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We examine the gravitational wave frequencies of the fundamental (f-) and first pressure (p1-) modes
excited in the neutron star models constructed with the quark-hadron crossover (QHC)-type equations of
state (EOSs). We find that the f-mode frequencies with QHC EOS basically are smaller and the p1-mode
frequencies with QHC EOS are larger than those with hadronic EOS, focusing on the neutron star model
with a fixed mass. We also find that the universality in the f-mode frequencies multiplied by the stellar mass
as a function of the stellar compactness or as a function of the dimensionless tidal deformability, which is
derived with various hadronic EOSs, can keep even with QHC EOS. That is, using these universal relations,
one cannot distinguish QHC EOS from hadronic EOSs. Instead, using the relations one can extract the stellar
radii whose evolution from low- to high-mass neutron stars can differentiate QHC from hadronic EOSs. On
the other hand, we find that the p1-mode frequencies multiplied by the stellar mass with QHC EOS
significantly deviate in a certain mass range from the corresponding empirical relations derived with various
hadronic EOSs, with which one may distinguish QHC EOS from hadronic EOSs.
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I. INTRODUCTION

Neutron star, which is a massive remnant left after a
supernova explosion, realizes extreme environment [1]. The
density inside a star significantly exceeds the nuclear
saturation density, n0 ≃ 0.16 fm−3, while the magnetic
and gravitational fields become much stronger than those
observed in our solar system. Thus, one can probe physics
under such extreme states by observing the neutron stars
and/or their phenomena. In fact, after the discovery of the
massive neutron stars, whose masses are around 2M⊙, soft
equations of state (EOSs) have been ruled out [2–5]. The
observation of the gravitational wave produced by colliding
neutron stars, GW170817 [6], tells us the tidal deform-
ability, which leads to the constraint on the 1.4M⊙ neutron
star radius [7–9]. One of the relativistic effects, i.e., the light
bending, is also an important phenomenon to extract the
neutron star properties. Owing to such an effect in the strong
gravitational field induced by the neutron star itself, the
photon radiating from the neutron star’s surface can bend,
which leads to the modulation of the pulsar light curve. So,
by carefully observing the pulsar light curve, one could
primarily constrain the neutron star compactness, which is
the ratio of the stellar mass to its radius (e.g., [10–15]). In
practice, the neutron star mass and radius, i.e., PSR J0030þ
0451 [16,17] and PSR J0740þ 6620 [18,19], have been

constrained through observation by the Neutron Star
Interior Composition Explorer (NICER) equipped on the
International Space Station. On the other hand, the nuclear
properties in a relatively lower density region, e.g., less than
at most twice the saturation density, have been gradually
constrained via terrestrial experiments, which also leads to
the constraints on the neutron star mass and radius [20–22].
To extract the neutron star properties, the oscillation

frequency (or gravitational waves) from a neutron star is
another important information. In general, an object has its
own specific frequencies depending on its interior condi-
tions. So, one may see the interior properties as an inverse
problem, if one would detect such specific frequencies. This
technique has already been established as seismology on
Earth and helioseismology on Sun. In the same way, one
may extract the properties of a compact object by observing
its oscillation signal, which is known as asteroseismology
(or gravitational wave asteroseismology if using gravita-
tional waves). In practice, by identifying the quasiperiodic
oscillations observed in the magnetar flares with the neutron
star crustal oscillations, one could constrain the crust
properties and/or the stellar model (e.g., [23–25]). In a
similar way, once one would detect the gravitational waves
from a (isolated) compact object, one could see the stellar
mass, radius, and EOS (e.g., [26–34]).
The neutron star mass and radius have been becoming

