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We investigate spherical domain walls (DWs) nucleated via quantum tunneling in multifield inflationary
models and curvature perturbations induced by the inhomogeneous distribution of those DWs. We consider
the case that the Euclidean action SE of DWs changes with time during inflation so that most DWs nucleate
when SE reaches the minimum value and the radii of DWs are almost the same. When the Hubble horizon
scale exceeds the DW radius after inflation, DWs begin to annihilate and release their energy into
background radiation. Because of the random nature of the nucleation process, the statistics of DWs is of
the Poisson type and the power spectrum of curvature perturbations has a characteristic slope PRðkÞ ∝ k3.
The amplitude of PRðkÞ depends on the tension and abundance of DWs at the annihilation time, while the
peak mode depends on the mean separation of DWs. We also numerically obtain the energy spectra of
scalar-induced gravitational waves from predicted curvature perturbations that are expected to be observed
in multiband gravitational-wave detectors.
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I. INTRODUCTION

Domain walls (DWs) are sheetlike topological defects
in three spatial dimensions that can be generated in the
early Universe when a discrete symmetry is spontaneously
broken. A variety of new physics models predict the
existence of DWs [1–3], such as axion models [4–8],
supersymmetric models [9–12], and the Standard Model
Higgs [13–15]. DWs receive extensive investigation
since the formation and evolution of DWs leave trace on
various cosmological observations, including large-scale
structures [16,17], cosmic microwave background (CMB)
[1,18,19], stochastic gravitational-wave backgrounds
(SGWBs) [20–25], and first-order phase transitions [26].
The formation of the DW network was regarded as a

disaster in cosmology [1,27,28]. The curvature radius of
DWs is comparable to the Hubble horizon size and the
proportion of two different vacua are comparable to each
other, which is well known as the scaling behavior of DWs
[29,30]. Numerical results confirm that the DW energy

density scales as ρDW ∝ t−1 in the matter- and radiation-
dominated (RD) eras [31–33]. Since ρDW decreases much
slower than the energy density of radiation and matter,
DWs will finally dominate the Universe, which conflicts
with the present observations [34]. The temperature fluc-
tuations of the CMB imply that DWs with tension σ >
OðMeV3Þ do not exist in the Universe at present [1]. In
general, the DW problem can be avoided by introducing a
bias term in the effective potential so that DWs become
unstable. In this case, the DW tension and the annihilation
time can be constrained by the SGWB produced from the
DW network [20,21], see Refs. [35–37] for corresponding
constraints from LIGO-Virgo and pulsar timing array
experiments. Reference [38] obtains the constraint on
DWs from CMB spectral distortions.
In this work, we focus on spherical DWs nucleated

through quantum tunneling during inflation [39,40]. This
scenario of DW formation and evolution is remarkably
different from the scaling case. The radius of spherical
DWs is comparable to the Hubble scale at the nucleation
time. Once DWs are nucleated, they are stretched by
inflation and remain stable at superhorizon scales. The
Hubble horizon expands after inflation, and DWs begin to
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collapse when they reenter the Hubble horizon. Since the
tunneling rate is exponentially suppressed by the Euclidean
action of DWs SE, the DW problem is naturally avoided in
this scenario. We consider the case that DWs have non-
negligible interaction with the matter fields so that the
energy stored in DWs finally transforms into background
radiation [41–43], rather than primordial black holes
(PBHs) [44–48]. According to Birkhoff’s theorem, the
collapse of a single spherical DW cannot produce gravi-
tational waves (GWs). However, the inhomogeneous dis-
tribution of spherical DWs induces curvature perturbations
that can serve as the source of scalar-induced GWs,
providing an opportunity to verify or give constraints to
this scenario. Since the nucleation of different DWs is
independent of each other, the statistics of DWs obey the
Poisson distribution and induce superhorizon curvature
perturbations with a typical k3 slope in the infrared power
spectrum. We obtain the energy spectrum of scalar-induced
GWs that is expected to be detected in multiband GW
detectors. For convenience, we choose c ¼ 8πG ¼ 1
throughout this paper.

