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Axion dark matter can be converted into photons in the magnetospheres of neutron stars leading to a
spectral line centered on the Compton wavelength of the axion. Due to the rotation of the star and the
plasma effects in the magnetosphere the signal is predicted to be periodic with significant time variation that
persists across phase but is narrow in frequency—a unique smoking gun for axion dark matter. As a proof
of principle and to develop the methodology, we carry out the first time domain search of the signal using
data from PSR J2144-3933 taken as part of the MeerTIME project on MeerKAT telescope. We search for
specific signal templates using a matched filter technique and discuss when a time-domain analysis (as is
typically the case in pulsar observations) gives greater sensitivity to the axion coupling to photons in
comparison to a simple time-averaged total flux study. We do not find any candidate signals and, hence,
impose an upper limit on the axion-to-photon coupling of gaγγ < 5.5 × 10−11ðD=0.165 pcÞ GeV−1 where
D is the pulsar distance, over the mass range ma ¼ 3.9–4.7 μeV using this data. This limit relies on PSR
J2144-3933 not being an extremely aligned rotator, as strongly supported by simple arguments based on the
observed pulse profile width. We discuss the possibilities of improving this limit using future observations
with MeerKAT and also SKA1-mid and the possibility of using other objects. Finally, to evade modeling
uncertainties in axion radio signals, we also carry out a generic “any periodic-signal search” in the data,
finding no evidence for an axion signal.
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I. INTRODUCTION

The search for dark matter in the form of axions [1–10] is
continuing to gather momentum at a dramatic pace. Of
particular interest is the mass range ma ≈ 0.1–1000 μeV
where plausible scenarios [11–18] have been proposed to
realize the cold dark matter abundance Ωch2 ≈ 0.12 that is
found to be compatible with cosmological observations, for
example, those of the cosmic microwave background [19].
There are a number of haloscope experiments [20] which
have placed constraints on the axion coupling to photons.
These include early cavity experiments [21–23] and their
modern incarnations including ADMX [24–28] and its

various upgrades and pathfinders [29–31]. This has
spawned a plethora of active and proposed experiments
including CAPP [32–35], HAYSTAC [36–38], QUAX
[39,40], ORGAN [41,42], CAST-RADES [43], TASEH
[44] and GrAHal [45] aiming to detect axions using similar
techniques. Complementing this, there are also a number of
proposed experiments which go beyond the cavity para-
digm, allowing laboratory searches to achieve broad
frequency coverage across previously challenging fre-
quency ranges. These include plasma haloscope designs
like ALPHA [46], broadband reflectors envisaged in the
BREAD [47] collaboration, and dielectric haloscopes
such as MADMAX [48]. There are also novel designs
which aim to detect magnetic fields induced by axion
sources such as DMRadio [49], which will operate at
lower frequencies (ma ≲ μeV) and those seeking to using
novel materials at higher frequencies [50–52].
The largest magnetic fields currently used in laboratory

searches for axion dark matter typically do not exceed
∼105 Gð10 TÞ, a limiting factor in such searches. By
contrast, astrophysical magnetic fields in neutron stars can
be as high as ∼1015 Gð1011 TÞ, making them excellent
targets for indirect searches of axion dark matter [53–55]. In
addition, neutron stars are surrounded by a magnetosphere
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whose varying plasma frequency matches the axion mass
across a broad range of masses. This degeneracy leads to a
dramatic resonant enhancement of the signal emanating from
regions withma ≃ ωp, whereωp is the plasma frequency. As
a result, neutron stars can act as broadband axion darkmatter
detectors.
Based on a simple but representative model for a neutron

star magnetosphere and the density of axions around the
star, Refs. [54–56] predicted signals that could be easily
detected using current and future telescopes operating
in the radio-mm waveband, which corresponds to the
Compton wavelength of the dark matter axion scenarios
referred to above. Spurred on by this, great progress has
recently been made in characterizing the signal properties
using sophisticated ray-tracing methods [57–59] which are
capable of computing the line width induced from plasma
effects and the precise time-variation and angular depend-
ence of the signal. Early attempts have also been made to
address axion-photon mixing in 3D [60,61], though this
remains an ongoing area of research.
Various searches have been carried out to detect radio

signals produced by axion dark matter converting into
photons in the magnetospheres of neutron stars using the
Goldreich-Julian (GJ) model [62] for the magnetosphere
and estimates of the local density of dark matter, extrapo-
lated to the location of the star in question. These searches
have either looked for a background excess near the
Galactic Center from populations of neutron stars [63,64],
or have focused on single objects such as the Galactic
Center magnetar [65–67] or isolated neutron stars [68,69],
and have established bounds on the axion-to-photon
coupling, gaγγ, which are better than the bounds from
the axion helioscope CAST [70].
Now that the first wave of searches has been carried out,

a natural question to ask is what improved observational
strategies are available to increase our sensitivity to the
axion photon coupling and boost our chances of detecting
dark matter axions from neutron stars. In this vein, one
might also ask how our newly attained understanding of
precise signal properties (including time and frequency
information) might be leveraged to increase the power of
such searches. To date, all the searches for axions using
neutron stars have focusedon looking for a spectral line in the
frequency domain. The goal of the present work is twofold:
(i) to establish a framework of time-domain searches for
axion darkmatter signals in radio data and (ii) to demonstrate
this technique by carrying out time-domain observations of
pulsars. Our goal is to understand under what circumstances
augmenting these searches to include time-domain informa-
tion of the signal can improve sensitivity to gaγγ and by
injecting signal templates into radio data, demonstrate a
practical route to obtaining limits on gaγγ which outperform a
simple line-search in the frequency domain.
The structure of the paper is organized as follows. In

Sec. II we review the mechanism for photon production

from axion dark matter, describe our ray-tracing pro-
cedure for modeling the radio signal and discuss the
time-dependence of the expected signal. In Sec. III we
describe a procedure to search for time-dependent signals
in data using a matched filter, and use this to outline what
types of periodic signals lead to a strong gain from time-
domain information. In Sec. IV we apply our pipeline to
MeerKAT observations of PSR J2144-3933 to search for
axion dark matter. Our null result is used to place limits on
the axion coupling to photons. In Secs. Vand VI we explore
possible future targets and perform a generalized search for
periodic signals. In Sec. VII we offer our conclusions.

II. MODELING THE SIGNAL DUE TO AXIONS

The conversion between axions and photons in strong
magnetic fields was laid out in the classic reference [71]. It
was pointed out in [53] that this mixing could convert dark
matter axions into radio photons1 in the strongly magnet-
ized plasmas which surround neutron stars. In recent years,
as axions have moved to the forefront as dark matter
candidates, these ideas have been pursued with renewed
vigor [55,73] and this program has lead to a variety of
observations [64,67,74–76] searching for radio lines from
dark matter axions. These observational efforts have been
accompanied by a more concerted effort to improve the
modeling of the signal itself [58,59,61,77,78] which con-
sists primarily of developing ray-tracing packages to
precisely track the photons from their point of emission
to the observer, thereby allowing one to derive signal
templates which could be detected by a radio telescope. We
now briefly review the basic features of the production
mechanism and ray-tracing routine. More details can be
found in [58,59,77,79].

A. Ray-tracing photons in magnetized plasmas

Resonant conversion between axions and photons occurs
at points where kμγ ¼ kμa where k

μ
γ and k

μ
a are the photon and

axion 4-momentum, respectively. An attempt was made to
understand the conversion probability for axions to photons
paγ in [61] leading to

paγγ ¼
π

2

g2aγγsin2θBjBj2
jkγjjω0

pj
·

m5
a�

jkγj2 þm2
asin2θB

�
2
; ð1Þ

which attempts to incorporate 3D effects into the conversion
probability. This characterizes the ratio of the energy density
between an axionwave packet and a photonwave packet, the
latter being subsequently transported out of the magneto-
sphere along geodesics determined by the photon dispersion
relation in the strongly magnetized plasma. Note in the
presentworkwe include simultaneously the effects of gravity

1See Ref. [72] for a similar mechanism with dark photons.
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(by incorporating the curved spacetimemetric of the neutron
star) and strongly magnetized fields. This results in a
covariant dispersion relation for photons in a magnetized
plasma which have a dispersion relation [80,81]

DðkÞ ¼ gμνkμkν

− ðω2 − k2kÞ
X
s

4πq2sns
γ2s ½μsðω − kkÞ2 − c2sðωvs − kkÞ2�

:

ð2Þ

Here, the sum s is over different charge carrier species, γs is a
generalized Lorentz factor, and kk gives the 4-momentum
projected onto the magnetic field and vs corresponds to the
velocity of charge carriers and μs the energy per particle.
The number density of each species s is given by ns and the
charge by qs. Full definitions and detailed explanations of
the various terms can be found in [80]. We will take the
nonrelativistic limit, setting vs ¼ 0, γ ¼ 1, cs ¼ 0 and
μs ¼ ms.We also consider a purely electron-positron plasma
so that qs ¼ e. Setting DðkÞ ¼ 0 then gives the dispersion
relations for photons in a nonrelativistic plasma. The
equations of motion for the photon rays are then given by
Hamilton’s equations

dxμ

dλ
¼ ∂D

∂kμ
;

dkμ
dλ

¼ −
∂D
∂xμ

: ð3Þ

To compute the power, we backtrace from the observer to the
point of emission, following the equations ofmotion (3). This
is analogous to the procedure used in [57,58].
In addition, we also now include multiple axion-photon

conversions arising from multiple reflections off the critical
surface, as happens within “throats” of the plasma distri-
bution around the neutron star. These throats are partially
enclosed regions near the charge separation gap off whose
walls the photon can be multiply reflected due to plasma
gradients. This can enhance the power of the signal relative
to not including such effects as was done in [57,58]. An
extensive analysis of ray-tracing techniques, which com-
bines the physical effects considered across [58,59], is
currently underway and will appear in a companion paper
[79], where the full details of our scheme will be presented.
This will include a systematic study of anisotropic plasmas.
We do not consider the effects of so-called “dephasing”
conjectured in [59] which awaits a more robust physical
description to see if the effect persists under more math-
ematically rigorous formulation. We do not need to con-
sider nonlinear effects arising from very large conversion
probabilities where photons may convert back into axions.
This is safe for PSR J2144-3933 on which we performed
our observations, which has sufficiently low magnetic
fields that the conversion probability remains small.