constrained through astronomical observations and terres-
trial experiments, but the state of matter is still quite*sotani@yukawa.kyoto-u.ac.jp
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uncertain in a higher-density region. In particular, the
existence of quark matter inside a neutron star is still under
intensive debate. But quark degrees of freedom should be
important in high-mass neutron stars. The inferred core
baryon density reaches ∼3–5n0 where baryons may overlap.
At least two possibilities are available for hadron-to-quark
matter transitions. One is a first-order phase transition from
hadronic matter to quark matter, where Gibbs phase equi-
librium conditions are imposed. This approach is more
historical and there are many studies. In the region between a
pure hadronic phase and a pure quark phase, the so-called
mixed phases must exist [35,36], which is a similar structure
to the crustal pasta structure. We call these models collec-
tively first PT models. However, in general, this type of EOS
often tends to be too soft to support massive neutron stars.
Another possibility is the quark-hadron crossover (QHC)
type of EOS, which is analogous to the BCS-BEC crossover
in a many-body system of ultracold atoms. The crossover
picture has beenmotivated by observing that hadronic matter
in which baryons interact by meson or quark exchanges, and
strongly correlated quark matter which is about to get
confined, are difficult to distinguish, where the effective
degrees of freedom continuously change. The microscopic
models have been recently constructed in Refs. [37,38]. A
more phenomenological but practical construction of cross-
over EOS is to interpolate hadronic and quark EOSs in a way
consistent with the thermodynamic stability and causality
conditions [39,40]. The advantage of the crossover picture
over first PT models is that, unlike in first PT models, we do
not have to demand quark EOS to be softer than extrapo-
lated hadronic EOS, which is untrustable at high density; as
a result the stiff quark EOS can be a candidate of EOS. Stiff
quark matter is the key to explaining the two-solar mass
constraints while keeping microscopic descriptions natural.
An important question is how to observationally discrimi-

nate the crossover scenario from the first-order transition and
purely hadronic scenarios. One of the outstanding features in
the crossover model is the rapid stiffening of EOS which
begins to occur at ∼1.5 − 3n0 and subsequent relaxing to the
conformal behaviors at higher density. This evolution of
stiffness is reflected in a peak of the sound velocity. Such a
peak is absent in the other scenarios; purely hadronic EOS
shows gentle and monotonic evolution of stiffness while first
PT models lead to vanishing sound velocity for some density
interval. The efficient way to see these differences is to study
the evolution of neutron star radii for the mass range
≳1.4M⊙. Early stiffening in the crossover scenario leads
to the radii being larger than in the other scenarios. In this
context, the f2-frequency of gravitational waves from binary
neutron star mergers, which are sensitive to the radii of the
high-mass region, has been studied in numerical relativity
[41]. Here, we note that f2-frequency is one of the distinct
peak frequencies appeared in the power spectrum from the
rotating hypermassive neutron stars produced after a merger
of binary neutron stars [42,43], which is different from the

fundamental (f-) modes in gravitational wave examined in
this study. It was argued that the f2 in different scenarios can
be distinguished in the third-generation detectors planned
after 2035 [44,45].
Concerning the mass and radius of a neutron star, several

universal relations among observables have been proposed.
For purely hadronic EOS, the universal relations for the
combinations of observables hold independently from
EOSs. For example, the I-Love-Q relation, which is the
relation between the moment of inertia, the Love number,
and the quadrupole moment independently of the interior
structure of neutron stars (and quark stars), is one of the
universal relations [46]. In a similar fashion, several
universal relations in quasinormal modes of neutron stars
have been found (e.g., [26,27,32,33,47,48]). But how
universal those relations are needs clarification as they
are mostly derived from the family of hadronic EOSs. At
least, the first PT models seem to be consistent with the
universal relation [48,49]. Thus, it is natural to ask whether
crossover models follow the same universality as purely
hadronic models. The universal relation can be used in
twofold ways. If the relation is violated in crossover models,
one can characterize crossover EOS with the violation.
Instead, if holds, one can use the relation to extract, e.g., the
radius of a neutron star, and study the trend differing from
hadronic baselines. In this study we examine the gravita-
tional wave frequencies from the neutron stars constructed
with QHC EOSs [50,51] and examine the universality. We
note that the amplitude of the gravitational wave cannot be
directly derived from our study, based on a linear perturba-
tion analysis. Even so, if the energy of the gravitational
wave with a focusing oscillation mode is more than
10−10M⊙, one may detect the gravitational waves from
even an isolated neutron star located in our galaxy.
This manuscript is organized as follows. In Sec. II, we

mention the neutron star models considered in this study
together with the adopted EOSs. In Sec. III, we show the
gravitational wave frequencies from neutron stars con-
structed with QHC EOSs and discuss their universality.
Finally, in Sec. IV, we conclude this study. Unless other-
wise mentioned, we adopt geometric units in the following,
c ¼ G ¼ 1, where c andG denote the speed of light and the
gravitational constant, respectively.

