is twisted, i.e., its total angular momentum (TAM)
projection onto the magnetic field axis has a well-defined
value. For this reason, we assume that only the final
electron is measured and we investigate the resulting
photon state [10]. The difference between this “evolved”
state and the conventionally used “detected” photon state
(for instance, in Refs. [26–29]) is somewhat analogous to
that between the polarization state evolving from the
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process itself and the detected polarization state that was
postselected by a detector (see, for instance, Ref. [13]). The
photon evolved state is defined by an S-matrix element Sfi
and, more importantly, the phase of this photon state
depends on that of the matrix element, whereas the
emission probability only depends on jSfij2. Thus, this
approach also elucidates the role of the S-matrix element’s
phase. Correspondingly, due to the entanglement between
the outgoing electron and the emitted photon, the evolved
photon state depends on the quantum numbers of the
(measured) outgoing electron state.
The system of units ℏ ¼ c ¼ 1 is used unless stated

otherwise, whereas the electron mass and charge are
denoted as m and e < 0, respectively. The four-vector
potentials of the background magnetic field and of the
radiation field are taken in the Coulomb gauge.

II. EVOLVED PHOTON STATE: DEFINITION

Wewant to study the emission e → e0 þ γ of a photon by
an electron in the mentioned magnetic field within the first
order of the perturbation theory (we recall that with electron
we mean here a scalar particle with mass and charge given
by those of the electrons). Thus, by denoting as Ŝð1Þ the
first-order S-matrix in the Furry picture, with the interaction
of the electron with the magnetic field being taken into
account exactly, if the system is in the initial state jii ¼ jiei,
representing a single electron, the first-order final state is
given by jfi ¼ Ŝð1Þjiei. By assuming that the measured
final electron state is jfei, then the system collapses into the
state

jf0i ¼ PðfeÞŜð1Þjiei ¼
X
fγ

jfe; fγihfe; fγjŜð1Þjiei; ð1Þ

where the projector operator

PðfeÞ ¼ jfeihfej ⊗ 1̂γ ¼ jfeihfej ⊗
X
fγ

jfγihfγj

¼
X
fγ

jfe; fγihfe; fγj ð2Þ

has been used, with jfγi being a complete set of one-particle

photon states. By denoting as Sð1Þfi ¼ hfe; fγjŜð1Þjiei the
first-order single-photon emission matrix element and by
observing that the electron state jfei can be taken out from
the sum over fγ, we conclude that after the final electron is
detected in the state jfei, the system is in the state
jf0i ¼ jfei ⊗ jγiev, with

jγiev ¼
X
fγ

jfγiSð1Þfi ; ð3Þ

being the “evolved” photon state [10].

Below, for the sake of definiteness, we use the plane
waves with the momentum k and the helicity λ ¼ �1 as
complete set of one-particle photon states (photons with
scalar and longitudinal polarization cannot be produced and
ultimately propagate in vacuum) and then we have
effectively

1̂γ ¼
X
λ¼�1

Z
d3k
ð2πÞ3

1

2ω
jk; λihk; λj; ð4Þ

with ω ¼ jkj, such that we need to investigate the S-matrix

amplitude Sð1Þfi ¼ hfe; k; λjŜð1Þjiei of emission of a plane-
wave photon, e → e0 þ γk;λ. The state jk; λi is defined
as jk; λi ¼ a†λðkÞj0i and it is normalized such that
hk0; λ0jk; λi ¼ 2ωð2πÞ3δ3ðk − k0Þδλλ0 (the vacuum state j0i
is normalized to unity). In this way, the photon evolved
state is

jγiev ¼
X
λ¼�1

Z
d3k
ð2πÞ3

1

2ω
Sð1Þfi jk; λi: ð5Þ

The electromagnetic field operator at the spacetime point
ðt; rÞ is defined as

Âðt; rÞ ¼
X
λ

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffi
2ω

p
h
Aλðt; r; kÞâλðkÞ

þ A�
λðt; r; kÞâ†λðkÞ

i
;

Aλðt; r; kÞ ¼
eλðkÞffiffiffiffiffiffi
2ω

p e−iðωt−k·rÞ; ð6Þ

with the polarization vector eλðkÞ being specified below.

III. RELATIVISTIC LANDAU STATES

In the constant and homogeneous magnetic field
H ¼ f0; 0; Hg; H > 0, with the four-vector potential

Aμ ¼ H
2
f0;−y; x; 0g; ð7Þ

a charged spinless particle with massm and charge e < 0 is
described by the Klein-Gordon equation

ðði∂μ − eAμÞ2 −m2ÞΨðxÞ ¼ 0: ð8Þ

The characteristic scales of the problem are

Hc ¼
m2

jej ¼ 4.4 × 109 T−the critical magnetic field; ð9Þ

λc¼
1

m
¼3.8×10−11 cm−the electronComptonwavelength;

ð10Þ
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ρH ¼
ffiffiffiffiffiffiffiffiffi
4

jejH

s
¼ 2λc

ffiffiffiffiffiffi
Hc

H

r
−the rms-radius of the ground state ðsee belowÞ times

ffiffiffi
2

p
: ð11Þ

In cylindrical coordinates ρ, ϕr, and z, Eq. (8) has the following exact stationary solution (called relativistic Landau
state) [11]:

Ψiðt; xÞ ¼ Ni

�
ρ

ρH

�
l
Ll
s ð2ρ2=ρ2HÞ exp f−itεþ ipzzþ ilϕr − ρ2=ρ2Hg;