B. Signal templates

Having outlined the basic details of our ray-tracing
scheme. This can now be used to begin deriving signal
templates. In particular, these simulations allow one to
model the radio signal as a function of pulsar and axion
input parameters. In particular, one can compute the profile
of the signal in frequency and time. The frequency
dependence of the profile is determined by the mass of
the axion—which sets the central frequency of the radio
line. The width is set by a combination of the velocity
dispersion of dark matter and by line-broadening induced
by the time-dependent nature of the plasma, which modi-
fies photon frequencies as they move through the mag-
netosphere. The time variation of the signal arises from the
fact that the plasma surrounding the neutron star is not
axisymmetric. In the present approximation we assume an
electron-positron plasma which corotates with the star with
regions of positive and negative charge separated according
to the Goldreich-Julian density [62]

nGJ ¼
B0Ω
2e

�
R
r

�
3

½cos αþ 3 cos α cosð2θÞ

þ 3 sin α cosðϕ −ΩtÞ sin 2θ�; ð4Þ

with the plasma frequency given by ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjnGJj=me

p
.

Here, Ω is the frequency of the pulsar, α is the angle
between the magnetic axis of the corotating dipole and the
rotation axis of the star, R is the stellar radius and B0 is the
magnetic field strength on the surface at the magnetic poles.
The polar coordinate θ and azimuthal angle ϕ are defined
with respect to the rotational axis of the star. It is obvious
that whenever α ≠ 0, the plasma is time dependent with
respect to a nonrotating observer. This results in time-
dependent radio signals, as illustrated in Fig. 1. For a given
pulsar, the remaining input parameters to determine the
axion dark matter radio signal are then the distance to the
pulsar D, and the dark matter density ρDM at the position of
the pulsar.
In our analysis, we will take P and B0 to be their quoted

measured values. In principle there are some extra uncer-
tainties which would need to be taken into account. Pulsar
periods P are one of the best-measured quantities in
astronomy, while the magnetic field strength of the pulsar
at the pole is inferred from measurements of P and Ṗ the
spin-down rate of the pulsar combined with model-
dependent parameters including the moment of inertia of
the pulsar and its radius [82]. This calculation is standard
but assumes that the energy released by the pulsar in the
form of radio emission comes from the loss of rotational
energy calculated from the spin-down rate. The compara-
tively large values of PṖ observed for magnetars form the
basis for their large inferred values of B0, but it is also
known that the magnetars are known to emit large x-ray
fluxes whose luminosity cannot be explained by spin-down
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alone. The emission mechanism for some magnetars may
bepowered magnetically in contrast to the rotation powered
radio pulsars [83,84]. In particular, magnetars can have a
significant toroidal component to their field whose magni-
tude one can constrain by imposing that the luminosity
from magnetic dissipation exceeds that from the traditional
spin-down. Based on observations of the x-ray flares/bursts
from magnetars, the typical ratio of the toroidal to poloidal
component of the field is of the order ∼10 [85,86]. While it
is possible to calculate this enhancement from running
magneto-hydrodynamic simulations, the impact on the
final constraints is suppressed by

ffiffiffi
S

p
∝ B0.4 (see Sec. V)

and as such, we leave a more sophisticated modeling of the
magnetosphere for future work.
The distance to the pulsar, D can be inferred from

parallax measurements or from the dispersion of the pulse
as a function of frequency, since the photons emitted in the
main beam of the pulsar traverse through the galactic
electron density along the line of sight. Given a model for
the galactic electron density, one can estimate the distance
to a pulsar. If we use the pyGEDM code and the galactic
coordinates as measured in the catalog we obtain
D ≈ 0.29 kpc [87–92]. This illustrates that this computa-
tion relies on the underlying model for the galactic electron
density distribution. A parallax measurement for this pulsar
yields D ¼ 0.165þ0.017

−0.014 kpc [93]. This is a more direct
measurement and we will use it as our fiducial value when
establishing limits, but we note that the limit is ∝ D.
Galactic dark matter profiles allow one to predict the dark
matter density at the position of the pulsar, but these models
become highly uncertain as one gets closer to the Galactic

Center, where some models predict a spike in the density,
while others predict a more cored profile.
Based on these arguments, we conclude that the com-

pletely unknown quantities which parametrize the signal
templates are ðα; θÞ. We, therefore, generate a simulated
database2 of periodic flux profiles as a function of ðα; θÞ.
Some of these profiles are displayed in Fig. 1which indicates
the ðα; θÞ dependence of the time variability of the signal.
In the next section, we describe how to harness the

information and the larger time variability of the signal to
improve the prospects of detecting axion dark matter.

III. SEARCHING FOR TIME-DEPENDENT
SIGNALS

In order to search for time dependent signals we will
employ a matched-filter template-fitting approach similar to
that used in gravitational wave astronomy to detect the
waveforms of the late stages of binary black hole inspirals
[94,95]. In that case, once a detection of gravitational waves
was made, this allows estimates of physical parameters such
as the black holemasses. Formally, if an axionwere detected,
one could use axion radio signals to fit model parameters of
the pulsar magnetosphere. However, our ambition at this
stage is much more conservative: we will use the signal-to-
noise estimate from the matched filter, q̂, defined below, to
quantify the likelihood of detection. In this sense, q̂ acts as a
statistical test for whether the data is distinguishable from
noise. Values of q̂ above a threshold then constitute a
detection. Conversely, for values below this, by injecting
wouldbe signals into the data, we obtain the expected value
qexp ¼ hq̂i [seeEq. (15)] froman axion signal.By comparing
this to themeasured value q̂, we can exclude regions of axion
parameter space.
This procedure provides a means to derive limits on gaγγ

as a function of ma, and importantly this allows us to take
into account that for a fixed value of ma there are a wide
range of templates for the expected signal due to the
parameters of the particular neutron star system under
consideration. These are the period of the pulsar, P, its
surface magnetic field flux density, B0, the radius of the
neutron star, R, the angle α between the magnetic axis and
spin axis of the star, and the angle θ between the line of
sight and the spin axis. As in previous attempts to derive
constraints on gaγγ using neutron stars [64–68] for sim-
plicity, as a demonstration of the filter, we do not, for
instance, consider uncertainties in B0 or R (the period, P, is
of course measured with tremendous accuracy). We leave a
computationally intensive parameter scan for future work,
but this would be a straightforward extension of the
existing framework.

FIG. 1. Time-dependence of radio templates from axion dark
matter as a function of pulse phase ϕ for different values of θ with
fixed value of α ¼ 20° with gaγγ ¼ 10−10 GeV−1. As expected
there is little time variation for θ ¼ 10°, but it can be substantial
for intermediate angles. When θ ¼ 90° the “throats” of the GJ
model never cross the line of sight, although there is some
emission, it is relatively weak compared to cases where they are
visible to the observer.

2Formally we generate templates for discrete ðαi; θiÞ and
numerically interpolate to generate a template for a continuous
range of α and θ. See Appendix for a description of this procedure
and an illustration of its accuracy.
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Instead, our main focus here is on the sensitivity of the
time dependence of the signal to pulsar parameters, which
is especially sensitive to the value of α and θ. For each value
of ma, we therefore obtain a constraint on the value of gaγγ
for every pair (α,θ). We can then exclude certain ranges of α
and θ with further modeling and observations of the pulsar
signal, notably the pulse width. We then use the value of
ðα; θÞ from this remaining subset which gives the most
conservative constraints on gaγγ .