II. EOS AND EQUILIBRIUM MODELS

In this study, we simply consider a nonrotating and
spherically symmetric neutron star as an equilibrium
model. The metric describing such an object is given by

ds2 ¼ −e2Φdt2 þ e2λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where the metric functions, Φ and λ, depend on only the
radial coordinate, r. The enclosed gravitational mass, m,
inside the radial position, r, is directly associated with λ
through 2λ ¼ − lnð1 − 2m=rÞ. Assuming that a neutron
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star is composed of a perfect fluid, one can construct the
stellar models by integrating the Tolman-Oppenheimer-
Volkoff equation together with an appropriate EOS for
neutron star matter.
In this study, we focus on only the family of QHC21T

EOSs for studying the gravitational wave frequencies from
neutron stars (see Ref. [51] for details about QHC21T
EOSs). We note that there are several other QHC EOSs, such
as the family of QHC19 [50] and the EOS model proposed
by Li, Yan and Ping [52], except for QHC21. QHC21T is
constructed as follows. Togashi EOS [53], which is a pure
hadronic EOS, is adopted in a lower-density region, i.e.,
nb ≤ 1.5n0, where nb and n0 denote the baryon number
density and it at the saturation point for the symmetric
nuclear matter (n0 ¼ 0.160 fm−3 for Togashi EOS corre-
sponds to the saturation density ρ0 ¼ 2.68 × 1014 g=cm3).
Togashi EOS is derived by a variational method, employ-
ing the Argonne v18 (AV18) two-body nuclear potential
and the Urbana IX (UIX) potential for the three-body
nuclear force. Meanwhile, the quark matter EOS calcu-
lated with the Nambu-Jona-Lasinio (NJL) model is
adopted in a higher-density region, i.e., nb ≥ 3.5n0. The
quark matter EOS has two parameters characterizing the
stiffness of quark matter, i.e., the coupling constant gV,
which is associated with the short-range density-density
repulsion strength in quantum chromodynamics (QCD),
and coupling constant H, which describes an attraction
between quarks. And then, the region with 1.5n0 ≤ nb ≤
3.5n0 corresponds to the quark-hadron crossover region. In
this region, the pressure, p, is simply assumed as a fifth-
order function of baryon chemical potential, μB, where the
coefficients in the fifth-order function are determined in
such a way that p, nb ¼ ∂p=∂μB, and the susceptibility
χB ¼ ∂

2p=∂μ2B should be continuous at nb ¼ 1.5n0 and
3.5n0 [54]. In addition to QHC21T EOSs, for reference, we
also consider the neutron star models constructed with
Togashi EOS.
In particular, we adopt four specific QHC21T EOSs, i.e.,

QHC21-AT, -BT, -CT, and -DTwhose coupling parameters,
ðgV; HÞ, are shown in Table 1 in Ref. [51]. The adopted
quark matter EOS becomes stiffer in the order of AT, BT,
CT, DT, i.e., the quark matter EOS for QHC21-AT is the
softest, while that for QHC21-DT is the stiffest among these
four QHC21T EOSs. The stiffness of quark matter affects
the peak of the sound velocity inside the crossover region. In
fact, the maximum sound velocity becomes smaller in the
order of AT, BT, CT, DT, as shown in Fig. 1, where we also
show the sound velocity of the Togashi EOS for reference.
We note that the presence of the peak (or local maximum) of
the sound velocity at finite baryon density is one of the
important features in QHC EOS (e.g., [40,55]).
In Fig. 2, we show the mass and radius relation for the

neutron star models constructed with QHC21T and with
Togashi EOSs. The marks in the curves correspond to
specific core densities; for each stellar model, we set the