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ p2⊥
q

; p2⊥ ¼ 8

ρ2H
ðsþ lþ 1=2Þ ¼ 2m2

H
Hc

ðsþ lþ 1=2Þ; ð12Þ

where Ll
s are the associated (generalized) Laguerre poly-

nomials [30]. The independent quantum numbers are the
continuous longitudinal momentum pz and the two discrete
quantum numbers l and s, which describe the transverse
motion of the charge. In addition, it is

s ≥ 0; sþ l ≥ 0; such thatl ≥ −s; ð13Þ

where sþ 1 ¼ 1; 2; 3;… defines the number of radial
maxima of the probability density, and l ¼ 0;�1;�2;…
is the canonical angular momentum (cf. with the non-
relativistic case in Ref. [31])

hL̂can
z i ¼ ε

m

Z
d3xΨ�

i ðt; xÞL̂can
z Ψiðt; xÞ ¼ l;

L̂can
z ¼ ½r̂ × p̂can�z ¼ −i

∂

∂ϕr
: ð14Þ

Note that the choice of the potential (7) is not unique
and taking Aμ ¼ f0;−yH; 0; 0g one also obtains H ¼
f0; 0; Hg. The eigenfunctions of the latter problem, how-
ever, are Hermite-Gaussian states with no OAM [11,32]
rather than the above Laguerre-Gaussian ones. Thus, the
analysis of the radiation for an electron initially in a
Laguerre-Gaussian state is simplified in the gauge (7).
Our assumption, in fact, is that in the far past (at t → −∞)
the electron was produced in the field (say, emitted from an
atom) in a cylindrically symmetric Laguerre-Gaussian
state. If the electron is produced outside of the field, still
a smooth transition of a freely-propagating Laguerre-
Gaussian state to the above Landau one (12) is possible
but a detailed description of the transmission process
requires a separate analysis [33,34], which is beyond the
scope of this paper.
The above Laguerre-Gaussian states are normalized via

the following condition [11]

ε

m

Z
d3xjΨiðt; xÞj2 ¼ 1 ð15Þ

and then we find (Eq. (7.414) in Ref. [30])

Ni ¼
ffiffiffiffi
m
ε

r
1ffiffiffiffiffiffiffiffiffiffiffiffi
Lπρ2H

p 2ðlþ1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s!
ðsþ lÞ!

s
: ð16Þ

An effective volume of a normalization cylinder is Lπρ2H
where L is its height and ρH characterizes the mean radius
as (see Eq. (19.29) in Ref. [11])

hρ2i¼ ε

m

Z
d3xΨ�

i ðt;xÞρ2Ψiðt;xÞ¼
ρ2H
2
ð2sþlþ1Þ: ð17Þ

Therefore, the rms-radius of the ground (Gaussian) state
with s ¼ l ¼ 0 is

ffiffiffiffiffiffiffiffiffi
hρ2i

p
¼ ρH=

ffiffiffi
2

p
. For magnetic field

strengths of H ∼ 0.1–10 T, as available in terrestrial
laboratories, we find ρH ∼ 10–100 nm. However, for the
intense fields H ∼Hc that can take place in the neutron
stars the corresponding radii are of the order of the electron
Compton wavelength itself, ρH ∼ λc, and the root-
mean-square radius of the Landau state scales asffiffiffiffiffiffiffiffiffi
hρ2i

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ lþ 1

p
. As a result, the condition of the

spatially homogeneous field seems to work even better for
intense fields, even if the quantum numbers s;l are
very large.
The transverse motion of the electron is nonrelativistic,

p⊥ ≪ m, when

H
Hc

ðsþ lþ 1=2Þ ≪ 1; or sþ lþ 1=2 ≪
Hc

H
: ð18Þ

Importantly, the centroid of the Landau states moves
only along the z axis, because

hx̂i ¼ hŷi ¼ hp̂xi ¼ hp̂yi ¼ 0;

hp̂zi ¼ pz: ð19Þ

Thus, although the probability current has an azimuthal
component [35], there is no classical rotation of the wave
packet’s centroid, because the Lorentz force along the
trajectory of the centroid vanishes. Below, we assume
that pz ≥ 0.
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The Landau states resemble the freely propagating
vortex electrons with the quantized angular momentum
but without the magnetic field [31,35–39]. In particular, the
Laguerre-Gaussian beams of the twisted electron states
look very similar to Eq. (12) [35,37] and can also exactly
obey the quantum wave equations [31].

IV. MATRIX ELEMENT FOR PHOTON EMISSION

In scalar QED, the first-order transition matrix element
with emission of a plane-wave photon described by the
state jk; λi is

Sð1Þfi ¼ −ie
Z

d4xjμfiðt; xÞe�λ;μðkÞeiðωt−k·rÞ;

jμfiðt; xÞ ¼
1

2m
Ψ�

fðt; xÞði∂μ − eAμÞΨiðt; xÞ

þ 1

2m
Ψiðt; xÞði∂μ − eAμÞ�Ψ�

fðt; xÞ; ð20Þ

where Aμ is the magnetic field four-potential in Eq. (7),
where eλμðkÞ ¼ ð0; eλðkÞÞ, with k · eλðkÞ ¼ 0 is the polari-
zation four-vector of the photon (the index λ is clearly not a
Lorentz index and, since below we will use a three-
dimensional notation, there will be then no possibility of
confusion), and where

k ¼ ωfsin θ cosϕ; sin θ sinϕ; cos θg ð21Þ

is the photon wave vector. We will also need the photon’s
transverse momentum

k⊥ ¼ ω sin θ: ð22Þ

The final (detected) Landau state of the emitting elec-
tron is

Ψfðt; xÞ ¼ Nf

�
ρ

ρH

�
l0

Ll0
s0 ð2ρ2=ρ2HÞ exp f−itε0 þ ip0

zzþ il0ϕr − ρ2=ρ2Hg;

ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp0

zÞ2 þ ðp0⊥Þ2
q

; ðp0⊥Þ2 ¼
8

ρ2H
ðs0 þ l0 þ 1=2Þ ¼ 2m2

H
Hc

ðs0 þ l0 þ 1=2Þ;