A. Derivation of matched filter
and mathematical properties

Matched filters are a standard technique in signal process-
ing and they are often used in astronomy to search for signals
with a known, or parametrizable profile. This can be done in
the spatial, frequency or timedomains. In this section,wewill
derive the standard matched filter before discussing some of
its properties. In Sec. III B we use it to quantify the pros and
cons of time domain observations and in Sec. III C we will
show how it can be used to recover an injected signal in
simulated radio data.
There are a number of ways of formulating the matched

filter. Here, we will use a discrete matched filter in which
the data is represented by a vector of finite length. This can
be generalized to continuous functions in which the vector
inner products become convolution integrals over functions
(see Ref. [95]). The discrete formulation has the advantage
of simplifying notation.
Our starting point is the so-called data vector, d. We will

assume the data is the sum of a signal S ¼ S0FðpÞ and
some additive noise n̂

d ¼ S0FðpÞ þ n̂: ð5Þ

Here, we have decomposed the signal according to

jFj≡ ffiffiffiffiffiffiffiffiffiffi
F · F

p
¼ 1; ð6Þ

so that S0, gives the root mean squared flux density of the
signal

S0 ¼
ffiffiffiffiffiffiffiffiffi
S · S

p
: ð7Þ

The signal is further characterized by a “parameter vector”
p. In Sec. II we will compute a number of templates FðpÞ
for the signal where p ¼ ðma; α; θÞ. The noise vector n̂ is
assumed to be Gaussian with hni ¼ 0 and hnnTi ¼ C,
where h::i denotes an ensemble average of noise realiza-
tions and Cij is the covariance matrix with i; j ¼ 1;…; nd,
where nd is the total number of data points.
Assuming a Gaussian likelihood, −2 logL ¼ χ2, one

can calculate the maximum likelihood estimate Ŝ0 by
minimizing

χ2 ¼ ðd − S0FÞTC−1ðd − S0FÞ: ð8Þ

In the above equation, we assume the data vector d contains
the true signal S ¼ Strue so that minimizing χ2 above can be
thought of as minimizing a generalized least-squares
difference (relative to the noise in each channel—hence
the factor C−1) between the true signal and possible
templates S0F. Viewing χ2 as an unknown function of
S0, we can find the minimizing value Ŝ0 given by

Ŝ0 ¼
FTC−1d
FTC−1F

: ð9Þ

One can also deduce the “matched filter noise”

σMF ¼ ðFTC−1FÞ−1=2 ð10Þ

and the signal-to-noise estimate q̂ may then be written as

q̂ ¼ Ŝ0
σMF

¼ FTC−1d

ðFTC−1FÞ1=2 : ð11Þ

It is important to understand the difference between the
noise in the data, characterized by C, and the “matched
filter noise,” σMF. They are related, but σMF also depends on
the filter. We return to this issue in the next section.
In order to understand properties of the matched filter we

will assume diagonal covariance matrix

Cij ¼ σ2Nδij; ð12Þ

where δij is the Kronecker delta and σN is the noise in each
channel—all of what is said here can be adapted to the case
of a general covariance matrix, but it is less simple to see.
In general, the data has a number of dimensions, for

example, space, time and/or frequency, then d has nd ¼
n1 ×… × nk entries where ni for i ¼ 1;…; k are the
number of points in each of the dimensions. In our case
we will search in the frequency and time directions so the
number of entries in the data vector will be nd ¼ nf × nt,
where nf is the number of frequency channels and nt is the
number of time samples. In that case, the data vector could
be written as

d ¼ ðdω1
t1 ;…; dω1

tnt
;…; d

ωnf
t1 ;…; d

ωnf
tnt

Þ; ð13Þ

where dωi
tj labels the data vector in the ith frequency bin and

jth time channel. The covariance matrix of the form (12) is
then nothing more than the statement that the noise between
all possible pairs of time and frequency bins is totally
uncorrelated.
Returning to our main discussion, it follows that for a

covariance matrix of the form (12), we have
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q̂ ¼ F · d
σN

; ð14Þ

that is, the dot product of the filter F with the data vector.
When F matches that in the true signal, we have hq̂i ¼
S0=σN [from Eq. (5)].
Now assume that ptrue has entries which are the true

parameters. The ensemble average of q̂ for a filter with
arbitrary parameter, p is

hq̂i ¼ FðpÞ · FðptrueÞ
S0
σN

: ð15Þ

Next, we note that as a trivial consequence of the Cauchy-
Schwarz inequality, we haveFðpÞ·FðptrueÞ≤jFðpÞjjFðptrueÞj
with equality if and only if FðpÞ ¼ FðptrueÞ. Assuming that
the template is nondegenerate with respect to the values of p,
this occurs only for p ¼ ptrue for which q̂ is then maximal.
Thus q̂ acts as a likelihood test for the values of p.
In what follows, since the line width of the axion is

typically less than the width of our frequency channels, the
vector (13) is sparse for a given value of ma, with non-
vanishing entries in only one frequency channel where
ω ¼ ma. This means filters with different values of ma are
orthogonal. More generally, with higher frequency reso-
lution, we would expect to be able to probe both the time
and frequency structure of the signal. By contrast, filters
with different values of α and θ are not orthogonal and
will in general have overlap such that dðθ; α; maÞ·
dðθ0; α0; maÞ ≠ 0.
In principle, this means an axion detection would allow

us to determine likely values of the pulsar parameters in
analogy to the way in which observable gravitational wave
signals allow inference of the mass and spin of their
associated black holes. However, our present approach
will be to minimize the expected signal over a conservative
subset of values of ðα; θÞ, thereby obtaining the most
conservative constraints on gaγγ for allowed values of
angles.
In order to turn our continuous axion signals into discrete

vectors we must perform some kind of coarse graining. We
therefore define a binning scheme for N time channels
centered on the points ti ¼ ði − 1=2ÞΔt where i ¼ 1;…; N
and Δt ¼ 1=N so that the discretized signal is given by

Sωti ¼
1

Δt

Z
tiþΔt=2

ti−Δt=2
dtSðt;ωÞ; ð16Þ

where Sðt;ωÞ is the flux density of the axion signal as a
function of time (and frequency) that we derive using our
radio signal models.

B. Why do a time domain analysis?

In this section we will discuss the advantages of doing a
time domain analysis in terms of increasing the chances of

detecting axions. We will also discuss the issue of whether
subtraction of the pulse average from the time-domain data
(as is often the case in pulsar observations and as we have
done in our data) will have significant impact.
In order to do this we will investigate some properties of

the matched filter. Consider applying the matched filter to a
given frequency channel whose signal consists of N time
channels is

S ¼ ðS1;…; SNÞ: ð17Þ

Then, according to Eqs. (5)–(7) and (14), the matched filter
will return

hq̂i ¼
ffiffiffiffiffiffiffiffiffi
S · S

p

σN
; ð18Þ

where σN is the noise on each of the nt ¼ N time channels.
The noise amplitude σN averaged across all times is then
given by σ ¼ σN=

ffiffiffiffi
N

p
. We can therefore rewrite (18) as

hq̂itime ¼
ðσ2S þ μ2SÞ1=2

σ̄
; ð19Þ

where μS ¼ ΣiSi=N and σS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣiS2i =N − μ2S

p
are the

average and standard deviation of S, respectively.
Now let us consider carrying out a measurement with no

time resolution. This is the case when one simply uses the
telescope to make a total flux measurement over a long
observing time. In this case the noise is again σ̄ given by
averaging the noise over all integration time, the signalffiffiffiffiffiffiffiffiffi
S · S

p
is simply given by the mean μS so that

hq̂iflux−avg ¼
μS
σ̄
: ð20Þ

This can be thought of as a trivial matched filter with a
single time channel, in which any fine-grained time
information has been lost. This is in effect how all previous
single pulsar observations for axion dark matter have been
carried out [65–67].
By comparing the cases of a time-domain analysis (19)

with a total-flux measurement (20) it becomes immediately
apparent that, since σ2S ≥ 0, the time-domain analyses will
always equal or outperform the time-averaged measure-
ment. Thus time-domain information increases the poten-
tial to detect axions. In particular, when the relative time
variation is large (σS=μS ≫ 1), the time-domain search
provides a gain in sensitivity by increasing the signal to
noise by a factor ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
σS=μS

p
, i.e. the square root of the

relative variance. This is a simple consequence of the fact
that q̂ is proportional to the root square of the signal, and so
it implicitly encodes information about its variability. The
same observation was also made in [57] but the matched
filter allows this to be justified from first principles.
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Although this is in general not necessary, the observa-
tions used later in the paper have had the average of the
signal subtracted.3 Thus while we retain time-domain
information, the baseline μS of the signal is essentially
renormalized to zero. In this case, the time-domain analysis
gives a baseline subtracted value

hq̂itime−BS ¼
σS
σ̄
: ð21Þ

Clearly, when there is only a small time variation,
(μS ≫ σS), subtracting the baseline leads to a lower value
of hq̂i, relative to retaining it as in Eq. (19). This is for the
simple reason that if the average signal is large, one loses a
lot of signal power by removing the average. Conversely, in
the regime where there is large time variation, μS ≪ σS the
time-domain analysis with baseline subtraction performs
almost as well as Eq. (19). This is again the statement that
high peaks above the noise in the time domain still allow
for good discrimination from noise.

C. Demonstration on simulated data

In the previous subsections we have derived the main
properties of the matched filter estimate of the signal-to-
noise ratio. This is not particularly new to those with a
background in astronomy, but may not be familiar to a
general reader. The matched filter is the optimal filter for
a Gaussian likelihood and would be the clearest way to
identify a signal in the data with q̂ being a proxy for the
signal to noise of detection.
In this subsection, to aid understanding, we will dem-

onstrate the performance of the matched filter in a toy
example by injecting a signal for a neutron star with the
same physical characteristics as PSR J2144-3933 into
simulated data with similar noise to the observations that
we have in hand, described in Secs. IV and IVA.
We will inject signals with a mass of ma ¼ 4.2 μeV

which corresponds to an observing frequency fobs ≃
1.0 GHz and gaγγ ¼ 10−10 GeV−1. We will consider two
different choices for the angles α and θ. Case A with
ðα; θÞ ¼ ð0°; 60°Þ is close to an aligned rotator and hence
we would expect no time variation, whereas case B with
ðα; θÞ ¼ ð40°; 60°Þ has a very strong time variation. We will
consider two observations: one in which the pulse-averaged
signal power is retained, and another where it is removed
which is more common in pulsar observations as we have
explained earlier. We have already discussed the pros and
cons of the two approaches in Sec. III B and this is just an

illustration of the specific point. The full results of these test
cases are shown in Fig. 2.
For a nearly aligned rotator (α ¼ 0°), the pulsar is

axisymmetric about its rotation axis, and the signal has
no time dependence. Therefore, in this case, if one searches
for the signal with the pulse-average removed, there is by
definition no signal present in the effective data vector,
leading to a nondetection. The filter is essentially scanning a
particular noise realization with zero signal. In the bottom
panel, the input signal contains significant time-dependence
(roughly an order of magnitude). Therefore, the input signal
is detected with a SNR of the same order of magnitude as in
the total power case, in accordance with the discussion
comparing (19) and (20). In all the cases except the baseline-
subtracted α ¼ 0 case, the filter successfully returns the
maximal SNR for the input value of θ.