step size by equally dividing the logarithmic density from
ρ ¼ 1.5ρ0 for QHC21T (and ρ ¼ ρ0 for Togashi) up to that
at the maximum mass. Some of the stellar models con-
structed with lower central density using Togashi EOS are
out of the figure. The marks shown in Figs. 3–7 are set in the
same way. In Fig. 2, we also show some constraints obtained
from astronomical observations. That is, the mass and radius
constraints are shown for PSR J0030þ 0451 [16,17] and
PSR J0740þ 6620 [18,19] with NICER observations, and
for GRB 200415A by identifying the observed quasiperiodic
oscillations with crustal torsional oscillations consistently
with the terrestrial experimental data [25]. We note that the
neutron star models shown in Fig. 2 (or the EOSs adopted in
this study) satisfy the constraint on the 1.4M⊙ neutron star
radius obtained from the observations of GW170817, i.e.,
R1.4 ≤ 13.6 km [7].
In addition to the stellar mass and radius, the dimen-

sionless tidal deformability, Λ, due to the gravitational
field induced by the companion star may be an important
property in a binary system, because Λ could be estimated
from the chirp signal of gravitational waves just before the
coalescence of a binary neutron star. Λ is associated with
the dimensionless quadrupole tidal Love number, k2,
through

Λ ¼ 2

3
k2

�
M
R

�
−5
; ð2Þ

while k2 is calculated from the integration of the ordinary
differential equation shown in Ref. [56]. It has been shown
that Λ can be expressed as a function of the stellar
compactness, M=R, almost independently of the EOSs
(including Togashi EOS) [33,57]. In Fig. 3, in a similar
way, we plot Λ as a function ofM=R for the stellar models
constructed with QHC21T and Togashi EOSs, from which
one can observe that the universality between Λ and M=R
can keep even with the QHC EOS.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

nb/n0

c s
2

QHC21-AT

QHC21-BT

QHC21-CT

QHC21-DT

Togashi

FIG. 1. Profile of square of the sound velocity for the EOSs
adopted in this study, where nb and n0 in the horizontal axis
denote the baryon number density and nb at the saturation point,
respectively.
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III. EIGENFREQUENCIES AND UNIVERSALITY

To determine the eigenfrequencies of gravitational waves
radiated from the neutron stars, one has to solve the
eigenvalue problem. One can derive the perturbation
equations by adding the metric and fluid perturbations to
the equilibrium model and linearizing the Einstein equa-
tion. Then, one has to impose the appropriate boundary
conditions, i.e., the regularity condition at the center, the
vanishment of the Lagrangian perturbation of pressure at
the stellar surface, and the condition of the purely outgoing
waves at spatial infinity. The perturbation equations and
how to deal with the boundary condition at spatial infinity
are concretely shown in Refs. [28,58]. Since gravitational
waves carry out the oscillation energy from the objects, the
resultant eigenfrequencies become complex values, i.e.,
quasinormal modes, where the real and imaginary parts
respectively correspond to the oscillation frequency and
damping rate. But, the damping rate for the gravitational
waves induced by the fluid motion is generally much

smaller than the oscillation frequency. So, in this study, we
adopt the zero-damping approximation, i.e., the imaginary
part of the eigenfrequencies is set to zero [59].
In Fig. 4, the resultant frequencies of the f- and the first

pressure (p1-) modes are shown as a function of the mass of
the neutron stars constructed with QHC21T and Togashi
EOSs. From this figure, one can observe that the f-mode
frequencies expected with QHC21T EOSs basically
become smaller than those with Togashi EOS. On the
other hand, the p1-mode frequencies with QHC21T can
become larger than those with Togashi within a certain
mass range, depending on the stiffness of the EOS for quark
matter. We also find that the stellar models with QHC21T
EOSs, whose p1-mode frequencies become maximum,
roughly correspond to those with the local maximum
radius, whose mass is ∼1.7–2.1M⊙. In addition, the
maximum frequency of the p1-mode becomes higher, as
the peak sound velocity in QHC21T becomes larger (or as
the stiffness of quark matter EOS increases).
Next, we focus on the universal relations with the