Nf ¼
ffiffiffiffi
m
ε0

r
1ffiffiffiffiffiffiffiffiffiffiffiffi
Lπρ2H

p 2ðl0þ1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0!
ðs0 þ l0Þ!

s
: ð23Þ

It has a radial index s0, a canonical angular momentum l0,
which not necessarily coincide with s and l, respectively.
The emitted photon polarization vector eλðkÞ can be taken,
for instance, in a basis of the circularly polarized states with
the helicity

λ ¼ �1: ð24Þ
In the Coulomb gauge with k · eλðkÞ ¼ 0, one can choose
the photon polarization vectors as [8]

eλðkÞ ¼
X

σ¼0;�1

expf−iσϕgdð1Þσλ ðθÞχ σ;

χ 0 ¼ ð0; 0; 1Þ; χ�1 ¼∓ 1ffiffiffi
2

p ð1;�i; 0Þ; ð25Þ

where dð1Þσλ ðθÞ are the small Wigner functions [40]

dð1Þλλ0 ðθÞ ¼
1

2
ð1þ λλ0 cos θÞ; dð1Þ11 ¼ cos2ðθ=2Þ;

dð1Þ1−1 ¼ sin2ðθ=2Þ;

dð1Þλ0 ðθÞ ¼ −dð1Þ0λ ðθÞ ¼ −
λffiffiffi
2

p sin θ; dð1Þ00 ðθÞ ¼ cos θ; ð26Þ
X

σ¼0;�1

dð1Þσ1σðθÞdð1Þσ2σðθÞ ¼ δσ1σ2 : ð27Þ

The vectors χ σ represent eigenvectors for the photon spin
operator

ŝz ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; ð28Þ

with the eigenvalues σ ¼ 0;�1,

ŝzχ σ ¼ σχ σ: ð29Þ

Note that the helicity state from Eq. (25) has a vanishing
z-projection of the TAM,

λ̂eλðkÞ ¼ λeλðkÞ; λ̂ ¼ k · ŝ=ω;

ĵzeλðkÞ ¼ 0; ĵz ¼ L̂z þ ŝz; ð30Þ

where L̂z ¼ −i∂=∂ϕ. This can be easily seen at θ → 0:

eλðkÞ → χ λe−iλϕ; ð31Þ

with a somewhat redundant dependence on ϕ. However, the
evolved photon state does not depend on the general phase
of eλðkÞ because it depends on the combination jfγihfγj.
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Now, we regroup the terms in the transition four-current in Eq. (20) as follows (recall that e < 0):

e�λ;μðkÞð∂μ þ ieAμÞ ¼ dð1Þ0λ ðθÞ∂z þ
1ffiffiffi
2

p
�
dð1Þ−1λðθÞe−iðϕ−ϕrÞ − dð1Þ1λ ðθÞeiðϕ−ϕrÞ

�
∂ρ

þ 1ffiffiffi
2

p i
ρ

�
dð1Þ−1λðθÞe−iðϕ−ϕrÞ þ dð1Þ1λ ðθÞeiðϕ−ϕrÞ

�
∂ϕr

−
jejHρ

2
ffiffiffi
2

p
�
dð1Þ1λ ðθÞeiðϕ−ϕrÞ þ dð1Þ−1λðθÞe−iðϕ−ϕrÞ

�
≡ X

σ¼0;�1

dð1Þσλ ðθÞeiσðϕ−ϕrÞX̂σ; ð32Þ

with

X̂þ1 ¼
1ffiffiffi
2

p
�
i
ρ
∂ϕr

− ∂ρ −
jejHρ

2

�
; ð33Þ

X̂−1 ¼
1ffiffiffi
2

p
�
i
ρ
∂ϕr

þ ∂ρ −
jejHρ

2

�
; ð34Þ

X̂0 ¼ ∂z: ð35Þ

Taking into account that ∂ρLl
s ðρÞ ¼ −Llþ1

s−1 ðρÞ for s ≥ 1,
we arrive at

e�λ;μðkÞjμfiðt;rÞ¼
1

2m
Ψ�

fðt;rÞΨiðt;rÞ
X

σ¼0;�1

eiσðϕ−ϕrÞdð1Þσλ ðθÞXσ;

ð36Þ

with Xσ being given by

Xþ1 ¼ i

ffiffiffi
2

p

ρH

�
2ρ̃

�
Llþ1
s−1
Ll
s

−
Ll0þ1
s0−1

Ll0
s0

�
−
l
ρ̃
− 2ρ̃

�
; ð37Þ

X−1 ¼ −i
ffiffiffi
2

p

ρH

�
2ρ̃

�
Llþ1
s−1
Ll
s

−
Ll0þ1
s0−1

Ll0
s0

�
þ l0

ρ̃
þ 2ρ̃

�
; ð38Þ

X0 ¼ −pz − p0
z; ð39Þ

where the argument

2ρ̃2 ≡ 2ρ2=ρ2H ð40Þ

of the Laguerre polynomials is omitted and the terms
containing Llþ1

s−1 and Ll0þ1
s0−1 are nonvanishing only when

s; s0 ≥ 1 because Ll
0ðρÞ ¼ 1.