IV. OBSERVATIONS OF PSR J2144-3933
WITH MEERKAT

In order to test this idea we selected PSR J2144-3933.
We did this by considering the list of observed neutron

FIG. 2. An illustration of using the matched filter SNR to search
for the signal. q̂ is shown as function of observing angle θ
returned by the matched filter (14) with simulated Gaussian noise
similar to that expected for the observations of PSR J2144-3933
discussed in this paper. We display the SNR for two scenarios for
the input signal, one with ðα; θÞ ¼ ð0°; 60°Þ (case A, top panel)
and another with ðα; θÞ ¼ ð40°; 60°Þ (case B, bottom panel). In
both cases we choose a noise amplitude of ∼2.5 mJy consistent
with that observed in our data forma ¼ 4.2 μeV. We use an axion
mass of 3.7 μeV and gaγγ ¼ 10−10 GeV−1. As an additional
sanity check, we repeat the analysis by inserting the signal into
the real pulse-subtracted data (see Sec. IV for details on the data),
represented by the dotted lines. The fact these lines appear to
agree indicates that our noise model is representative of the
situation in the real data.

3Observations of pulsars are often taken in this way since they
are probing the time-variable signal from the rotation of the
neutron star. Ultimately, there is nothing to prevent the use of the
averaged signal as well, but it can require extra work to calibrate
it. Here, we see that if the expected time variation is significant,
removing the average does not significantly affect sensitivity to
axions.
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stars [96]4 which provides estimates forB0, P and the pulsar
distanceD. In order tomake an estimate of the strength of the
signal expected for a particular pulsar we use an analytic
formula based on the radial trajectories approach [55].
Although this assumption has been shown to be not
sufficiently correct to provide accurate predictions [58,59]
it is likely that it gives a reasonable figure of merit since it
should have the correct scaling with the important para-
meters.Wewill discuss the issue ofwhat is the optimal target
inmore detail again in Sec. V in light of what we have learnt.
Specifically, we have used the figure of merit (FOM)

FOM ¼ ρDM
B2=3
0 P7=3

D2
; ð22Þ

where ρDM is the density of dark matter expected in the
vicinity of the pulsar, to create a ranked list of pulsars. This
formula can be derived from results presented in [55,60].
We presume that all the dark matter in the Galactic halo

is in the form of axions, the standard assumption when
obtaining limits, and extrapolate the local density of ρDM ≈
0.45 GeVcm−3 using an Navarro-Frenk-White (NFW)
profile for dark matter in the galaxy. Except in the very
center, near the location of the Galactic Center Magnetar
(GCM) PSR J1745-2900,5 this is likely to give a reasonable
estimate of the trade-off between ρDM and D in the FOM.
The PSR J2144-3933 which has B0 ≈ 2.1 × 1012 G

estimated from the P and Ṗ based on electromagnetic spin
down, P ¼ 8.51 sec and D ¼ 0.12 kpc came third on the
list6 and seems an ideal object. This object has a long
period, and hence a strong axion signal, but is otherwise
unremarkable. The fact that it is very nearby is also a
significant advantage since it means that we can be more
sure about the local value of ρa used in our predictions.
Within the GJ model there is a maximum axion mass

[67] given by

mmax
a ≈ 85 μeV

�
B0

1014 G

�
1=2

�
P

1 sec

�
−1=2

×

�
1þ 1

3
cos α

�
1=2

; ð23Þ

which is ≈4.7 μeV corresponding to fobs ≈ 1.15 GHz for
this object. It is not possible to use any observations above
this frequency in obtaining a limit using the GJ model
predictions, but we do use the data in our search for
generalized periodic signals in Sec. VI.
The specific observation of PSR J2144-3933 used in this

work was taken at July 13, 2020 02∶20∶47 as part of the
MeerTime Large Survey Programme on MeerKAT. The
observation was recorded as part of the Thousand Pulsar
Array [97] census observations and hence used the “full”
MeerKAT array, specifically in this instance 58 of the
antennas were used to form a single tied array beam pointed
at the pulsar. For long-period pulsars the Thousand Pulsar
Array census aims to record ≳512 pulses from each pulsar,
and hence the total observing duration was 4416 s, much
longer than typical Thousand Pulsar Array observations.
The data produced by the MeerKAT beamformer are
processed in real time by the PTUSE instrument [98],
folding the data with the known period of the pulsar. Post
processing, including initial automated cleaning of radio
frequency interference and flux calibration is carried out on
the Swinburne OzStar supercomputer using the MeerPipe
pipeline developed by MeerTime. The calibration and
cleaning procedure used for the Thousand Pulsar Array
data is described in [99]. The output data have 1024
rotational phase bins and 928 frequency channels, each
of width 0.8359375 MHz (total bandwidth 775.75 MHz),
and centered at 1283.58203125 MHz.

A. Modeling the noise

The observed data has already been processed to remove
the effects of radio frequency interference (RFI). This is
sufficient to locate the main peak of the pulsar pulse, which
is typically much stronger than the axion signal. The first
thing we do is remove the pulsar main beam signal from the
time domain, so that the remaining data is in the off phase
of the pulsar. We do this by excising 20 time channels from
our data. In the top panel of Fig. 3, for the remaining data
we present the average over the pulsar phase for μS and the
standard deviation, σS, of the data as a function of the
frequency. It is clear that, despite this procedure, there
remains some low amplitude RFI in certain frequency
channels and it is clear that the frequency channels affected
by this must be discarded for the purposes of locating axion
signals. This RFI is typically due to mobile phone,
f ∼ 0.95 GHz, and Global Navigation Satellite System,
f ∼ 1.2 GHz and f ∼ 1.6 GHz.7

4https://www.atnf.csiro.au/research/pulsar/psrcat/.
5Most attempts to constrain axions using neutron stars have

used the GCM as their target, attracted by the large magnetic
field, and indeed we revisit using it for this type of analysis in
Sec. V. Depending on the parameters of the NFW profile we used
it varied from around the tenth in our list to the first. A clear
reason to not use it is that there is an additional uncertainty
created by the lack of knowledge of the dark matter density in the
center of the Galaxy.

6The objects PSR J0736-6394 and PSR J1856-3754 came first
and second on the list. The first is rotating radio transient which is
not monitored routinely in the radio waveband, while the second
has only been detected in the x-ray waveband. Both these objects
are unsuitable for our study here.

7We note that Karoo site where the MeerKAT telescope is
situated, is one of the cleanest radio observation sites in the world
and still there is low-level RFI in these bands which would likely
be extremely difficult to remove, meaning that there are some
ranges of axion mass that will remain unattainable to this
technique, and indeed any other searching for astrophysical
axion signals.
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This residual RFI can be removed by excising any data
with σN > 3 mJy as seen Fig. 3 with the excised data
presented using a narrower flux scale. This data appears to
be relatively clean and free from obvious terrestrial RFI
since it removes the regions known to be affected by known
irreducible interference. Once this is done it seems rea-
sonable to try to model the noise in the data to be an
uncorrelated Gaussian random process with zero mean
within each channel and standard deviation σNðfÞ which is
given by that measured in a given channel. This is a small
variation—by allowing the standard deviation to vary with
frequency—to the approach we have used in Sec. III A. It is

unlikely that the assumption of exact Gaussianity and zero
correlations is entirely perfect, and indeed in the sub-
sequent sections we find some evidence to suggest that
there may be weak correlations in the noise as a function of
the pulsar phase ϕ. Nonetheless, we will argue that this just
leads to conservative constraints, and therefore we will
proceed to use this model. We note that if we are able to
accurately model the correlations in the data, this could be
handled by the match filter approach.
In what follows we will use this noise model to obtain

limits on axion signal, and, therefore, we should examine to
what extent our data resembles Gaussian noise for the full
dynamical spectrum, which is the term used to talk about
the data as a function of frequency, f, and pulsar phase, ϕ.
As a self-consistency test of this noise model, we compare
the real dataset with that randomly generated from this
distribution and this is presented in Fig. 4. Visually, the two
datasets appear to be very similar and on that basis we
conclude that the models are compatible with each other.

FIG. 4. Dynamical spectra (i.e. the data as function of fre-
quency and pulsar phase) with the RFI dominated channels
excised and also the pulse (around ϕ ¼ 0 and ϕ ¼ 1) removed.
The top panel is our noise model described in the text, while the
bottom panel is the actual data.