quasinormal modes of neutron stars. Using the f-mode
gravitational waves from the neutron stars constructed with
various hadronic EOSs, it is derived that the universal
relation of the f-mode frequencies, ff, multiplied by the
stellar mass, M, can be expressed as stellar compactness,
M=R, given by Eq. (12) in Ref. [32] or as a function of the
dimensionless tidal deformability, Λ, given by Eq. (7) in
Ref. [33], i.e., the ffM −M=R and ffM − Λ relations. In
Fig. 5, we similarly plot ffM1.4 as a function ofM=R in the
top-left panel and as a function of Λ in the top-right panel,
where M1.4 is the normalized stellar mass defined as
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FIG. 2. The mass and radius relation for the neutron star models
constructed with QHC21T and with Togashi EOSs. In this figure,
the leftmost stellar model for each sequence corresponds to the
neutron star model with the maximum mass, while the stellar
model indicated by an arrow is the neutron star model whose
central density is 1.5ρ0. In addition, as a reference, we also plot
some constraints obtained from the astronomical observations
(see the text for details).
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FIG. 4. The f- and p1-mode frequencies are shown as a
function of the stellar mass in the top and bottom panels,
respectively.
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FIG. 3. The dimensionless tidal deformability, Λ, is shown as a
function of the stellar compactness, M=R, for the stellar models
constructed with QHC21T and Togashi EOSs. We note thatM=R
¼ 0.17 for the canonical neutron star with 1.4M⊙ and 12 km.
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M1.4 ≡M=1.4M⊙. In bottom panels, we show the relative
deviation, Δ, from the fitting formulas calculated as
Δ ¼ jAN −AFj=AN, whereAN andAF respectively denote
the value of ffM1.4 determined numerically from the
eigenvalue problem and that estimated with the fitting
formulas. From this figure, one can observe that the
universality of the ffM −M=R and ffM − Λ relations
obviously keeps even with QHC21T EOSs, even though the
deviation with QHC21 from the ffM1.4 −M=R relation is a
little larger than that with Togashi. Namely, as long as the
sound velocity is continuous inside the neutron star, the
profile of sound velocity may be irrelevant in the univer-
sality of the ffM −M=R and ffM − Λ relations.
Finally, we discuss the p1-mode frequencies, fp1

, in
gravitational waves. Compared to the f-mode frequencies,
the p1-mode frequencies cannot be expressed well inde-
pendently of the EOSs. Nevertheless, the fitting formulas,
which weakly depend on the EOSs, have been derived
with the p1-mode frequencies from the neutron star
models constructed with various hadronic EOSs. In fact,
in a similar way to the f-mode frequencies, fp1

M1.4 ðkHzÞ
can be expressed as a function of stellar compactness as
Eq. (16) in Ref. [32] or as a function of the dimensionless
tidal deformability as Eqs. (11) and (12) in Ref. [33]. For the
case of the hadronic EOSs, one can estimate the value of
fp1

M1.4 ðkHzÞ within less than 10% accuracy independ-
ently of EOSs, using these fitting formulas [32,33]. In order
to see how well these fitting formulas for fp1

work, we plot
similar relations in Figs. 6 and 7, where the thick solid line
in the top panel denotes the expected value using the fitting
formulas derived from hadronic EOSs. In the top panel of
Fig. 7, we also show the enlarged view focusing on the

canonical neutron star models, whose value of Λ≲ 1000.
We note that the vertical axis in this enlarged view is a linear
scale, instead of a log scale. In the bottom panels of Figs. 6
and 7, we show the relative deviation, Δ, from the fitting
formulas. From these figures, we find that the relative
deviation from the fitting formulas estimated with QHC21T
approaches up to ∼20% in a certain stellar model, although
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FIG. 5. The f-mode frequencies multiplied by M1.4 ≡M=1.4M⊙ are shown as a function of M=R (top-left panel) and Λ (top-right
panel) for the neutron star models constructed with QHC21Tand Togashi EOSs. The bottom panels are the relative deviation in the value
of ffM1.4 from the fitting formula, given by Eq. (12) in Ref. [32] and Eq. (7) in Ref. [33].
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M1.4, are shown as a function of M=R in the top
panel, where the thick solid line denotes the fitting formula
derived with various hadronic EOSs, given by Eq. (16) in
Ref. [32]. We plot the relative deviation from the fitting formula
in the bottom panel.
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the relative deviation expected with the hadronic EOSs is at
most 10%. This may be a feature of the QHC EOS, which
can be distinguished from the hadronic EOSs, even though
the p1-mode frequencies are too high to be observed with
the current gravitational wave detectors.
In the end, we would like to mention the detectability of