The azimuthal integral in Eq. (20) can taken by employ-
ing the following definition of the Bessel functions:Z

2π

0

dϕr

2π
eilϕr−ix cosϕr ¼ i−lJlðxÞ;Z

2π

0

dϕr

2π
eilϕrþix cosϕr ¼ ilJlðxÞ: ð41Þ

Thus, we arrive at the following matrix element

Sð1Þfi ¼ −ieNiNf
ρH
2m

ð2πÞ3δðωþ ε0 − εÞδðpz − p0
z − kzÞeiðl−l0Þϕ

X
σ¼0;�1

iσ−lþl0dð1Þσλ ðθÞIσðyÞ;

IσðyÞ ¼ ρH

Z
∞

0

dρ̃ρ̃lþl0þ1Xσðρ̃ÞLl
s ð2ρ̃2ÞLl0

s0 ð2ρ̃2ÞJl−l0−σðyρ̃Þe−2ρ̃
2

; ð42Þ

where we have denoted

y≡ k⊥ρH: ð43Þ
The integrals are evaluated with the help of Eq. (20.17) in Ref. [11] as follows (see details in the Appendix):

I0ðyÞ ¼ −ρHðpz þ p0
zÞF l;l0

s;s0 ðyÞ;
Iþ1ðyÞ ¼ −i

ffiffiffi
2

p �
2F l;l0þ1

s;s0 ðyÞ þ ðsþ lÞF l−1;l0
s;s0 ðyÞ

�
;

I−1ðyÞ ¼ −i
ffiffiffi
2

p �
2F lþ1;l0

s;s0 ðyÞ þ ðs0 þ l0ÞF l;l0−1
s;s0 ðyÞ

�
;

F l;l0
s;s0 ðyÞ ¼

Z
∞

0

dxxlþl0þ1Ll
s ð2x2ÞLl0

s0 ð2x2ÞJl−l0 ðyxÞe−2x
2

¼ ðs0 þ l0Þ!
s!

1

23ðs−s0Þþ2l−l0þ2
y2ðs−s0Þþl−l0Ls−s0þl−l0

s0þl0 ðy2=8ÞLs−s0
s0 ðy2=8Þe−y2=8: ð44Þ
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Thus, the matrix element contains the damping exponential
factor

exp

	
−
ðk⊥ρHÞ2

8



¼ exp

	
−

k2⊥
2m2

Hc

H



: ð45Þ

V. EVOLVED PHOTON STATE: ANALYSIS

According to the above analysis the evolved photon state
is given by

jγiev ¼ −ie
X
λ¼�1

Z
d3k
ð2πÞ3

NiNf

2ω

ρH
2m

ð2πÞ3δðωþ ε0 − εÞ

× δðpz − p0
z − kzÞeiðl−l0Þϕ

×
X

σ¼0;�1

iσ−lþl0dð1Þσλ ðθÞIσðyÞjk; λi: ð46Þ

By writing the integral in cylindrical coordinates and by
noticing that

δðωþ ε0 − εÞ ¼ δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ ðpz − p0
zÞ2

q
þ ε0 − ε

�
¼ ε − ε0

κ
δðk⊥ − κÞ; ð47Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε − ε0Þ2 − ðpz − p0

zÞ2
q

≥ 0; ð48Þ

the corresponding two integrals in kz and k⊥ can be taken
and the result is

jγiev ¼ −ieρH
NiNf

2mκ

ffiffiffiffiffiffiffiffiffiffiffi
ε − ε0

4ω

r X
λ¼�1

Z
2π

0

dϕeiðl−l0Þϕ

×
X

σ¼0;�1

iσ−lþl0dð1Þσλ ðθÞIσðyÞjk; λi: ð49Þ

In this expression, the following equalities are understood:

y ¼ κρH; ð50Þ

θ ¼ arctan

�
κ

pz − p0
z

�
; ð51Þ

k ¼ fκ cosϕ; κ sinϕ; pz − p0
zg; ð52Þ

such that in the integrand of Eq. (49) only the exponential
exp½iðl − l0Þϕ� and the state jk; λi depend on ϕ.
The expansion of the state jγiev in Eq. (46) already shows

that it is a so-called Bessel beam. Indeed, it has a definite
energy ω ¼ ε − ε0, a definite longitudinal momentum
kz ¼ pz − p0

z, and a definite transverse momentum κ but
not an azimuthal component of the momentum, which is a
hallmark of twisted states. This can be more easily recog-
nized by considering the matrix element h0jÂðt; rÞjγiev
of the electromagnetic field operator Âðt; rÞ [see Eq. (6)],
which can be written as

h0jÂðt; rÞjγiev ¼ −ie
X
λ¼�1

Z
d3k
ð2πÞ3

NiNf

2ω

ρH
2m

ð2πÞ3δðωþ ε0 − εÞδðpz − p0
z − kzÞeiðl−l0Þϕ

×
X

σ¼0;�1

iσ−lþl0dð1Þσλ ðθÞIσðyÞeλðkÞe−iðωt−k·rÞ: ð53Þ

In this way, following Ref. [13], we can interpret the vector

AðevÞðkÞ ¼ −iei−lþl0NiNf
ρH
2m

ð2πÞ3δðωþ ε0 − εÞδðpz − p0
z − kzÞeiðl−l0Þϕ

X
σ¼0;�1

iσIσ

X
λ¼�1

dð1Þσλ ðθÞeλðkÞ;

k · AðevÞðkÞ ¼ 0; ð54Þ

as the coefficient of the vector potential of the emitted photon in the momentum representation, which is a superposition of

the two helicity states. In the limit θ → 0 we have that dð1Þσλ ðθÞ → δσλ, so the value σ ¼ 0 does not contribute for very small
transverse momenta. By using the representation of the unit polarization vector eλðkÞ from Eq. (25) and the completeness
relation for the small Wigner functions from Eq. (27), one can rewrite the vector part as a single sum as follows:

X
σ¼0;�1

iσIσ

X
λ¼�1

dð1Þσλ ðθÞeλðkÞ ¼
X

σ¼0;�1

iσIσ

�
χ σe−iσϕ − dð1Þσ0 ðθÞ

X
σ0¼0;�1

dð1Þσ00ðθÞχ σ0e−iσ
0ϕ
�

¼
X

σ¼0;�1

iσIσ

�
χ σe−iσϕ − dð1Þσ0 ðθÞn

�
; ð55Þ
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where we have used that

n ¼ k=ω ¼
X

σ0¼0;�1

dð1Þσ00ðθÞχ σ0e−iσ
0ϕ: ð56Þ

Thus, the last term in Eq. (55) is due to the Coulomb gauge.
As ĵzeλðkÞ ¼ 0, we finally obtain the photon TAM

projection

ĵzAðevÞðkÞ ¼ ðl − l0ÞAðevÞðkÞ: ð57Þ

Importantly, the photon TAM does not depend on the radial
quantum numbers s, s0 of the electron, which can also
change during the emission.
The condition of the positive transverse momentum (48)

defines the interval of the allowed values of the final electron
longitudinal momentum p0

z. First, we notice that, since
ε − ε0 ¼ ω ≥ 0, the condition κ ≥ 0 implies that ε − ε0 ≥
jpz − p0

zj and then that p2⊥−ðp0⊥Þ2≥2½ε0−sgnðpz−p0
zÞp0

z�
jpz−p0

zj≥0. Therefore, by solving the equation κ ¼ 0 with
respect to p0

z with given s0 and l0, we find that

p0
z∈

�
p0
z;min;p

0
z;max

�
¼
�
pz−

p2⊥−ðp0⊥Þ2
2ðε−pzÞ

;pzþ
p2⊥−ðp0⊥Þ2
2ðεþpzÞ

�
;

ð58Þ

so the width of the interval where the final longitudinal
electron momentum lies is

p0
z;max −p0

z;min ¼ ε
p2⊥ − ðp0⊥Þ2
m2 þp2⊥

¼ ε
sþ l− s0 − l0

sþ lþ 1=2þ 1
2
Hc
H

≥ 0;

ð59Þ

whereas the average of the possible values of p0
z is

p0
z;min þ p0

z;max

2
¼ pz

�
1 −

p2⊥ − ðp0⊥Þ2
2ðm2 þ p2⊥Þ

�

¼ pz

�
1 −

sþ l − s0 − l0

2ðsþ lÞ þ 1þ Hc
H

�
: ð60Þ

If p⊥ ≪ m;p0⊥ ≪ m, then

p0
z;max − p0

z;min

ε
≈ 2

H
Hc

ðsþ l − s0 − l0Þ: ð61Þ

The intervalp0
z;max − p0

z;min grows for larger and larger initial
electron energies.
As shown in Figs. 1 and 2, the energy of the emitted

photon simply coincides with that of synchrotron radiation
(see, e.g., Refs. [11,12] with the substitutions sin θ ¼
κ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ k2z

p
and cos θ ¼ kz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ k2z

p
) with the hard

x-ray and γ-ray photons being emitted in the strong
magnetic fields, especially by relativistic electrons.
As we have mentioned, Eq. (54) is a superposition of two

helicity states. For a photon emitted almost along the
magnetic field, i.e., for θ → 0; y → 0, we have that (recall
that sþ l ≥ 0 and s ≥ 0) [30]

Ll
s ð0Þ ¼

�
sþ l

s

�
: ð62Þ

By using this finding, we arrive at

F l;l0
s;s0 ð0Þ¼δs;s0δl;l0

1

2lþ2

ðsþlÞ!
s!

;

Iþ1ð0Þ¼
−i

ffiffiffi
2

p

2lþ1
δs;s0

ðsþlÞ!
s!

ðδl;l0þ1þδl−1;l0 Þ;

I−1ð0Þ¼
−i

ffiffiffi
2

p

2lþ2
δs;s0

ðsþlþ1Þ!
s!

ðδlþ1;l0 þδl;l0−1Þ: ð63Þ

FIG. 1. Emitted photon energies in units of the electron rest energym ¼ 0.511 MeV as functions of the final electron quantum number
l0 (left) and of the initial electron longitudinal momentum pz (right) forH ¼ Hc, s ¼ s0 ¼ 1, pz ¼ 10−3m (left). In general, the transition
l∶i → j means l ¼ i, and l0 ¼ j. The photon TAM equals l − l0 according to Eq. (57), and everywhere p0

z ¼ ðp0
z;min þ p0

z;maxÞ=2.
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As a result, we have in Eq. (54)X
σ¼0;�1

iσIσ

�
dð1Þσ1 ðθÞeþ1ðkÞ þ dð1Þσ;−1ðθÞe−1ðkÞ

�

¼
ffiffiffi
2

p

2lþ1

δs;s0

s!

�
ðsþ lÞ!ðδl;l0þ1 þ δl−1;l0 Þχþ1e−iϕ

−
1

2
ðsþ lþ 1Þ!ðδlþ1;l0 þ δl;l0−1Þχ−1eiϕ

�
: ð64Þ

The vector AðevÞðkÞ does not describe a helicity state,

ŝzAðevÞðkÞ ≠ �AðevÞðkÞ; ð65Þ

but it describes a twisted state in a sense of Eq. (57) for any
θ. Equation (64) demonstrates that the radial quantum
number s stays the same, s0 ¼ s, within the paraxial regime,
i.e., for small transverse momenta, and only the electron
angular momentum changes. Thus, the emission of photons
with no vorticity (jz ¼ 0) due to the transitions s → s0 ≠
s;l0 ¼ l occurs only beyond the paraxial approximation,
i.e. with large transverse momenta. To quantitatively define
the paraxiality condition, we recall that the S-matrix
transition amplitude is proportional to the exponential
function expf−ðκ=κcÞ2=2g [see Eq. (45) and recall that
k⊥ ¼ κ]. This implies that transverse momenta much
higher than

κc ¼ 2=ρH ¼ m

ffiffiffiffiffiffi
H
Hc

s
ð66Þ

are suppressed. The numerical value of this scale is κc ∼
10 eV for H ∼ 1 T. The strong inequality

κ ≪ κc ð67Þ
can be called the paraxiality condition under which it is
mostly s0 ¼ s and twisted photons are predominantly

emitted. Likewise, nonparaxial photons with the transverse
momenta κ ∼ κc may not be twisted, in the sense that they
can be due to the transitions s0 ≠ s;l ¼ l0. Importantly, if
the overall number of emitted photons is large, there may
still be a noticeable number of untwisted photons, exactly
as photons can be emitted with energies larger than the
critical energy of synchrotron radiation [11].