FIG. 3. Measurements of the mean, μS and σS standard
deviations of the observed off-pulse flux density of PSR
J2144-3933 used in this paper. The average is over pulsar phase
for a fixed frequency. In the top panel, we show the σS and μS for
the full dataset. In the bottom panel, we show the equivalent after
employing a cut of σN ¼ 3.0 mJy but with a different scale. As
demonstrated in the figure this cut allows us to excise the
frequency channels that are dominated by RFI contamination,
with the remaining channels being compatible with μ ≈ 0 and
σN ≈ 2.8 mJy.
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B. Constraining the magnetic orientation
α and observing angle θ

We have already pointed out that the amplitude of the
time dependence of the signal depends on the values of α
and θ—this is also an issue when using the time averaged
signal (see Ref. [67] for example). In particular, we have
seen that there can be very little time variation when these
angles are small. Therefore, we will need some further
information on the pulsar geometry to enforce a constraint
on gaγγ .
Obtaining precise values for the pulsar geometry relies in

general on strong assumptions on the observed properties
of the neutron star’s radio pulse (e.g. [100]). Fortunately,
from the point of view of the present discussion, we only
need to rule out small angles, and when one observes a
narrow pulse profile—which is the case here—it is unlikely
that the magnetic and observation axes are aligned with the
spin axis. In what follows we will describe a simple model
for the pulsar beam geometry with very conservative
assumptions and use it in the case of PSR J2144-3933
to argue that one can ignore the region of parameter space
around θ ≈ α ≈ 0.
Let W be the pulse width corresponding to a fully

illuminated circular radiation beam with half-opening angle
ρ. These parameters can be related to the parameters in our
misaligned rotator model for the neutron star ðα; θÞ using
[101,102]

cos ρ ¼ cos α cos θ þ sin α sin θ cosðW=2Þ: ð24Þ

The width of the profile for PSR J2144-3933 is measured at
10% of the amplitude is ð2.1� 0.2Þ° [103]. It is possible
that the profile is asymmetric and hence assuming that the
full open field line region is active is not necessarily true.
This means that the W in (24) should be interpreted as the
pulse width that would be observed if the full beam is
active. In rare cases, the middle of the open field line region
is centered in between one of the profile peaks, and part of
the otherwise maybe double profile is missing. Based on
these two caveats, we conservatively take W to be in the
range 1.5°–5.0° for this object.
We now turn to the estimation of ρ, whose uncertainty

mainly stems from a lack of knowledge of the height hem at
which the emission occurs. The beam is bounded by the
tangents to the last open magnetic field lines. Assuming
that the field is dipolar, one finds that (e.g. [104])

ρ ≈
3

2

ffiffiffiffiffiffiffi
hem
Rc

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9πhem
2cP

r
; ð25Þ

where we have used the small angle approximation for ρ. In
the second expression we have replaced the light cylinder
radius Rc with the pulse period P ¼ 2πRc=c. Estimation of
hem is complicated by the fact that the beam is not

necessarily filled, but across the pulsar population hem at
1.4 GHz has been constrained to be in the range of 200–
400 km irrespective of pulse period [105]. We take a more
conservative range of 100 ≤ hem ≤ 1000 km, so as to
ensure that we are not strongly wedded to the modeling
assumptions in the pulse-beam simulations.
Note that, in principle, it is possible to compute the

emission height hem from estimates of the swing of the
polarization angle (see for example [106]) where theoretical
polarization angle profile is derived assuming the rotating
vector model [107]. However, the detailed applicability of
the rotating vector model is a debated topic in the literature
and not all pulsars exhibit the characteristic banana shape
that the model predicts (see for example [108]). In addition,
it may not always be possible to measure the polarization
properties of candidate pulsars, particularly magnetars that
do not emit at radio frequencies. We remark that while
measuring α can significantly impact the sensitivity of our
method, it remains to be seen whether this method can be
considered an guaranteed way of breaking the α − θ
degeneracy.
Since parameters for a given pulsar are uncertain, values

of α all the way down to zero are allowed by (24), for which
there would be no time variation. We, therefore, appeal to
further arguments which allow us to place a lower bound on
α by excluding implausible geometries.
A problem with very small α geometries is that in order

to explain the very narrowW the line of sight needs to graze
the very outer part of the beam such that most of the beam is
invisible to us. This requires fine-tuning which is not only
unlikely [109], but is also contrived for two reasons. First of
all, a small change in emission height as expected for
different observing frequencies [110] would lead to a
drastic change in the observed pulse width, which is not
observed [103]. Second, a narrow pulse not only requires a
grazing line of sight, but also a circular beam with a hard
edge. In reality the pulsar beam does not have a hard edge,
and hence the observed pulse shape from a grazing line of
sight will be dominated by the intrinsic smoothness of the
beam which will be much wider than predicted from the
circular model.
To quantify why small α geometries are unlikely, we

construct an effective probability distribution for α and β
which essentially measures the number of beam realiza-
tions associated to each pair ðα; βÞ assuming a uniform
distribution for W. This is shown in Fig. 5. We constructed
this distribution according to the following algorithm
(i) uniformly sample W between 1.5° and 5.0° in 100
steps. (ii) For each given W, scan over a discrete grid of
ðα; βÞ values between 0 and π=2. (iii) For each point ðα; βÞ
calculate ρðW; α; βÞ with Eq. (24). For each ðα; βÞ (for the
specific W under consideration) if the resulting ρ satisfies
100 ≤ hem ≤ 1000 km and jβ=ρj < 0.95 record a value of
1. Otherwise assign it 0. Note the second constraint is
designed to exclude a line of sight with an impact parameter
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β ≃ ρ, which is both unlikely and implausible for the
reasons above. At the end of this process, for each W,
one has an α-β grid with entries that are 1 (implying an
acceptable beam geometry exists) or 0. SinceW is sampled
with 100 steps, there are 100 grids. (iv) Figure 5 then shows
the sum of these grids (appropriately normalized).
The main features that stand out are that jβj needs to be

small in order for the line of sight to intersect the beam and
small α solutions are excluded. No solutions exist for
α≲ 10°. Furthermore, one can see in the top panel that
solutions α ≲ 20° are unlikely geometrical solutions, which
is because they require a fine tuned (large) β. It should be
stressed that α≲ 20° geometries are not just unlikely, we
have also argued them to be contrived.8 In what follows we
will impose α > 20° and jβj < 4°. We would expect to be
able to apply similar arguments to a large fraction of pulsars
that we might want to use to constrain gaγγ .

C. Constraints on gaγγ from PSR J2144-3933

We have shown in Sec. III how one can compute the
SNR parameter q as a function of the input parameters
ðma; θ; αÞ using the matched filter. In order to now derive
constraints, we have carried out a parametric search for all
possible profiles in our interpolated library (see Fig. 1)
using the pulsar data presented in Fig. 4. This procedure
then gives us a distribution of SNR values qmeas associated

to each profile. We could repeat this process, but this time
using our noise model which by definition has no signal
present. Remember that it assumes uncorrelated Gaussian
noise which simplifies the matched filter. This means that
the values of qmeas should be Gaussian distributed with zero
mean and unit variance.
We do find that they are compatible with a Gaussian

distribution that has zero mean. However, we find that the
standard deviation is ≈1.45 somewhat higher than the
expected value which points to the fact that the noise model
we are using is not optimal.9We find that, out of the≈3 × 104

templates, there are three that have q > 5which, if the noise
model were perfect would suggest candidate detections, but
in order to assess their statistical significance they should
probably be scaled down by 1=1.45 reducing them to ≈3.5.
This suggests that they are chance alignments with the
templates; a conclusion that is further strengthened by the
observation that they, and indeed the other higher values of
qmeas, appear to be randomly distributed with ma. We are
satisfied that our data are compatible with a null detection.
In the case where the baseline has been subtracted from

the data, which is the case for the data being considered
here, the constraining power of the matched filter is
determined by (21). For the pulsar we have chosen,
Fig. 1 shows the time dependence of the profiles. Note
the relative variance vanishes at α ¼ 0, but can be larger
than one for a range of values of ðα; θÞ, but that we have
argued that regions with α < 20° are unlikely and contrived
in Sec. IV B.
In the absence of a detection, one can derive constraints

on gaγγ by comparing the measured value of qmeas for a
particular template, with the expected value hqi for that
same template. The measured value is defined by

qmeasðθ; αÞ ¼
Fðθ; αÞ · d

σN
: ð26Þ

This must be compared to the expected value hqðgaγγ; θ; αÞi
if a signal were present in the data

hqðgaγγ; θ; αÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðgaγγ; θ; αÞ · Sðgaγγ; θ; αÞ

p
σN

: ð27Þ

In the perturbative limit of the conversion probability,
which we have checked is always the case here, this is
∝ gaγγ . Therefore, in order to impose a limit we calculate
hqðgfidαγγ; θ; αÞi for gfidaγγ ¼ 10−10 GeV−1 and exclude any
value such that

FIG. 5. The constraint on the α-β plane based on the geometry
of the beam where β ¼ θ − α. As explained in the text, we define
the likelihood to be the percentage of possible values of W for
which solutions exist within the range of hem we have allowed.
Improbable solutions with jβ=ρj > 0.95 are rejected. The top
panel shows the vertical integration of the bottom panel and it
demonstrates that solutions with α < 20° are very unlikely
because they would require fine-tuning of β. Therefore, we rule
out α < 20° and jβj > 4° as statistically unlikely, indicated by the
red-dashed lines, when we calculate our limit on gaγγ .

8A less conservative limit on the acceptable solutions such that
jβ=ρj < 0.90 would lead to α≳ 25°, demonstrating that the
conclusions are relatively insensitive to the precise limits chosen.

9We have assumed that the noise is uncorrelated in phase
which is unlikely to be precisely true and this could easily lead to
more structure than would be expected for a totally random
realization of the noise. It is clear that one could achieve slightly
tighter constraints by improvement of the noise model.
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gaγγ > gfidaγγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qmeasðθ; αÞ
hqðgfidαγγ; θ; αÞi

s
: ð28Þ

The factor of 2 in (28) corresponds to the observed noise
level being twice the equivalent signal for gaγγ meaning that
this will be a 2 (≈95% confidence) upper limit on coupling
constant.