II. STATISTICAL PROPERTIES OF DOMAIN
WALLS

A. Nucleation of DWs via quantum tunneling

The nucleation of quantum topological defects during
inflation is investigated in Ref. [39], where the authors obtain
the nucleation rate of spherical DWs and cosmic string loops
in a de Sitter background spacetime. The Euclideanized
de Sitter space is a four-sphere of radius H−1, and DWs
nucleated during inflation by quantum tunneling can be
described as a three-sphere with radius H−1. The Euclidean
action is proportional to the surface area

SEðtÞ ¼ 2π2σðtÞH−3ðtÞ; ð1Þ

where σðtÞ is the tension of DWs. The nucleation rate per
unit physical volume per unit time is

λðtÞ ¼ H4ðtÞAe−SEðtÞ; ð2Þ

which is obtained in the semiclassical approximation, i.e.,
σ > H3. The nucleation rate is exponentially suppressed in
the case of σ ≫ H3. However, on the contrary, the case σ ≪
H3 leads to the formation of the DW network. Thus, we
mainly consider the case that σ andH3 are of the same order.
Here A is a slowly varying function of σH−3, which can be
estimated as A ∼ 1 [39,49]. Then the number density of DWs
is obtained as

dN ¼ λðt�Þa3ðt�Þd3xdt�; ð3Þ

where t� denotes the nucleation time. One can find that the
nucleation rate of DWs is totally described by the dynamics

of inflation and the evolution of the tension σðtÞ. We
investigate the case where the DW tension is not a constant
during inflation. Since the nucleation rate is exponentially
suppressed by SE, the nucleation of DWs happens in a small
period around the time when SE reaches the minimum, so
that the radii of spherical DWs are almost the same; see
Ref. [40] for a specific example. In this case, the probability
of nucleating a spherical DW in a Hubble-sized region at t� is
obtained by

p ¼ 4π

3

�
1

Hðt�Þ
�

3
Z

dN
d3x

⋍
4π

3
Hðt�Þe−SEðt�ÞΔt�; ð4Þ

where Δt� is the typical timescale of the nucleation process.

B. Statistical distribution of DWs

The previous section indicates that spherical DWs with
the comoving radius R0 ∼ a−1ðt�ÞH−1ðt�Þ≡H−1ðt�Þ are
randomly generated in the Universe when the Euclidean
action SE reaches the minimum at t�. The nucleation of
DWs is irrelevant in each Hubble volume, which means
that DWs satisfy the Poisson distribution. Consider a
comoving volume of ð2LÞ3, where L ¼ nR0 and n ≫ 1.
To investigate the statistical properties of spherical DWs, L
should be larger than their comoving mean separation,
S ¼ R0p−1=3, so that plenty enough spherical DWs are
contained in the volume. Let p denote the probability that a
spherical DW presents in a Hubble horizon and Xi denote
the number of spherical DWs contained in the ith Hubble
volume, where i ≤ n3 and Xi ¼ 0 or 1 by definition.
The expectation value and the variance of the random

variable Xi are, respectively, EðXiÞ ¼ p and DðXiÞ ¼
pð1 − pÞ. Since the DW number in the volume ð2LÞ3 is
much larger than 1, according to the central limit theorem,
the total DW number X ¼ Σn3

1 Xi in the comoving volume
ð2LÞ3 is subject to the Gaussian distribution with the
expectation value EðXÞ ¼ n3EðXiÞ and the variance
DðXÞ ¼ n3DðXiÞ. We then obtain the power spectrum of
curvature perturbations induced by the inhomogeneous
distribution of DWs in the following.
We focus on density perturbations smoothed at the scale

L to avoid the nonlinear effect [50]

δðr;LÞ ¼
Z

d3r0

ð2πL2Þ3=2 exp
�
−
jr − r0j2
2L2

�
δðr0Þ; ð5Þ

where δðrÞ≡ δρðrÞ=ρ with ρ and δρðrÞ being the spatial
averaged energy density and its perturbations. Here we

have chosen the Gaussian window function exp ð− jr−r0j2
2L2 Þ.