VI. EMISSION PROBABILITY AND INTENSITY

Having derived the state in which the photon has been
emitted itself, we now investigate the radiation probability.
The first-order emission probability that the photon is
detected with the momentum between k and kþ dk
and the electron with quantum numbers l0 and s0 and
with longitudinal momentum between p0

z and p0
z þ dp0

z is
given by

dWð1Þ
s0;l0 ðp0

z; kÞ ¼
X
λ¼�1

jSð1Þfi j2dν; ð68Þ

where

dν ¼ L
2π

dp0
z
1

2ω

1

ð2πÞ3 d
3k: ð69Þ

Likewise,we define the first-order differential radiation inten-
sity by multiplying the probability by the photon energy ω:

dIð1Þs0;l0 ðp0
z; kÞ ¼ ω

X
λ¼�1

jSð1Þfi j2dν: ð70Þ

The total probability is given by

Wð1Þ ¼
X
s0;l0

Z
dWð1Þ

s0;l0 ðp0
z; kÞ: ð71Þ

FIG. 2. The same as in Fig. 1, but for H ¼ 0.1Hc, s ¼ s0 ¼ 20.
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When squaring the matrix element, we use the rule

ðδðωþ ε0 − εÞÞ2ðδðpz − p0
z − kzÞÞ2

→
T
2π

δðωþ ε0 − εÞ L
2π

δðpz − p0
z − kzÞ; ð72Þ

and integrate over d3k in cylindrical coordinates. The
corresponding differential emission probability per unit
time is found as

dẆð1Þ
s0;l0 ðp0

zÞ ¼
e2

εε0
2lþl0

πρ2H

s!s0!
ðsþ lÞ!ðs0 þ l0Þ!

×
X
λ¼�1

���� X
σ¼0;�1

iσdð1Þσλ Iσ

����2dp0
z; ð73Þ

where ε0, sin θ ¼ κ=ω, and κ depend on p0
z. The integration

over p0
z is carried out over the region of the allowed

values from Eq. (58). Correspondingly, it is dİð1Þs0;l0 ðp0
zÞ ¼

ωdẆð1Þ
s0;l0 ðp0

zÞ.
The condition p2⊥ > ðp0⊥Þ2, i.e., sþ l > s0 þ l0 implies

that, by setting l0 ¼ l − Δl, the final radial quantum
number fulfills the inequality s0 ≤ sþ Δl − 1. As can be
seen, the processes with increase of the electron OAM,

l0 > l (the photon TAM jðγÞz ¼ l − l0 < 0), are generally

allowed but they correspond to s0 ≠ s (for Δl ¼ −1, we
have s0 ≤ s − 2), and these transitions have much lower
probability than processes with s ¼ s0.
Let us now estimate the photon transverse momentum κ.

It generally varies from κ ¼ 0 at the endpoints (58) to ∼κc
from Eq. (66), which reaches κc ∼m at H ∼Hc. Figure 3
shows that, as it can also be evinced from the expression of
p0
z;max, in the presence of a magnetic field strengthH ∼Hc,

an electron with pz ≪ m can in principle undergo a strong
longitudinal recoil such that jp0

zj ∼m after the photon
emission.
As it can also be seen in Fig. 3, a nonrelativistic electron

with pz ≪ m emits photons with both kz ¼ pz − p0
z > 0

and kz < 0, whereas with the growth of the momentum pz
the electron tends to emit photons to the forward direction
with kz ¼ pz − p0

z;min > 0. The figure also indicates that
the probability is maximized far from the endpoints (58)
and where the photon transverse momentum reaches the
value κ ≲ 0.5m. One can estimate the typical transverse
momenta near the endpoints in the nonrelativistic regime
with pz; jp0

zj; p⊥; p0⊥ ≪ m. The first nonvanishing term in
the expansion of κ in the vicinity of p0

z ¼ p0
z;min or p0

z;max

reads

κnonrel ≈
Δp2⊥
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z

m2
þ p2⊥ þ ðp0⊥Þ2

2m2

r
; ð74Þ

FIG. 3. The differential emission probability dẆð1Þ
s0;l0=dp0

z per unit time [(a), (b)] and the twisted photon transverse momentum
κ [(c), (d)] versus the final electron momentum along the field p0

z for H ¼ Hc; s ¼ s0 ¼ 20;l ¼ 4;l0 ¼ 0. Left [(a), (c)]:
pz ¼ 10−2m;p0

z;max − p0
z;min ≈ 1.13m; right [(b), (d)]: pz ¼ 100m;p0

z;max − p0
z;min ≈ 16m.
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with Δp2⊥ ¼ p2⊥ − ðp0⊥Þ2. In the same approximation

jkzj ≈
Δp2⊥
2m

¼ m
H
Hc

ðsþ l − s0 − l0Þ ≪ m; ð75Þ

and recall that the emission probability features the
exponential decay expf−ðκ=κcÞ2=2g defining the region
κnonrel ≪ jkzj ∼ κc ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffi
H=Hc

p
, where the probability is

not exponentially suppressed. In the case s0 ¼ s, one can
express this inequality in terms of the quantum numbers s
and l as follows:

jðγÞz ¼ l − l0 ∼
ffiffiffiffiffiffi
Hc

H

r
; ð76Þ

which means that mostly the twisted photons with the
moderate values of the TAM l − l0 ≳ 1 are emitted at
H ∼Hc, see Fig. 4.
Due to dependence of the radiation frequency on l and