We have explained above that the typical values of qmeas
are higher than they should be due to the noise model not
being perfect. This will mean that the upper limits we
compute using (28) are not optimal and hence are slightly
conservative.
We show the constraints from this procedure in the left

panel of Fig. 6 for ma ¼ 4 μeV along with the regions
preferred by our analysis of the orientation angles. In the
right panel, we quantify the advantage of the purely time-
domain analysis compared to the purely frequency-domain
analysis as a function of ðα; θÞ. We do this by taking the
ratio of theoretical signal to noise in the case where the
baseline is subtracted, qtime, with respect to the case where
the time profile is averaged over the pulse period and
integrated, qfreq. When this ratio is larger than 1, the time
domain analysis leads to stronger constraints on gaγγ .
We have performed the same analysis as presented in

Fig. 6 over the mass range 3.9 μeV ≤ ma ≤ 4.7 μeV and
then searched for the weakest upper limit in the range α >
20° and jβj < 4°. The results, assuming thatD ¼ 0.165 kpc,
are presented in Fig. 7 and using this, we conclude that we
can exclude dark matter axions forming the entire Galactic
halo with gaγγ > 5.5 × 10−11 GeV−1. If D ¼ 0.29 kpc as
suggested by electron density models, then we find a weaker
constraint of gaγγ > 9.6×10−11 GeV−1.We leave the detailed
investigation of the impact of the galactic electron density
models and the veracity of the models for future work.

V. FUTURE SEARCHES

In the previous section we have shown how one can
derive a limit on gaγγ from baseline subtracted radio pulsar

FIG. 6. In the left panel, we present the constraints on the axion-photon coupling for the average-subtracted case as a function of ðθ; αÞ
for ma ¼ 4 μeV. As expected, the derived limit is weaker in the limit α → 0 since the time dependence of the signal is negligibly small.
In fact there is no limit for α≡ 0 since there is no time dependence. Fortunately, the limits from the pulsar main beam modeling require
α > 20° and jβj < 4° which are included as red lines on the plot, so we are able to achieve a limit gγγγ ≲ 9.6 × 10−11 GeV−1. On the right
panel, we show the ratio of the signal-to-noise ratio in the case where the average has been subtracted (i.e., where only time-domain data
is used) the case where the time-averaged flux is used in frequency space. In other words, this ratio quantifies the gain in working in the
time domain.

FIG. 7. 2 upper limits on gaγγ as a function of ma for
d ¼ 0.165 pc. This is determined by calculating the highest
upper limit in the region of the α − θ plane allowed by jβj < 4°
and α > 20° from the equivalent of Fig. 6. On the basis of this
figure we quote an upper limit of gaγγ < 5.5 × 10−11 GeV over
the mass range 3.9 μeV ≤ ma ≤ 4.7 μeV.
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data using the variation in the time domain calculated by
our ray-tracing algorithm. There we used a specific pulsar
and telescope. An obvious question is what can be gained
in future observations. In general, the limits obtained will
scale as

glimaγγ ∝
1

ðμ2S þ σ2SÞ1=4
�
Aeff

Tsys

�
−1=2

t−1=4obs : ð29Þ

Hence, any improvement on glimaγγ will come from two
avenues. The first is better observations: lower system
temperature Tsys, larger collecting area Aeff and increased
observing time, tobs. The second is a better target: one with
larger mean-signal power μS or greater time variability as
measured by σS. Leveraging the latter is of course the key
point of the present paper. Let us now come to each of these
factors in turn.
In terms of improved observations with the current target,

we can imagine future observations of PSR J2144-3933with
both MeerKAT or other similar telescopes in the short term
and the Square Kilometre Array (SKA) in the longer term.
All other things being equal, Eq. (29) implies that an increase
in observation time from ≈1 hour, as we have now, to
100 hours would improve the limit by a factor∼3. Moreover,
going from MeerKAT with Aeff=Tsys ≈ 450 to Aeff=Tsys ≈
1800 for SKA1-mid will yield a limit which is a factor ∼2
better. Combining these together one might be able to obtain
a limit of gaγγ < 1.6 × 10−11 GeV−1.
PSR J2144-3933 only allows constraints to be imposed

forma < 4.7 μeV within the framework of the GJ model. It
might be interesting to perform lower frequency observa-
tions of it, but perhaps it is more interesting to find a source
with a larger value of mmax

a to probe mass ranges less
accessible to terrestrial haloscopes. An interesting point to
clarify would be how the signal scales as a function of
pulsar parameters, in particular the period P and the
magnetic field B0.
The FOM based on radial trajectories is ∝ B2=3

0 P7=3,
while the maximum mass probed is ∝ ðB0=PÞ1=2.10 At a
fixed value of P we see that it will always be best to
increase the value of B0, while at fixed B0 the FOM will
increase with P, but mmax

a will decrease meaning that there
is a trade-off between the two and the optimal target will be
a compromise between the strength of the signal and the
range of mass probed.

We have checked the scaling of the FOM using the ray-
tracing code to calculate the average signal, μS, summed
over all frequencies for a range of values of B0 and P. For
B0 these appear to broadly confirm that the approximate
scaling of the FOM with relatively weak dependence θ and
α, although there can be significant deviations for extreme
values. However, the dependence on P seems to be
somewhat weaker than that predicted from the FOM from
radial trajectories. For the specific choice of α ¼ 60° we
find that FOM ∝ B0.8

0 P1.2. Given the complications in
constructing a FOM which depends on the orientation
angle, we conclude that it is reasonable to continue to use
the FOM based on radial trajectories as a rule of thumb, but
we should not expect it to give quantitatively accurate
predictions for the increase in constraining power. The
argument above applies to all attempts to constrain gaγγ
using neutron stars, not just a search for time dependent
signals.
Let us come now to the question of other targets, focusing

in particular on the time dependence of their signals. Note
that in our original target selection, we used only the mean
power, however as demonstrated in Sec. III A and as is
apparent from Eq. (29), the key parameter determining
whether including a time-domain analysis can add value
over just using the frequency domain is σS=μS. Clearly this
will depend on the intrinsic pulsar parameters, B0, P and
axionmass,ma aswell as ðα; θÞ. In Fig. 8we show that σS=μS
clearly increases with B0 with the amount being sensitive to
the choice of θ and α. We have also investigated the
dependence on P, but this is typically much weaker for
the relevant range of parameters. Based on this, we can
expect that time-domain observations offer the greatest

FIG. 8. The relative time variance, σS=μS, of the profiles as a
function of the magnetic field B0 at the surface of the neutron star.
We fix P ¼ 4 s and ma ¼ 1 μeV and the value of gaγγ scales out
in this ratio. Despite the time variation between the maximum and
minimum of the profiles increasing by orders of magnitude for
B0 ∼ 1014 G compared to B0 ∼ 1012 G, σS=μS only goes up by a
factor of a few.

10Note that this figure of merit is based on the calculation of
power radiated at the poles for an aligned rotator Hook et al. [55].
We think that this choice is a conservative estimate of the FOM.
Indeed a time-varying FOM can be computed in the same
approach, but we think the resultant ranking for targets from
such choices for the FOM are subject to errors arising from the
radial trajectories assumption that has been superseded by the
ray-tracing approach.
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enhancement over a total flux measurement for larger values
of B0. Hence, objects such as magnetars stand to gain most
from a time-domain versus total flux analysis.
The GCM in particular has already been a popular

target for searching for axion signals. In Fig. 9 we present
some GCM profiles analogous to those in Fig. 1. The first
thing to notice is that the signal is quite a bit larger, mainly
due to the enhanced dark matter density assumed in the
GC, although this is mitigated somewhat by it being
further away.
Clearly, at least for some choices of the orientation

angles the profiles are substantially more localized in pulsar
phase—they are almost pulselike, but they are still much
narrower than the width main peak in the radio pulse profile
for this object. The strong dependence on pulse phase in
this case is due to the effects of the “throats” in the
magnetosphere where axion production is enhanced. This is
likely to also enhance the constraining power. Obviously,
this is a model-dependent assumption that arises from
assuming the GJ model. We emphasize the point that the
strength of this technique is directly proportional to the size
of the time dependence, and by extension the presence of
these throats in the charge density.
Further to these points, the GCM offers both large

relative time variance and it lies in a region of larger dark
matter density. Furthermore the axion-to-photon conver-
sion is enhanced due to large magnetic fields. More
specifically it has a large magnetic field B0 ≈ 1.4 ×
1014 G and a period of P ¼ 3.76 sec and is a distance
of D ≈ 8.3 kpc. In fact, the ratio of the FOM Eq. (22) from
PSR J2144-3933 relative to the GCM is given by

FOMjGCM
FOMjJ2144

≈ 1.3 × 10−4 ×
ρDMjGCM
ρDMjlocal

: ð30Þ

If one assumes a standard NFW profile for the Galaxy, one
obtains an enhancement of ∼105 with respect to the local
value11 which suggests that it will lead to a larger FOM by a
factor of ∼20. If the dependence on B0 and P is slightly
stronger than using the radial trajectory based FOM, as we
have suggested above, then we might expect a slightly
stronger improvement than given by this simple argument.
In addition, due to the larger value of B0 from Fig. 8 we
would expect σS=μS to be large enough to produce the most
significant gains from a time-domain study compared to
other targets.
Prima facie there seems to be an argument for recon-

sidering the GCM as a target. As an indication of what
could be achieved for the GCM with similar observational
resources to those currently available, we have simulated
the equivalent of Fig. 7 using the GCM as the source
assuming a similar noise level to the present data, that is
3 mJy, and this is presented in the top panel of Fig. 10.12