The Fourier transformation of δðr;LÞ is
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δkðLÞ ¼
Z

d3r

ð2πÞ3=2 δðr;LÞe
−ik·r

¼ δk exp ð−k2L2=2Þ; ð6Þ

where δk is the Fourier transformation of δðrÞ. The variance
of density perturbations can also be smoothed at this scale,

σ2δðLÞ ¼ hδðr;LÞδðr0;LÞijr¼r0

¼
Z

d ln k
k3

2π2
jδkðLÞj2

¼
Z

d ln kPδðkÞ exp ð−k2L2Þ; ð7Þ

where PδðkÞ≡ k3

2π2
jδkj2 is the power spectrum of density

perturbations. Assuming PδðkÞ has a power-law form,
PδðkÞ ∝ kn, then Eq. (7) implies that the smoothed variance
satisfies

σ2δðLÞ ∝ L−n: ð8Þ

Total density perturbations are

δtot ¼
δρr þ δρDW
ρr þ ρDW

; ð9Þ

where we neglect other subdominant components in the
Universe, and δρr and δρDW are density perturbations of
radiation and DWs, respectively. Note that ρDW should be
much smaller than ρr, otherwise DWs will dominate the
Universe, which conflicts with the observations. Density
perturbations from radiation and DWs both contribute to
total density perturbations. In general, δρr comes from
vacuum fluctuations during inflation so that δρr=ρr ∼ 10−5,
while δρDW comes from the random distribution of spheri-
cal DWs which could be much larger than 10−5. In the case
of δρDW > δρr, curvature perturbations induced by DWs
become dominated, then we have

δtot ≈
δρDW
ρr

¼ 4πσea2R2
0ðX − XÞ

ρrL3a3

¼ ρDW
ρr

X − X

X
; ð10Þ

where σe is the tension of DWs at the annihilation time, X is
the averaged number of spherical DWs over each region of
volume ð2LÞ3, and we have used ρDWL3a3 ¼ 4πσea2R2

0X.
Equation (10) implies that δtot is also a random variable that
satisfies Gaussian distribution with zero expectation value
and the variance reads

σ2δtot ¼
�
ρDW
ρr

�
2 σ2X
hXi2 ¼

�
ρDW
ρr

�
2 ð1 − pÞR3

0

pL3
: ð11Þ

Here, we can see that σ20;δðLÞ ∝ L−3, so according to the
discussion in Eq. (8), PδðkÞ is proportional to k3. Since
the length scale of induced perturbations is larger than the
Hubble radius at the annihilation time, we can safely use
the superhorizon relation

PδðkÞ ¼
16

81
PRðkÞ; ð12Þ

where PRðkÞ is the power spectrum of curvature perturba-
tions. Equation (12) allows us to parametrize PRðkÞ in the
form PRðkÞ ¼ Adðk=kcutÞ3, where kcut is a cutoff scale
arising from the requirement of the central limit theorem
L > S. Since, in smaller scale, the distribution of DWs
become non-Gaussian and PRðkÞ decrease rapidly, we
simply apply the approximation kcut ¼ S−1 and PRðkÞ ¼ 0
for k > kcut. Then, Eq. (7) could be rewritten in the form

σ2δtotðLÞ ¼
16Ad

81ðkcutLÞ3
Z

kcut

0

dðkLÞ exp ð−k2L2ÞðkLÞ2

¼ 4
ffiffiffi
π

p
Ad

81ðkcutLÞ3
; ð13Þ

which helps to determine the coefficient

Ad ¼
9

4
ffiffiffi
π

p
�
ρDW
ρr

�
2 1 − p

p
: ð14Þ

The final result of the power spectrum of induced curvature
perturbations is

PR ¼
(

9
4
ffiffi
π

p
�
ρDW
ρr

�
2 1−p

p

�
k
kcut

�
3

for k ≤ kcut;

0 for k > kcut:
ð15Þ

C. Evolution of the DW energy density

At the time t� when DWs are nucleated, the energy
density of DWs is

ρDWðt�Þ ¼ 4π

�
1

Hðt�Þ
�

2

σðt�Þ
dN

a3ðt�Þd3x
¼ 3Hðt�Þσðt�Þp: ð16Þ

Afterward, DWs are stretched by inflation and their tension
evolves with time. At the end of inflation te,

ρDW ¼ 4π

�
aðteÞ

Hðt�Þaðt�Þ
�

2

σðteÞ
dN

a3ðteÞd3x

¼ 3Hðt�Þ
aðt�Þ
aðteÞ

σðteÞp; ð17Þ

ρtot ¼ 3H2ðteÞ: ð18Þ
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Here, we assume a short reheating process and the Universe
quickly enters the RD era after inflation. If the tension of
DWs remains constant after inflation, the energy density
of spherical DWs scales as ρDW ∝ a−1 (the area of a single
spherical DW scales as a2 and the number density of
spherical DWs scales as a−3) at superhorizon scales, while
the total energy density scales as ρtot ≈ ρr ∝ a−4 in the RD
era. Then we have