the f-mode frequencies in gravitational waves from an
isolated neutron star. Since our study has been done based
on a linear perturbation analysis, we cannot directly estimate
the radiation energy of gravitational waves. Nevertheless,
one may estimate the corresponding gravitational wave
effective amplitude, heff , as

heff ∼3×10−23
�

Ef

10−10M⊙

�
1=2

�
2 kHz
ff

�
1=2

�
50 kpc
D

�
; ð3Þ

where Ef and D denote the energy in f-mode oscillations
and the source distance from us [26,27]. Thus, using
operating gravitational wave detectors, one may detect
the f-mode gravitational waves from an isolated neutron
star located in our galaxy, if the radiation energy would be
more than 10−10M⊙ð∼2 × 1044 ergÞ. We cannot mention
typical energy released by gravitational waves from the
neutron star oscillations considered here, because it is still
theoretically uncertain even though it must strongly depend
on astronomical phenomena. For reference, the giant flare
from SGR 1806-20 observed in 2004, which is the most
energetic ever recorded, is considered to be associated with
the neutron star oscillations, where the total (isotropic)

released energy in electromagnetic waves is ∼ð3–10Þ ×
1046 erg [60]. For candidates of gravitational wave sources
and the estimates of the gravitational wave strain, see,
e.g., Ref. [61].

IV. CONCLUSION

How quark matter could appear inside a neutron star is
still quite uncertain. In order to see an imprint of the
presence of quark matter inside a neutron star, in this study,
we examine the f- and p1-mode frequencies in gravitational
waves from neutron stars by adopting quark-hadron cross-
over type EOSs, the so-called QHC21T. As a result, we find
that the f-mode frequencies with QHC21T EOSs are
basically smaller than those with Togashi EOS, which is
a hadronic EOS and adopted in a lower-density region for
constructing QHC21T EOSs, considering neutron stars with
the fixed mass. Meanwhile, the p1-mode frequencies with
QHC21T EOSs can become larger than those with Togashi
EOS in a certain neutron star mass range, considering the
neutron star models with the fixed mass. We also find that
the universality in the relations for the f-mode frequencies
multiplied by the stellar mass as a function of the stellar
compactness or as a function of the dimensionless tidal
deformability can keep even with QHC21T EOSs. Thus,
this type of universal relation alone does not distinguish
QHC21T EOSs from hadronic EOSs. But, if the mass and
f-mode frequency are measured, one can use this universal
relation to extract the radius and examine how its evolution
differs from the typical hadronic trends with gentle stiff-
ening. We also show the possibility to distinguish QHC21T
from hadronic EOSs by using the empirical relations for the
p1-mode frequencies multiplied by the stellar mass as a
function of the stellar compactness or as a function of the
dimensionless tidal deformability. That is, the relative
deviation from the empirical relations is at most 10% with
hadronic EOSs, but it approaches ∼20% with QHC21T in a
certain stellar model. We note that the f-mode gravitational
waves from a neutron star located in our galaxy may be
detectable with current gravitational wave detectors, if the
radiation energy is more than 10−10M⊙, while the p-mode
frequencies must be too high to observe with the current
detectors. In this study, to see the universality in quasinor-
mal modes from neutron stars with QHC EOS, we only
adopt the family of QHC21T. Nevertheless, we think the
universality in the f-mode frequencies shown in Fig. 5
could be held even if one adopts the other type of QHC
EOS, because the f-mode is a non-nodal global oscillation.
On the other hand, how the p1-mode frequencies on the
neutron stars constructed with other QHC EOSs deviate
from the universal relation derived from the hadronic EOSs,
may depend on the type of QHC EOS, because the
eigenfunction of the p1-mode oscillations has one n`ode
inside the star, i.e., the distribution of the sound speed inside
the star must be important for determining the p1-mode
frequencies.
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FIG. 7. Same as in Fig. 6, but the fitting formula plotted in the
top panel is given by Eqs. (11) and (12) in Ref. [33]. In the top
panel, we also show the enlarged view focusing on the canonical
neutron star models, whose value of Λ is less than 1000. We note
that the vertical axis in the enlarged view is a linear scale, instead
of a log scale.
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