Making similar assumptions about constraints on ðα; βÞ
from the pulse profile, we obtain a projected upper limit of
gaγγ < 4 × 10−12 GeV−1 which is a factor ∼10 stronger
than that we obtained from PSR J2144-3933. In addition,
the GCM allows a much wider range masses with mmax

a ≈
85 μeV ðfmax

obs ≈ 20 GHzÞ. While there are many caveats to
such an analysis, notably the noise levels that one might
achieve in the direction of the GC, this suggests recording
time domain information for this object is well motivated.
Note that above we have argued that it might be possible to
improve limit by a factor ∼6 using a 100 hour observation
using SKA1-mid, which would lead to a projected limit
of gaγγ < 6 × 10−13 GeV−1.
It is worth noting that the GJ model is believed to be a

reasonable description of the pulsar magnetosphere for
typical radio pulsars with magnetic field strengths in the
range 1011 G ≤ B0 ≤ 1013 G. However, it breaks down in
pulsars with large magnetic field values, magnetars in
particular for which the emission mechanism is poorly
understood. Since a detailed analysis of the magnetosphere
and the associated modeling uncertainties and propagating
these uncertainties through our pipeline requires detailed
magneto-hydrodynamic simulations, we leave such efforts

FIG. 9. Predicted pulse profiles for the GCM. In order to
generate these profiles, we fix gaγγ ¼ 10−10 GeV−1 and ma ¼
1 μeV and α ¼ 60° while varying the observing angle. As in
Fig. 1 we have removed the average signal from the profiles. We
can see very clearly that in some cases the profiles are very time
variable—they almost look pulselike for θ ¼ 30° and 60°. None-
theless these only correspond to a σS=μs ≈ 3 compatible
with Fig. 8.

11Note that, without this assumption, the constraints from this
pulsar are weaker than PSR J2144-3933.

12We note that at 1.4 GHz there is a significant increase in the
sky temperature at the location of the GCM and this will
dominate Tsys. This means to achieve this noise figure one
would need to observe for ∼10 h with MeerKAT. In addition the
pulsar and the axion signal will be scattered [111]. However, as
the signal can be completely modeled using the observed pulsar
profile it can be combined with the axion templates before the
matched filtering is performed. Both these effects will fall off
rapidly as a function of increasing frequency.
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to future work. It is a well-known fact that DM density at
the Galactic Center is very poorly constrained. It is our
considered opinion that the extrapolation of the NFW
profile to the position of the GCM in the galactic halo
to predict ρDM, which translates to an uncertainty of ∼2
orders of magnitude in gaγγ is by far the biggest uncertainty
in our GCM modeling. In order to address the former
problem, we will now describe a model-independent
analysis of the radio pulsar data to look for generalized
periodic signals.
In the bottom panel of Fig. 10, similar to the right panel

of Fig. 6, we show how much one can gain from doing the
time-domain analysis as a function of ðα; θÞ. We see that the

values of qtime=qfreq larger, typically ≈2–3 compared to ≈1
for PSR J2144-3933. It seems reasonable to conclude that
the factor ≈20 improvement in the constraining power seen
in the case of the GCM comes from the combination of the
FOM based on radial trajectories, a slightly stronger
dependence of the signal on B0 and P than predicted by
radial trajectories and the use of the time domain structure.
Our conclusion is that there is a strong argument for
attempting to apply this technique to the GCM.
Finally, we comment that it goes without saying that

improved knowledge of the orientation angles will lead to
improved constraints. The constraints which we have
imposed on gaγγ from PSR J2144-3933 are strongly
dependent on constraints we have placed on α and β from
the pulse profile. These are conservative and given the
nature of the signal—there are some regions of the α − θ
plane where the constraints are very weak and even
nonexistent—meaning one is always dominated by the
lower limit one imposes on α. However, if one were to
know the actual angles and, indeed, if they were in the
region where the signal is predicted to be strongest then
more optimal limits can be imposed. For example, in the
case of the GCM if the actual angles are in the region where
the strongest limit is, gaγγ ≲ 10−13 GeV−1 for a one-hour
observation with MeerKAT. This could be a factor of 6
lower for 100 hours with the SKA.

VI. SEARCH FOR GENERALIZED
PERIODIC SIGNALS

In the previous sections we have deduced limits on gaγγ
using PSR J2144-3933 and have discussed how this might
be improved in the future using the GCM. The key
qualitative feature of the predicted signal profiles is that
their timescale is given by the pulse period P—this is what
allows us to use the pulsar data already folded at the pulse
period. One might be concerned that the precise predictions
using the GJ model might be too simplistic given the
complicated nature of the pulsar magnetosphere. However,
taking the qualitative prediction that the signal is dominated
by low harmonics of the period one might perform a
generalized search for the periodic signals in the data. Of
course, without specific connection to the physics, such a
search cannot yield an upper limit on gaγγ, but it does allow
us to search more specifically for periodic wouldbe axion
signals which might otherwise be missed due to modeling
uncertainties.
Any time-periodic data dðtÞ can be written as a Fourier

series

dðtÞ ¼
X∞
k¼−∞

ake2πikt=P; ð31Þ

where P is the signal period. The coefficients ak are then
given by

FIG. 10. In the top panel, we show the expected constraints on
gaγγ from simulated observations of the GCM with an rms noise
level of 3 mJy forma ¼ 1 μeV. We fix the pulsar parameters to be
B0 ¼ 1.4 × 1014 G, P ¼ 3.76 s and ρDM ¼ 5.4 × 104 GeVcm−3,
which is the value computed using a standard NFW profile for the
galaxy. Note that, depending on the values of θ and α limits as low
as gaγγ ≲ 10−13 GeV−1 might be possible. In the bottom panel, we
quantify the effect of adding time-domain information over the
parameter space ðα; θÞ. Note that this has a slightly different
morphology to that for PSR J2144-3933, but also the values of
qtime=qfreq are slightly larger approaching ≈3 as it is indicated
might be the case in Fig. 8.

SEARCHING FOR TIME-DEPENDENT AXION DARK MATTER … PHYS. REV. D 108, 063001 (2023)

063001-15



ak ¼
1

P

Z
P

0

dt dðtÞe−2πikt=P: ð32Þ

Reverting to the discrete case considered in this text, where
the data is defined on N discrete time bins, with entries dq,
q ¼ 0;…; N − 1, the Fourier coefficients in the discrete
limit can be written as

ak ¼
1

N

XN−1

q¼0

dq exp

�
−
2πiqk
N

�
: ð33Þ

Note that in what follows we do not consider the k ¼ 0
mode associated to the time-average μS of the profiles
which, in principle, has been already removed by the data
processing. In addition, we comment that the parity
properties of the profiles we predict for the axion signal
imposes ImðakÞ ¼ 0.
In order to confirm our assumption that the profiles are

dominated by low k modes we have computed the power
spectrum,13 jakj2, of two profiles with varying levels of
time dependence, i.e., a relatively flat profile with
ðα ¼ 10°; θ ¼ 10°Þ and one with a relatively large time
variation with (α ¼ 60°; θ ¼ 30°). This is presented in the
top panel of Fig. 11. We see that the power spectrum for
both decreases rapidly as a function of the mode number k.
The point can be further reinforced by computing the
inverse-Fourier transform from the ak while neglecting all
modes above some value of k ¼ ncut. We have done this for
ncut ¼ 1, 3, 7 and present the outcome in the middle and
bottom panels of Fig. 11. It is clear that the profiles are
reasonably well represented by ncut ¼ 3 and ncut ¼ 7 in
each case. We find that this is true for a wide range of
predicted templates, but not all e.g. some of those presented
in Fig. 9.
The advantage of this approach is that we know a

periodic signal search can be carried out using only the
first ncut Fourier modes, reducing computational overhead
when scanning.
Furthermore, in what follows, rather than scanning over

every available template parametrized by ða1;…; ancutÞ,
with say, a fixed total power (which would be very costly
from a numerical point of view) we instead compare the
expected distribution of the ak that would follow if d were
pure Gaussian noise. In that case the expected PDF for the
values of the squared amplitudes jakj2 is a χ2m distribution

Pðx;mÞ ¼ 1

2m=2Γð1
2
mÞ x

m=2−1 exp
�
−
1

2
x
�
; ð34Þ

FIG. 11. In the top panel we present the power spectrum of two
profiles with (α ¼ 60°; θ ¼ 30°) (blue) and ðα ¼ 10°; θ ¼ 10°Þ
(red). The power spectrum has been normalized such that
ja1j ¼ 1. It is clear that both the power spectra are dominated
by the lowest n modes. In the middle and bottom panels we
illustrate this point by presenting profiles obtained from the
inverse transform of the fast fourier transform (FFT) of each
profile with ncut ¼ ð1; 3; 7Þ (red, green and blue, respectively)
compared to the exact profile (black). The significance of the low
n modes is further demonstrated by the fact that the blue curves
are remarkably close in shape to the black curves.