ρDW
ρr

����
tr

¼ Hðt�Þ
H2ðteÞ

aðt�Þ
aðteÞ

σðteÞp
�
aðtrÞ
aðteÞ

�
3

; ð19Þ

where tr corresponds to the time that DWs reenter the
horizon (annihilation time), which is long before the reenter
time of kcut. Thus, the other undetermined term in Eq. (15),
ρDW=ρr, can be obtained from physical parameters σðteÞ
and SE during inflation. Note that ρDW cannot exceed ρr
even inside the Hubble horizons containing a spherical
DW; otherwise, the Hubble horizon collapses into a PBH
before tr, which is investigated as the “supercritical” case
in [51]. This condition requires ρDW=ρr < p. If the inter-
action between DWs and matter fields is non-negligible,
spherical DWs dissipate their energy into background
radiation at the annihilation time. Thus, the random
distribution of DWs finally leads to density perturbations
in the background radiation.

III. SCALAR-INDUCED GRAVITATIONAL
WAVES

Induced curvature perturbations reenter the Hubble
horizon and begin to evolve soon after the annihilation
of DWs. Since the collapse of a single spherical DW cannot
produce GWs, the unique SGWB in this scenario is induced
by curvature perturbations predicted in the last section. In
this section, we introduce the formula to calculate GWs
induced by scalar perturbations at the second order [52,53].
The perturbed metric of a Friedmann-Robertson-Walker
universe in the Newtonian gauge reads

ds2 ¼ a2ðτÞ
�
−ð1þ 2ΦÞdτ2

þ
	
ð1 − 2ΨÞδij þ

1

2
hij



dxidxj

�
; ð20Þ

where τ is conformal time, Φ and Ψ represent scalar
perturbations, and hij denotes tensor perturbations of the
second order. Here, we neglect vector perturbations and
first-order tensor perturbations. We also neglect the aniso-
tropic pressure so that we takeΦ ¼ Ψ in the following. The
equation of motion (EOM) of the tensor modes sourced by
curvature perturbations reads

h00ij þ 2Hh0ij −∇2hij ¼ −4Πlm
ij Slm; ð21Þ

where Πlm
ij is the transverse-traceless projection operator

and Slm is the scalar-induced source term. Tensor pertur-
bations can be expanded into the Fourier modes as

hijðτ; xÞ ¼
Z

d3k

ð2πÞ3=2 ½e
þ
ijðkÞhþk þ e×ijðkÞh×k �eik·x; ð22Þ

where eλijðkÞðλ ¼ þ;×Þ are the polarization tensors.
Similarly, the Fourier modes of the source term are

Πlm
ij Slmðτ; xÞ ¼

X
λ¼þ;×

Z
d3k

ð2πÞ3=2 e
λ
ijðkÞeλ;lmðkÞSlmðτ; kÞ:

ð23Þ

Then, the EOM of the tensor modes hkðτÞ can be written in
the form

h00kðτÞ þ 2Hh0kðτÞ þ k2hkðτÞ ¼ 4SkðτÞ: ð24Þ

Here, we ignore the upper index of two different polari-
zation modes since they satisfy the same equation. The
source term Sk reads

SkðτÞ ¼
Z

d3q

ð2πÞ3=2 eijðkÞqiqj
	
2ΦqΦk−q þ

4

3ð1þ 3ωÞ

× ðH−1Φ0
q þΦqÞðH−1Φ0

k−q þΦk−qÞ


; ð25Þ

where ω is the equation of state parameter of the Universe
and ω ¼ 1=3 in the RD era. The Newtonian potential Φ
obeys the following equation:

Φ00
k þ

6ð1þ ωÞ
1þ 3ω

1

τ
Φ0

k þ ω2k2Φk ¼ 0; ð26Þ

where we ignore entropy perturbations. The initial value of
the Newtonian potential Φk;0 is related to the power
spectrum of curvature perturbations as

hΦk;0Φk0;0i ¼ δð3Þðk − k0Þ 2π
2

k3

�
3þ 3ω

5þ 3ω

�
2

PRðkÞ: ð27Þ

We can use the Green’s function method to solve Eq. (24),

aðτÞhkðτÞ ¼ 4

Z
τ
dτ1Gðτ; τ1Þaðτ1ÞSkðτ1Þ; ð28Þ

where the Green’s function Gðτ; τ0Þ is the solution of

G00
kðτ; τ1Þ þ

�
k2 −

a00ðτÞ
aðτÞ

�
Gkðτ; τ1Þ ¼ δðτ − τ1Þ: ð29Þ

The power spectrum of tensor perturbations is defined by
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hhλkðτÞhλ
0
k0 ðτÞi ¼ δλλ0δ

ð3Þðk − k0Þ 2π
2

k3
Phðτ; kÞ: ð30Þ

The energy spectrum of GWs is defined as

ΩGWðτ; kÞ≡ 1

ρtot

dρGW
d ln k

¼ 1

24

�
k

HðτÞ
�

2

Phðτ; kÞ; ð31Þ

where the overline represents the oscillation average and
the two polarization modes have been added up. Then, in
the RD era, ΩGW of scalar-induced GWs can be evaluated
by the following integral:

ΩGWðτ; kÞ ¼
1

12

Z
∞

0

dv
Z j1þvj

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

×PRðkuÞPRðkvÞ
�

3

4u3v3

�
2

ðu2 þ v2 − 3Þ2

×

�	
−4uvþ ðu2 þ v2 − 3Þ ln

����3− ðuþ vÞ2
3− ðu− vÞ2

����


2

þ π2ðu2 þ v2 − 3Þ2Θðuþ v−
ffiffiffi
3

p
Þ
�
: ð32Þ

In order to obtain the GW energy spectrum at present, we
need to take the thermal history into consideration,

ΩGWðτ0; kÞ ¼ Ωγ;0

�
g�;0
g�;eq

�1
3

ΩGWðτeq; kÞ; ð33Þ

where Ωγ;0 is the density parameter of radiation at present,
g�;0 and g�;eq are the effect numbers of relativistic degrees
of freedom at present and at radiation-matter equality
time τeq.
We choose three sets of parameters in Table I to show the

predictions of ΩGW. The probability p, the abundance of
DWs ρDW=ρr, and the cutoff scale kcut are determined by
the DW tension σ and the evolution of SE during inflation,
and thus can also be treated as free parameters with the only
constraint ρDW=ρr < p to avoid the formation of PBHs. For
the three parameter sets, the predicted ΩGW peak at 0.001,
0.1, and 10 Hz, respectively, which are expected to be
detected by multiband GW detectors, including LISA/Taiji
(set 1), DECIGO/Big Bang Observer (BBO) (set 2), and
Cosmic Explorer/Einstein Telescope (CE/ET) and LIGO-
Virgo-KAGRA Collaboration (set 3), as shown in Fig. 1.

The observation of the CMB temperature anisotropies
give strict constraints on primordial curvature perturbations
PRðkÞ ≈ 2 × 10−9 for 10−3 ≲ k≲ 1 Mpc−1. At smaller
scales, the observations of CMB spectral distortions, big
bang nucleosynthesis, and ultracompact minihalos also
give constraints on PRðkÞ at the scales of 1≲ k≲
108 Mpc−1 [69,70]. In the three parameter sets of Table I,
the results of PR are orders of magnitude smaller than
10−10 at the scale k ∼ 3 × 107 Mpc−1, so that we safely
avoid the constraints on PRðkÞ from the observations of the
CMB spectrum distortion and the ultracompact minihalo
abundance. However, because of the limit on PRðkÞ, GWs
are constrained to beΩGW ≲ 10−17, which is too weak to be
observed in the nanohertz band by Square Kilometer
Array (SKA).