l0 (see Figs. 1 and 2), the emission probability and the
intensity depend slightly differently on l0 for the transitions
l → l0 ≠ l, as shown in Figs. 4–6 for a nonrelativistic
electron with pz ¼ 10−3m and for H ¼ Hc;H ¼ 10−1Hc,
and H ¼ 10−2Hc, respectively. Whereas the probability of
the transitions l → l0 ¼ l − 1 always dominates, the
intensity for the transition l → l0 ¼ l − 2 becomes
slightly larger than that for l → l0 ¼ l − 1 starting from
l0 ≳ 60 at H ∼Hc. As can be seen in Fig. 6, the weaker
fields H ≪ Hc favor transition from the higher Landau
levels, l;l0 ≫ 1, however, with the same typical TAM
l − l0 ≳ 1 and much lower intensity. Interestingly, both the
probability and the intensity for the untwisted photons with

l0 ¼ l can be higher than those for the highly twisted
photons with l − l0 ≫ 1, especially for the moderate value
of l0.
As can be seen in Fig. 3(b) and (d), relativistic

considerations imply that the photon is much probably
emitted with kz > 0 and such that p0

z > 0, which we
assume below, but the photon transverse momentum
practically does not grow with pz. Figure 7 shows the
total radiation probability and the intensity per second
for the definite transverse momentum of the final electron
as a function of the initial momentum pz (assumed to be
positive, pz > 0) along the magnetic field. Although the
momentum-dependent probabilities for the untwisted
photons are not necessarily the lowest ones, the intensities
do not depend on the momentum pz at all and demonstrate
the domination of the twisted radiation with the
TAM l − l0 ∼ 1, 2 and unchanged s. This constant
behavior is related to the fact that the intensity of radiation
is a Lorentz-invariant quantity (recall, for example,
the expression of the classical relativistic Larmor
formula). Here, the intensity of radiation is computed at
fixed angular-momentum quantum number and its
invariance is restricted to boosts along the magnetic-
field direction, i.e., the z-direction. A similar situation
occurs in the emission of radiation in a constant
electric field [41], where the independence of the spec-
trum from the longitudinal momentum of the electron can
also be interpreted as the independence from the time
origin.
These figures illustrate that emission of the twisted

photons with l − l0 ≳ 1 can be quite intense in the critical
and subcritical fields, and the untwisted photons due to the
transitions s → s0 ≠ s;l ¼ l0 can also be emitted, though

FIG. 4. The emission probability (73) (left) and the intensity dİð1Þs0;l0 ðp0
zÞ (right) integrated over p0

z per second for
H ¼ Hc; pz ¼ 10−3mc. For the solid lines of the twisted photons s ¼ s0 ¼ 20, the dashed and dash-dotted lines correspond to the
twisted photons with a simultaneous change of the radial quantum number s → s0 ≠ s, the black dash-dotted line and the red dotted one
correspond to the untwisted photons with jz ¼ 0.
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with lower intensity. As argued above, the twisted photons
due to the general transitions s → s0 ≠ s;l → l0 ≠ l have
much larger transverse momenta but also much lower
intensity. Moreover, we see in Fig. 3 that electrons in
the field strengthH ∼Hc can also emit nonparaxial twisted
photons with κ ≲m whatever their longitudinal momentum
pz is. The radius of their Bessel ring is of the order
of [6–8,39]

ρc ∼ ðl − l0Þ=κ ≳ ðl − l0Þ=m≡ ðl − l0Þλc; ð77Þ

which can be shown by evaluating the integral in Eq. (53)
(recall that λc ≈ 3.8 × 10−11 cm is the electron Compton
wavelength). Note that the rms-radius of the Landau state at
H ∼Hc; jlj ≫ 1 is [see Eq. (17)]

ffiffiffiffiffiffiffiffiffi
hρ2i

p
∼ λc

ffiffiffiffiffiffijljp
≫ λc,

but the Bessel ring radius of such nonparaxial photons
grows as l − l0.
Since field strengths up to values of the order of Hc

have been considered, the question arises whether vac-
uum-polarization effects due to the strong magnetic field
alter the dispersion relation of the emitted photon [13].
Including vacuum-polarization effects, however, would

FIG. 5. The emission probability (73) (left) and the intensity dİð1Þs0;l0 ðp0
zÞ (right) integrated over p0

z per second for
H ¼ 0.1Hc; pz ¼ 10−3mc. For the solid lines of the twisted photons s ¼ s0 ¼ 5, the dashed and dash-dotted lines correspond to
the twisted photons with a simultaneous change of the radial quantum number s → s0 ≠ s, the black dash-dotted line and the red dotted
one correspond to the untwisted photons with jz ¼ 0, and the blue dash-dotted line corresponds to increase of the electron OAM during
the emission (so that the photon TAM is l − l0 ¼ −1).

FIG. 6. The same as in Fig. 4, but for H ¼ 10−2Hc.
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correspond in the language of Feynman diagrams to
considering the radiative corrections arising from the
insertion of the polarization operator into the emitted
photon line. Since we have carried out a leading-order
analysis here, all radiative corrections have been consis-
tently neglected. Indeed, even in the case of magnetic
fields of the order ofHc the photon refractive index would
differ from unity by terms of the order of α=45, where
α ≈ 1=137 is the fine-structure constant [13].