13We note that ak depends on the relative phase of the main
peak of the pulsar profile and axion signal, but when one takes the
power spectrum this information, which is encoded in the
complex phase of ak, is removed. So our test using the power
spectrum is independent of this assumption.
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where Γ is the standard gamma function. For a given mode,
wehave thatm ¼ 1 is thenumber of degrees of freedomsince
the noise is real, and hence the real and imaginary parts are
correlated. Note the distribution is the same for all kmeaning
the spectrum is scale invariant. However, if there is an axion
signal in the data, then we expect this scale invariance to be
broken, and, in particular, for there to be a greater portion of
power contained in the lowFouriermodes, providingamodel
independent test of periodic axion signals in the data.
Therefore, since the scale-invariance implies all jakj2 have
an identical distribution, by Fourier transforming the data
dðtÞ and binning the corresponding values of jakj2 across all
k, we can see to what extent they are χ21 distributed. This
comparison is shown in the top panel of Fig. 12, where we
present histograms of the data (together with a single noise
realization) for a particular frequency channel corresponding
to a value of ma ¼ 4 μeV, both of which seem compatible
with theoretical χ21 distribution. The sample is drawn from
Fourier modes up to some kmax where the wavelength of the
mode would be less than the temporal bin width, beyond
which the description breaks down owing to insufficient
resolution.
Having extracted spectral information from the data, we

now want to analyze to what extent power is concentrated
in the lower modes, as expected for an axion signal. To do
this, we look at the power contained in the sum of the first
ncut modes, given by

QðncutÞ ¼
Xncut
k¼1

jakj2: ð35Þ

We then want to understand if the measured values of low-
mode power are again consistent with the scale-invariant
spectrum. The PDF for QðncutÞ is χ2ncut since it is the sum of
ncut independent modes each ∼χ21. This distribution can
clearly be seen in the bottom two panels of Fig. 12 where
for ncut ¼ 3 and ncut ¼ 7 we display simulated and analytic
PDFs for the frequency channel corresponding to
ma ¼ 4 μeV. Note we have also included the measured
value of QðncutÞ shown in red.
In order to make a more precise statistical statement

about the presence of a signal dominated by low-Fourier
modes, we have calculated the probability, using the
appropriate PDF, for there to be a larger value of
QðncutÞ than that which is measured. This gives a sense
of whether or not the measured value happens by chance in
a way consistent with our sample size, or whether it is a
sufficient outlier to indicate the presence of a periodic
signal in the data. For the case of ncut ¼ 3 we find that there
are three frequency channels where this “probability to
exceed” <0.05 and one where it is <0.02. However, since
there are 213 individual frequency channels it seems likely
that this is a chance outcome in a few frequency channels
compatible with being a random noise realization. For
ncut ¼ 7 there are none with a probability <0.05.

FIG. 12. In the top panel we present a histogram of the power
spectrum computed from the data for ma ¼ 4 μeV in orange and
a single Gaussian noise realization of the same variance and
sample size. Each of the individual mode labeled by k is binned,
so this corresponds to a single mode search. We also plot the χ21
PDF associated expected for jakj2 and observe that both the data,
noise realization and analytic PDF are clearly compatible with
each other. This appears to suggest that the data are compatible
with being pure noise. In the middle and bottom panels we
compare the distribution of the sum of first three modes (middle)
and first seven modes (bottom) from 300 realizations of simulated
Gaussian noise with the same standard deviation as the data. The
measured value is represented with a red line. We use the same
valuema as in the top panel and have also included the theoretical
PDFs which are χ23 and χ27, respectively. By doing this, we are
searching for signals that have more structure than just a single
mode in the time domain. Since the data value is not a significant
outlier, we exclude the presence of such signals in the data.

SEARCHING FOR TIME-DEPENDENT AXION DARK MATTER … PHYS. REV. D 108, 063001 (2023)

063001-17



VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a procedure for carrying
out time-domain searches for radio signals produced by
axion dark matter converting into photons in the magneto-
spheres of pulsars. We have developed a matched filter
formalism to define the signal-to-noise ratio of time-
dependent signals and have used this to show that time-
domain searches always improve the signal to noise ratio.
By how much the SNR is improved is determined by the
relative variance of the signal (the ratio of the standard
deviation to the mean of the signal over the pulse period14)
and the matched filter formalism provides a robust frame-
work to understand why this is the case.
As a test case, we then applied the matched filter

formalism to real data on PSR J2144-3933 obtained using
MeerKAT, searching for expected periodic signal templates
for the radio signatures produced by axion dark matter. This

was selected from a list of pulsars on the basis of a simple
figure ofmerit for axion detection. In the present analysis, for
a fixed axion mass, these templates form a two-parameter
family for each observing direction set by the angle θ
between the stars rotation axis and the line of sight towards
the pulsar, and α the angle between the stars magnetic axis
and its rotation axis. Using the morphology of the observed
pulsar main-beam signal, we were able to exclude a range of
values ðα; θÞ, narrowing down the number of viable tem-
plates. Scanning over the allowed set of templates we find no
evidence for axion dark matter and obtain an upper limit of
gaγγ < 9.6 × 10−11 GeV−1ðD=0.29 pcÞ over the mass range
3.9 μeV ≤ ma ≤ 4.7 μeV. Given the astrophysical uncer-
tainties in modeling the templates, we also carried out a
generic periodic signal search independent of any modeling.
This also returned no significant signal from axion dark
matter.
In Fig. 13 we have placed the limits derived here in

context of other limits on gaγγ from the CAST helioscope
[70], haloscopes [24–35,37,38,112–117]. There are a
number of other limits in the literature from neutron

FIG. 13. We show our limit (dark red) on the axion-photon coupling from one-hour observations of PSR J2144-3933
(B0 ≃ 2 × 1012 G; ρDM ≃ 0.45 GeVcm−3) and the projections from the 100 hours of observations from the SKA (red). We also show
projections of what can be achieved from ∼1 hour observations of the GCM (B0 ≃ 1.6 × 1014 G, ρDM ≃ 6.5 × 104 GeVcm3) using
MeerKAT at L-band (purple) presented in this paper and 100 hours with the SKA (black) assuming a frequency coverage
0.9 ≤ fobs ≤ 15.3 GHz. Note that our projections for the GCM are derived assuming θ ¼ α ¼ 20° similar to what we assumed for
PSR J2144-3933, which is conservative since the time dependence can be larger for larger values of α. Throughout we assumed an NFW
profile. The dark blue exclusion region is from theCASThelioscope [70]. The green and purple exclusions are from theADMX[24–31] and
HAYSTAC [36–38] haloscopes, respectively. The yellow exclusions are from the CAPP haloscope [32–35,112,118] (Note that the high-
frequency constraint comes from the CAST-CAPP haloscope operating inside the CAST dipolemagnet at CERN). The orange are from the
RBF/UF haloscopes [113,114]. Finally, the dark blue limits from the ORGAN collaboration [115,116]. We have also included the limits of
the frequency only analysis of the pulsar population at the Galactic Center using data from the Breakthrough Listen project [64] as probably
the most reliable limit, using all the known physics [58,59] from neutron stars available prior to the analysis performed here.

14Note that in pulsar astronomy, when applied to e.g. the main
pulse, this quantity is referred to as the modulation index.
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stars [60,64,65,68,69,75]. We have included [64] as the
present best limits obtained from observations that only
use frequency information, but have not included the rest.
For example, when it comes to GCM observations, the
latest work by three of the present authors [60], was the
most up to date since that work includes ray tracing;
however this was based on a previous version of ray-
tracing code which, unlike the present work, did not
include multiple reflections that increase the predicted
signal, leading to overly conservative constraints. The
GCM will be reanalyzed in [79], combining the most up-
to-date account of the combined results on modeling from
[58,59] and data [65,67,75]. Reference [69] also does not
include ray tracing so we do not include it. Similarly [68]
(which we again do not include) has been superseded by
the authors’ follow-up work [64] (shown in Fig. 13),
which uses the most up-to-date modeling. We have tried to
be fair in displaying those results which use the most up-
to-date modeling and conservative assumptions.
In this work, we set out with the intention of examining

to what extent detailed time-domain information could be
leveraged to increase the reach of radio searches for
axions relative to a simple radio-line search which simply
averages the flux over a long time. We were able to
quantify this precisely in terms of the time variance of the
signal which we examined both for two specific pulsars
and a range of other pulsar magnetic field strengths. It
seems that for characteristic pulsar parameters there is a
modest enhancement to the signal to noise from including
time-domain information, however this marginal gain
could be enough to tip a tentative detection in a total-
flux measurement into a signal-to-noise level above 5
when time-domain information is included, making it well
worthwhile to extract maximum leverage from pulsar
observations. This is especially relevant as we look to
future telescopes such as the SKAwhere we want to use all
possible tools at our disposal to enhance the prospects for
detection. Furthermore, given the rich variety of ever-
increasing astrophysical probes of axions [119–123]
events which are sharply peaked in time (or other detailed
features amenable to a matched filter search) could benefit
from more sophisticated search strategies.
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APPENDIX: INTERPOLATION OF
THE RAY-TRACING RESULTS

Due to the computational cost of the ray-tracing
simulations, which require ∼24 hours to produce a

FIG. 14. Examples of the interpolated profiles in the analysis.
Each of these is for PSR J2144-3933 using the parameters
discussed in the main text. The top panel is for ðα; θÞ ¼
ð10°; 30°Þ, the middle for ðα; θÞ ¼ ð60°; 40°Þ and the bottom for
ðα; θÞ ¼ ð80°; 60°Þ. It is clear that the interpolation is not perfect,
but it is accurate to within the level required for our analysis.
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pulse-profile when parallelized over 32 CPU cores, we
require a faster alternative to predict the time dependence
of the signal for arbitrary input angles. Therefore, we
generate a simulated database of flux profiles as a discrete
function of ðθ; αÞ, represented by the circular data points
in the top panels of Fig. 14 with Δθ ¼ 10° and Δα ¼ 5°.
Based on these datasets we generate an interpolation

routine (where we use the SciPy package SCIPY.
INTERPOLATE) that can then predict the signal for arbitrary
values of α and θ, the performance of which can be seen in
the bottom panels of Fig. 14, where we compare the
prediction of our interpolation routine with the data
points. For the purpose of our analysis, the level of
agreement is sufficient.
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