IV. REALISTIC EXAMPLE

We show the results of PRðkÞ and ΩGW of scalar-
induced GWs in a realistic two-field inflationary model
where SE changes with time during inflation. The action
reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 	
−
R
2
þ 1

2
∂
μϕ∂μϕþ 1

2
∂
μχ∂μχ þ Vðϕ; χÞ



;

ð34Þ

with the potential Vðϕ; χÞ,

Vðϕ; χÞ ¼ λχ
4
½χ2 − α2ðϕ − ϕcÞ2 −m2�2 þ fðϕÞ; ð35Þ

DECIGODECIGO

BBO

ET

CE

LVK

LISA

SKA

NANOGrav
12.5–yr

Grav
–yr

IPTA

EPTAA

PPTA
LISA

Taiji

Set_1 Set_2 Set_3

10–9 10–7 10–5 0.001 0.100 10
10–18

10–16

10–14

10–12

10–10

10–8

10–6

f/Hz

Ω
G
W
h2

FIG. 1. Predicted energy spectra of scalar-induced GWs with
the parameter set 1 (red), set 2 (yellow), and set 3 (blue) in
Table I, respectively, which are expected to be observed by LISA/
Taiji, DECIGO/BBO, and LVK/ET/CE, respectively. We show
the sensitivity curves of the GW detectors, including European
Pulsar Timing Array (EPTA) [54], Parkes Pulsar Timing Array
(PPTA) [55], NANOGrav [56,57], Indian Pulsar Timing Array
(IPTA) [58], SKA [59], LISA [60] Taiji [61], DECIGO [62],
BBO [63], LIGO, Virgo, and KAGRA (LVK) [64,65], CE [66],
ET [67], which are summarized in Ref. [68].

TABLE I. Parameter sets we choose in this paper.

Set ρDW=ρtot kcut=Mpc−1 p

1 2 × 10−3 2 × 1010 4 × 10−3

2 10−3 2 × 1012 5 × 10−3

3 5 × 10−2 2 × 1014 10−1
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which provides two degenerate vacua in the χ direction.
Since the dynamics of ϕ is unaffected by χ during inflation,
the term fðϕÞ alone is responsible for the inflationary
dynamics and generating primordial perturbations [71].
The Friedmann equation and the equations of motion of

ϕ and χ are

H2 ¼ 1

3

	
1

2
ϕ̇2 þ 1

2
χ̇2 þ Vðϕ; χÞ



;

ϕ̈þ 3Hϕ̇þ ∂V
∂ϕ

¼ 0;

χ̈ þ 3Hχ̇ þ ∂V
∂χ

¼ 0: ð36Þ

We consider Starobinsky inflation with the potential

fðϕÞ ¼ Λ0

�
1 − e−

ffiffi
2
3

p
ϕ
�
2
: ð37Þ

The tension of DWs is a function of ϕðtÞ,

σχðtÞ ¼
4

4

ffiffiffiffiffi
λχ
2

r
½α2ðϕ2 − ϕ2

cÞ2 þm2�32: ð38Þ

At the time ϕðtÞ ¼ ϕc, the Euclidean action SE ¼
2π2σχðtÞH−3ðtÞ reaches minimum and most of the DWs
nucleate. We choose a specific parameter set to show the

result of the energy spectrum of induced GWs in Fig. 2,
where λχ ¼ 0.3, α¼ 1× 10−5, ϕc ¼ 3.9, and m¼ 5× 10−6.
The initial value of the scalar fields are set to be ϕi ¼ 5.1
and χi ¼ 0.0008, so that the predicted e-folds are N ¼ 50.
ΩGW peaks at about 1 Hz with the peak value ∼10−10,
which is expected to be observed by DECIGO and BBO.

V. CONCLUSION AND DISCUSSION

We have investigated spherical DWs nucleated during
inflation via quantum tunneling and found their random
distribution induces curvature perturbations at the length
scales larger than the mean separation of spherical DWs.
The statistics of DWs turn out to be the Poisson type and
the power spectrum of induced curvature perturbations is
proportional to k3. We numerically calculate the energy
spectrum of scalar-induced GWs in terms of PRðkÞ, which
can be detected by multiband GW detectors. Since the
collapse of spherical DWs does not directly produce GWs,
our work provides a practical method to detect or constrain
the case in which the energy of spherical DWs decays into
radiation.
This result is also applicable to false vacuum bubbles

nucleated during inflation, proposed in Refs. [72–75], where
the vacua of the effective potential are nondegenerate.
Induced curvature perturbations from Poisson distribution
have been also discussed in other physical processes in the
early Universe, such as PBH formation [76–80] and first-
order phase transitions [81]. These processes directly pro-
duce another SGWB from the transverse-traceless part of the
energy-momentum tensor, which could be distinguished
from the random distribution of spherical DWs or false
vacuum bubbles.
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