VII. CONCLUSION

Although quantum dynamics of Landau electrons in a
magnetic field has been studied since the 1930s (see the
literature, for instance, in Refs. [11,12]), it has only
been recently recognized that the electron can emit
twisted photons while going from one Landau level to
another [28,29]. Here, we have answered the question of
whether the photon emitted by a spinless relativistic
charged particle is twisted, irrespective of the photon
detector properties. We have found that the overwhelming
majority of the emitted photons are indeed twisted, repre-
senting the Bessel beams with the TAM projection

jðγÞz ¼ l − l0, although a small part of them are emitted
due to the transitions s → s0 ≠ s;l0 ¼ l without a change
of the angular momentum. The latter photons are not
twisted, which represents yet another difference as com-
pared to the predictions of classical electrodynamics from
Refs. [1–4].
The angular momentum of the photons turns out to be

quantized along the magnetic field direction, which is why

the radiation vorticity does not usually reveal itself at the
storage ring facilities where the photons are being detected
at the angles close to the orbital plane, θ ≈ π=2, and the
wave front looks locally flat. Indeed, the radiation vorticity
can be noticed when observing the emission at angles close
to the magnetic field axis, θ → 0, especially for the critical
and subcritical fields, H ≲Hc, typical for neutrons stars.
As it has already been emphasized [29], the vorticity of the
resulting photons can be important for studying the stellar
nucleosynthesis because twisted photons interact differ-
ently with other charged particles in the sense that—unlike
the plane-wave photons—they can excite other Landau
electrons to the states with higher angular momenta or
induce stimulated emission. These differences from inter-
actions of the plane-wave photons can be especially
important for twisted photons with the moderate angular
momenta l − l0 ≳ 1 and the large transverse momenta
κ ≲m (so that ρc ≳ λc), generated in the high intensity
fields [42].

ACKNOWLEDGMENTS

D. K. is grateful to V. Bagrov, D. Grosman, V. Serbo,
A. Surzhykov, A. Volotka, and V. Zaytsev for fruitful
discussions and criticism, and, especially, to S. Baturin,
G. Sizykh, and A. Pupasov-Maksimov for interesting
discussions and help with the integrals. D. K. is also
grateful to the A. von Humboldt Foundation for financial
support, to the Max Planck Institute for Nuclear Physics for
the hospitality, and to I. Pavlov who pointed out a typo in
the numerical code.

FIG. 7. The dependence of the emission probability (left) and the intensity (right) per second on the electron momentum pz for
H ¼ 0.1Hc; s ¼ s0 ¼ 20. The transition 30 → 29 means l ¼ 30;l0 ¼ 29; s ¼ s0 ¼ 20; those with l∶30 → 30 correspond to the

untwisted photons with jðγÞz ¼ 0. The blue line overlaps with the red dashed one on the left and with the brown dash-dotted one on
the right. The blue dash-dotted lines correspond to increase of the electron OAM during the emission (so that the photon TAM is
l − l0 ¼ −1).
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APPENDIX: RADIAL INTEGRALS

Equation (20.17) in [11] can be cast as follows:

Z
∞

0

dxxlþl0þ1Ll
s ðx2ÞLl0

s0 ðx2ÞJl−l0 ð2x
ffiffiffi
y

p Þe−x2

¼ 1

2

ðs0 þ l0Þ!
s!

ys−s
0þl−l0

2 Lsþl−s0−l0
s0þl0 ðyÞLs−s0

s0 ðyÞe−y: ðA1Þ

Let us denote its modified version as

Fl;l0
s;s0 ðyÞ ¼

Z
∞

0

dxxlþl0þ1Ll
s ð2x2ÞLl0

s0 ð2x2ÞJl−l0 ðyxÞe−2x
2

¼ ðs0 þ l0Þ!
s!

1

23ðs−s0Þþ2l−l0þ2
y2ðs−s0Þþl−l0

× Ls−s0þl−l0
s0þl0 ðy2=8ÞLs−s0

s0 ðy2=8Þe−y2=8: ðA2Þ

We start from the expression for the radial integral in
Eq. (44) that reads

I−1 ¼ −i
ffiffiffi
2

p Z
∞

0

dxxlþl0þ2Jl−l0þ1ðyxÞe−2x2

×
h
2Llþ1

s−1 L
l0
s0 − 2Ll

sL
l0þ1
s0−1 þ l0

x2
Ll
sLl0

s0 þ 2Ll
sLl0

s0

i
:

ðA3Þ

By using the following relations for Laguerre polynomials

Ll
sðxÞ ¼ Llþ1

s ðxÞ − Llþ1
s−1 ðxÞ; ðA4Þ

and

xLl
s ðxÞ ¼ ðlþ sÞLl−1

s ðxÞ − ðsþ 1ÞLl−1
sþ1ðxÞ; ðA5Þ

we find

2x2Llþ1
s−1 L

l0
s0 − 2x2Ll

sL
l0þ1
s0−1 þ l0Ll

sLl0
s0 þ 2x2Ll

sLl0
s0

¼ 2x2Llþ1
s Ll0

s0 þ ðs0 þ l0ÞLl
sLl0−1

s0 : ðA6Þ

and then

I−1 ¼ −i
ffiffiffi
2

p �
2F lþ1;l0

s;s0 þ ðs0 þ l0ÞF l;l0−1
s;s0

�
: ðA7Þ

Analogously for σ ¼ þ1 we have

Iþ1 ¼ i
ffiffiffi
2

p Z
∞

0

xlþl0þ2Jl−l0−1ðyxÞe−2x2

×
h
2Llþ1

s−1 L
l0
s0 − 2Ll

sL
l0þ1
s0−1 −

l
x2

Ll
sLl0

s0 − 2Ll
sLl0

s0

i
dx:

ðA8Þ

We apply the following relations

2x2Llþ1
s−1 L

l0
s0 − 2x2Ll

sL
l0þ1
s0−1 − lLl

sLl0
s0 − 2x2Ll

sLl0
s0

¼ −2x2Ll
sL

l0þ1
s0 − ðsþ lÞLl−1

s Ll0
s0 ; ðA9Þ

and finally get

Iþ1 ¼ −i
ffiffiffi
2

p �
2F l;l0þ1

s;s0 þ ðsþ lÞF l−1;l0
s;s0

�
: ðA10Þ
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